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M. Balsi a, S. Espositob, P. Fallavollitaa,b and C. Nardinocchi c

aDIET, Department of Information Engineering, Electronics and Communications, Sapienza University of Rome, Italy; bOben s.r.l., Sassari,
Italy; cDICEA, Department of Civil, Constructional and Environmental Engineering, Sapienza University of Rome, Italy

ABSTRACT
Unmanned aerial vehicle-based LiDAR survey provides very-high-density point clouds, which
involve very rich information about forest detailed structure, allowing for detection of
individual trees, as well as demanding high computational load. Single-tree detection is of
great interest for forest management and ecology purposes, and the task is relatively well
solved for forests made of single or largely dominant species, and trees having a very evident
pointed shape in the upper part of the canopy (in particular conifers). Most authors proposed
methods based totally or partially on search of local maxima in the canopy, which has poor
performance for species that have flat or irregular upper canopy, and for mixed forests,
especially where taller trees hide smaller ones. Such considerations apply in particular to
Mediterranean hardwood forests. In such context, it is imperative to use the whole volume of
the point cloud, however keeping computational load tractable. The authors propose the use
of a methodology based on modelling the 3D-shape of the tree, which improves performance
with respect to maxima-based models. A case study, performed on a hazel grove, is provided
to document performance improvement on a relatively simple, but significant, case.
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Introduction

Sustainable forests management (SFM) is emerging as
an increasingly important activity both for economic
and environmental purposes. In fact, forests not only
provide timber resources, but also act as carbon sinks
and biodiversity safeguards.

SFM requires detailed information about the for-
est composition and biomass content. To this pur-
pose, individual tree mapping and characterization
is instrumental to several SFM activities. Traditional
methods for detailed ground-based forest inventory
are too expensive and time-consuming to be applied
on large scale; therefore, a strong need for automa-
tization of individual tree detection (ITD) has
emerged.

Availability of airborne LiDAR scanners, with
increasing performance and lowering cost, makes
such kind of remote sensing particularly useful for
the purpose of ITD. While point density has been
limited until recently to under 10 points/m2, low-
altitude scanning by means of unmanned aerial vehi-
cles (UAV) has now made one-order-of-magnitude-
larger densities practical, even though on smaller
areas (e.g. Sačkov, Bucha, Santopuoli, Lasserre, &
Marchetti, 2016 – other self-citation to be added
after blind review). Quite high densities can however
also be obtained using small helicopters. The large
amount of data thus gathered makes the need for
automatized processing even stronger.

The first and most popular approach used is based
on generating a Canopy Height Model (CHM) in
raster form, and searching for local maxima in the
top of the canopy, indicating position of a tree
(Kaartinen and Hyppä, 2008). Delineation of the
area occupied by a tree was subsequently performed
by region growing, typically watershed, using the
maxima as seeds. Such approach was at the basis of
most methods applied by participants to the
EuroSDR contest held in 2008 (Kaartinen & Hyppä,
2008), that set a state-of-the-art milestone for single
tree detection about one decade ago, and Kaartinen
et al. (2012) published a comparison of the methods
and results adding to the set a method based on a
simple Laplacian filter for local maxima detection
(LOCM) after smoothing as well as a multiscale
Laplacian of Gaussian (LOG). Jakubowski, Li, Guo,
and Kelly (2013) reviewed methods proposed to date,
comparing with their own, also based on finding local
maxima and valleys of the CHM (Li, Guo,
Jakubowski, & Kelly, 2012). Liu, Im, and
Quackenbush (2015) proposed a method to improve
tree segmentation resulting from watershed methods,
by applying an original algorithm that iteratively
adjusts crown boundaries (in a fashion similar to
active contours techniques) to correspond more clo-
sely to actual tree shape, also allowing for topological
transformations. However, this method requires col-
lecting training samples to differentiate the boundary
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within the tree canopy from the one between the tree
canopy, which are not easy to obtain without good
reference data.

Methods based essentially on maxima of the CHM
are very efficient for forests that are composed of
trees, such as conifers, that have a well-defined
apex, are sufficiently separated from each other, and
are sufficiently uniform in height so that most trees
are not covered by taller neighbors. Fusion of other
information (in particular visible and IR imagery)
may improve results due to higher spatial density,
while LiDAR-derived CHM guarantees accuracy in
height estimation. However, substantial improvement
of such techniques is not possible unless the whole
point cloud (rather than the highest points only) is
exploited. Based on such considerations, several
authors have proposed methods that use all the infor-
mation contained in the cloud, especially using clus-
tering algorithms.

Morsdorf, Meier, Allgöwer, and Nüesch (2003) use
k-means clustering directly on a dense point cloud
obtained on conifer forests, using local maxima as
seeds for the algorithm. A similar approach is taken
by Lee, Slatton, Roth, and Cropper (2010). Also
Gupta, Weinacker, and Koch (2010), apply k-means
on the whole dataset. They show that by scaling the z
coordinate (so that the ellipsoidal shape of trees tends
to become more spherical) results are improved. They
also show that the method works with random seeds,
but better results are obtained when local maxima are
used instead.

Yao, Krull, Krzystek, and Heurich (2014) use the
normalized cuts algorithm to build clusters, adding
additional attributes to each point besides XYZ posi-
tion, such as pulse width and intensity obtained from
processing the full-wave response, in order to exploit
similarity.

Ayrey et al. (2017) proposed to apply k-means
clustering after dividing the point cloud into horizon-
tal layers, looking for consistencies across layers, and
starting to form top layers so that local maxima are
used as seeds when building 3D clusters form 2D
clusters.

Other approaches include an original proposal by
V.F. Strîmbu and B.M. Strîmbu (2015), based on
iterative building of a graph that hierarchically con-
nects points, and successive visit of the graph for
segmentation based on heuristics.

Sačkov et al. (2016) address specifically the pro-
blem of dealing with complex forests, in particular
broadleaved woodlands and multi-layered canopies.
They use the reFLex algorithm, developed by some of
the authors, which includes several tree allometry
rules on permissible tree heights and crown dimen-
sions in order to increase the likelihood that real trees
are detected. Computational efficiency is enhanced by
dividing points into three-dimensional regular tiles.

Specifically relevant to the approach taken in this
paper is the work of Tittmann, Shafii, Hartsough, and
Hamann (2011), who use a modelling strategy search-
ing for simplified tree shapes, by applying the ran-
dom sample consensus (RANSAC) algorithm with
paraboloids directly to the point cloud. As their case
study is applied to conifer stands, the paraboloid is
indeed a good approximator for tree shapes, and
treetops are quite well separated. Also Reitberger,
Schnörr, Krzystek, Stilla (2009) use RANSAC, but in
this case specifically to find stems (used to identify
tree positions), in contexts where canopies are well
separated from the ground level.

As pointed out by Sačkov et al. (2016), trees having
relatively flat and irregular crowns, and mixed forests
containing uneven-aged trees of different species pose
a specific challenge to ITD. In this work, we intend to
address this kind of problems, starting from a rela-
tively simple case study, yet significant, because we
considered a hazel grove, made of trees that have no
evident top and several small stems, with the crown
extending practically down to ground level. In such
context, we propose the use of a methodology based
on fitting and modelling the 3D-shape of the tree
using RANSAC (Fischler & Bolles, 1981) applied to
primary raw data, in order to improve performance
both in tree detection and crown reconstruction.
Comparison with area-based approaches (ABA –
Kaartinen et al., 2012; Sačkov et al., 2016) is also
provided.

Data set

The data has been collected by Oben during a project
demonstration at Natural Reserve of Lake Vico,
Caprarola, Italy (N42.343 E12.163).

The airborne laser scanner (ALS) dataset was col-
lected using YellowScan LiDAR, mounted on a RPAS,
with the following technical specifications: 1.8 m-dia-
meter octo-copter, permitting GPS waypoint naviga-
tion, auto take-off and landing, a payload up to 4 kg
and 20 min cruise-range. In Figure 1 the system
during flight is shown.

The Yellowscan LiDAR is integrated with internal
INS and GPS receiver enhanced by RTK (Real Time
Kinematics). Dimensions, weight and autonomy of
this LiDAR are about 17 × 21 × 15 cm3, 2.1 kg, and
3 h, respectively. Such characteristics make this
LiDAR a good solution for light UAV applications.
The LiDAR operates up to 100 m above ground level.
It provides high-density measurements with accuracy
better than 40 cm under the best condition of use.
Scan angle range is ±50°. The system provides up to
three echoes per shot, allowing also to obtain returns
from ground under vegetation cover, exploiting gaps
that are present even in dense canopies. In any case,
previous analysis of data obtained in similar
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conditions using the same scanner showed that the
percentage of second and third echoes is very low,
less than 5%, and therefore not very much useful to
help the classification. For this reason, information
on return number was not used in the processing.

The dataset covers an area within a hazel grove of
181 trees. The strip scanned yielded a point density of
about 40 points/m2 (all returns) or equivalently a
mean spacing of about 0.16 m. Our data show higher
point density than conventional ALS solutions.
Ground points were filtered out by means of a classi-
fication software (Forlani & Nardinocchi, 2007) and
normalized data with respect to the ground were used
in the following.

In order to analyze data and results in deep detail,
we concentrate on a small area, Figure 2, without loss
of generality.

Application on the whole area is considered at the
end of this study. The case study considered in this
work is simplified with respect to a general one
because only one species is present and age is also
uniform. Nevertheless, the case is significant because

this type of trees is characterized by crowns that have
no evident apex at the center, so that methods based
on local maxima are not efficient. Therefore we con-
sider it appropriate to develop our method, while
application to the general case containing trees with
different age and species will be considered in future
work.

Ground truth was not available in the area under
study by on-site survey. However, based on the CHM
and on Google Earth orthophotograph, and exploit-
ing the regularity of the plantation, circles were
drawn manually by an expert indicating the position
of observable trees (Figure 2). Their real extension
has not been estimated and a mean value of 2.5 m has
been heuristically assigned to the radius of a circle
corresponding a tree.

Single-tree detection in high-density LiDAR
data

Our algorithm works directly on the point cloud,
using all points in the volume scanned, looking for
characteristic shapes of trees. It is addressed to trees
that have no evident top and that could present
several small stems which would mislead methods
based on local maxima (LM) and/or exploiting the
highest points of the cloud only.

Most points are located near the surface of the
crown, that appears relatively empty, and despite
the fact that the top is rather flat and irregular, some-
times even showing all local maxima on the edge
rather than near the center. As shown in Figure 3,
hazel crowns can be roughly approximated by a
spherical cap.

The RANSAC algorithm (Roth & Levine, 1993)
was set to search for spherical models in the point
cloud. Such a shape requires a minimal set of points
to instantiate its free parameters. A minimal set is the
smallest number of points required to uniquely define
a given type of geometric primitive (e.g. four in the
case of sphere). After choosing one minimal set at
random, the algorithm tests how many points of the
point cloud are approximated by this shape within a
defined threshold. After a fixed number of such trials,

Figure 1. Remotely Piloted Aerial System carrying the LiDAR.

Figure 2. Region of interest considered in the case study.
Highest LiDAR return points are colored according to height,
normalized to ground level. Black points correspond to true
position while black circles indicate conventional extension of
individual trees, assumed with a radius equal to a mean value
of 2.5 m.
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the shape which is approximated by the largest num-
ber of points is chosen and the algorithm may go on
to search another one in the rest of the data. The
number of trials or candidates T required to detect
the desired shape depends on the probability to detect
the correct model and the probability to have outliers
in the cloud points (Schnabel, Wahl, & Klein, 2007).
RANSAC is a very robust method and it can deal
with data with more than 50% of outliers.

In such a large point cloud (even the small
volume of our test case, which is orders of magni-
tude smaller than a practical case, contains about
50,000 points), the set of hypotheses tested would
be very large, impacting computation time, and
allowing for many highly unlikely solutions to
appear because of the large number of outliers in
the data. It is important to underline that RANSAC
is able to extract all the shapes in the point cloud
that are consistent with the parametric model, but
we set it in such a way as to consider only the most
relevant present in a small area of the data.

Therefore, we chose to provide as input to the
algorithm the point clouds included in a candidate
region of interest (RoI) having small dimension (in
this case 4 m×4 m) in order to be mainly consistent
with only one tree or a portion of it. Moreover, it
should be noted that we do not expect the RoI to
completely contain one tree, but rather that it
should contain a significant set of points, appro-
priate to extract the shape of one tree. This par-
tially eases the need to know the dimension of
trees, which is in general not uniform. In any
case, the issue of appropriate tree scale is an impor-
tant one (Liu et al., 2015), and we shall deal with it
more thoroughly when we address the case of
mixed forests in the future.

In this work, we tested two solutions for defining
the centers of the RoI’s. In the first one, we used the
tree candidates resulting from ABA methods applica-
tion, while in the second one arbitrarily spaced seed
points are used. In Figure 4 our data processing
workflows are shown.

Figure 3. Reconstructed volumes of individual trees. The layered shapes are due to the pattern imposed on points by laser
rotation.

Figure 4. (a) Flow chart of the tree detection algorithm using candidate RoI from ABA – (b) algorithm using arbitrarily-spaced
RoI’s.
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In both cases at the heart of our algorithm is
RANSAC. Key parameters include the minimum
number of points required to accept a shape can-
didate, fixed at 300 points (considering that on
average 1500 points define a tree and a window
slightly smaller than the average crown size has
been used). Moreover, considering the scattering
of the data, in particular around the crown, a
large threshold of 10 cm was chosen to accept
points as fitting the model. In our method,
RANSAC was set in such a way as to accept only
the first detected sphere starting from each RoI.
Therefore, if e.g. the RoI includes points from two
trees, only the most relevant should be extracted
from that RoI.

Even applying RANSAC on RoI’s as described
above, several spheres could be detected for each
tree, because the same tree can be present in several
RoI’s. In fact, the multi-scale approach (LoG) yields
many candidates RoI’s, while the LOCM approach is
sensitive to presence of several maxima at the edge of
the crown. Moreover, in the case of arbitrarily spaced
seed points approach, it happens because several seed
points fall nearby the tree.

In order to obtain only one center for each tree,
a clustering algorithm is added to the workflow to
group results of RANSAC according to consistency
of positions, based on the fact that several spheres
obtained for the same tree have close centers. In
this work, we chose the basic k-means (Jain, 2010)
method, without employing advanced variations of
the method. Therefore, we set the number of the
clusters equal to the number of the trees defined by
the ground truth, and applied Euclidean distance.
In the general case, where no a priori knowledge
about of the number of the trees is available, other
clustering solutions should be used, that include
automatic choice of the number of clusters.
Although it is out of the scope of this paper to
solve such issue, as possible solution in the above-
mentioned scenario we mention DBSCAN (density-

based spatial clustering of applications with noise)
algorithm (Ester, Kriegel, Sander, and Xu (1996).

Concerning the choice of the RoI’s, that makes the
distinction between the two algorithms we applied,
first discuss the case of Figure 4a, where centers of
the RoI’s are placed in tree candidate positions
obtained from ABA methods and then the case
where centers of RoI’s are placed uniformly spaced
across the data (Figure 4b).

RoI from ABA

At the first stage, the raw point cloud is filtered
and interpolated over a grid. Such strategy reduces
computational burden, but at the same time the
data structure used allows to go back, if necessary,
to the raw points of each grid cell. A first issue is
to define the kind of interpolation used to produce
the gridded data. In fact, the point cloud has very
high density and several points fall into a single
grid cell: the algorithm will choose the highest
point if it is higher than a given threshold loosely
depending of the kind of trees, otherwise the null
value (ground) is assigned to the grid cell. The
second issue is to define the size of the grid cell;
taking into consideration the density of the point
cloud, two different grid sizes, respectively of
25 cm and 50 cm have been used in this work
(Figure 5). Obviously, the bigger the size the larger
the smoothing of the data.

At the second stage, the interpolated grid is filtered
to find local maxima. In this work, we have focused
our attention on two algorithms: local maxima find-
ing (LOCM), and LoG, as described by Kaartinen
et al. (2012). In particular, the impulse response of
the first filter is a 3 × 3 Laplacian approximation,
whereas the impulse response of the second filter has
a square window kernel whose size depends on the
standard deviation σ of the base Gaussian function.
Compared to LOCM, LoG filter shows interesting
properties:

(a) (b)

Figure 5. Gridded data. (a) 25 cm grid size; (b) 50 cm grid size.
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● the filter applies the Laplacian operator to a
smoothed version of the data;

● filter pass band depends on σ (scale factor);
● scale factor can be chosen to optimize the detec-

tion. In fact, by choosing a kernel size that is
comparable to the expected tree crown size, it is
possible to maximize the number of cases in
which a unique maximum for each tree is
extracted, as desired.

At third stage, the LM detection is applied. It starts
from maximum height LOCM filtered value or from
minimum LoG value, respectively. The process of seg-
mentation goes on until nomore points having negative
gradient can be added to the region. The same process is
started from another maximum (or minimum) until all
pixels are assigned to a region or are excluded by the
process, because close to ground level or belonging to
positive value. The output of this stage are tree positions
corresponding to the seed points of every region. The
tree candidate positions thus obtained are then used as
centers for the RoI’s used in RANSAC.

The algorithm of Figure 4b is motivated by the fact
that the RANSAC algorithm shows good perfor-
mance even based on LM results that are far from
satisfactory.

RoI from arbitrarily spaced seed points

As commented above, in the case study considered,
but even more in the case of mixed hardwood forests,
methods based on local maxima have rather poor
performance. For this reason, we are especially inter-
ested in testing performance of the RANSAC-based
approach avoiding the use of LM altogether. For this
purpose, we chose RANSAC RoI’s by placing them
over an arbitrary grid of centers, that is made in such
a way as to have 50% overlap of the RoI’s with
neighbors in the four directions, and to have them
spaced more than double as close as tree centers, so
as to cover all cases of relative spacing with respect to
real trees, (black dots in Figure 6).

From ABA to ITD

ABA methods look for local maxima in the data.
More specifically, the two ABA approaches that
have been taken into account, LOCM and LoG,
produce a modified representation of the CHM
(Figures 7 and 8). Both filters have been applied
to 25 cm and 50 cm grid size.

Being LoG a multiscale operator it is important to
determine the scale range used appropriately. In
Figure 8 results at different scales for the 50 cm grid
size are shown. Similar behavior is obtained at 25 cm
grid size. The green/blue colored pixels correspond to
negative values of the Laplacian (indicative of tree tops),
while yellow/red colors correspond to positive values
(concave areas between trees). It is apparent that too
small values of σ produce noisy and imprecise results,
and too large values cause excessive blurring, and even-
tually loss of tree detection due to crowns fusion.

The optimal σ value depends on the size of the object
to extract (trees) and we observe (Figure 9) that it
corresponds to the value that produces the lowest num-
ber of negative values, which are 3.0 m for 50 cm grid
size and 5.5 m for 25 cm grid size.

Figure 6. ROI centers (black dots) located on arbitrary grid.

Figure 7. CHM filtered with LOCM. (a) 25 cm grid size; (b) 50 cm grid size.
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Obviously, such optimal scale can be chosen in
presence of trees having similar size. In general, it is
necessary to apply a multiscale approach, looking for
the recurring presence of a tree across several scales.
More specifically the range between 2.0 m and 4.0 m
for 50 cm grid size has been used, and the range from
4.5 m to 7 m for 25 cm.

LM detection and ABA tree segmentation

Results of the watershed segmentation of LOCM- and
LoG-filtered data are shown in the following.
Figure 10a shows fragmentation caused in LOCM
by the smaller grid size. The rather irregular tree
segmentation obtained by LOCM is also apparent in
Figure 10. In fact, data are extremely noisy, without

an evident local central maximum. Even with 50 cm
grid size (Figure 10b), which works better, some
crowns get fused and others lost.

Figure 11 shows the result of LoG segmentation at
three different spatial scales, highlighting the frag-
mentation caused by the filter with too-small σ
(case a) and the excessive enlargement due to too-
large σ (case c). As above said, the segmentation
produces clusters corresponding to tree-region
hypotheses. The better behavior of LoG filtering com-
pared to LOCM, in terms of regularity and delinea-
tion, is evident, caused by more effective filtering of
the data.

It is important to highlight that the tree positions
obtained from LoG filtering do not correspond to the
center of the region but to the position of the highest
point of the region. In fact, discrepancies from the

Figure 8. CHM filtered with LoG. (a) σ = 1.5; (b) σ = 3.0 (c) σ = 4.0.

Figure 9. Percentage of negative values in data filtered with LoG at variable scale σ.
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center of the crown (o dispersion of the solutions) as
large as 2 m arise, as it is possible to observe in
Figure 12, where tree candidates from LOCM and
LoG approach are shown. It is to note how the
LOCM approach misses several trees: six and four
of a total of 25, respectively with 25 cm and 50 cm
grid size.

From gridded to raw data

Application of RANSAC on RoI’s obtained by ABA
produces evident improvement to the tree position
detection, and to crown identification. Figure 13
illustrates tree identification using our algorithm as
described above (Figure 4a). In this case, tree

positions detected are associated to the centers of
the spheres chosen by RANSAC, and do not corre-
spond to crown maxima.

Tree positions were displaced up to 2.5 m from
those obtained by ABA. The effect of RANSAC is to
concentrate the estimated tree positions toward the
center of the ground truth area and separating more
clearly the regions corresponding to each tree. Results
obtained from 25 cm grid size (blue points in
Figure 13) present larger dispersion; moreover,
while LOCM produces a rather high number of
false negatives, on the contrary the LoG approach
produces false positives. Finally, the crown delinea-
tion (Figure 14) obtained mean value of crown radius
respectively at 2.26 m and 2.64 m for 25 cm and

Figure 11. LoG watershed-based tree segmentation (50cm grid): (a) σ = 1.5; (b) σ = 2.5 (c) σ = 4.0. Black dots denote ground truth.

Figure 10. LOCM watershed-based tree segmentation: (a) 25 cm grid size; (b) 50 cm grid size.
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50 cm grid size, both with standard deviation of
0.6 m. In Figure 14, black circles correspond to the
width of each detected sphere and should be com-
pared to the ground truth circles of Figure 2. It is
apparent that most circles are correctly placed and
sized. Some spheres were also detected in wrong

position: these correspond to false positives and
should be counted as errors of the algorithm. Other
spheres are correctly placed with centers closed to the
true one, but have excessive diameter, also spanning
over neighboring trees. This is a weaker kind of error,
that does not affect tree detection per se, but rather

Figure 12. Tree candidates; (a) LOCM results; (b) multiscale LoG results. Candidates obtained with 25 cm grid size are colored in
blue, while those obtained with 50 cm grid size are red. Black circles denote the same heuristically-drawn ground truth as
shown in Figure 2 and are useful to assess qualitatively the performance of trees detection by the ABA methods.

Figure 13. Tree identification after application of RANSAC. (a) using LOCM-based RoI’s; (b) using LoG-based RoI’s. Candidates
obtained with 25 cm grid size are colored in blue, while those obtained with 50 cm grid size are red.

Figure 14. Crown delineation. (a) from 25 cm grid size; (b) from 50 cm grid size. Black circles describe the width of spheres
detected by RANSAC. Dots with colors that do not match the region that contains them are centers of RANSAC spheres.
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the estimation of its size. Even if we do not have
objective data about the true crown size, direct
inspection of both LiDAR and visible imaging data
allows to determine that the average radius is
approximately 2.5 m. Since the RoI’s used for both
grid sizes have the same dimension (4 m × 4 m) (that
means the same raw points were used) we assume
that the difference in average sphere radius obtained
with the different grid sizes is caused by the random
nature of the method (the randomly selected mini-
mum set). In fact, the different runs of the algorithm
produce different results, but qualitatively very simi-
lar, and average sphere sizes are also highly
repeatable.

Finally, it is important to underline that results of
RANSAC are filtered according to the assumption
that the center of the sphere must lay below the
crown of the trees. In fact, a few solutions, which
fall between two or more trees, are discarded because
the sphere lays above the crown surface.

The false positives extracted on the 25 cm grid size
are evident in Figure 14a.

Several trees have been overestimated (15 spheres
having radius larger than 3 m out of 215 spheres
detected at all scales) when processing the data at
25 cm grid size. At 50 cm grid size 12 outliers (radius
larger than 3 m) out of 117 spheres were obtained. It
is important to observe that there is no predominant
scale that produces such kind of error. The outliers
are equally distributed throughout all scales.

The whole area has been processed, which is
composed of 181 trees, Figure 15. Processing was
performed using only tree candidates produced by
LoG approach and a grid size of 50 cm (the com-
bination which presented better performance) was
used. Ground truth was extracted from Google
Earth: thanks to the regularity of the trees it was

possible to obtain quite reliable reference data
(Figure 16). The results confirm what was obtained
with the test area: no false negatives and several
false positives. Moreover, a trend was observed to
overestimating the radius of the trees (Figure 15).
More specifically, in 19 cases at least one of the
spheres obtained for a tree had radius exceeding
3.5 m and was overlapping neighboring trees.
However, in all those cases at least one sphere of
correct radius was also present.

Clustering

Since RANSAC based on RoI’s obtained by ABA
produces several hypotheses for crown approxima-
tion, though quite consistent among them, in order
to define our final choice for tree detection we need
to apply further automatization to the process. As
observed, centers of RANSAC spheres are quite well
clustered, therefore, we expect a clustering algorithm
to obtain a good solution easily. To this purpose, we
applied a basic k-means algorithm to the spheres
centers. Results obtained show that while LOCM-
based results are unsatisfactory (because they inherit
the poor performance of LOCM – Figure 17), by
clustering LoG-based RANSAC results very good
estimation of tree position is obtained (Figure 18).

Residual errors are of two types. In some cases a
single tree is assigned two clustered centers. By look-
ing at the point cloud directly, and at aerial images, it
is possible to see that this typically happens in rather
doubtful cases, where the tree shape departs signifi-
cantly from the expected one or from its expected
dimension. In other cases, two trees are fused into
one, and the center placed halfway. This case is typi-
cally due to the number of clusters chosen (especially
where some trees have been split), that constrained

Figure 15. Tree detection and crown delineation of a wider area.
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the algorithm to fuse the closest clusters elsewhere. In
particular, using the 25 cm-grid (Figure 18a), two
erroneously split clusters (lower right) caused two
couples of well-defined clusters to get fused. With
the 50 cm-grid (Figure 18b), one erroneously split
cluster (upper center) caused one couple of well-
defined clusters to get fused (center-right).

Similar results were obtained on the larger data set.
In particular, we can observe that in several cases,
there is not a one-to-one relationship between the
ground truth and the center of the clusters. It is
well known that such problems are typical of
k-means as well as of other clustering algorithms,

basically because the clustering problem itself is ill-
posed (Jain, 2010). As above-stated, more efficient
clustering algorithms could be applied, but this is
beyond the scope of this paper. In any case, evidence
of the errors described can be obtained automatically
by measuring intra- and inter-cluster distances. In
fact, split clusters maybe spaced at unrealistically
small distance, and fused clusters show excessive
intra-class average distance, so that automatic split-
ting might be triggered.

In order to evaluate detection performance, a
relationship between ground truth and the cluster
centers was established using Euclidean distance.
Centers which showed a distance less than a spe-
cific threshold (2.5 m) have been labeled as valid
trees. In Figure 19 the detection performances are
shown. In particular we can observe that 86% of
the trees have been detected and 14% missed. We
also obtained 11 erroneous tree detection (false
alarms).

Working without LM

As commented above, in the case study considered,
but even more in the case of mixed hardwood forests,
methods based on local maxima have rather poor
performance. For this reason, we are especially inter-
ested in testing performance of the RANSAC-based
approach avoiding the use of LM altogether. For this
purpose, we chose RANSAC RoI’s by placing them
over an arbitrary grid of centers, that is made in such
a way as to have 50% overlap of the RoI’s with
neighbors in the four directions, and to have them
spaced more than double as close as tree centers, so

Figure 16. Orthophotograph of the hazel grove considered in this work. Ground truth is represented by green squares denoting
tree centers, while orange points represent RANSAC results.

Figure 17. Clustering RANSAC results obtained on LOCM
RoI’s (25 cm grid). Red stars denote cluster centers, green
squares are ground truth circles centers, and black dots
RANSAC-detected spheres centers.
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as to cover all cases of relative spacing with respect to
real trees, Figure 20. Results obtained in this case
(Figures 20 and 21) are not as good as when using
LOG-based RoI’s, but is quite encouraging to see that
performance is only slightly degraded, so that opera-
tion totally based on the raw point cloud appears
indeed feasible.

As expected, RANSAC algorithm does not find
any shape model for several points (starting from
238 seed points only 78 trees have been found),
but the solutions are not as well grouped as in the
ABA-based case. Obviously, such dispersion in
the tree candidate positions causes more uncer-
tainty in tree extension. Deeper analysis has to be
conducted starting from these preliminary results.
It is important to highlight that at the present
state of the art, a refinement by least square
adjustment of the chosen consensus set has not
been performed.

Figure 18. Clustering RANSAC results obtained on LOG RoI’s: (a) 25 cm-grid; (b) 50 cm-grid. Symbols as in Figure 17.

Figure 19. Detection performance on the whole data set. Black squares indicate ground truth, green stars are correctly placed
cluster centers, red stars are missed detection, yellow stars are false alarms.

Figure 20. RANSAC results obtained on arbitrary spaced grid.
Red dots denote RANSAC-detected spheres centers, and black
dots define our arbitrarily-spaced grid. Grid spacing is 2 m.
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Figure 22 shows clustering results of the result
with arbitrarily-spaced RoI centers. Even if in this
case RANSAC results are not as good as those
obtained with LoG-based RoI’s, the k-means algo-
rithm classified every tree correctly (i.e. all trees
were detected).

Conclusions and perspectives

The RANSAC algorithm has been applied to ALS
point clouds obtained over a hazel grove, that is
characterized by trees that have no evident apex,
with irregularly-shaped crown extending close to

ground. This case is simpler than the mixed hard-
wood forest case, that is the final purpose of our
work, but poses a basic challenge that ABA methods,
quite efficient on favorably-shaped trees (e.g. conifer
forests) cannot solve satisfactorily.

Results show that RANSAC (followed by k-means
clustering) improves detection of tree crownwith respect
to ABA results, and that even when no information on
localmaxima is used, ITD can be considerably improved.

Deeper analysis of some issues concerning applica-
tion or the RANSAC algorithm appears necessary,
first of all the application of a final least square
adjustment to the consensus set found.
Continuation of the work will build on the experience
obtained to address more difficult cases.

In the case of mixed forests, trees have different
shapes and heights, and many of them are hidden
under or between taller and larger ones. Application
of the RANSAC algorithm in such environment will
involve adding one more free parameter to deal with
ellipsoidal shapes, with one vertical axis. Integration of
the methods proposed with layered approaches (e.g.
Ayrey et al., 2017) appears as a promising option, as
well as exploitation of coordinated data, such as visible
and IR imaging. Such additional techniques will be
used both to improve initial guesses over the comple-
tely random, or regular-grid-based approach, and to
select the most likely candidates emerging from
RANSAC prior, or instead of, clustering.

Geolocation information

Case study data were acquired near N42.343 E12.163
(Lago di Vico, VT, Italy)
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Figure 21. Tree extension of the detected trees (RANSAC
with arbitrarily-spaced RoI centers).

Figure 22. Clustering RANSAC results for the arbitrarily-
spaced RoI algorithm. Red stars denote cluster centers,
green squares are ground truth circles centers, and black
dots RANSAC-detected spheres centers. As in other figures,
black circles denote heuristically-drawn ground truth and are
meant useful to assess qualitatively the performance of trees
detection. In this case, every cluster is associated to one and
only one tree.
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