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Abstract

An important branch of computer vision is image segmentation. Image segmentation aims at extract-
ing meaningful objects lying in images either by dividing images into contiguous semantic regions,
or by extracting one or more specific objects in images such as medical structures. The image seg-
mentation task is in general very difficult to achieve since natural images are diverse, complex and
the way we perceive them vary according to individuals.

For more than a decade, a promising mathematical framework, based on variational models and
partial differential equations, have been investigated to solve the image segmentation problem. This
new approach benefits from well-established mathematical theories that allow people to analyze,
understand and extend segmentation methods. Moreover, this framework is defined in a continuous
setting which makes the proposed models independent with respect to the grid of digital images.
This thesis proposes four new image segmentation models based on variational models and the active
contours method. The active contours or snakes model is more and more used in image segmenta-
tion because it relies on solid mathematical properties and its numerical implementation uses the
efficient level set method to track evolving contours.

The first model defined in this dissertation proposes to determine global minimizers of the active
contour /snake model. Despite of great theoretic properties, the active contours model suffers from
the existence of local minima which makes the initial guess critical to get satisfactory results. We
propose to couple the geodesic/geometric active contours model with the total variation functional
and the Mumford-Shah functional to determine global minimizers of the snake model. It is inter-
esting to notice that the merging of two well-known and “opposite” models of geodesic/geometric
active contours, based on the detection of edges, and active contours without edges provides a global
minimum to the image segmentation algorithm.

The second model introduces a method that combines at the same time deterministic and statisti-
cal concepts. We define a non-parametric and non-supervised image classification model based on
information theory and the shape gradient method. We show that this new segmentation model
generalizes, in a conceptual way, many existing models based on active contours, statistical and
information theoretic concepts such as mutual information.

The third model defined in this thesis is a variational model that extracts in images objects of inter-
est which geometric shape is given by the principal components analysis. The main interest of the
proposed model is to combine the three families of active contours, based on the detection of edges,
the segmentation of homogeneous regions and the integration of geometric shape prior, in order to
use simultaneously the advantages of each family.

Finally, the last model presents a generalization of the active contours model in scale spaces in order
to extract structures at different scales of observation. The mathematical framework which allows
us to define an evolution equation for active contours in scale spaces comes from string theory. This
theory introduces a mathematical setting to process a manifold such as an active contour embedded
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in higher dimensional Riemannian spaces such as scale spaces. We thus define the energy functional
and the evolution equation of the multiscale active contours model which can evolve in the most
well-known scale spaces such as the linear or the curvature scale space.



Version Abrégée

Un domaine de recherche important en vision artificielle est la segmentation d’image. L’objectif
de la segmentation d’image est d’extraire les objects significatifs présents dans les images soit en
divisant les images en régions sémantiques contigiies, soit en extrayant un ou plusieurs objects spéci-
fiques dans les images, telles que les structures médicales. La tache de segmentation d’image est, en
général, tres difficile a réaliser puisque les images naturelles sont diverses, complexes et la maniere
de les percevoir varie selon les individus.

Depuis plus d’une décennie, un cadre mathématique prometteur, basé sur les modeles variationnels
et les équations différentielles partielles, a été éxaminé pour résoudre le probleme de la segmentation
d’image. Cette nouvelle approche repose sur des théories mathématiques bien établies qui permet-
tent d’analyser, de comprendre et de développer les méthodes de segmentation. De plus, ce cadre de
travail s’inscrit dans une approche continue dont les modeles sont indépendants de la grille d’images
numériques.

Cette these propose quatre nouveaux modeles de segmentation d’image basés sur des modeles vari-
ationnels et sur la méthode des contours actifs. Le modele des contours actifs, ou “serpents”, est de
plus en plus utilisé en segmentation d’image car il repose sur des propriétés mathématiques solides et
son implémentation numérique utilise la méthode efficace des courbes de niveaux pour faire évoluer
des contours.

Le premier modele défini dans cette dissertation propose de déterminer des minimiseurs globaux
du modele des contours actifs/serpents. Malgré ses grandes propriétés mathématiques, le modele
des contours actifs souffre de I'existence de minima locaux, qui rend la condition initiale critique
et ne permet pas d’obtenir de résultats satisfaisants. Nous proposons de coupler le modele des
contours actifs géodésiques/géométriques avec la fonctionelle de la variation totale et la fonction-
nelle de Mumford-Shah pour déterminer des minimiseurs globaux du modele des serpents. Il est
intéressant de remarquer que la fusion des modeles bien connus et “opposés” des contours actifs
géodésiques/géométriques et des contours actifs sans bords fournit un minimum global & I’algorithme
de segmentation d’image.

Le second modele présente une méthode qui combine simultanément des concepts déterministes et
statistiques. Nous définissons un modeéle de classification d’image non supervisé et non paramétrique
basé sur la théorie de 'information et la méthode du gradient de forme. Nous montrons que ce nou-
veau modele de segmentation généralise, d’'une maniere conceptuelle, plusieurs modeles existants
basés sur les contours actifs et des concepts issus de la statistique et de la théorie de I'information
tels que l'information mutuelle.

Le troisieme modele défini dans cette these est un modele variationnel qui extrait des images des
objets d’intérét dont la forme géométrique est donnée par ’analyse en composantes principales.
L’intérét principal du modele proposé est de combiner les trois familles de contours actifs, qui se
fondent sur la détection de bords, la segmentation de régions homogenes et I'intégration a priori de

xiii



xiv VERSION ABREGEE

formes géométriques, afin d’utiliser simultanément les avantages de chaque famille.

Finalement, le dernier modele présente une généralisation du modele des contours actifs dans les
espaces échelles dans le but d’extraire des structures a différentes échelles d’observation. Le cadre de
travail mathématique qui nous permet de définir une équation d’évolution pour les contours actifs
dans les espaces échelles s’inscrit dans la théorie des cordes. Cette théorie présente un environnement
mathématique qui traite une variété telle qu'un contour actif dans des espaces Riemanniens de di-
mension supérieure, comme les espaces échelles. Nous définissons ainsi la fonctionnelle énergétique
et ’équation d’évolution du modele des contours actifs multi-échelles qui peuvent évoluer dans les
espaces échelles les plus connus comme ['espace échelle linéaire et de courbure.
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Miscellaneous
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L(C) Euclidean length of the curve C s.t. L(C) = f;;l |Cpldp = OL(C) ds,
with pp = 0 and p; = 1 without loss of generality
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n X n identity matrix

A1 0
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with e.g. ( ==x,vy,2,t

Backward difference operator s.t. D u = (¢(¢) — ¢(¢ — A()) /A
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Introduction and
Preview

© Diego Porcel

1.1 Computer Vision and Image Segmentation

Computer vision is the field of research of this thesis. It is a branch of artificial intelligence that
aims at giving wvision to machines, which means to develop mathematical models, algorithms and
technologies to build a machine with vision capabilities as advanced, at least, as human eyesight.
More mathematically speaking, the purpose of computer vision is to process images acquired with
cameras to produce a mathematical representation of semantic objects in the world. This is a high-
challenging issue because images such as landscapes, medical images, astronomical images, paintings,
can be very diverse and even the way we perceive them vary a lot according to individuals.

Computer vision is divided into many subfields including image processing, pattern recognition,
graph theory, statistical learning, etc. which objectives are as varied as detection and recognition
of objects in images, registration of different views of the same scene, tracking of objects through
image sequences, searching for images by their content and so on. Thus, the range of computer vi-
sion applications is very large, the methods carried out can be very different, inspired from physics,
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biology, statistics theory, functional analysis, etc.

This thesis will focus on a specific branch of computer vision called image segmentation. The
objective of image segmentation is to extract the semantic objects lying in images either by dividing
any given image into meaningful contiguous regions, or by extracting one or more important objects
in images. This task is obviously very difficult to achieve and there exist many methods to realize
it.

In two decades, several mathematical models have been developed to achieve image segmenta-
tion. The last promising models to solve the image segmentation problem are based on wvariational
approaches and partial differential equations (PDE). These models benefit from well-founded math-
ematical theories that allow us to analyze, understand, improve the existing methods and to work
in a continuous setting which makes the proposed models independent with respect to the grid of
digital images. The next section introduces the general paradigm used throughout this thesis and
coupled with other mathematical theories such as information theory and differential geometry to
define new image segmentation models.

1.2 Variational Models and Partial Differential Equations

Digital images are representations of the visual world surrounding us. The common point between
all digital images is the fact that they are defined in a discrete setting although they come from a
continuous world. The transfer process is done by sampling and quantizing the "continuous images”.
Even if all image processing methods are developed for digital/discrete images, it is generally more
powerful to use a continuous formulation of methods to analyze, understand, and solve the problems
since continuous mathematics are more developed than their discrete version. At the beginning of
image processing history, the techniques used to process images such as filter theory or spectral
analysis were based on a discrete setting. Today, new techniques such as wavelets theory or varia-
tional models are based on a continuous setting.

In this thesis, we will therefore focus on partial differential equations and variational models to
solve the image segmentation problem in different ways. PDEs, variational models, and functional
analysis in general are mathematical theories closely related to physics such as propagation equations
or conservation laws. PDEs and variational models are linked through an optimization problem.
Indeed, let us assume that an image processing problem can be formulated as

* = min F 1.1

u* = min F(u), (1.1)

where u*, defined in an appropriate space S for the given problem, is an optimizer of a Function-

al/Energy F'(.) which gives the solution to the given image processing problem. If F' is continuous

and differentiable, it is possible to compute the first variation to determine the Fuler-Lagrange
equation:

OF

5o =0, (1.2)

which gives a necessary condition for u* to be an optimizer of F' such that ?9_5 . = 0. Then, a way
u
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to compute an optimizer (usually a local optimizer) is to use the gradient descent/ascent method
by introducing an artificial time ¢ such that:

ou oF
S =t (1.3)

and look for the steady state solution. In his book [158] Sapiro proposes a good example to illustrate
the previous ideas. If we want to denoise an image, an example of variational model is:

I*= min F(I)= / |VI%dx, (1.4)
I€L2(R2) R2

where F' is, in this case, the Dirichlet functional. The Euler-Lagrange equation of F' provides us the

famous isotropic/linear heat flow:

a1
o = AL (1.5)

Throughout this thesis, the previous paradigm will be applied to solve the image segmenta-
tion problem. The main difference between the proposed methods will rely on the definition of
energy functionals. They will be defined from fundamental functionals such as the Rudin-Osher-
Fatemi/Total Variation functional [155] and the Mumford-Shah functional [125] in Chapter 3, but
also from information theory in Chapter 4, from a statistical shape model in Chapter 5 and finally
from string theory introduced by Sochen-Kimmel-Malladi in image processing [167] in Chapter 6.

1.3 Organization of the Dissertation and Main Contributions

This thesis presents four new variational models to carry out the image segmentation task. All these
models use the active contour/snake approach, which means that the boundaries of the meaningful
objects in images are identified with a curve/surface which evolves according to a partial differential
equation derived from the minimization of a given energy functional.

Chapter 2 introduces the state-of-the-art variational and PDE-based models used to segment im-
ages. The first part of Chapter 2 presents the three generations/families of active contours that have
been defined since the original work of Kass-Witkin-Terzopoulos in [103]. The first generation of
active contours localize the edges of objects lying in images, the second generation use region-based
criteria to evolve the active contours toward smooth regions and the third generation incorporate
prior shape information into the segmentation process. In this chapter, the most important models
of these three families are reviewed, which is useful to introduce our first three image segmentation
models in Chapters 3, 4 and 5.

Chapter 3 proposes an image segmentation model based on the first and second generation of
active contours. More precisely, this model merges the geodesic/geometric active contours model of
[35,105], which detects edges, with Rudin-Osher-Fatemi’s image denoising model [155] and Chan-
Vese’s image segmentation model of active contours without edges [42]. What makes our model
interesting is that the merging is done in a global minimization framework where the global min-
imizers of the active contours/snakes model are determined. Usually, the active contours models
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capture a local minimum, which is the main mathematical weakness of these approaches.

Chapter 4 introduces a new second-generation active contour model that uses at the same time
determinist and statistical concepts. In this chapter, we use information theory to carry out seg-
mentation by defining a non-parametric and non-supervised image classification model based on
Butz-Thiran’s information theory approach [32, 33]. Our classification framework includes most of
the existing second-generation active contours model that use concepts of statistics and information
theory such as mutual information.

Chapter 5 proposes a third-generation of active contours by defining a variational model to seg-
ment an object belonging to a given shape space and using the boundary-based active contours
[35, 105], a geometric shape prior based on the principal components analysis (PCA) [113] and the
Mumford-Shah functional [179] used by Vese-Chan [179]. This method integrates the three families
of snakes in order to use simultaneously the advantages of each family.

Finally, the second part of Chapter 2 enables us to review some image denoising and enhanc-
ing models including the model of Sochen-Kimmel-Malladi [167] that proposes to denoise multi-
dimensional images using string theory and differential geometry. This model is used in Chapter 6
to define a multiscale image segmentation model to simultaneously extract structures at different
scales of observation/resolution. The approach of [167] is used to embed the active contours into
multi-scale spaces derived from well-known diffusion equations used in image processing.

Thus, the main contributions presented in this dissertation are as follows:

e a novel method to determine global minimizers of the well-known active contours/snakes mod-
el, which allows us to merge the geodesic/geometric active contours model [35, 103, 105],
the Rudin-Osher-Fatemi’s model [155] and the models of Chan-Vese [42, 179] based on the
Mumford-Shah functional [125].

e an image classification model that uses at the same time determinist and statistical concepts.
The statistical part comes from information theory, with the promising approach of Butz-
Thiran [32, 33] and the determinist part is based on the shape gradient method of Delfour-
Zolesio [13, 69, 99].

e a variational model to segment an object of interest which geometric shape is a priori known
thanks to a principal components analysis defined by Leventon [113]. We also benefit from the
first and second generation of active contours by using the geodesic/geometric active contours
model [35, 103, 105] and the Vese-Chan’s model [179]. The proposed model simultaneously
uses the advantages of three generations of snakes.

e a generalization of the geodesic/geometric active contours model to scale spaces in order to
define a multiscale image segmentation model to capture structures at different scales of obser-
vation. We use the framework of Sochen-Kimmel-Malladi [167] who introduced the Polyakov
action in image processing from string theory.



State of the Art

This chapter presents the state-of-the-art in the field of image segmenta-
tion using variational models and partial differential equations (PDEs).
This restriction of image segmentation models to variational approach-
es and PDEs is voluntary for two main reasons. Firstly, the methods
proposed in this thesis are all based on these mathematical concepts
and secondly, an exhaustive review of all image segmentation models is
not possible in a single chapter. The presentation of the state-of-the-
art papers is organized like our thesis. First of all, the classical model
of boundary-based snake/active contour is presented, then the region-
based and the shape-based active contours and finally, the models of © Diego Porcel
image denoising are introduced.

2.1 Variational Image Segmentation Models

In image analysis, image segmentation is a fundamental component toward automated vision systems
and useful to medical applications. Its main objective consists in determining the semantically im-
portant parts of images. Several approaches have been considered to perform the image segmentation
process. The book of Sonka-Hlavac-Boyle [168] gives an exhaustive review of image segmentation
models such as the thresholding approach, the region merging algorithm, the watershed segmenta-
tion and so on. Most of them are based on a discrete setting, which makes them dependent with
respect to (w.r.t.) the parametrization. Moreover, they are not defined in a rigorous mathematical
framework. Recently, new image segmentation models based on a wvariational approach have been
introduced. These models are defined in a continuous setting and they are mathematically well
studied. We propose to describe two well-known variational image segmentation models, namely
the Mumford-Shah model [124,125] and the active contour method [103].
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(a) Original image I (b) Piecewise smooth image u (¢) Boundaries C of u

Figure 2.1: Image segmentation based on the Mumford-Shah model.

In the Mumford-Shah (MS) approach, the goal is to find a partition of the image into distinct
, 125] which

provides an optimal piecewise smooth approximation of a given image, in other words an image

homogeneous regions. This is realized by minimizing the Mumford-Shah functional

made up of homogeneous regions which common boundaries are sharp and piecewise regular [15].
The Mumford-Shah functional is defined as follows for any observed image Iy € L*(2) and any
positive parameters u, v:

FMS(I,C’):/ |IfIO|2dx+u/ |VI|?dx +vHN1(0), (2.1)
Q Q\C

where Iy is defined on a domain €2, I corresponds to a piecewise smooth approximation of the
original image Iy, C is a discontinuity set (representing the edges of I) and the length of C is given
by the (N-1)-dimensional Hausdorff measure HN~1(C) (see } for an accurate definition but H°
is the counting measure, H' the length and H? the area). The first term of (2.1) is a fidelity term
w.r.t. the given data Iy, the second term is a regularization term that constraints the function I to
be smoothed inside the region 2\ C and the last term imposes a regularization constraint on the
discontinuity set C, i.e. the boundaries between smooth regions. Figure ’m shows the optimal
piecewise constant approximation u of the original image Iy presented on Figure m (I has been
computed with the software Megawave2 M])

Observing Figure 2.1(b), we notice that the Mumford-Shah model can not directly capture

texture objects such as the snake because the snake-object is not composed of one smooth region
but many. More generally speaking, the Mumford-Shah model efficiently realizes the segmentation
of homogeneous intensity regions but not the segmentation of homogeneous texture regions.

The minimization of Functional (2.1), which belongs to the class of free discontinuity problems,
is not easy to realize as explained in the books of Aubert-Kornprobst [15] and Morel-Solimi [122]
and the paper of Vese-Chan @] Indeed, the Mumford-Shah functional needs to be reformulat-
ed to define a correct mathematical framework to prove the existence of minimizers (not unique
in general). Thus, De Giorgi-Ambrosio in ﬂa, @] defines a new formulation of the Mumford-Shah
functional, called the weak formulation, by replacing C by the set of jumps of I and defining SBV,
the space of special functions of bounded variation. Then, Ambrosio in ﬂg, E, @] established the
equivalence between both formulations by proving that a solution of the weak formulation is also
a minimizer of the initial Mumford-Shah functional. Having proved the existence of (at least) a
minimizer, its computation is the next step. Unfortunately, this issue remains an open question in
the general setting. Nevertheless, it is possible to determine a minimizer by introducing a constraint
of connectedness. That was proposed in the original work of Mumford-Shah [124, 125] where the
authors conjectured that their functional admits a minimizer satisfying two regularity hypotheses.
Based on these two hypotheses and an hypothesis of connectedness, Mumford-Shah } and Bon-
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(a) Initial active contour (b) Final active contour (¢) Final active contour

Figure 2.2: Image segmentation based on the active contour model.

net ] established two theorems which characterize the properties of the minimizer. The numerical
approximation of the Mumford-Shah functional is usually based on the technique of Euler-Lagrange
equations. However, the term H~~1(C) is not lower semi-continuous w.r.t. any compact topology
(ﬁa]) which prevents us from applying the calculus of variations. Hence, many authors proposed
to approximate the functional Fj, by a sequence of regular functionals defined on Sobolev
spaces. The sequence I'-converges E to the initial Mumford-Shah functional. Several approx-
imation models of the Mumford-Shah functlonal were proposed in the literature @ E . i’
Finally, Chan-Vese m, !179] proposed to approximate the term H~1(C) by the length of a set of
curves in order to use the Euler-Lagrange equations technique. This will provide the model of active
contours without edges M] that we will describe in Section[2.4.T]

Although the first segmentation model has proposed to extract all significant parts in images,
some specific parts of images can be more important than others depending on applications such
as in medical imaging. This makes the link with the second segmentation model, in the context
of variational models, which aims at detecting objects in images. Indeed, the active contour model
proposes to detect the closest contour(s) (such as the snake on Figure 2.2(b)) from an initial posi-
tion (Figure|2.2(a)). The active contour/snake model was introduced by Kass-Witkin-Terzopoulos
(KWT) in [103]. This model locates sharp image intensity variations by deforming, like a snake,
a curve C toward the edges of objects. The evolution equation of the parametric planar curve
C(p) = (z(p),y(p)) € Q,p € [0,1] is given by the minimization of the following energy functional
defined for any observed image Iy € LI(Q) and any positive parameters a, 3, A

82
2

aC(p)
dp

Frwr(C) :a/o dp+>\/ 2(Io(C))dp, (2.2)

where the first two terms are physics-based smoothness constraints on the geometry of the curve
since the first term makes the snake act like a membrane and the second term makes it act like a
thin plate. The sum of both terms is called the internal energy. The third term of (2.2), namely
the external energy, attracts the curve toward the boundaries of objects using an edge detecting
function f vanishing at infinity such as the function:

1

) = T S e

(2.3)

where G, is the Gaussian function with standard deviation o, Iy * G, is a smoothed version of the
original image Iy and + is an arbitrary positive constant. Figure 2.3(b) presents an edge-detecting
function f.

It is interesting to note that the active contour model of Kass et al. allows us to use directly
closed and open curves, which is not the case with the geodesic/geometric active contour model
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@, ] that we present in the next section (even if the level set framework proposes a solution to
evolve open curves in the context of the geodesic/geometric active contour model [30]).

The energy Frwr(C) admits at least a global minimum in the Sobolev space (W?22(0,1))?, “?5]
Unfortunately, Fxwr is not convex which implies no direct uniqueness result. However, a local
minimum of Fxwr can be reached by solving the following Euler-Lagrange equations of Fgwr:

0%C

- —+584—C+Wf2(0)—0 (2.4)
Ozap2 6p4 = U. .

In M], Kass et al. numerically solved the fourth-order partial differential equation (2.4) with a
finite differences method. This provides a fast numerical algorithm but, in the case of closed curves,
it does not allow changes of topology since the final curve has the same topology as the initial one.
In other words, it is not possible to detect more than one object as we can see on Figure [2.3(c-d).

(a) Original image Iy  (b) Associated edge detect- (c) (d)
ing function f(Io)

Figure 2.3: Figure (b) presents an edge detecting function from a given image (a). Figures (c-d)
shows the snake at the beginning and at the end of the evolution process. Figure (d) proves that
the snake model can not naturally change its topology during the evolution process since the final
contour has captured only one object.

Another drawback of the snake segmentation model is the dependence of the functional Frwr
w.r.t. the parametrization of the curve C, in other words Fx w7 is not intrinsic. This means that
different parametrizations of the curve may give different solutions for the same initial condition,
which is not satisfactory.

To overcome the limitation of the changes of topology, Osher-Sethian proposed the powerful
level set method in , , @] that we develop in Section [2.3. The curve C is then implicitly
represented by a function of higher dimension ¢, called the level set function, and the curve evolution
equation can be re-written in a level set formulation.

Finally, the problem of local minimizers of the active contour model will be studied in Chapter
3. We will propose a method to determine global minimizers of the active contour/snake model.

2.2 The Geodesic/Geometric Active Contour Model

Caselles-Kimmel-Sapiro “g} and Kichenassamy-Kumar-Olver-Tannenbaum-Yezzi [104, M] pro-
posed a new energy, based on the Kass-Witkin-Terzopoulos model (2.2), that is invariant w.r.t.
a new curve parametrization. The new intrinsic energy functional is

1 L(C)
Feac(C) = / FIVI(Cw))ICyldp = / F(VI6(C(s))])ds, (2.5)

where GAC stands for Geodesic/Geometric Active Contour, ds is the Euclidean element of length
and L(C) is the Euclidean length of the curve C defined by L(C) = fol |Cpldp = fOL(C) ds. Hence,
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the functional is actually a new length obtained by weighting the Euclidean element of length
ds by the function f which contains information concerning the boundaries of objects [15]. The
function f is the edge detecting function introduced in the previous section and defined e.g. by
Equation (2.3).

The equivalence between minimizing Fgac and minimizing Fiwr was studied by Caselles et
al. in [35] and Aubert-Blanc Féraud in [14]. They started from the energy Fxwr and remove the
second-order smoothness component by setting 3 = 0. They justified this choice by the fact that the
first two terms of Fxyyr decrease the curvature, hence, they are redundant. Moreover, setting 3 = 0
allows second-order discontinuities as corners. Then, Caselles et al. used concepts of Hamiltonian
theory and Aubert-Blanc-Féraud concepts of calculus of variations to prove the equivalence between
minimizing Fgac and Frxwr.

Caselles et al. also proved in [35] that the curve minimizing Fgac is actually a geodesic in a
Riemannian space which metric tensor is [hi;] = f(|VIo|)[d;;] where f is the edge detecting function.
This geodesic is computed by the calculus of variations. Let us introduce an artificial time ¢ and let
us consider a family of curves C(¢) such that:

1
Fgac(t) = / F(IVI(C(p, 1)))|Cp(p,1)|dp. (2.6)
0
The first variation of the energy Fsac is then:
F 1
Teac [ (G (VLNIN = kN ) (G, 2.)
0

see [35] for details. Hence, the direction for which Fgac decreases most rapidly provides us the
following minimization flow:

oC

where A is the unit normal to the curve C and & is its curvature. The right hand side of the equa-
tion corresponds to the Euler-Lagrange of Energy (2.5). The first term is the mean curvature
motion, also called curve shortening flow, weighted by the edge detecting function f. It smoothes
the curve shape by decreasing its total length as fast as possible. The second term of (2.8) attracts
the curve toward the boundaries of objects by creating an attraction valley centered on the edges.
Hence, the function f does not need to be equal to zero to stop the evolution of the snake on the
contours of objects.

Cohen in [49] proposed to artificially introduce a constant force in the model (2.8), called a
balloon force:

%C = (kf — (VEN) +af) N, (2.9)
a > 0. When f =1, this flow minimizes the following functional:

F(C) = / FUVIC))ICyldp + ad, (2.10)

where A is the area of the region inside the closed curve C, [15]:

A:—%/O <C< ;‘Z” >> dp. (2.11)
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The two main reasons to use the balloon force is to significantly increase the speed of convergence
toward the steady state solution and to allow the detection of non convex objects.

The geodesic/geometric active contours were extended to higher dimensions by Caselles et al.
[36] and Kichenassamy et al. [104,/105]. In a 3-D Euclidean space, the curve becomes a surface and
in higher dimensions a hyper-surface. In all situations, the problem is to find a curve, a surface,
a hyper-surface which minimize the Euler functional that corresponds to the length, the area, the
hyper-area of the associated curve, surface, hyper-surface. In differential geometry, they are called
harmonic maps. We will come back on this concept at the end of Section [2.5.

To summarize this section, we started from the model of Kass et al. which is a physics-based
deformable model which evolution equations are based on a Lagrangian formulation, i.e. a para-
metric formulation of the curve evolution. Then, we solved the problem of the dependence of the
parametrization of the curve C' in the energy functional Fgac. In other words, Fgac is invariant
w.r.t. the way we parametrically represent the curve. In the next section, we introduce the powerful
level set method which is based on an FEulerian formulation, i.e. an implicit formulation, of the
curve. This will give us efficient and accurate numerical schemes to deal with propagating fronts
and solving the problem of topology changes as seen on Figure[2.3 since we will be able to segment
more than one object.

2.3 The Level Set Method

2.3.1 Generality

The level set method for tracking moving fronts was introduced by Osher and Sethian in [129].
This method have had a great success because it has been used in many applications from physics,
by capturing multiphase fluid dynamics flows, to graphics, e.g. special effects in Hollywood, vi-
sualization, image processing, computer vision, control, epitaxial growth, visibility, ray tracing,
segmentation, restoration and many others [116, 127, 164]. In this section, we introduce the level
set method applied to the theory of curve/surface evolution. We show that the level set formulation
of a curve/surface evolution equation allows us to efficiently solve the problem of moving fronts, in
particular the problem of changes of topology.

The general evolution equation of a curve C(p,t) : [0,1] x [0,7) — R?, where p parametrizes the
curve geometry and ¢ parametrizes the family of evolving closed curves, is given by the PDE:

{ %—?ZVHT-FVJ_N 7 (2.12)

C(t = 0) = Cy

where 7 and N are respectively the unit tangential and the outward/inward (arbitrary choice) unit
normal to the curve C' and V) and V| are respectively the tangential and normal velocities. Epstein-
Gage showed in [72] that the geometry of the curve deformation is not affected by the tangential
velocity V). This result is due to the fact that the tangential velocity does not change the geometry
of the curve but its parametrization. Hence, Equation (2.12) can be replaced by

{ 9 v N

Gi—0)=cy ° (2.13)
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from a strict geometric point of view. The same result holds for surface and hyper-surface. Thus,
the general geometric evolution equation of a curve/surface/hyper-surface T is:
ar _
{ I P

LA (2.14)

where N is the unit normal to the curve/surface/hyper-surface T'.

At this stage, we leave the parametric/explicit representation of a contour (curve, surface or
hyper-surface) to get interest in the geometry/implicit representation of the contour. This leads to
the level set representation which is independent to the parametrization of the contour. The core
idea in the level set method is to implicitly represent an interface I' in R™ as a level set of a function
o, called level set function, of higher dimension and compute the geometric characteristics and the
motion of the front with this level set function. The level set function ¢ of the closed front I' is
defined as follows, [127]:

d(x,t) > 0 for x € Q;,,(t)
d(x,t) <0 for x € (Q\ Qin)(t) , (2.15)
o(x,t) =0 for x € 9Ny, = A2\ Qi) =T(2)

where 2 is an open region in R", €;,, is a (multiply connected) region in € bounding by T

As we said, the geometric characteristics of the interface can be computed with the level set
function. The unit normal A" and the mean curvature & to I'(¢) are given by

n:V../\/':V.( W)

Vel

(2.16)

The area/volume of the region €;,(¢) bounding by I' and the length/area of the interface I'(¢) are

Jrn H(¢)dx
{ f; IVH(9)|dx = [gn 0(8)|Vldx ' (2.17)

where § and H are respectively the Dirac and the Heaviside functions.
The motion of the front I'(¢) evolving according to Equation (2.14) is given by the evolution of the
zero level set of ¢(t) which is solution of the following PDE:

% =V.|Vg|
{ St = 0) = d(To) = b0 ° (219

where d is a function (usually a signed distance function, dp,) which zero level set is the initial
contour I'g. The equivalence between the front evolution given by Equation (2.14) and Equation
2.18) was shown e.g. by Caselles et al. in [35].

Equation (2.18) raises a number of comments:
e The zero level set of I' and all its level sets follows the front evolution equation (2.14).

e The level set evolution is computed on a fixed coordinate system since the level set is a
parametrization free formulation.
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e The evolution of the contour is independent of the initial embedding ¢g, see e.g. [47,/74,75,76]
and the classical solution, if it exists, of (2.14) coincides with the classical solution of (2.18).

e Singularities, called kinks, can arise with PDE (2.18).

The last comment raises the important issue of singularities which can happen even with the
simplest velocity V| = 1, i.e. when (2.18) is a nonlinear first order Hamilton-Jacobi equation. In
this case, the front I' at time ¢ corresponds to the set of points at a distance ¢ from the original front
I'y. Singularities develop when we start with a square I'g and move inward. The question is how to
correctly do the propagation? The solution is given by the theory of viscosity solutions developed by
Crandall-Lions-Evans [55, 156, 57]. In the case of development of discontinuities, the theory chooses
the unique Lipschitz continuous solution which obeys to the Hiiygens principle known in optics for
the light propagation and in thermodynamics for the flame propagation. In the later situation, the
front is seen as a burning front in a forest. Once a tree is burnt, it remains burnt and the front
continues its propagation. In the case of hyperbolic conservation laws, the Hiiygens principle is
equivalent to choose the unique entropy solution that we numerically find with a special numerical
scheme called upwind scheme that we will see in the next section. Finally, viscosity solutions are
useful to prove the existence and uniqueness of non-smooth solutions of PDEs such that (2.1I8) for a
large class of velocities V. They are consistent with classical smooth solutions since they coincide
with them when classical solutions exist.

Finally, the level set method allows us natural curve topological changes, such as breaking or
merging, as we can see on Figure[2.4 since the topology of the level set function remains unchanged.
Hence, there is no need complementary functions to handle topological changes, and so no emotional
involvement [127]!

The next section will be focused on the numerical implementation of PDE (2.18). We need
special numerical schemes to compute the unique entropy solution satisfying (2.18).

2.3.2 Numerical Implementation of the Level Set Method

This section is devoted to the numerical implementation of PDE (2.18) which velocity field V| has

the general form [127):
a0, YO\ Vo
V. = <._.(x), |V¢|> &(x)V. <|V¢|> , (2.19)

where E(x) is a vector field and £(x) a scalar field. Given the velocity V , PDE (2.18) is a Hamilton-
Jacobi equation which solutions can develop kinks which are discontinuities defined by jumps in
derivatives. Special numerical methods are necessary to handle these discontinuities. These schemes
were presented by Osher-Sethian in [129] based on upwind differencing, then extended to higher-
order accuracy with the essentially non-oscillatory (ENO) and weighted essentially non-oscillatory
(WENO) schemes defined in [100, 130].

Putting the velocity (2.19) in Equation (2.18), we obtain:

9 _ 1= oy Vo
% — Vo) -gva. (%), (220)

The first term of the right hand side of Equation (2.20) is a convection term. In the active contour
framework, the function E(x) represents either an attraction force toward the boundaries of objects,
ie. B =V (see Section [2.2) or a balloon force such as E = EN = —E Vo . The second term of

TEVel
the right hand side of Equation (2.20) is a contour smoothing term based on the curvature of level
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Figure 2.4: Natural changes of topology in the level set framework. The right column presents the
evolution of the curve and the left column shows the evolution of the associated level set function.
We note that the curve changed its topology but not the level set function.
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sets of ¢. In the following, we present the three corresponding discretization schemes.

The balloon force with the velocity & = ZN is approximated using the concept of hyperbolic
conservation laws presented in the books of Osher-Paragios [128] (chapter 1), Sethian [164] (chapter
5) and Sapiro (chapter 1) [158]. We directly use their results: the balloon force term is equal to

\Y%
(2, V) = (-E20

_':‘va¢> = —E[V9| (2.21)

and can be approximated by the first-order numerical scheme:

—E(x)|Vg| = ()t - AT + (~E(x))” - A7, (2.22)

where
At = (D7 e)")? + ((DF) ) + (D &)1 + (D ¢))?] (2.23)
A~ = (D))’ + (D7) ) + (DF &) )2 + ((Dy ¢) )72, (2.24)

and ()T = max(¢,0), ()~ = min(¢,0), D¢ = £(¢(x £ Azx) — ¢(z))/Az and D¢ = +(¢(y +
Ay) — ¢(y))/Ay. We illustrate this numerical scheme on Figure[2.5 by propagating a square curve
inward and outward considering E(x) = £1.

(a) E(x)=-1 (b) E(x) =1

Figure 2.5: Evolution of a square curve inward and outward. The inward propagation, Figure
2.5(a), creates singularities (shocks) which are handled with the numerical scheme (2.22).

For a force different from the balloon force, the term (2, V@) is a pure passive advection term
[127, 1164]. It can be computed using simple upwind schemes by choosing the correct difference
scheme in the appropriate direction depending on the sign of each component of =:

(B, V¢) = (Ea)" - Do+ (Ba)” Did+(5)" - Dyo+(Zy) - Dyo, (2.25)

with the vector field E = (£,,E,).

Then, the second term of the right hand side of Equation (2.20)) is a regularization term based on
the mean curvature. This term is parabolic and therefore it does not need an upwind scheme which
has been designed for hyperbolic advection term which needs to know the propagation direction.
For a parabolic term, the propagation is in all direction, hence the central difference approximation
scheme fits well to approximate the term £|V¢|V. (%) at a first-order of accuracy. In 2-D images,
the curvature of the level sets is

o ( Vo )  Guady — 2050y ay + Gyy 03

iz CEXRE (2.26)
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and the associated numerical scheme is

| DO,6(DY6)? — 2DRGDISD0, 6 + DY, é(D0)?
SIVolv. (W) =¢ (DYO)2 1 (D021 2 ’

where D¢ = (¢(x+Az) —¢(z—Ax))/2Az, DF,¢ = DD = (d(a+Az) —2¢(z) +(v—Ax))/ Az
and Dquﬁ = Dnggb = (¢(z+ Az, y+ Ay) + ¢(x — Az, y — Ay) — dp(z+ Az, y — Ay) — ¢(x — Az, y +
Ay)/4AzAy. This smoothing term is illustrated on Figure [2.6.

Vo

(2.27)

Gf

@é@O

Figure 2.6: Smoothing of contours represented by the zero level set of a level set function

¢

Finally, the three previous numerical schemes are combined to get the numerical model approx-
imating the geodesic/geometric active contours (2.9) embedded in the level set formulation:

o¢ Vo
— = + V.| == Vol +(Vf, Vo), 2.28
= (247 (5% ) 1961+ (v£.96) (2.28)
where the first term is a balloon term approximated by the scheme (2.22), the second term is a curva-
ture term implemented by (2.27) and the last term is a advection term computed by (2.25). Figure
[2.7] presents the numerical model of the geodesic/geometric active contours which can naturally
handle topological changes.

(a) (b) (c) ()

Figure 2.7: Evolution of the geodesic/geometric active contour model in a level set formulation.
Contrary to Figure 2.3(d) where the final contour captured only one object, Figure 2.7(d)| shows
that both objects have been successfully captured thanks to the level set method.

Finally, the model can be extended to 3-D images as seen on Figure
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Figure 2.8: Minimal active surface model. This model is the extension of the geodesic/geometric
active contour model to surface lying in 3-D images. These figures present the extraction of the
cortical brain surface.



2.4. NEw FAMILIES OF ACTIVE CONTOURS 21

2.4 New Families of Active Contours

Section [2.2 presented the variational model of geodesic/geometric active contours which is basical-
ly based on the detection of edges in images. Combined with the level set method that provides
efficient numerical schemes and natural extension to higher dimensions, this model have had great
success to detect fine real-world shapes such as medical structures [101, 115, 188]. However, despite
of their great advantages, these first-generation active contours, are highly sensitive to the presence
of noise and poor image contrast, which can lead to bad segmentation results. To overcome this
drawback, some authors incorporated region-based evolution criteria into active contour energy func-
tionals built from intensity statistics and homogeneity requirements. We propose to review some
of the well-known ones in Section [2.4.1. Yet the segmentation of structures of interest with these
second-generation active contours is not able to deal with occlusion problems or presence of strongly
cluttered background. Therefore the integration of prior shape knowledge about the objects in the
segmentation task represents a natural way to solve these problems and can be considered as a third
generation of active contours. Section[2.4.2/presents these active contours. As we will see in Chapter
4, we propose a segmentation model based on a region-based evolution criterion and information
theory and in Chapter 5, a method that exploits the advantages of the three generations of active
contours.

2.4.1 Region-Based Active Contours

In [192], Zhu-Yuille (ZY) proposed a variational and statistical image segmentation model based on
the snake/balloon model and the region growing algorithm. They derived their evolution equation
from a generalized Bayes/Minimum Description Length criterion, the Euler-Lagrange equations
technique and the Green’s theorem which states how to go from integrals defined over regions to
functionals defined along contours. Their main contribution is the introduction of a region-based
criterion into the snake model. However, the model does not use any boundary-based information
such as in the original model and the active contour can not change its topology since it is based on
a Lagrangian formulation. Their functional is a follows:

Fuy (G, {ai}) = Ng {g / dse / log P<Io<x>|ai>dx} , (2.29)

where C' = Ui\fl 01); is the segmentation boundaries, P is a Gaussian probability density distribution
which {«;} are the parameters and pu is a positive arbitrary parameter.

In [132,133,134,(139], Paragios-Deriche merged the previous model with the geodesic/geometric
active contour model and the level set method to define the geodesic active regions (GAR) mod-
el. Their image segmentation method is able to unify boundary and region-based knowledge in a
variational and statistical framework. Indeed, the boundary and the region information are based
on a statistical estimation (Minimum Description Length criterion and Maximum Likelihood Prin-
ciple) of the image histogram using a mixture of Gaussians distributions, each one representing an
homogeneous region to be segmented. Their proposed energy functional is minimized using the
Euler-Lagrange equations technique and the gradient descent method to get a set of PDEs, each
PDE acting on a boundary, represented by a level set function, of a region to be segmented. Their
method efficiently segments all homogeneous regions in images and presents a good robustness w.r.t.
local minima. Moreover, the changes of topology are naturally handled with the level set formulation
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of the evolution equations. The geodesic active region functional is as follows:

Nr 1
Foar(©) =3 { (1= ) [ an:(1(@00200)) 00, Jdn: + @ [ gnilno)ax}. (230)

where Ng is the number of homogeneous regions estimated from the image histogram, C = Uﬁi 109,

are the boundaries between the different regions, gg; is the boundary probability density functions
of the region ); and ggr; is the region probability density functions of the region €;, p; is the
parametrization of the curve 9€; and « is a positive arbitrary parameter. See Figure [2.9 for an
example of the geodesic active regions model. Finally, the authors extended their model to texture
supervised segmentation M] and video t1—341]

(a) Original image (b) Image histogram and its (c) 4 Gaussian components
approximation

(d) Initial con- (e) Final con- (f) Final con- (g) Final con-
tours tours for Compo- tours for Compo- tours for Compo-
nent 1 nent 2 nent 3

Figure 2.9: Segmentation model of geodesic active regions E&Q, ’T?B, @, ’1—39‘] Figure (b) presents
the image histogram of Image (a) and its approximation. Figures (e-f) present the segmentation
results for the first 3 Gaussian components.

More recently, Rousson-Deriche extended the model of geodesic active regions. In the orig-
inal work, the statistical information concerning the homogeneous regions was estimated in an
independent stage from the segmentation process. In [151, ], they integrated this stage in the
segmentation process. Finally, in @, ], Rousson-Brox-Deriche extended the supervised texture
segmentation model [133] to an unsupervised texture segmentation by extracting a small set of fea-
tures based on the structure image tensor (107105;7[022/7[0w10y) and nonlinear diffusion, see Figure
2.10

Samson-Blanc Féraud-Aubert-Zerubia in M] presented a supervised classification model based
on known intensity means and variances for each region to be segmented. They applied the mul-
tiphase level set model of Zhao-Chan-Merriman-Osher M] to efficiently handled the evolution
process of each regions to be classified, see Figure
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(a) Four smoothed components of the structure image tensor (b) Segmentation re-
sult

Figure 2.10: Figure (a) presents the 4 feature channels obtained by smoothing (1o, o, Ioz, Iy, Ioi)
from left to right and Figure (b) is the segmentation provided by the unsupervised texture segmen-
tation model FM—Q‘, ’T50] that use the 4 previous feature channels. Note that all figures are reproduced
from @]

(a) Original image (b) Initial contours (c) Final contours (d) Classified im-
age

Figure 2.11: Supervised classification method of Samson et al. M] Figure (a) is a SPOT satellite
image, Figures (b) and (c) show the initial and final active contours and Figure (d) the four classified
homogeneous regions. Note that all figures are reproduced from [156].

As we explained in Section[2.1] the variational segmentation problem of Mumford-Shah M, ’T%]
for segmentation and partition is difficult to solve for many reasons. In @, ’Tm, ’Tﬂ)], Chan-Vese
proposed a method to minimize the Mumford-Shah functional in the context of active contours.
Indeed, the active contour framework is useful to define a mathematical framework suitable to de-
termine a solution to a variational model thanks to the calculus of variations. Moreover, PDEs
computed from the Euler-Lagrange equations technique naturally use geometric regularization con-
straints such as the ones conjectured by Mumford-Shah in ﬂ125‘]. Finally, the last (and difficult) term
of the Mumford-Shah functional which imposes a smoothing constraint on the discontinuity set
C between smooth regions can be approximated by the length of a set of curves. The Mumford-Shah
(MS) functional in the approach of Chan-Vese (CV) is as follows:

FES.C) = [ 1= oPaxp [ (1Pdxy [ s (2.31)
Q Q\c c

where I corresponds to a piecewise smooth approximation of the original image I, C' represents the
set of curves separating the smooth regions in the given image, fc ds is the length of C' and u, v are
positive parameters.

In ﬁ@], Chan-Vese defined the model of Active Contour Without Edges (ACWE) based on a reduced
form of the Mumford-Shah functional when the gradient-based term of (2.31) is removed. This case
corresponds to the piecewise-constant case of the Mumford-Shah model, also called the minimal
partition problem, since the optimal solution is an image composed of regions of approximatively
constant intensities equal to the mean value of intensities in the corresponding region. The general



24 CHAPTER 2. STATE OF THE ART

case (2.31) is called the piecewise-smooth case. In what follows, we consider only two regions
Qi and Q \ 4, even if Chan and Vese have solved the complete image partitioning problem.
The variational segmentation model of active contours without edges, i.e. the two-phase piecewise
constant Mumford-Shah segmentation model, is as follows:

min  Facw g (Qin, ¢1,c2) = Per(Qy, )+

Qin,c1,C2
A </ (¢1 — Io(x))? dx+ / (co — Io(x))*dx | ,
Qi 2N\

where the region Q;, C Q, ¢1,c2 € R and Per(Q;,) is the perimeter of the region Q;,.

(2.32)

The variational model (2.32) determines the best approximation, in the L? sense of the image I, as
a set of regions with only two different values, ¢; and co. If €, is fixed, the values of ¢; and ¢y which
minimize Energy Facw g are the mean values inside and outside €2;,. Finally the term Per(£;,)
imposes a smoothness constraint on the geometry of the set €2;, which separates the piecewise
constant regions. Functional (2.32) can be re-written in a level set formulation by representing
the regions €, and Q\ Q;, with the Heaviside function H of a level set function (which models
a characteristic function). Hence Energy Facwg can be written w.r.t. a level set function ¢ as
follows:

FACWE(¢,01,C2):/Q|VH5(¢(X))|C[X+
(2.33)

3 [ (H0) @ = 1o)? + H(=0) 2 = o)) i,

where H. is a regularization of the Heaviside function which allows us to differentiate Facwpg. To
minimize Facw g, the natural way is a two-steps method. Firstly, ¢ is fixed and Facw (o, c1,c2)
is minimized w.r.t. the constants c¢; and co, we get:

_ fQ IO(X)HE((b(X))dX o — fQIO(X)He(_QS)dX
[y Ho(pyax 72 o Ho(—¢)dx

Secondly, ¢1, ¢o are fixed and Facw g(®, ¢1,c2) is minimized w.r.t. ¢ to provide the following mini-

(2.34)

mization flow:

% 6.0 {7 () =2 fes~ 1)~ (= 1)) | (239

where 6.(¢) = H.(¢).

Figure [2.12(c) underlines well the name of the Chan-Vese’s model that is able to stop the curve
evolution even in the absence of boundary m whereas the standard snake model fails to stop
(Figure m) This is due to the fact that the active contours without edges use a global stopping
criterion which measures the homogeneity of both regions whereas the standard active contours use
a local stopping criterion which measures the presence of an edge. Another advantage of the Chan-
Vese model is the robustness in the presence of noise and the detection of interior contours with a
non-compactly supported smooth strictly monotone approximation H.(.) of the Heaviside function.

In [102], Jonasson-Hagmann-Bresson-Thiran-Wedeen applied the previous segmentation model
to the extraction of white matter tracts in high angular resolution diffusion magnetic resonance
images [181]. The segmentation is done in a 5-dimensional space of position and orientation to
separate crossing fiber tracts that merge in 3-D position space. The level set formulation of active
contours without edges is easily extensible to a 5-D space. The only implementation issue is the
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(a) Initial contour (b) Standard active (¢) Active contour with-
contour out edges

Figure 2.12: Comparison between the standard model of active contours 35,103, 105] (b) and the
model of active contours without edges [42] (c). Standard snake fails to stop on the borders of the
ellipse (b) because edges do not exist whereas the Chan-Vese model separates the image into two
homogeneous regions (c¢) which boundary is represented by an active contour.

computation of the mean curvature in this high-dimensional space. Fortunately, a lot of work has
already been done for N-D mean curvature flows such as Ambrosio-Soner in [9] who determine the
mean curvature of level sets of a function ¢ : RY — R as the mean value of the principal curvatures
kit =1,..., N —1 given by the N — 1 smallest eigenvalues of the NV x N matrix ﬁPv(z,VQ(vaqg

where P, is a projection operator onto the space normal to the vector p: P, =1 — }l’ﬁf . Figurel2.13

illustrates the 5-D segmentation of crossing fiber tracts.

(a) High angular resolution diffusion mag- (b) Fibers tract segmentation
netic resonance image

Figure 2.13: 5-D segmentation of crossing fibers [102]. Figure (a) is an example of high angular
resolution diffusion magnetic resonance image and Figure (b) is the segmentation of fiber tracts
obtained in a 5-D space where the red surface is a part of the cortical spinal tract, the blue surface
is the corpus collosum and the green is the arcuate fasciculus.

In [178,1179], Vese-Chan considered the segmentation with the whole Mumford-Shah functional
2.31), i.e. the piecewise-smooth case. This model is also the extension of two-phase piecewise
smooth Mumford-Shah segmentation model. In this situation, the variational problem to solve is

given by:
Q‘Hlin FVC(Qina S1, 82) = Per(Qm)—i—
) ) ) ) (2.36)
A ( [ 160 = 1)+ Vs 0 Pt [ (5200 = T+ a0 ).
Qin O\Qin

where the region Q;, C  and s; and sy are two C'! functions on €;, and on Q\ €2, respectively.
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The variational problem (2.36) determines the best approximation, in the L? sense, of the image I
as a set of smooth regions represented by the function s(z) such that

) osi(x) if x e Quy,
sle) = { so(z) if x € Q\ Qyp, (237)

and 09, = 9(Q\ Qi) is the boundary between the smooth regions. As in the previous model, both
regions €, and 2\ €, are represented by the Heaviside function of a level set function. This leads
to the following energy:

FVC(¢731732):/Q|VHE(¢(X>)|CZX—|—
(2.38)

A( [ 0 (o1 ) +ulTsiax+ [ Ho=0)(s2 ~ T + 4V >dx).

¢ being fixed and minimizing Fy ¢ w.r.t. the functions s; and sy using the calculus of variations
gives us the evolution equations of s; and their Neumann boundary conditions:

s1 — Iop = pAsy in Qi 59 — Io = pAsy in Q\ Qg (2.39)
951 =0 on 0, U 09, 9% =0 on 9(Q\ Qi) U O ‘
The flow minimizing Energy (2.38) is as follows:
o¢ Vo
— = H! Vil=]-
=~ o {v(55)
A((s1=10)* = (52 = 10)* + | Vs =l Vsal?) | (2.40)

This model segments and also denoises objects in images as we can see on Figure [2.14.

s 3

(a) Initial contour (b) Final contour (¢) Image denoising

Figure 2.14: Figures (a-c) present the Vese-Chan model of active contours ﬂ1—79‘] based on the whole
Mumford-Shah functional that segmented Rosa’s hand and denoised it simultaneously.

Chan-Vese also proposed to extend the 2-phase segmentation model to a higher number of regions to
be segmented. In [17

8, !179L they defined a multiphase level set formulation which, by construction,
automatically avoids the problems of vacuum and overlap. Only logn level set functions for n
phases are necessary in the piecewise constant case and only two level set functions are needed to
represent any partition based on the Four-Color Theorem ] presented on Figure These
multiphase segmentation models can represent boundaries with triple junctions as shown on Figure
[2.15] Concerning the coupling between the level set functions, Zhao-Chan-Merriman-Osher in Fw—l‘]
defined a variational level set approach to multiphase motion of junctions (of e.g. solid, liquid and
grain boundaries) where each phase is represented by a level set function ¢; coupling by a term of
the form [,,(3; H(¢i) — 1)%dx which keeps the phases disjoint and avoids vacuum.
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ey

(a) Four color image (b) Initial contours (¢) Final contours

Figure 2.15: Figure (a) illustrates the Four Color Theorem M] all the regions in a partition can
be ”colored” using only four colors such that any two adjacent regions have different colors. Figures
(b-¢) shows the segmentation of a triple junction based on two level set functions [ﬂ, @]

In ], Sandberg-Chan-Vese extended the model of active contour without edges to vector val-
ued images to segment texture images. They used a decomposition of the given image by the Gabor
transforms and they chose in a supervised or unsupervised way the best Gabor transforms to realize
the texture segmentation.

Finally, we mention that Tsai-Yezzi-Willsky @] proposed (independently) a very similar work
of Chan-Vese to segment and regularize images from the Mumford-Shah model and the curve evo-
lution theory. The main differences between both works lie in the numerical implementations, the
extraction of holes and triple points (which is done in a multiphase level set approach in Vese-Chan

178, ]) and the extension of the model to missing data and magnification (which is not done in
178, ]), see Figure [2.16]

Figure 2.16: Segmentation and smoothing of an image given with regions of missing data with the
model of Tsai et al. ] Note that all figures are reproduced from E]

Contrary to the standard snake model, based on a boundary (B) functional s.t. Jg(99Q) =
Joq [B(9Q(s))ds where ds is the arc length/area element, all the previous region-based image seg-
mentation models are based on a region (R) functional s.t. Jr(Q) = [, fr(x,Q)dx. Aubert-
Barlaud-Faugeras-Jéhan-Besson (ABFJB) studied in , @, , @] the links between both types of
functionals. They showed that boundary functionals are equivalent to region functionals by solving
Poisson’s or Helmotz’s equation with well-chosen boundary conditions:

Theorem 1: (Transformation of region functionals into boundary functionals) Let Q be

a bounded open set with regqular boundary 0S). Let fr : Q — R be a continuous function and u be
the unique solution of Poisson’s equation:
—Au fr in Q

U 0 on 0f.

(2.41)
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Then we have the following equality:
/ fr(x, Q)dx = Vu - Nds, (2.42)
Q a0

where N is the inside pointing unit normal to .

Theorem 2: (Transformation of boundary functionals into region functionals) Let 2 be
a bounded open set with regular boundary 0. Let fp : Q — R be a continuous function and u be
the unique solution of Helmotz’s equation:

—Au+u = 0inQ
2.43
{ g—]\‘/ = —fp on OQ. ( )
Then we have the following equality:
fB(002s))ds = / u(x, Q)dx. (2.44)
a0 Q

Hence, image segmentation problems can be studied either through boundary functional by changing
all region functionals into boundary functionals using Theorem 1 and applying standard methods of
the calculus of variations to derive the corresponding Euler-Lagrange equations. The dual approach
can also be used. Indeed, all boundary functionals can be transformed into region functionals using
Theorem 2 and the tools of shape derivatives developed by Delfourd-Zolesion [69] can be applied to
derive an evolution equation of the boundary of regions to be found. This general framework can
be applied to many image processing problems invoking contours or, by complementarity, regions
of the corresponding contours that minimize a functional of the form:

FABFJB(QinaC) = / fB( dS-l—/ X an dX-I—/ OUt(X Q\an) (245)
C O\ Qin

where Q;,,, Q\ ;, are respectively the inner and the outer region of the closed active contour C,
v and fgt are the descriptors of these regions and fp is the boundary descriptor.

Applications of this general paradigm for the active contours derived from functionals including
local and global measures concerning the regions to be segmented were proposed. In [12,/13], Aubert-
Barlaud-Faugeras-Jéhan-Besson applied their framework to the problem of matching histograms and
in [98,99] the face segmentation in real video sequences. In [90, 91], Herbulot-Jéhan-Besson-Barlaud-
Aubert (HIBBA) proposed an image segmentation model based on information theory (entropy
and joint entropy) and non-parametric density probability estimations. Contrary to the model of
geodesic active regions [132] which is based on the parametric assumption that all the regions in
images follow a Gaussian density probability function (PDF), no particular hypothesis about the
PDF'’s of the regions to be segmented is done such that they are non-parametrically estimated during
the evolution process. One of the proposed functional is as follows:

Fuiepa(Qin,C) = A/ ds + He(Qin) + He(Q2\ Qin), (2.46)
c

where

{ He(2) = th —q(Io(%), QC)IHQ(IO( x), 3¢)dx Qe = Qip 0or Q\ Qj, (2.47)

ao(x), Q) = 1 fop, Gollo(x) — (X))~
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where H, corresponds to the entropy to the regions §2;, and Q\ €©;, and G, is the Gaussian kernel.
Then, they used shape derivatives tools @] to derive the evolution equation of boundaries of the
homogeneous regions. Their model was used to segment one specific region in multi-modal images.
Indeed, they used a parametric representation of the contour based on the B-splines technique [144].
This allows to speed up the algorithm but it does not allow to segment more than one object. Figure
[2.17 illustrates the segmentation model of Herbulot et al..

ﬂ!h]‘“l!r |

L
d’ﬁa =

(a) Initial contour (b) Final contour (c) Initial contour (d) Final contour

Figure 2.17: Segmentation using information theory-based models of Herbulot et al. , ]
Figures (a-b) use Equations (2.46)-(2.47). Note that all figures are reproduced from @, 91].

Another model based on information theory, non-parametric PDF and curve evolution theory was
proposed for image segmentation by Kim-Fisher-Yezzi-Cetin-Willsky (KFYCW) in “1—06‘7 W] They
proposed to solve the segmentation problem by maximizing the mutual information (MI) between
the image intensities Ip(X) and the region labels L(X) assuming that the probability distributions
for each region is unknown and, therefore, is non-parametrically estimated during the evolution
process:

c
which becomes after some computations M]

Frrycew(C) = ﬁ Ja,, log (ﬁ Ja,, Go(Io(x) — Io(fc))dfc) dx+
T o, 1o (—|m§zm| Jona, GolTo(x) — 10(&))6&) dx + a [, ds,

where Ip(X) is the image intensity at a random location X, L(X) is a binary label, |Q;,| is the
area of the region Q;,, Q\ Q;, is the complementary region, C' is the boundary between ,,, and
Q\ Qin, G, is Gaussian kernel coming from the non-parametric Parzen density estimate model
@], and « is a positive arbitrary parameter. Then, they derived the curve evolution equations
that maximize the mutual information functional using the calculus of variations. Finally, they
proposed a multiphase level set formulation to segment up to 2™ regions using m curves based on
the approach of Vese-Chan. Experimental results demonstrate a very good behavior of the proposed
segmentation approach as presented on Figure 2.18|

2.4.2 Shape-Based Active Contours

This section is dedicated to the identification of structures of interest which geometric shape is given.
This topic is fundamental in the fields of computer vision and image processing since it is a core
component toward e.g. automated vision systems and medical applications. We review the main
variational models of active contours that use a geometric shape prior. In Chapter 5, we will propose
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(a) Initial contour (b) Final contour (¢) Initial con- (d) Final contours
tours

Figure 2.18: Segmentation using the information theory-based model of Kim et al. m, @]
Figures (a-b) presents the segmentation with Equations (2.48) and of two regions having the
same two first statistic moments, i.e. mean and variance, but different PDFs and Figures (c-d) show
a multiphase segmentation of four regions with different intensity variances. Note that all figures

are reproduced from [1—()6L @]

a variational model to extract structures of interest in images.

In @, E], Leventon-Grimson-Faugeras were the first authors to incorporate shape informa-
tion into the segmentation process based on active contours intrinsically represented by a level set
function. The shape model used by the authors is the principal components analysis (PCA) that
aims at capturing the main variations of a training set while removing redundant information. In
51, @], Cootes-Taylor used this technique on parametric active contours, called deformable models,
to segment different kind of objects. The new idea proposed by Leventon et al. is to apply the PCA
not on the parametric geometric contours but on the signed distance functions (SDFs) of these con-
tours which are implicit and parameter free representations. They justified this choice in two ways.
Firstly, SDF's provide a stronger tolerance than the parametric curves to slight misalignments during
the alignment process of the training data since the values of neighboring pizels are highly correlated
in a SDF. Secondly, this intrinsic contour representation improves the shape registration process in
terms of robustness, accuracy and speed. Indeed, the problem of the point-wise correspondence of
contours, landmarks correspondence, is replaced by a problem of intensity correspondence on grid
points which is easier to solve. Thus, active contours defined by Leventon et al. evolve locally based
on image gradients and curvature and globally towards the maximum a posteriori probability of
position and shape of the prior shape model. However, this a posteriori probability is maximized at
each iteration by an independent optimization process, which means that the final evolution equa-
tion is not a PDE since two independent stages are necessary to evolve the surface. The evolution
equation is the following:

¢t +1) = ¢(t) + A1 (f(e+ 1)[VOD)| + (Vo(t), V) + Aa(¢™ (1) — ¢(1)), (2.49)

where ¢* is the shape prior and A1, Ay are positive parameters. The second term of the right-hand
side of (2.49) weighted by A; represents the classical term of the geodesic active contours. And the
third term depending on A\ drives the shape of the active contour toward the shape prior given by
the MAP estimation. They used their model in 2-D and 3-D synthetic and medical imagery data as
shown on Figure[2.19.

In ﬁ, ﬁ@], Leventon-Grimson-Faugeras-Wells presented a new method to incorporate prior
knowledge concerning the intensity and curvature profile of a structure of interest from a training
set of images and boundaries. More precisely, they defined a joint distribution between intensity
value and distance to the boundaries given a distance function thanks to the Parzen non-parametric
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Figure 2.19: Segmentation with prior shape information [113], Equation (2.49). Evolution of a
surface in 3-D and on three 2-D orthogonal slices. Note that all figures are reproduced from [113].

density estimation. They used a surface regularization term based on two statistic regularization
processes, one in the local normal direction N and one in the tangent direction 7. Finally, the
segmentation process estimates the signed distance function to the boundary of the object to be
segmented by maximizing the maximum a posteriori probability:

P(o(x)o(x), dn(x)) o< P(Io(x), d(x))P(d7+, d1-[6(x)) P(dn+, dr-[6(x)), (2.50)

where ¢(x) is the height of the surface (the signed distance function) at location x, Ip(x) is the in-
tensity value at x, N(x) is the neighborhood of x, ¢7+ is the height of the surface at location x +7
and ¢+ is the height of the surface at location x + A. Their model presented good segmentation
results on 2-D synthetic and magnetic resonance imagery data.

In [173, 174, 175], Tsai-Yezzi-Wells-Tempany-Tucker-Fan-Grimson-Willsky (TYWTTFGW) in-
tegrated the shape model of Leventon et al. [113] into region-based segmentation energy functionals
to identify 3-D images containing known medical object types. In the three papers, the implicit
shape prior, namely ¢[vs,vr], depends on a shape vector vg for the shape variations and a pose
vector v for the spatial transformations. For example, in [174, 175], Tsai et al. defined a functional
based on the reduced version of the Mumford-Shah functional proposed by Chan and Vese in [42]:

. s2 82
Frywrrraw (Vs, vr) = —(A—m + A&)v (2.51)
in out

where A;;, = [, H(—=¢[vs,vr])dx, Sin = [ Io.H(—¢[vs,vr|)dx are the area and the sum
intensity (I is the given image) in the region Q;, = {x € R?¢(z,y) > 0} and Ay =
fgom H(¢[vs,vr])dx, Sout = fQ{m Iy.H($|vs, vr|)dx are the area and the sum intensity in the
region Qo = 2\ Qi = {x € R?|¢(z,y) < 0}. Parameters vg and v that optimize the segmenta-

in

tion energy functional are given by two gradient descents.

In [175], Tsai et al. also proposed two other segmentation energies, coming from Yezzi et al. in
[187], which use the image mean and the image variance to partition an image into two homogeneous
regions. Figure[2.20 illustrates the energy based on the image variance.

Finally, they proposed in [173] to extend their segmentation model to a multiple segmentation of
shapes and to a mutual information-based functional proposed by Kim et al. in [106, 107] (see

Section[2.4.1):
FZI%YWTTFGW(V57VT) = —MI(Iy(X); L(X)) (2.52)

Ngr
~ (Z Po,h(Io| L = Qi)) + Po,h(Io|L = ), (2.53)

i=1
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o
1

(a) Original image (b) Image sur- (c) Image (b) with (d) Initial contour (e) Final contour
rounded by line noise
clutter

Figure 2.20: Segmentation of a noisy number four using the model M] Note that all figures are
reproduced from [175].

where MT(Iy(X); L(X)) is the mutual information between the image pixel I and the segmentation
label L at a random location X, Ng + 1 is the number of regions handled with this segmentation
model, P, denotes the prior probability of pixel values in the ¢-th region €;, Pq, is the prior
probability of pixel values in Q. (the area outside of the Ng regions), h(.].) denotes the estimate
of the conditional entropy which is estimated using the non-parametric Parzen density estimation
method M] to compute these densities from the training data as proposed by Kim et al. ﬁl—OGL @]

h(Io|L = Q) = = a7 Jq log(Bo, (I0)) H (¢:)dx ’

where po, (Ip) and pa_(Ip) are estimates of the probability density functions of Iy in regions €; and
Qc, || and || are the areas of ; and ., ¢; is the level set function of region Q; and H is the
Heaviside function. Finally, the shape vector vg and the pose vector vt are determined by two
gradient descents.

In , @], Chen-Thiruvenkadam-Tagare-Huang-Wilson-Geiser (CTTHWG) designed a varia-
tional model that incorporates prior shape knowledge into the geometric/geodesic active contours
which detect edges from the image gradient. Contrary to Leventon-Grimson-Faugeras-Wells’ ap-
proach tﬁh, the shape prior of Chen et al. only uses the first geometric moment: the mean.
Indeed, the prior is given by the average shape of a training set of rigidly aligned parametric curves.
However, the variational approach of Chen et al. is mathematically justified by the proof of the
existence of a solution to the energy minimization problem. This mathematical justification is not
possible with the probabilist approach of Leventon et al.. The energy functional of et al. which is
minimized once the active contour has captured high image gradients and formed a shape close to
the prior model of the object to be segmented is as follows Nfg, %‘]

1
Frromwe(Cnt.T) = [ (VRO + 30 GRaC) + 7)) (Gl (255)

where C is the active contour, (u,0,T") are the parameters of a rigid transformation (scale, orientation
and translation), Ry is the rotation matrix, f is an edge detecting function, d2.(x) = d?(C*,x) is
the square distance of the point x from C*, the target shape and A > 0 a parameter. They also
presented a level set formulation of the energy functional (2.55):

Fernmo(o.m0.7) = [ (FOVI0) + 5 (ultox + 7)) S0 Volds, (250)
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Their model showed a good ability to extract real-world structures in 2-D ultrasound and fMRI
images in which the complete boundary was either missing or had low resolution and bad contrast.
In [44], they incorporated in the previous variational segmentation model prior fixed locations of a
small number of points which can be given e.g. by a medical expert. The new variational model is
as follows:

Feromolom0,T) = [ (FI9160) + Ja. (ekox + 1)) 800 Vol

+5 [ aox)0*(x)ax (257)

where g, is equal to the convolution of g and G, g being a function taking value 1 on the prior
points and 0 elsewhere and G, is the standard Gaussian kernel. The two first terms constraint the
active contour being on the location where the magnitude of image gradient is high and forming
a shape similar to the prior. Finally, the last term forces the interface passing through the given
points. Figure[2.21]illustrates the segmentation of an endocardium image without and with a set of
prior points.

(a) Minimization of (b) Minimization of

1 2
FCTTHWG FCTTHWG

Figure 2.21: Figures (a-b) presents the segmentation of an endocardium image using the models
[44, 45, 146]. Figure (a) is given by the model [45, 46], the solid contour is the expert’s contour and
the dotted contour is the contour minimizing Flrr e, Equation (2.55). Figure (b) shows the
result provided by the model [44], solid contour is the expert’s contour and the dotted contour is
the contour minimizing F2,rpq, Equation (2.57). Energy Firrpwe is better than Flrrpwa
since it uses a set of prior points given e.g. by a medical expert. Note that all figures are reproduced
from [44].

In [135, 137, 138], Paragios-Rousson-Ramesh (PRR) defined a variational framework to perform
a rigid-invariant registration of level set-based geometric shapes. Indeed, they used the level set
representation to represent shapes and to register them globally (with a rigid transformation) and
locally (thanks to a local deformation field). The optimization matching criterion is the sum of
square differences and the definition of this criterion is invariant w.r.t. translation, rotation and
scaling;:

Fhpn(un0.T,(U,V) = a /Q N3, (6, 65) (16 — ds(A))?dx
+(1-a) /Q Ns (60, 65) (b — ds(A — (U, V)))2dx

(1 —a)(1—B) /Q N5, (U2 + U2 + V2 + V2)dx, (2.58)
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where (u,0,T) are the parameters (scale, angle and translation) of a global rigid deformation be-
tween S, the shape source, and D, the shape target represented by two signed distance functions
¢s and ¢p, A = pRex + T, (U, V) is a local deformation field (non-rigid deformation), Njs is a
binary function such that Ns(¢1,¢2) = 1 for min(|¢1],|¢2|) > 6 and 0 otherwise. Paragios et al.
interpreted Energy (2.58) in [138]. The first term of the energy aims at finding pixel-wise intensity
correspondences according to a global motion model (rigid transformation). The second term has
the objective to correct the correspondences in the pixel level using a local deformation field on top
of the existing global model, while the third term constrains these deformations to be locally smooth.
Paragios et al. demonstrated the efficiency of their registration model on synthetic results which
exhibit large global motions as well as important local deformations, see Figure as example.

Figure 2.22: Global-to-local registration with Equation given in [138]. Note that all figures
are reproduced from [138].

They also considered the registration process between a shape and a shape target with local
degrees of variability. This shape model can be built from a training set of N, aligned signed
distance functions ¢, representing the shape of interest. They estimated a mean (M) shape image
onm(x) and a map of local shape deformations og(x) from a variational minimization model as
follows:

Ns
Fean(os.os) = a3 [ logipsoi0)ldx,

+(1 - a)L[<8“;£X)>2 + (8"§y(x))2]dx, (2.59)

B U S T R
ps(ox) = V21os(x) P [ 20%(x) ] ’ (2.60)
subject to the constraint: Vou(x)P=1 vxeQ. (2.61)

Figure [2.23 illustrates this statistical shape model. And in [136], they used the previous statistical
shape model to segment the left ventricle in Magnetic Resonance images with a modified version of
the geodesic active regions defined in [132].

In [153,154], Rousson-Paragios-Deriche (RPD) integrated the active shape model of Cootes et al.
[52] into the level set framework. More precisely, they applied the principal components analysis on
the level set functions embedding the training contours of an object of interest as Leventon et al. did
in [113]. This allows them to represent variations of shapes with complex topologies such as the left
ventricle over a cardiac cycle composed by two separated objects [153] or the two brain ventricles
[154]. The functional proposed by the authors to realize the shape registration is as follows:

2

N,
Frpp(¢,vs,vr) = /Q5e(¢) <M¢ - <¢M(VT) + Z%& dv; (VT)>> dx, (2.62)
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Figure 2.23: Shape prior model determined by Equations (2.59)- in [135,138]. Note that all
figures are reproduced from [135].

where ¢ is the level set function embedding the evolving interface, §.(.) is an approximation of the
Dirac function, vp = (u,6,T) models a rigid transformation, vs = (vs1,...,vsy,) are the weight
factors of the eigenmodes of variation (V) (¢v;, ..., ¢vy, ) determined by the PCA on the training
set of the object of interest and ¢ps is an approximation of the mean (M) shape of the level set
functions embedding the training data subject to the constraint that ¢, is a true signed distance
function.

The energy functional (2.62) is minimized using two flows: one minimizing flow for the level set
function ¢ and one minimizing flow for the parameters of the global rigid transformation A. Finally,
the shape weights A are optimally estimated by solving a linear system. The variational formulation
of the registration process allows them to combine it with variational segmentation models such
as the geodesic/geometric active contour model [35, 105] or the geodesic active region model [132]
to simultaneously realized the registration/segmentation tasks, which gives promising experimental
results in 2-D and 3-D images, see Figure

Figure 2.24: Segmentation of lateral Brain ventricles with shape prior of a noisy MR image using
Equation (2.62) from [153, 154]. Evolution of a surface in 3-D and three 2-D orthogonal slices.
Surface cuts are in green and their projection in the shape space in red. Note that all figures are
reproduced from [154].

In [93, 94], Huang-Paragios-Metaxas (HPM) proposed a global-to-local registration method that
integrates statistical and variational techniques. They used a distance functions to implicitly repre-
sent shapes and the mutual information is considered as a global registration criterion:

Fipu(Alvr)) = —MI(¢s,¢r(A)) = —/de)s,sz(Cl,Cz)log ]ifgf)—mdﬁd@ (2.63)

p¢'Sy¢7T (¢1,G) = Ol/QGa(Cl — ¢s(x), G — dr(A(vr; x)))dx, (2.64)
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where v is the vector of parameters of a parametric global transformation A such as a rigid, affine,
homographic or quadratic transformation, MI(¢g,dr(A)) is the mutual information between ¢g
and ¢ (A) where ¢g and ¢ are the distance representations of the shape source (S) and the shape
target (T), Pps, Por and pyg ¢, correspond to the probability density in ¢g, in ¢r(A) and the joint
density, G, is a 2-D Gaussian kernel and « is a normalization constant.

The local correspondences are recovered by a B-spline approximation of grid within a free-from
deformation criterion that guarantees a one-to-one mapping:

F2p0i(0) = / (6r(A(x)) — 65(L(©:%)))2dx (2.65)
3 3

L(©:;x) = x+0L(0;x) =Y Y BiBi(P 41+ 0Piik 1), (2.66)
k=0 =0

where ¢g and ¢ (A) are the implicit representations of the source shape S and the transformed
and 0P, , are the control point (m,n) on
0P}, ) is the deformation of
the control points in = and y directions and By, is the k** basis function of a Cubic B-spline (B; is

target shape T, L is the local deformation field, P, ,
the grid and the deformation of the control point (m,n), © = (6Py, ,,,
similarly defined).

Hence, their registration model benefits to the advantages of implicit representations, i.e. the robust-
ness w.r.t. noise, the extension to higher dimensions and the handling of complex shapes with e.g.
occlusions, missing parts and strong local variations. Figure[2.25]shows an example of registration.

(2) (b) (©) (d) (e)

Figure 2.25: Registration of structures defined in [93,94]. Figure (a) presents the initial contours.
Figure (b) shows the global alignment using mutual information, Equations (2.63) and (2.64). Figure
(c) establishes correspondences with B-splines free-form deformations and Figure (d) is the local
registration. Finally, Figure (e) presents the grid deformation. Note that all figures are reproduced
from [94].

Their method also deals with open contours since they used a distance function to represent contours
and not a signed distance function. Finally in [93], the authors demonstrates the efficiency of their
alignment method to solve the correspondence problem in systolic left ventricle in ultrasonic images.

In [62, 66, 67], Cremers-Tischhiduser-Weickert-Schnérr (CTWS) modified the Mumford-Shah
functional and its cartoon limit to segment known object types in a variational framework. They
proposed to add a quadratic shape energy to “convexify” the Mumford-Shah functional which has,
in general, a non-convex dependency w.r.t. the contour. The shape energy is as follows:

Ferws(C) = —log(P(C)) + const. (2.67)
1
P(C) o exp (—5(0 - Cu)'s7HC — CM)> , (2.68)
where C = (z1,y1,...,ZN,yn) represents the contour parametrized by a vector of N control points,

P(C) is a Gaussian probability distribution defined by a mean (M) control point vector Cps and a
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covariance matrix 3 estimated from a training set of the object of interest. We notice that Cremers et
al. used a parametric formulation of the contour which is numerically implemented with a quadratic
B-spline technique. This contour formulation is faster than an intrinsic formulation but it decreases
the degree of variation and does not allow changes of topology. The shape energy (2.68) is then
modified to be invariant to rigid transformation (translation, rotation and scale) and it is added to
the following modified Mumford-Shah energy:

1 1

FERYS(1,0) = / (1~ Io)dx+ 2% / we(@)|VI2dx + VL(C), (2.69)
Q Q

where [ is the piecewise-smooth approximation of the given image Iy, C' is the contour of the

smooth regions, L(C) is the length of the contour C' and w,. is an indicator function such that

PGS

we(x) =0 if x € C and 1 otherwise. The flow minimizing w.r.t. u is given by the following

inhomogeneous diffusion process:

o1 1

E = V(chI) + F(IO - I), (270)
which gave rise to the term diffusion snake by the authors @, ] Experimental results show that
the proposed model efficiently segment known 2-D objects in presence of misleading information due

to noise, occlusion and strongly cluttered background as we can see on Figure [2.26!

Figure 2.26: Contour evolution with a statistical shape prior based on the model of Cremers et
al. “& @] The segmentation model can deal with occlusion. Note that all figures are reproduced
from [66].

Equation (2.68) implicitly makes the assumption that the probability density function of the
shape of interest is Gaussian which can be limited in some situations. In @, @, @], Cremers-
Kohlberger-Schnorr (CKS) extended the linear shape model of , ] to a nonlinear statistic
model. The nonlinear statistic shape model is computed from a training set by a new method
of density estimation which can be considered as an extension of kernel PCA to a probabilistic
framework. More precisely, Cremers et al. applied a nonlinear mapping to the training data in
order to represent them in a higher-dimensional feature space where the training data are supposed
to form a Gaussian distribution. If Cy,...,Cn, € R" is a given set of training data and w is
a nonlinear mapping from the input space to a higher-dimensional space Y. The mean and the
covariance matrix of the mapped training data are given by

wy = Ni 4 S w(Cy), (2.71)
~ 1 N, ¢
Zw == E (W(Cl) - (UM>(OJ<C¢) — O.)M) 5 (272)
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and the new shape energy is defined by

Fors(C) = &(0) 251 &(0), (2.73)

k=1

1=

r Ny 2
= ( oFER(C, C)> SO =ATH AT k(G 0), (2.74)
1

where ©(C) = w(C)—wys, Xy, is a regularized covariance matrix obtained by replacing all zero eigen-
values of the matrix ¥, by a constant A;, k(.,.) := (&(.),&(.)) denotes the corresponding scalar
product in Y by the Mercer kernel [53], r is the number of nonzero eigenvalues \;, of the covariance
matrix ¥, and a¥ are the expansion coefficients obtained in terms of eigenvalues and eigenvectors
of a kernel matrix given in (i;j] Applications of the proposed method in segmentation and tracking
of 2-D and 3-D objects shows the ability of the nonlinear shape model to segment different complex
real-world shapes in presence of noise, clutter, occlusion and misleading information as shown on

Figure[2.27!

(a) Aligned (b) Single (c) Mixture of (d) Feature (e) Segmentations with prior
contours Gaussian Gaussians space Gaussian

Figure 2.27: Figures (b-d) compares different models of density estimation. Figure (d) presents
the density estimation in the feature space and produces level lines which are not necessary ellipses
as in the case of Gaussians. Figure (e) shows three contours from a tracking sequence in the presence
of occlusion. Note that all figures are reproduced from @]

In “&L Cremers-Soatto (CS) proposed a novel dissimilarity measure for shapes implicitly rep-
resented by the signed distance function. It has the main advantage to be symmetric compared
to previous presented measures in this Section which allows them to segment corrupted images of
known objects which consist of multiple components, see Figure 2.28. Their symmetric dissimilarity
measure, not biased toward small areas, is defined as follows:

d3s(¢1,¢2) = /Q(fbl — ¢2)° de, (2.75)
_ H(¢)
fl¢) = W’ (2.76)

where H(.) is the Heaviside function. Finally, the measure (2.75) is a pseudo-distance since it does
not satisfy the triangle inequality.

In @, E], Cremers-Osher-Soatto (COS) dealt with the problem of image segmentation with
statistical shape priors in the level set framework. They defined a shape dissimilarity measure
invariant w.r.t. translation and scaling, which avoid to compute them by gradient flows that are local
optimization methods that require appropriate time steps. Then, they proposed a new statistical
shape measure based on Parzen-Rosenblatt , @] density estimation in the level set domain
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(a) Initial contour (b) Final contour (¢) Final contour
with asymmetric with  symmetric
measure measure

Figure 2.28: Figure (c) presents the advantage of using a symmetric dissimilarity measure com-
pared to a asymmetric measure on Figure (b). The asymmetric measure is not able to propagate
the shape information outside the initial shape area. Note that all figures are reproduced from [63].

such that:
N,
Peos() x-S o (~5a(Ho.Ha) ) (2.77)
5 =1
P(Hoy, Hos) = /Q (H(1(x)) — H(6a(x)))%dx, (2.78)

where ¢;—1, . n are the N training shapes, o is the kernel width of the Parzen-Rosenblatt method,
H ¢ is the Heaviside function applied to the level set function ¢ and d is a symmetric difference mea-
sure. Their segmentation model is formulated in the Bayesian framework, hence the segmentation
process is seen as maximizing the conditional probability:

with respect to the level set function ¢ which is equivalent to minimizing the negative log-likelihood:

Fcos(¢) = éFACWE((ﬁ) + Fonape(®) (2.80)

with o > 0 and Fypape(¢) = —log Pcos(¢) and Facw g is the energy of Chan-Vese given by Equa-
tion (2.32). They successfully applied their segmentation method to track a walking person partially
occluded, see Figure [2.29.

In @, @], Cremers-Sochen-Schnorr (CSS) defined a variational approach based on the level set
representation for integrating multiple shape priors in the segmentation task. For this, they intro-
duced a labeling function which indicates where to apply which prior. This function is simultaneously
optimized with the level set function to jointly segment and partition the image domain between
the objects of interest. The energy functional proposed in ﬂg] to encode Ny different regions is:

Nr—1

Fess(01) = 3 R @= 90 (Lyax+ RS dX+VZ / VH(L)ldx,  (281)

where ¢ is the level set function, L(x) = (L1(x),...,Ln(x)),x € Q,L; € {+1,—1} is the vector-
valued labeling function such that N = 2", x;,4 = 1,..., Ng correspond to the indicator function
for each label region and each ¢; corresponds to a particular known shape with its variance given
by o;. Experimental results demonstrate the performance of their approach since it allows them to
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SRS BRE.

Figure 2.29: Segmentation given by minimizing Energy defined in @, E] The first row
represents the sample training shapes and the second row shows the segmentation of a sequence of
a walking person using a prior shape information. Note that all figures are reproduced from H]

(a) Initial contour (b) Final contour (c) Final contour
without prior with prior in yellow

Figure 2.30: Evolution of the segmentation with multiple dynamic labeling given by Equations
(2.81) in @] Figure (c) presents the final active contours in yellow and the final labeling contours
in blue. Note that all figures are reproduced from [65].

segment multiple independent objects in an image as we can see on Figure [2.301

Let us finally mention the paper [147] of Riklin Raviv-Kiryati-Sochen which addresses the prob-
lem of general projective transformations between a prior shape and an image to be segmented in
the level set framework.
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2.5 Variational Models and Partial Differential Equations for
Image Denoising/Enhancing

Since fifteen years, partial differential equations (PDEs) and variational models have been more and
more used to perform image restoration. As we said in Section 1.2] one of the main reasons to
use PDEs in image analysis is to work in the continuous domain to become grid-independent and
isotropic. Before that, the signal/image processing had been done with filters, i.e. in the discrete
domain. The link between both approaches is to see PDEs as the iteration of local filters with an
infinitesimal neighborhood [158]. This novel view of image analysis proposes two main advantages.
Firstly, the continuous approach is independent w.r.t. the grid. Secondly, PDEs are well-founded
mathematical domains, which allows us to generalize classical methods, classify and create PDEs
according to conditions of causality, regularity, morphological invariance, affine invariance, locality,
etc. [4].

The original idea to use PDEs in image analysis started with Gabor in 1965 [80] who noticed that
the difference between the original and the blurred image is roughly proportional to its Laplacian
[87]. If we call G, the Gaussian blur kernel with the scale parameter h and the given image
Iy € LY(Q C R?), then

Io * Gy (x) — Io(7)
h

x Aly(z), (2.82)

where * stands for the convolution operator. Hence, when h gets smaller, the blur process (2.82)
looks more and more like the linear isotropic heat diffusion equation:

A =AI (t>0)
{ }9:[0 (t = 0) (2.83)

In 1983-1984, Witkin [185] and Koenderink [109] proposed to formalize the smoothing process in
image analysis by introducing the notion of scale space which generally corresponds to the represen-
tation of images at different levels/scales of observation. In their work, the multiple representation
of images is obtained by applying the simplest diffusion flow to the original image. In [97],
Hummel defined a scale space as an evolution equation that satisfies the mazimum principle which
basically states that the maximum of the solution of a certain class of PDEs is obtained at the spa-
tial or the temporal boundaries of the PDE domain [145, 158]. This principle is useful to prove the
uniqueness of solutions and other properties. In the case of parabolic PDEs (2.83), the maximum
principle states that [184]:

inf Iy < I(t) <sup Iy, ¥t >0 (2.84)

e z€Q
In a general way, analytic solutions do not exist for all PDEs. However, there exists an analytic
solution for the image smoothing PDE (2.83):

I=G g+l (t>0)
{szof 0 (t = 0) (2.85)

where G, is the Gaussian kernel with standard deviation o. In other words, the Gaussian convolu-
tion (2.85) and the linear diffusion flow (2.83) are equivalent when o = /2t.

Recently, Weickert-Ishikawa-Tmiya in [183] discovered that the previous linear scale space was deter-
mined by lijima in 1962 using 5 axioms: linearity, translation invariance, scale invariance, semi-group
property and positive preservation.
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In fact, the linear/Gaussian scale space has been deeply studied and widely used in image processing
not only to regularize images but also to detect edges by the zero-crossings of the Laplacian of a
Gaussian, see the work of ]

We apply the linear heat diffusion flow (2.83) on Figure|2.31.

(a) Original Image (b) scale s1 (c) scale s3 > s1

Figure 2.31: Scale space produced by the linear isotropic diffusion equation (2.83). The noise has
been removed but the location of edges have been lost at the same time.

It is interesting to notice here that the smoothing equation (2.83) is actually a diffusion equation
based on a physical process. The analogy between physics and image processing is done as the
following way. The image intensity (grey-level, color, etc.) I is seen as a physical variable such
as temperature. The existence of a concentration gradient VI creates a flux according to the first
Fick/diffusion law in order to equilibrate the concentration differences in the diffusing medium :

J=D-VI, (2.86)

where D is the diffusion tensor which characterizes the diffusing medium and which determines
the type of diffusion processes we apply on images. It is reasonable to think that the quantity of
image intensities remains unchanged in €2, in other words, the mass conservation hypothesis is valid.
Hence, the temporal variation of I inside €2 is equal to the flux of I across the boundary of €Q:

2//Idx:/ J-./\/dSZ//V-de, (2.87)
ot JJq 20 Q

= //Q <% ~V-(D- VI)) dx =0, (2.88)

thanks to the Navier-Stokes equation, which implies the second Fick/diffusion law:

ol
—=V-(D-VI 2.

5 V- (D-VI), (2.89)
which is the general diffusion equation in physics (up to the density function equal to 1).

In the context of diffusion equations, the smoothing flow (2.83) is obtained when the diffusion
matrix D is reduced to a scalar. Thus, the flux J is parallel to VI which means that the diffusion is
isotropic @] Despite of many advantages of the linear heat flow (2.83)), this one presents two main
shortcomings: it blurs everything in images, the noise but also the edges as we can see on Figure
then it can create new extrema for signals N-D, N > 2. The solution of both drawbacks is to
extend the linear isotropic diffusion equation (2.83) to nonlinear anisotropic ones.
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In this direction, Perona-Malik in M] proposed a PDE-based model to denoise images while
keeping edges well-localized. They chose a scalar-valued diffusion matrix D = f(|VI|?) such that
the diffusion equation is equal to:

ol

o = V- VIRV, (2.90)
where f is called the diffusivity function, e.g. f({) = ﬁ The diffusion process defined by
Equation (2.90) is anisotropic since the diffusion intensity depends on the direction. Indeed, if (&, )
denotes the local orthogonal coordinate system, where the n-axis indicates the direction parallel to
the gradient VI and the Eaxis is orthogonal to the gradient direction, then the diffusion equation

(2.90) can be re-written [15, @]

or

ot
Thus, the diffusion process (2.91) does not diffuse in the same way in the &-direction and the 7-
direction. In general, the diffusion flow (2.90) is bad-posed but one solution consists of introducing
a slight Gaussian convolution in the diffusivity function f such that:

1
VI, |?*) = : 2.92
u %) 14 |V(Gy * I)2/A (2.92)
The PDE-based denoising flow using (2.92)) is well-posed since Catté-Coll-Lions-Morel proved in
H, @] the existence, the uniqueness and the stability w.r.t. the initial image of a solution. Figure

2.32 shows the scale space produced by the regularized version of the Perona-Malik model.

FUVIPY Ly + (VIF(IVI1?) Tee. (2.91)

(a) Original Image (b) scale s1 (c) scale s2 > s1

Figure 2.32: Scale space produced by the regularized nonlinear diffusion equation (2.90) of Perona-
Malik [141]. The noise has been removed from homogeneous regions while preserving the location
of edges. However, the edges are still noised since there is no diffusion on these locations.

In the model of Perona-Malik, the edges between homogeneous regions are well preserved thanks
to the function f. However, even if homogeneous regions are efficiently denoised, noisy edges are
badly /not regularized since the diffusivity function f is null on the edges. Hence, Weickert @]
proposed to take into account the direction of local structures instead of the edge localization in the
diffusion process. He considered the whole diffusion tensor D in Equation (2.89) which is decomposed
into eigenvectors and eigenvalues with the fundamental theorem of singular values decomposition:

D=%-A-%7, Y= (vi;ve) and A= Diag (A1, \2). (2.93)

The unit eigenvectors (v1;va) are respectively parallel and orthogonal to the gradient VI, and the

eigenvalues are, for example, equal to Ao =1 and \; =1 —exp (%) if [VI,| >0and A\; =1
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if |VI,| =0 ﬁTM] The scale space produced by the diffusion equation (2.89) with D given by
(2.93) is illustrated on Figure[2.33] We can see that this diffusion denoises homogeneous regions and
also edges while keeping them well localized. Weickert also proposed a new nonlinear anisotropic
diffusion equation in @, 184] to regularize and enhance coherent flow-like structures, see Figure

2.34

(a) Original Image (b) scale s1 (c) scale s3 > s1

Figure 2.33: Scale space produced by the edge-enhancing diffusion equation defined by Weickert
[1—83] and the diffusion tensor (2.93). The noise has been removed from homogeneous regions and
edges while keeping them well localized..

(a) Original Image (b) Regularized Image (c) Original (d) Regularized

Figure 2.34: Scale space produced by the coherence-enhancing diffusion model of Weickert @]
which applies a 1-D smoothing along flow-like structures.

The previous models were extended to higher dimensions to process e.g. color images @, ’TM]
The generalization does not introduce difficulties in the theory and the new PDEs are also well posed.
Nevertheless, there are different ways to extend the models to higher dimensions and the simplest
solution to extend to vector-valued images is to diffuse each channel separately and recombine them
after the denoising process. However, the coupling between channels is a better approach since
structures can be constructed by different channels which do not appear at each channel. For
example, the m vector-valued formulation of the Perona-Malik’s model is as follows @]

M
=V A\ LD VLS| VL], i=1..,M, (2.94)
j=1

oI;
ot

where I; is the i'" component of the vector-valued image I.

Before presenting the mean curvature flow which satisfies the morphological invariance which
is equivalent to the contrast invariance, we review the link between PDEs and the mathematical
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morphology. Mathematical morphology is a well-established domain in image processing from a
theoretical and a numerical points of view [89, 121, 162]. Although all mathematical morphology
definitions and theorems are established in the continuous setting, the application of the theory is
often done in the discrete setting for binary images. The continuous/grey-scale morphology is more
difficult to implement. However, a novel way of processing continuous mathematical morphology
is to use PDEs through continuous flows which has a sub-pixel accuracy and are well posed. For
example, the PDE-based dilatation/erosion tool, which structuring element is a disk, is achieved
with the flow:

oI

— =4|VI 2.95
5 = HIVIL (295)
which is implemented with the level set method of Osher-Sethian based on hyperbolic upwind tech-

niques, Equation (2.22).

In the following, we present the fundamental work of Alvarez-Guichard-Lions-Morel [4] who de-
fined and classified the PDEs used in image processing according to mathematical properties and
invariances [4, 158]: causality/semi-group property, regularity, linearity, locality, Euclidean invari-
ance, affine invariance and morphological invariance. They deduced that the flow which satisfies the
properties of causality, regularity, Euclidean invariance and morphological invariance is as follows:

oI VI
5 =F {t,v- <VI|>} VI, (2.96)

which provides the dilatation/erosion flow when F' = +1 and the famous mean curvature flow when
— VI .
F=v- ()

oI VI
5=V (W) v, (2.97)

which is equivalent to evolve all isophotes (the level sets) of I according to the Euclidean shortening
flow 8;C = k. They also derived the unique flow, called affine morphological scale space and which
has more invariances than other scale spaces, which satisfies the properties of causality, regularity,
affine invariance and morphological invariance:

oI WAV

which means that each level set of the image I evolves according to 0,C = [tn]l/ ® N which is the
affine invariant heat flow or affine shortening flow, defined by Sapiro-Tannenbaum in [159, 160],
which propagates isophotes in the inner direction to smooth them.

The previous flows and their level set version are related to the active contour model presented
in Section [2.2. Indeed, the mean curvature flow of isophotes 9;C = kA is the minimizing gradient
flow of the Euclidean arc-length of the curve C: L(C) = [|Cpldp = [ds. This flow decreases
as fast as possible the length of C'. The link with the active contour model is done when the edge
detecting function f(|VI]) weights the Euclidean arc-length of the curve C: [ f(|VI(C(p))|)|Cp|dp =
J f(IVI(C(s))|)ds which produces the flow 9;C = fkN— < V f, N> N which level set version is

ol VI
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which is close to the Perona-Malik flow (2.90) and becomes the level set-based mean curvature flow
(2.97) when f is equal to 1.

We now arrive to the well-known variational and PDE-based denoising model in image processing,
the Rudin-Osher-Fatemi’s model proposed in ﬁTE)B] This denoising technique removes the noise while
preserving the edges in images and without arbitrarily choosing some parameters as in (2.92). The
convex Rudin-Osher-Fatemi (ROF) energy is as follows:

FROF(I,/\):/ |VI|+/\/ (I —Iy)* dx, (2.100)
Q Q

where Q C RY is an open set, Iy is a given (possibly noisy) image, A is an arbitrary positive
parameter related to the scale of observation of the solution and [, |[VI| := TV(I) is the total
variation (TV) norm. The PDE minimizing Energy (2.100) is the following one:

ol VI
=V (= )+22(UI-1I), 2.101

where V - (%) = k is the curvature of the level sets of I. The first term of the flow is the mean
curvature flow weighted by the inverse of the norm of the gradient of I. Indeed, if I evolves according
to oI = V- (%), its isophotes evolve according to the curve flow 9,;C = ﬁ]\/ . Therefore,
homogeneous regions, for which |VI| — 0, are smoothed according to the mean curvature flow
weighted by 1/|VI| and the localization of edges is preserved since there is no flow when |VI| — .
Then, the second term of the flow (2.101) is a data fidelity term which A can be computed with the
Lagrange multiplier technique to remove the estimated noise. Finally, the ROF model can also be

multi-dimensional using the generalized TV-norm proposed by Blomgran in ]:

(2.102)

Figure [2.35 presents the scale space produced by a color image using the multi-dimensional TV-
norm.

Figure 2.35: Scale space produced by the multi-dimensional TV-norm (2.102).

At the stage, two observations can be made. Firstly, there is again a relation between the differ-
ent PDEs used in image denoising/restoration. For example, the TV-flow can be obtained
by choosing g = ﬁ in the Perona-Malik flow (2.90). Secondly, like in the ROF model, a data
fidelity term, such as A(I — Iy), can also be added to the Flows (2.83), (2.90), (2.94) and (2.99).
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In the previous cases, we have considered smoothing-enhancing flows. We now present a pure edge
enhancement flow called the shock filter model proposed by Osher-Rudin in [131]. This model is based
on a nonlinear hyperbolic PDE which tries to propagate the color information from homogeneous
regions toward the edges of these regions. One of the shock model proposed for 2-D images is

or
e

where F' is a Lipschitz function satisfying F(0) = 0, sign(s)F(s) > 0(s # 0), for example

—|VI|F(L(I)), (2.103)

F(s) = sign(s), and L is a nonlinear elliptic operator such that zero crossings define the edges
on images such that L(I) = |v1| Hp. X IVII = IVIP (I%1,, + 2111, +121yy) Where H7 is the Hessian
of I, in other words L(I) is the second derivative of I in the direction of IV I‘ We illustrate the
shock flow (2.103) on Figure[2.36 to deblur an image.

& B R

(a) Original image (b) Blurred image (c) Restored image
Figure 2.36: Blurred image restored with the shock flow (2.103).

In [166, 167], Sochen-Kimmel-Malladi proposed a new framework to consider low level processing
in vision. This novel point of view is based on the field of high energy physics where researchers look
for determining a mathematical framework, called string theory [86], to unify the four basic forces
of nature and reconcile gravity and quantum mechanics. In their work, Sochen-Kimmel-Malladi
used the approach of string theory in image processing to define images as surfaces embedded in
higher dimensional space. This new point of view has deep consequences in the processing of images
since their approach does not consider anymore images as collections of level sets which evolve with
the same dynamics. However, the authors showed the links between their approach and several
existing scale space/smoothing models, which proves the generalization of their model to many low
level vision models. They also defined a new denoising/regularization flow, called the Beltrami
flow, which can be applied indifferently on multi-valued signals such as gray-level, color and texture
images [108].

In their approach, differential geometry is an essential tool to define their energy functional.
In their work, (gray-level, color, texture, etc) images are considered as 2-D Riemannian surfaces

L u? be the local coor-

embedded in higher dimensional Riemannian manifolds. For example, let u
dinates on the image surface, see Figure 2.37, and X*(u',u?),i = 1,...,ny be the coordinates of
the embedding space. Hence, we have defined a mapping X between a surface, namely ¥, and the
embedding manifold, called M. Figure[2.37 illustrates X : ¥ — M = R3, a gray-level image viewed
as a surface embedded in R2.

Riemannian differential geometry defines the concept of intrinsic metric on manifolds, i.e. the

concept of distance. Distances on manifolds are measured using the first fundamental form of
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Figure 2.37: Surfaces 3 embedded in higher dimensional spaces M. Images can be considered as
2-D Riemannian/non-flat surfaces embedded in higher dimensional manifolds. Note that the figure
is reproduced from [167].

differential geometry [110]. For example, the squared distance between two close points on the
surface [2.37|is given by the metric:

ds® = gudo*do”, (2.104)

where [g,,] is the first fundamental form, also called the metric tensor, which is a positive definite
symmetric bilinear form. In Equation (2.104), the Finstein summation convention is used since
identical indices that appear one up and one down are summed over.

Let (3, g,) be the image manifold characterized by the Riemannian metric [g,,] and (M, h;;) the
embedding manifold geometrically represented by the metric tensor [h;;]. Then, Polyakov in [143]
defines for the map X : ¥ — M the following weight functional:

P(X,%, M) = / A" gt%g" 9, X0, X7 hij(X), (2.105)

where ny, is the dimension of ¥, nps the dimension of M, [g"”] is the inverse metric of [g,,], ¢ is
the determinant of [g,.], p,v =1,...,nx, i,j =1, ...,ny and 9, X" = 0X*/do*.
If the Fuler-Lagrange equation of the Polyakov functional is computed w.r.t. an embedding
coordinate X? and multiplied by a strictly positive function and a positive definite matrix to be
re-parametrization invariant, we get the following flow:

ox’ 1 ., 0P

5 = 2o axi = 97 20,(g" 9" 0, X") + 14,0, X709, X g for 1 <i < mnpy, (2.106)
g

where Fé- & is the Levi-Civita connection coefficient. Given the Polyakov functional (2.105) and its
minimizing flow (2.106), Sochen-Kimmel-Malladi proved in [166, 167] that different choices of the
metric tensor [g,,,] in Equation give the most well-known scale spaces: the linear scale space,
the scale space of Perona-Malik, the mean curvature scale space and the total variation scale space.
When the embedding space M is Euclidean, the flow (2.106) is reduced to:

X!

o :g—1/2au(gl/2guuayXi) _ AgXi7 (2107)

where A, is the Beltrami operator [110] which is a generalization of the Laplacian operator to non-
flat manifolds. They used this flow to denoise multi-dimensional signal such as texture images in a
natural way without coupling artificially the different channels [108]. Let X : (z,y) — (z,y, I(z,y))
then 0,1 = AyI = kN where £ is the mean curvature of the surface ¥ and N7 is the unit normal
in the I-direction, see Figure[2.37] The Beltrami flow (2.107) works as follows: each point on the
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ny-dimensional surface moves with a velocity that depends on the mean curvature and the angle
between the I-component and the normal component to the surface. More precisely, I does not
change along edges since the I-component is orthogonal to the normal surface component and I
changes a lot for the rest of the image. Indeed, the rest of the image tends toward a minimal surface
at the most rapid rate. This is explained with the concept of harmonic maps in differential geometry
110,

Harmonic maps are the generalization of geodesics and minimal surfaces to higher dimensional
manifolds. They are given by the Euler functional/Nambu action that describes the (hyper-)area of
a (hyper-)surface:

S = /d"EU g'7?, (2.108)

where g'/2, the square root of the determinant of the image metric corresponds to the infinitesimal
invariant-volume. The Euler functional can be obtained from the Polyakov functional and
the pullback procedure that consists in constructing the metric [g,,| on ¥ from the metric on M
and the map X such that:

G = 0, X0, X7h;;(X). (2.109)

The metric (2.109) is called the induced metric. Given the metric (2.109), we introduce it into the
Polyakov action (2.105) to get the Euler functional (2.108?. Furthermore, the flow minimizing the
Euler functional is the generalized mean curvature flow [167]:
aX?
ot
where H is the generalized mean curvature vector. The Beltrami flow is illustrated on Figure

= g7 129,(g"2g" 9, X") + T8, X790, X g = W', (2.110)

for color and texture images.

(a) Color image +  (b) Restored image (c) Texture image (d) Restored image
Gaussian noise

Figure 2.38: Denoising/Restoration of a gray-level and texture images with the Beltrami flow
defined in “108, ‘1667 ‘167] by Equation (2.107). Note that all figures are reproduced from “108‘, ‘16#].

Let us finish our state-of-the-art chapter with the beautiful model of image inpainting proposed
by Bertalmio-Sapiro-Caselles-Ballester in ﬁT?] and extended to texture images by Bertalmio-Vese-
Sapiro-Osher in [18]. Inpainting is an old technique that aims at modifying a given image in an
undetectable form. The previous authors proposed to carry out image inpainting with a PDE-based
approach that fills-in regions to be inpainted in such as way that isophote lines, i.e. the curves with
the same image intensity, arriving at the regions’ boundaries are completed inside ﬂl—’F‘] We illustrate
this method on Figure 2.39]
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1\
A

(a) Original Image (b) Corrupted Image (¢) Inpainting at ¢y,

(e) Original Image (f) Corrupted Image (g) Inpainting at t (h) Inpainting at t;~x

Figure 2.39: Image inpainting: Figures (a) and (e) present two color images that are corrupted by
noise, Figures (b) and (f), and recovered on Figures (d) and (h) with the image inpainting model
defined in [17].

2.6 Conclusion

This chapter introduced the state-of-the-art in the domain of image segmentation using variational
models and partial differential equations. We analyzed and critized the most well-known models in
order to present our contributions which will improve some existing solutions. In particular, Sections
2.1 and [2.2] emphasized the main drawback of the active contour/snake model. Many local minima
exist in the energy functional of the active contour model, which makes the initial contour critical
to get a satisfactory segmentation result. In the next chapter, we propose a new approach to handle
this issue by determining a global minimum of the snake model.



Global Minimizers of
The Active
Contour /Snake Model

This chapter proposes to improve the image segmentation model of
snakes defined by Kass-Witkin-Terzopoulos in [103], also called geodesic
active contours by Caselles-Kimmel-Sapiro [35] and geometric active
contours by Kichenassamy-Kumar-Olver-Tannenbaum-Yezzi [105]. As
we explained in Section [2.1, the active contour/snake model is one of
the most used segmentation models in image processing, such as in med-
ical imaging, for its theoretical and practical advantages. However, this

segmentation model suffers from the existence of local minima which
makes the initial guess critical for getting satisfactory results. We pro- © Diego Porcel

pose to solve this problem by finding global minimizers of the active

contours model. We will see that our approach links different well-known methods to overcome the
issue of local minima. We will relate the Rudin-Osher-Fatemi’s image denoising model [155], based
on the total variation norm of the given image, with the Chan-Vese’s segmentation models of active
contours [42,179] based on the Mumford-Shah’s functional [125].

3.1 Introduction

The segmentation problem is fundamental in the computer vision and image processing fields since
it is a core component towards e.g. automated vision systems and medical applications. Its aim
is to find a partition of an image into a finite number of semantically important regions. As we
saw in Sections 2.2, and various variational and partial differential equations-based
methods have been proposed to extract objects of interest in images such as the well-known ac-
tive contours/snakes model defined by Kass-Witkin-Terzopoulos (KWT) in [103]. This method has
been widely used in different image processing applications such as in medical imaging to extract

o1
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anatomical structures [101,/102, 115, 188].

Following the first model of active contours of KWT, Caselles-Kimmel-Sapiro (CKS) in [35] and
Kichenassamy-Kumar-Olver-Tannenbaum-Yezzi (KKOTY) in [105] proposed the geometric (which
means invariant w.r.t. the curve parametrization) minimization problem:

L(O)
min Feac(C) = / F(IVIo(C(s)]) ds, (3.1)

where ds is the Euclidean element of length, L(C) is the length of the planar closed curve C,  is
the image domain, Iy € L'(f2) is a given image and f is an edge detecting function that vanishes at
object boundaries such as the one defined in Equation (2.3):

1
144V (I x Gy) 2

f(1o) (3.2)

where G, is the Gaussian function with standard deviation o, Iy * G, is a smoothed version of the
original image Iy and < is an arbitrary positive constant.

As said in Section [2.2] the calculus of variations provides the Euler-Lagrange equation of Func-
tional Fgac and the gradient descent method gives the flow that minimizes Fgac:

0C = (kf = (VLN)N, (3-3)

where & is the curvature and N the normal to the curve. Osher-Sethian introduced in [129] the
implicit and intrinsic level set representation of contours to efficiently solve the contour propagation
problem and to deal with topological changes. Equation (3.3) can be written in the level set form
as follows:

Vé
Vol

where ¢ is the level set function embedding the active contour C.

0 = (s + (V1,55 ) 991 (3.4

The main drawback of this variational segmentation model, as many other variational models in
image processing, is the existence of local minima in th