6 research outputs found

    Automatic Rectum Limit Detection by Anatomical Markers Correlation

    Get PDF
    Several diseases take place at the end of the digestive system. Many of them can be diagnosed by means of different medical imaging modalities together with computer aided detection (CAD) systems. These CAD systems mainly focus on the complete segmentation of the digestive tube. However, the detection of limits between different sections could provide important information to these systems. In this paper we present an automatic method for detecting the rectum and sigmoid colon limit using a novel global curvature analysis over the centerline of the segmented digestive tube in different imaging modalities. The results are compared with the gold standard rectum upper limit through a validation scheme comprising two different anatomical markers: the third sacral vertebra and the average rectum length. Experimental results in both magnetic resonance imaging (MRI) and computed tomography colonography (CTC) acquisitions show the efficacy of the proposed strategy in automatic detection of rectum limits. The method is intended for application to the rectum segmentation in MRI for geometrical modeling and as contextual information source in virtual colonoscopies and CAD systems.Fil: Namias, Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; ArgentinaFil: Venere, Marcelo Javier. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: del Fresno, Mirta Mariana. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; ArgentinaFil: D'amato, Juan Pablo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; Argentina. Comision Nacional de Energi­a Atomica. Centro Atomico Bariloche; Argentin

    Geometric modeling of pelvic organs

    No full text
    International audienceno abstrac

    Geometric modeling of pelvic organs with thickness

    No full text
    International audiencePhysiological changes in the spatial configuration of the internal organs in the abdomen can induce different disorders that need surgery. Following the complexity of the surgical procedure, mechanical simulations are necessary but the in vivo factor makes complicate the study of pelvic organs. In order to determine a realistic behavior of these organs, an accurate geometric model associated with a physical modeling is therefore required. Our approach is integrated in the partnership between a geometric and physical module. The Geometric Modeling seeks to build a continuous geometric model: from a dataset of 3D points provided by a Segmentation step, surfaces are created through a B-spline fitting process. An energy function is built to measure the bidirectional distance between surface and data. This energy is minimized with an alternate iterative Hoschek-like method. A thickness is added with an offset formulation, and the geometric model is finally exported in a hexahedral mesh. Afterward, the Physical Modeling tries to calculate the properties of the soft tissues to simulate the organs displacements. The physical parameters attached to the data are determined with a feedback loop between finite-elements deformations and ground-truth acquisition (dynamic MRI)

    Geometric modeling of pelvic organs with a discrete offset approach

    Get PDF
    In order to design a patient-specific simulator of pelvic organs, MoDyPe project considers the organs as thick surfaces. Starting from a closed parametric surface for the outer hull, an offset approach is applied. However, respecting the thickness on the surface and ensuring the absence of self-intersection is impossible if the shape has too important local curvatures. Two iterative approaches are compared. The first method is based on a B-spline formulation, and the second one on a mass-spring system (MSS). Our second method on discrete representation permits to obtain more accurate results with a more flexible formulation of the problem
    corecore