42,378 research outputs found

    Production matrices for geometric graphs

    Get PDF
    We present production matrices for non-crossing geometric graphs on point sets in convex position, which allow us to derive formulas for the numbers of such graphs. Several known identities for Catalan numbers, Ballot numbers, and Fibonacci numbers arise in a natural way, and also new formulas are obtained, such as a formula for the number of non-crossing geometric graphs with root vertex of given degree. The characteristic polynomials of some of these production matrices are also presented. The proofs make use of generating trees and Riordan arrays.Postprint (updated version

    An Improved Lower Bound on the Minimum Number of Triangulations

    Get PDF
    Upper and lower bounds for the number of geometric graphs of specific types on a given set of points in the plane have been intensively studied in recent years. For most classes of geometric graphs it is now known that point sets in convex position minimize their number. However, it is still unclear which point sets minimize the number of geometric triangulations; the so-called double circles are conjectured to be the minimizing sets. In this paper we prove that any set of n points in general position in the plane has at least Omega(2.631^n) geometric triangulations. Our result improves the previously best general lower bound of Omega(2.43^n) and also covers the previously best lower bound of Omega(2.63^n) for a fixed number of extreme points. We achieve our bound by showing and combining several new results, which are of independent interest: (1) Adding a point on the second convex layer of a given point set (of 7 or more points) at least doubles the number of triangulations. (2) Generalized configurations of points that minimize the number of triangulations have at most n/2 points on their convex hull. (3) We provide tight lower bounds for the number of triangulations of point sets with up to 15 points. These bounds further support the double circle conjecture

    Characteristic polynomials of production matrices for geometric graphs

    Get PDF
    An n×n production matrix for a class of geometric graphs has the property that the numbers of these geometric graphs on up to n vertices can be read off from the powers of the matrix. Recently, we obtained such production matrices for non-crossing geometric graphs on point sets in convex position [Huemer, C., A. Pilz, C. Seara, and R.I. Silveira, Production matrices for geometric graphs, Electronic Notes in Discrete Mathematics 54 (2016) 301–306]. In this note, we determine the characteristic polynomials of these matrices. Then, the Cayley-Hamilton theorem implies relations among the numbers of geometric graphs with different numbers of vertices. Further, relations between characteristic polynomials of production matrices for geometric graphs and Fibonacci numbers are revealed.This project has received funding from the European Union’s Horizon 89 2020 research and innovation programme under the Marie Sk lodowska- 90 Curie grant agreement No 734922. 91 C. H., C. S., and R. I. S. were partially supported by projects MINECO MTM2015- 92 63791-R and Gen. Cat. DGR2014SGR46. R. I. S. was also supported by MINECO 93 through the Ramon y Cajal programPostprint (published version

    Compatible Paths on Labelled Point Sets

    Get PDF
    Let P and Q be finite point sets of the same cardinality in R 2 , each labelled from 1 to n. Two noncrossing geometric graphs GP and GQ spanning P and Q, respectively, are called compatible if for every face f in GP , there exists a corresponding face in GQ with the same clockwise ordering of the vertices on its boundary as in f. In particular, GP and GQ must be straightline embeddings of the same connected n-vertex graph G. No polynomial-time algorithm is known for deciding whether two labelled point sets admit compatible geometric graphs. The complexity of the problem is open, even when the graphs are constrained to be triangulations, trees, or simple paths. We give polynomial-time algorithms to find compatible paths or report that none exist in three scenarios: O(n) time for points in convex position; O(n 2 ) time for two simple polygons, where the paths are restricted to remain inside the closed polygons; and O(n 2 log n) time for points in general position if the paths are restricted to be monotonePeer ReviewedPostprint (published version

    Lower bounds on the maximum number of non-crossing acyclic graphs

    Get PDF
    This paper is a contribution to the problem of counting geometric graphs on point sets. More concretely, we look at the maximum numbers of non-crossing spanning trees and forests. We show that the so-called double chain point configuration of N points has Omega (12.52(N)) non-crossing spanning trees and Omega (13.61(N)) non-crossing forests. This improves the previous lower bounds on the maximum number of non-crossing spanning trees and of non-crossing forests among all sets of N points in general position given by Dumitrescu, Schulz, Sheffer and Toth (2013). Our analysis relies on the tools of analytic combinatorics, which enable us to count certain families of forests on points in convex position, and to estimate their average number of components. A new upper bound of O(22.12(N)) for the number of non-crossing spanning trees of the double chain is also obtained. (C) 2015 Elsevier Ltd. All rights reserved.Postprint (author's final draft

    On the Geometric Ramsey Number of Outerplanar Graphs

    Full text link
    We prove polynomial upper bounds of geometric Ramsey numbers of pathwidth-2 outerplanar triangulations in both convex and general cases. We also prove that the geometric Ramsey numbers of the ladder graph on 2n2n vertices are bounded by O(n3)O(n^{3}) and O(n10)O(n^{10}), in the convex and general case, respectively. We then apply similar methods to prove an nO(log(n))n^{O(\log(n))} upper bound on the Ramsey number of a path with nn ordered vertices.Comment: 15 pages, 7 figure
    corecore