51,821 research outputs found

    Flexible shape extraction for micro/nano scale structured surfaces.

    Get PDF
    Surface feature is the one of the most important factors affecting the functionality and reliability of micro scale patterned surfaces. For micro scale patterned surface characterisation, it’s important to extract the surface feature effectively and accurately. The active contours, known as “snakes”, have been successfully used to segment, match and track the objects of interest. The active contours have been applied to facial boundary detection, medical image processing, motion correction, etc. In this paper, surface feature extraction techniques based on active contours have been investigated. Parametric active contour models and geometric active contour models have been presented. Also, a group of examples has been selected here to demonstrate the feasibility and applicability of the surface pattern extraction techniques based on active contours. At last, experimental results will be given and discussed

    Active Contour Based Segmentation Techniques for Medical Image Analysis

    Get PDF
    Image processing is a technique which is used to derive information from the images. Segmentation is a section of image processing for the separation or segregation of information from the required target region of the image. There are different techniques used for segmentation of pixels of interest from the image. Active contour is one of the active models in segmentation techniques, which makes use of the energy constraints and forces in the image for separation of region of interest. Active contour defines a separate boundary or curvature for the regions of target object for segmentation. The contour depends on various constraints based on which they are classified into different types such as gradient vector flow, balloon and geometric models. Active contour models are used in various image processing applications specifically in medical image processing. In medical imaging, active contours are used in segmentation of regions from different medical images such as brain CT images, MRI images of different organs, cardiac images and different images of regions in the human body. Active contours can also be used in motion tracking and stereo tracking. Thus, the active contour segmentation is used for the separation of pixels of interest for different image processing

    Image segmentation with variational active contours

    Get PDF
    An important branch of computer vision is image segmentation. Image segmentation aims at extracting meaningful objects lying in images either by dividing images into contiguous semantic regions, or by extracting one or more specific objects in images such as medical structures. The image segmentation task is in general very difficult to achieve since natural images are diverse, complex and the way we perceive them vary according to individuals. For more than a decade, a promising mathematical framework, based on variational models and partial differential equations, have been investigated to solve the image segmentation problem. This new approach benefits from well-established mathematical theories that allow people to analyze, understand and extend segmentation methods. Moreover, this framework is defined in a continuous setting which makes the proposed models independent with respect to the grid of digital images. This thesis proposes four new image segmentation models based on variational models and the active contours method. The active contours or snakes model is more and more used in image segmentation because it relies on solid mathematical properties and its numerical implementation uses the efficient level set method to track evolving contours. The first model defined in this dissertation proposes to determine global minimizers of the active contour/snake model. Despite of great theoretic properties, the active contours model suffers from the existence of local minima which makes the initial guess critical to get satisfactory results. We propose to couple the geodesic/geometric active contours model with the total variation functional and the Mumford-Shah functional to determine global minimizers of the snake model. It is interesting to notice that the merging of two well-known and "opposite" models of geodesic/geometric active contours, based on the detection of edges, and active contours without edges provides a global minimum to the image segmentation algorithm. The second model introduces a method that combines at the same time deterministic and statistical concepts. We define a non-parametric and non-supervised image classification model based on information theory and the shape gradient method. We show that this new segmentation model generalizes, in a conceptual way, many existing models based on active contours, statistical and information theoretic concepts such as mutual information. The third model defined in this thesis is a variational model that extracts in images objects of interest which geometric shape is given by the principal components analysis. The main interest of the proposed model is to combine the three families of active contours, based on the detection of edges, the segmentation of homogeneous regions and the integration of geometric shape prior, in order to use simultaneously the advantages of each family. Finally, the last model presents a generalization of the active contours model in scale spaces in order to extract structures at different scales of observation. The mathematical framework which allows us to define an evolution equation for active contours in scale spaces comes from string theory. This theory introduces a mathematical setting to process a manifold such as an active contour embedded in higher dimensional Riemannian spaces such as scale spaces. We thus define the energy functional and the evolution equation of the multiscale active contours model which can evolve in the most well-known scale spaces such as the linear or the curvature scale space

    Level set modeling and segmentation of diffusion tensor magnetic resonance imaging brain data

    Get PDF
    Segmentation of anatomical regions of the brain is one of the fundamental problems in medical image analysis. It is traditionally solved by iso-surfacing or through the use of active contours/deformable models on a gray-scale magnetic resonance imaging (MRI) data. We develop a technique that uses anisotropic diffusion properties of brain tissue available from diffusion tensor (DT)-MRI to segment brain structures. We develop a computational pipeline starting from raw diffusion tensor data through computation of invariant anisotropy measures to construction of geometric models of the brain structures. This provides an environment for user-controlled 3-D segmentation of DT-MRI datasets. We use a level set approach to remove noise from the data and to produce smooth, geometric models. We apply our technique to DT-MRI data of a human subject and build models of the isotropic and strongly anisotropic regions of the brain. Once geometric models have been constructed they can be combined to study spatial relationships and quantitatively analyzed to produce the volume and surface area of the segmented regions

    Real-time visual tracking using image processing and filtering methods

    Get PDF
    The main goal of this thesis is to develop real-time computer vision algorithms in order to detect and to track targets in uncertain complex environments purely based on a visual sensor. Two major subjects addressed by this work are: 1. The development of fast and robust image segmentation algorithms that are able to search and automatically detect targets in a given image. 2. The development of sound filtering algorithms to reduce the effects of noise in signals from the image processing. The main constraint of this research is that the algorithms should work in real-time with limited computing power on an onboard computer in an aircraft. In particular, we focus on contour tracking which tracks the outline of the target represented by contours in the image plane. This thesis is concerned with three specific categories, namely image segmentation, shape modeling, and signal filtering. We have designed image segmentation algorithms based on geometric active contours implemented via level set methods. Geometric active contours are deformable contours that automatically track the outlines of objects in images. In this approach, the contour in the image plane is represented as the zero-level set of a higher dimensional function. (One example of the higher dimensional function is a three-dimensional surface for a two-dimensional contour.) This approach handles the topological changes (e.g., merging, splitting) of the contour naturally. Although geometric active contours prevail in many fields of computer vision, they suffer from the high computational costs associated with level set methods. Therefore, simplified versions of level set methods such as fast marching methods are often used in problems of real-time visual tracking. This thesis presents the development of a fast and robust segmentation algorithm based on up-to-date extensions of level set methods and geometric active contours, namely a fast implementation of Chan-Vese's (active contour) model (FICVM). The shape prior is a useful cue in the recognition of the true target. For the contour tracker, the outline of the target can be easily disrupted by noise. In geometric active contours, to cope with deviations from the true outline of the target, a higher dimensional function is constructed based on the shape prior, and the contour tracks the outline of an object by considering the difference between the higher dimensional functions obtained from the shape prior and from a measurement in a given image. The higher dimensional function is often a distance map which requires high computational costs for construction. This thesis focuses on the extraction of shape information from only the zero-level set of the higher dimensional function. This strategy compensates for inaccuracies in the calculation of the shape difference that occur when a simplified higher dimensional function is used. This is named as contour-based shape modeling. Filtering is an essential element in tracking problems because of the presence of noise in system models and measurements. The well-known Kalman filter provides an exact solution only for problems which have linear models and Gaussian distributions (linear/Gaussian problems). For nonlinear/non-Gaussian problems, particle filters have received much attention in recent years. Particle filtering is useful in the approximation of complicated posterior probability distribution functions. However, the computational burden of particle filtering prevents it from performing at full capacity in real-time applications. This thesis concentrates on improving the processing time of particle filtering for real-time applications. In principle, we follow the particle filter in the geometric active contour framework. This thesis proposes an advanced blob tracking scheme in which a blob contains shape prior information of the target. This scheme simplifies the sampling process and quickly suggests the samples which have a high probability of being the target. Only for these samples is the contour tracking algorithm applied to obtain a more detailed state estimate. Curve evolution in the contour tracking is realized by the FICVM. The dissimilarity measure is calculated by the contour based shape modeling method and the shape prior is updated when it satisfies certain conditions. The new particle filter is applied to the problems of low contrast and severe daylight conditions, to cluttered environments, and to the appearing/disappearing target tracking. We have also demonstrated the utility of the filtering algorithm for multiple target tracking in the presence of occlusions. This thesis presents several test results from simulations and flight tests. In these tests, the proposed algorithms demonstrated promising results in varied situations of tracking.Ph.D.Committee Chair: Eric N. Johnson; Committee Co-Chair: Allen R. Tannenbaum; Committee Member: Anthony J. Calise; Committee Member: Eric Feron; Committee Member: Patricio A. Vel

    Achieving the Way for Automated Segmentation of Nuclei in Cancer Tissue Images through Morphology-Based Approach: a Quantitative Evaluation

    Get PDF
    In this paper we address the problem of nuclear segmentation in cancer tissue images, that is critical for specific protein activity quantification and for cancer diagnosis and therapy. We present a fully automated morphology-based technique able to perform accurate nuclear segmentations in images with heterogeneous staining and multiple tissue layers and we compare it with an alternate semi-automated method based on a well established segmentation approach, namely active contours. We discuss active contours’ limitations in the segmentation of immunohistochemical images and we demonstrate and motivate through extensive experiments the better accuracy of our fully automated approach compared to various active contours implementations
    corecore