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Abstract
Upper and lower bounds for the number of geometric graphs of specific types on a given set of
points in the plane have been intensively studied in recent years. For most classes of geometric
graphs it is now known that point sets in convex position minimize their number. However, it
is still unclear which point sets minimize the number of geometric triangulations; the so-called
double circles are conjectured to be the minimizing sets. In this paper we prove that any set of n
points in general position in the plane has at least Ω(2.631n) geometric triangulations. Our result
improves the previously best general lower bound of Ω(2.43n) and also covers the previously best
lower bound of Ω(2.63n) for a fixed number of extreme points. We achieve our bound by showing
and combining several new results, which are of independent interest:
1. Adding a point on the second convex layer of a given point set (of 7 or more points) at least

doubles the number of triangulations.
2. Generalized configurations of points that minimize the number of triangulations have at most
bn/2c points on their convex hull.

3. We provide tight lower bounds for the number of triangulations of point sets with up to 15
points. These bounds further support the double circle conjecture.
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1 Introduction

Bounding the number of geometric graphs of a specific type on a given set of n points in
the plane is a very active research topic in the field of combinatorial geometry. The first
results [5] on bounding the number of plane Hamiltonian cycles were obtained already in the
1970s. Of particular interest are bounds on T (n), the largest number of triangulations any
set of n points can have, since bounds on T (n) can be used to derive bounds on other graph
classes (see, for example, [13, 18, 21]). The current bounds stem from Dumitrescu et al. [8],
who constructed a set of n points with Ω(8.65n) triangulations, and Sharir and Sheffer [20]
who proved T (n) < 30n.

Bounds on the minimum number of geometric graphs on a given point set have received
comparably less attention, since for many classes of geometric graphs it is known that point
sets in convex position minimize their number [2]. However, points in convex position do not
minimize the number of triangulations. Specifically, points in convex position have Cn−2
triangulations (where Cm ∈ Θ(4m/m3/2) is the mth Catalan number) and the so-called
double circles have only

√
12n−Θ(log n) triangulations [19]. A double circle of size n = 2h

has h extreme points, and each edge ab on the convex hull boundary is assigned a different
inner point qab s.t. there is no segment between two points of the double circle crossing the
segments qaba or qabb.

Aichholzer, Hurtado, and Noy [3] proved the first non-trivial asymptotic lower bound
on t(n), the smallest number of triangulations any set of n points can have, namely t(n) ∈
Ω(2.33n). They conjectured that t(n) equals the number of triangulations of the double circle.
This conjecture is further supported by the results in this paper. The best current bounds
on t(n) are as follows: For h extreme points and i inner points, McCabe and Seidel [15]
proved t(n) ∈ Ω(2.72h · 2.2i) and t(n) ∈ Ω(2.63i) when h is a constant. For general point
sets, Sharir, Sheffer, and Welzl [22] proved t(n) ∈ Ω(2.4317n).

In this paper we prove the following theorem:

I Theorem 1. Let t(n) be the smallest number of triangulations any set of n points in
general position in the plane can have. Then t(n) ∈ Ω(2.631035n) for n ≥ 35064.

Our proof uses two basic ingredients: (1) a structural theorem by Aichholzer et al. [3], which
provides the mechanism to obtain asymptotic bounds from a large induction base, and (2)
tight lower bounds for the number of triangulations of point sets with up to 15 points. These
tight lower bounds, together with a combination of known general bounds (Section 5), feed
into the structural theorem which then proves Theorem 1 (Section 6).

Computing tight lower bounds on the minimum number of triangulations for 12 ≤ n ≤ 15
by brute-force is impossible with current technology. We hence prove two new structural
results which we believe to be of independent interest:
1. Adding a point on the second convex layer of a given point set (of 7 or more points) at

least doubles the number of triangulations (Section 2).
2. Generalized configurations of points that minimize the number of triangulations have at

most bn/2c points on their convex hull (Section 3).
These results allow us to significantly reduce the number of point configurations to consider
and to parallelize computations (Section 4). We could hence complete the automated part
of our proof in roughly two months of computation time using up to 128 CPUs (which
amounts to several hundred thousand CPU hours). After giving some necessary definitions
and background, we describe our proof and computation strategy in more detail below.
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Definitions, notation, and background. Let S be a finite point set in general position in
the plane, that is, no three points of S lie on a line. A triangulation of S is a maximal
plane graph on S. We denote the set of all triangulations of S with T (S) and the number of
triangulations of S with tr(S) = |T (S)|.

The infinite family of sets of n points in general position in the plane can be partitioned
into a finite number of equivalence classes by their order types. Two point sets have the same
order type if there exists a bijection between them such that all point triples have the same
orientation [11], that is, clockwise, counterclockwise, or collinear. Point sets with the same
order type share many important properties. For example, they contain the same points on
the convex hull boundary and the same pairs of edges cross. In particular, the number of
triangulations is the same for all point sets of the same order type.

There is a finite number of order types with n points, so it is possible to enumerate
them (see the database of all point set order types for up to 11 points [1, 4]). Points in the
plane can be mapped to arrangements of lines, whose relative position also determines the
orientation of each triple, and hence the order type. Line arrangements can be generalized
to pseudo-line arrangements, that is, x-monotone curves that intersect pairwise exactly once
in a proper crossing. We call the equivalence classes obtained from triple orientations in
pseudo-line arrangements abstract order types. Abstract order types can be realized by
generalized configurations of points [9], which are point sets where every pair of points is
connected by exactly one pseudo-line. A point triple (a, b, c) is oriented clockwise iff point c
is in the half-plane to the right of the directed pseudo-line through a and b. Many concepts
involving point sets, like triangulations, can easily be abstracted to generalized configurations
of points. An abstract order type is realizable if it is the order type of a point set. All
abstract order types with up to eight points are realizable [10]. See [12] for further details.

Proof and computation strategy. The model of pseudo-line arrangements is the crucial
tool for exhaustive enumeration of (abstract) order types in [1], and the generation of larger
sets fulfilling certain properties [4]. A given representation of a pseudo-line arrangement
is augmented by an additional pseudo-line in all possible ways. We use a similar strategy
to compute tight lower bounds on the number of triangulations of point sets with up to
15 points: Suppose we know that, when adding a point to a point set (a pseudo-line to a
pseudo-line arrangement), the number of triangulations increases by at least a factor α. To
verify whether there exists an abstract order type S with n points with tr(S) ≤ b, we need
to only extend those sets of size n− 1 that have at most b/α triangulations (and for these,
extend only sets of size n−2 with at most b/α2 triangulations and so on). The basic idea is to
select all order types of size n0 (n0 = 8 in our case) that have at most b/αn−n0 triangulations,
and extend them to order types of size n, provided that the number of triangulations of the
intermediate order types are within the bounds.

We are facing various challenges with this strategy due to the vast number of abstract
order types. First of all, we need the factor α to be as large as possible. The work by
Sharir, Sheffer, and Welzl [22] on vertices with degree 3 in random triangulations implies that
every point set contains at least one point which one can remove to reduce the number of
triangulations by 1/2 (see Section 5 for details). However, their result does not show which
point to remove (or add in our strategy). An abstract order type of size n can be obtained
from n different (parent) order types of size n− 1. If we do not know which point increases
the number of triangulations by a factor α ≥ 2, we have to extend each order type in all
possible ways. Such extensions are computationally infeasible, since we can expect an order
type to be created close to n!/n0! times. However, if we know which point gives a factor of at
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7:4 An Improved Lower Bound on the Minimum Number of Triangulations

p

Figure 1 A convex 6-star for p.

least α, we can identify a unique parent order type and compute its number of triangulations
only if this order type of size n is to be further extended. In Section 2 we prove that adding a
point on the second convex layer of the order type increases the number of triangulations by
a factor of at least 2. This structural result gives us the necessary control over the extensions
and allows us to check the number of triangulations of each relevant order type of size n0 to
n only once. We can hence distribute the work load among different independent processes,
each handling a fixed disjoint set of order types.

In principle it is not sufficient to extend order types by interior points only. However, in
Section 3 we prove that we need to consider only abstract order types with at most bn/2c
points on the convex hull. Since b15/2c < 8 we can start our extension from n0 = 8 and
extend by adding interior points only. For n = 8 all abstract order types are realizable.
Hence our improved bound actually applies to all abstract order types (and not only to point
sets). Finally, since all abstract order types with the minimum number of triangulations for
12 ≤ n ≤ 15 are realizable as point sets, our results support the double circle conjecture.

2 A factor 2 for points on the second convex layer

Let S be a set of n ≥ 7 points in general position in the plane. We denote the convex hull of
S by CH(S) and the extremal points of S, that is, the points of S which lie on the boundary
of CH(S), with extr(S). We say that a point p 6∈ S, with (S ∪ {p}) in general position, is
interior-extremal for S if p ∈ extr ((S ∪ {p}) \ extr(S ∪ {p})). That is, p is an extremal point
of the second convex layer of the extended set (S ∪ {p}).

Let T ∈ T (S) be an arbitrary triangulation of S. We call a simple polygon whose
boundary is formed by edges from T and which does not contain vertices of S in its interior
an empty polygon of T . For a point p 6∈ S let P be an empty polygon of T formed by k edges
such that p lies in the interior of P , and P is star shaped with respect to p. Then we call P
a k-star of T for p (see Figure 1). An edge-flip (or flip) in a triangulation T is the operation
of first removing an inner edge e from T such that the two triangles incident to e form a
convex quadrilateral Q, and then inserting the opposite diagonal of Q into T .

Due to space constraints we omit the proof of the following lemma.

I Lemma 2. Let p 6∈ S be an interior-extremal point for S, T a triangulation of S, and P a
convex k-star of T for p with k < |S|. Let S′ = S ∪ {p} and let T ′ be the triangulation of S′
obtained from T by removing all edges in the interior of P and adding all edges connecting p
to vertices of P . Then at least one edge of the boundary of P can be flipped in T ′.
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Figure 2 Certificates. Blocked edges are drawn with a double line.
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Figure 3 Certificates. Blocked edges are drawn with a double line, non-blocked edges are marked
with n.b. The vertices of Certificates CNC which are marked with a black dot can be convex or
non-convex.

2.1 Certificates for triangulations

We now argue that for any given interior-extremal point p 6∈ S, any triangulation T ∈ T (S)
contains a star for p of a certain type (see below) which we call the certificate of T . We will
argue in an algorithmic way, flipping edges of T to p in order to increase the degree of p.
However, note that the certificate refers to the original triangulation T . See Figures 2 and 3
for an illustration of all certificates.

First add p to S and connect p with three edges to the corners of the triangle ∆ of T in
which p lies to obtain a triangulation T ′ of S ∪ {p}. By Lemma 2 we can flip at least one
edge of ∆, so that p has degree 4. If there exists one flip such that the resulting 4-star is
non-convex, then this is the certificate of T (Figure 2: NC4). Otherwise, if at least two of the
edges of ∆ can be flipped (each flip is in a convex 4-star), we get a (convex or non-convex)
5-star which we take as the certificate of T (Figure 2: C5a and NC5a).

If both previous situations do not exist, then we flip the unique flippable edge to obtain
a convex 4-star (c.f. Figure 2, lower left), where the two edges of the boundary near p are
blocked. We call an edge on the boundary of a star for p blocked, if this edge cannot be
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flipped to p in the underlying triangulation. Note that p can be placed anywhere in the
shaded triangle.

Again by Lemma 2 we can flip at least one of the non-blocked edges of this 4-star. If
there exists one flip such that the resulting 5-star is non-convex, then we take this as the
certificate of T (Figure 2: NC5b to NC5e). Otherwise, if two edges of the 4-star can be
flipped (each flip is in a convex 5-star), we get a (convex or non-convex - in the latter case it
is important that we do not have collinear points) 6-star which we take as the certificate of
T (Figure 3: C6a and NC6a).

In the remaining case, three edges of the unique convex 4-star are blocked. We make the
unique possible flip (exists by Lemma 2), obtaining a convex 5-star, where at least three edges
are blocked (those, which have already been blocked for the 4-star). If the remaining two
edges are non-blocked, then this is our certificate for T (Figure 3: C5b and C5c). Otherwise,
we again make the unique flip (exists by Lemma 2), and obtain a convex or non-convex
6-star, where at least four edges are blocked. This will be the certificate of T (Figure 3:
CNC6a to CNC6d).

The above argumentation shows that any triangulation T contains a certificate.

I Lemma 3. Let p 6∈ S be an interior-extremal point for S and T a triangulation of S. Then
T contains a certificate w.r.t. p out of the above list.

Note that the triangulation T might have more than one certificate, as the above analysis
just shows that every triangulation contains a certificate, but does not imply that this is
unique. However, it will become clear in the next sections that we can choose any existing
certificate for T without causing problems.

2.2 Distributing weights
Let p 6∈ S be an interior-extremal point for S and let S′ = S ∪ {p}. We distribute weight
at most one for each triangulation of S′ to triangulations of S in a specific way (described
below). Initially, all triangulations of S have weight zero.

Let T ′ be a triangulation of S′ and let d be the degree of p in T ′. Remove p and all its
incident edges from T ′ and let P be the polygon in T ′ bounding the resulting face. Further,
let G(T ′) be the set of triangulations of S which are obtained from this construction by
retriangulating the interior of P in all possible ways. For any triangulation of G(T ′), P is by
construction a d-star of p. We make a case analysis over the degree d of p in T ′.
d = 3. T ′ adds weight 1 to the unique triangulation in G(T ′).
d = 4. If P is non-convex, then assign weight 1 to the unique triangulation in G(T ′).

Otherwise assign weight 1
2 to both triangulations in G(T ′).

d = 5. If P is non-convex, then it can be triangulated in at most 3 different ways. If there
are at most two triangulations then we distribute weight 1

2 to each. If there are three
triangulations of P then P has one reflex vertex and 4 diagonals lie in the interior of P .
The weight is distributed as indicated in Figure 4, where only those triangulations get
weight 1

2 each, where p lies in the shaded area. Note that in this way a total weight of at
most 1 is distributed.
If P is convex, then there are three different positions where p can lie within P ; c.f.
Figure 5. If p lies in the central area we do no distribute any weight, and if p lies in
the area near a corner c of P we distribute weight 1

2 to the two triangulations where c
is not incident to a diagonal (Cases 5D and 5E). Otherwise, p lies near an edge e, i.e.,
in the intersection of the two neighboring ears in P . Depending on the blocked versus
non-blocked pattern of the edges of P near e, we distinguish 5 disjoint cases as shown in
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5A: 1/2 5B: 1/2 5C: 1/2

Figure 4 Non-convex 5-star weight distributing.

0

n.b. n.b. n.b.

n.b.n.b.

n.b.

n.b.

n.b. n.b.

n.b. n.b. n.b.

n.b.

5D: 1/2 5E: 1/2 5F: 1/2 5G: 1/2

5H: 1/2 5I: 1/2 5K: 1/25J: 1/2 5L: 1/3

5M: 1/3 5N: 1/3 5O: 1/3 5P: 1/3 5Q: 1/3

n.b.

Figure 5 Convex 5-star weight distributing.

Figure 5. In the first three cases we distribute weight 1
2 to two triangulations each, and

in the remaining 2 cases weight 1
3 to three triangulations each.

We remark that we distribure weights only for cases depicted in Figures 4 and 5.
d = 6. Similar as before we only distribute weight if p lies near an edge e, i.e., in the

intersection of the two neighboring ears in P . Moreover, the vertices of e must be convex
corners of P , while we do not make any assumption about the other vertices. We give
weight 1

6 to 6 different triangulations as indicated in Figure 6. Note that if P has reflex
vertices then some of these triangulations do not exist and we simply waste the weight
assigned to them.

d ≥ 7. We do not assign any weight for T ′.

Observe that in all cases we assign at most weight 1 for T ′, and that there are several
cases where we assign weight less than one for T ′. We denote with W the total sum of all
distributed weights and have the following lemma.

I Lemma 4. For |S| > 6 we have W < |T ′(S′)|.

The strict inequality comes from the fact that there is at least one triangulation T ′ ∈ T ′(S′)
where p has degree 7 or more, for which we did not distribute any weight. Actually, for |S| ≥ 6
it holds that W ≤ |T ′(S′)|− (|S|−6), as for any 7 ≤ d ≤ |S| we can construct a triangulation
of T ′(S′) where p has degree d. One way to see this is that there exist triangulations of S′

SoCG 2016
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6A: 1/6 6C: 1/66B: 1/6

6D: 1/6 6E: 1/6 6F: 1/6

Figure 6 Convex or non-convex 6-star weight distributing.

where p has degree 3 and |S|, respectively, that the flip-graph of triangulations is connected,
and that an edge flip does not change the degree of any vertex by more than one.

2.3 Combining the results
We now show that any certificate listed in Section 2.1 collects weight at least two. Note that
we always get weight 1 from the triangle (d = 3). So we only have to argue that in addition
we get at least weight 1:

NC4. We get weight 1 from the non-convex 4-gon (d = 4).
C5a, NC5a. We get two times weight 1

2 for each convex 4-gon (d = 4).

In the following, we also always get weight 1
2 for the convex 4-gon (d = 4) from the first

unique flip. Hence it remains to reason that in addition we get at least weight 1
2 .

NC5b, NC5c, NC5d, NC5e. We get weight 1
2 from cases 5A, 5B, 5C, and 5B, respec-

tively (d = 5).

For the remaining certificates, p always lies in a convex 5-gon in the shaded ear-area. If p
lies in the “central wedge” then we get weight 1

2 from at least one of the two cases 5D or
5E (d = 5). Otherwise we know that p lies near an edge, where for all remaining certificates
there are two possibilities: p either lies in the wedge close to the bottom edge (as indicated
in the figures of the certificates), or in the wedge near the lower left edge. In the following
cases we will always consider both possibilities in the just mentioned order (separated by ‘or’
and, if necessary, grouped by squared brackets), combining cases for d = 5 and d = 6.

C5b. Weight 1
2 from case 5J or 5G.

C5c. Weight 1
2 from case 5I or 5K.

C6a, NC6a. Weight 1
2 from case 5H (use only the top flip) or 5F (use only the right flip).

CNC6a. [Weight 1
3 from case 5L plus weight 1

6 from case 6A] or weight 1
2 from case 5G.

CNC6b. [Weight 1
3 from case 5O plus weight 1

6 from case 6B] or [weight 1
3 from case 5N plus

weight 1
6 from case 6F].
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CNC6c. [Weight 1
3 from case 5Q plus weight 1

6 from case 6C] or [weight 1
3 from case 5M

plus weight 1
6 from case 6E].

CNC6d. Weight 1
2 from case 5I or [weight 1

3 from case 5P plus weight 1
6 from case 6D].

As every triangulation of S gets assigned weight at least two, we get Lemma 5, which
together with Lemma 4 implies Lemma 6.

I Lemma 5. For |S| > 6 it holds that 2|T (S)| ≤W .

I Lemma 6. For |S| > 6 it holds that 2|T (S)| < |T ′(S′)|.

Note that for all triangulations in the set T ′(S′) we constructed the point p with degree
at most 6. From the discussion at the end of Section 2.2 it follows that for |S| ≥ 6 we can
also write |T ′(S′)| ≥ 2|T (S)|+ (|S| − 6). Hence we obtain Theorem 7, which in combination
with the number of triangulations of convex point sets implies Corollary 8.

I Theorem 7. Let t(i, h) := minS,|S|=i+h tr(S) denote the minimum number of triangulations
that every set of n = i + h ≥ 7 points, with i inner points and h extreme points, exhibits.
Let t(n) := minn=i+h t(i, h) denote the minimum number of triangulations that every set of
n ≥ 7 points exhibits. The following bounds hold for t(n) and t(i, h).

t(n) ≥ 2t(n− 1) + (n− 7) (1)
t(i, h) ≥ 2t(i− 1, h) + (n− 7) (2)

I Corollary 8. t(i, h) = Ω∗(2i4h).

3 Small convex hulls

Here we show that abstract order types which minimize the number of triangulations
cannot have more than half of their vertices on the boundary of their convex hulls. We
use the following result which is part of the characterization of so-called crossing-minimal
point sets [16].

I Proposition 9 ([16]). Let P be an abstract order type with at least four extreme points and
three consecutive vertices a, b, and c on the convex hull boundary s.t. no two points inside
this triangle are in convex position with a and c. Then the following holds:
1. There exists an abstract order type Q and a bijection between P and Q s.t. the images of

a and c are consecutive vertices on the convex hull of Q and any point triple in P not
containing both a and c is oriented as its image in Q (either clockwise or counterclockwise).

2. For every crossing-free geometric graph on P , its image on Q is also crossing-free.

See Figure 7. Intuitively, we need a set Q and a mapping from the triangulations on Q
to the triangulations on P that keeps the image crossing-free.

I Lemma 10. Let P and Q be defined as in Proposition 9. Then P has strictly more
triangulations than Q.

Proof. We give an injective mapping of the triangulations of Q to the triangulations of P .
Recall that a geometric graph is a triangulation of a point set with h extreme points if it is
crossing-free and has 3n− 3− h edges. The analogous holds for graphs on abstract order
types. Let h be the number of extreme points of P . Let T be an arbitrary triangulation of
Q, which has 3n− 3− (h− 1) edges. As ac is on the boundary of the convex hull, it is an
edge of T . We remove ac from T and draw the corresponding graph T ′ on P , as indicated

SoCG 2016
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abc

b

c a

Figure 7 Illustration for Proposition 9. All point triples in the two point sets are the same except
that all points are to the left of ac in the right set.

by the bijection between P and Q. As T ′ has 3n− 3− h edges, it remains to show that T ′ is
crossing-free.

Suppose that T ′ on P contains a crossing. Then, the only crossings may occur between
two edges containing both a and c. However, T ′ does not contain the edge ac. Hence, the
only crossings could be between an edge as and an edge ct for some points s and t, and at
least one of s and t is inside the triangle abc in P (as otherwise the orientation of all point
triples in {a, c, s, t} would be the same as in Q, implying that there is no such crossing).
However, they cannot be both inside the triangle abc due to the characterization of P (as
{a, c, s, t} would be in convex position). But this means that as and ct cannot cross. Hence,
G′ is crossing-free.

Since there exists a triangulation of P that contains the edge ac, there are strictly more
triangulations of P than of Q. J

Suppose there is an abstract order type with four or more extreme points that minimizes
the number of triangulations. Consider the triangles that are formed by all triples of points
that are consecutive on the convex hull boundary. By Lemma 10, each such triangle must
contain (at least) two points. Any point can only be in at most two such triangles. So for h
points on the convex hull boundary, we need at least h interior points to have two points
inside each such triangle.1

I Theorem 11. Let P be an abstract order type that minimizes the number of triangulations
with |P | ≥ 6. Then P has at most b|P |/2c extreme points.

The double circle is an example with n/2 extreme points where the local improvement
due to Lemma 10 is indeed no longer possible.

4 Tight lower bounds for up to 15 points

Exact values for the minimum numbers of triangulations have been known for sets of at most
11 points [3]. To compute those values also for sets with 12 ≤ n ≤ 15 points, we start with
the exhaustive database of all order types of cardinality 8 and extend all sets in the abstract
setting (that is, without realizing them as point sets). All arguments used in Sections 2 and 3
hold also in the abstract setting, since we used only arguments which use sidedness properties
of the underlying (abstract) order type (and no metric properties). By Theorem 11, and

1 Lemma 10 actually tells us that an abstract order type minimizing the number of triangulations is
“crossing-minimal” (in terms of [16]). Due to space constraints, we omit a definition of that term, but
state that it has already been noted in [16] that there cannot be large crossing-minimal abstract order
types with more than half of the points being extreme.
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Table 1 Abstract extension from n = 8 to n = 15.

n upper bound nr. number of generated all realizable thereof respecting
of triangulations abstract order types order types the triangul. bound

8 534 – 3 315 3 315
9 1 069 158 829 158 817 158 817
10 2 139 13 645 342 14 309 547 13 635 816
11 4 278 437 639 146 2 334 512 907 436 539 440
12 8 556 570 219 167 unknown unknown
13 17 112 32 884 369 unknown unknown
14 34 224 101 218 unknown unknown
15 68 448 1 unknown 1

because b15/2c < 8, it is sufficient to extend sets by adding interior points only. Moreover,
choosing the right insertion order, by Lemma 6 we can further reduce the number of order
types that have to be extended: For n = 12, . . . , 15, the (in general conjectured triangulation
minimizing) double circles have 2236, 7147, 20979, 68448 triangulations, respectively. To show
that, for example, for n = 13 the minimal number of triangulations is in fact 7147, it is
sufficient to extend all (abstract) order types for n = 12 with at most b7147/2c = 3573
triangulations. To do so, we need all order types for n = 11 with at most b3573/2c = 1786
triangulations, and so on. Table 1 shows the maximum number of triangulations to be
considered for each cardinality from 8 to 15. Note that starting at 8 is necessary as for
n ≥ 9 there exist non-realizable abstract order types and the exhaustive list of order types is
limited to the realizable ones. For n = 9 there exist 158 830 abstract order types, thus all of
them except the one with 9 points in convex position were generated.

We want to extend only those order types that have at most a certain number of
triangulations. To do so we need a counting algorithm that is run for each candidate order
type to accept or reject order types for further extensions. Previous sets of experiments
comparing different counting algorithms [6, 7] yield three potential candidates described
in [6, 7, 17]. However [7] is harder to translate to an abstract setting. After implementing
and testing the other two, we decided to use the algorithm by Ray and Seidel [17].

To “translate a counting algorithm to the abstract setting” we use only one primitive,
namely orientation. That is, given any three points, we answer in O(1) time whether
the triple turns left (1) or right (−1). Recall that we do not have collinear triples. Our
input is the Λ-matrix [14] of the input order type, that is, a 3-dimensional table where the
entry Λ[i][j][k] contains either 1 or −1 for i 6= j 6= k. Using Λ we can pre-compute for every
directed edge −→e =

−→
ab 6=

←−
ba =←−e of the input order type S, the set of empty triangles 4abc

such that Λ[a][b][c] = 1. That is, every such vertex c ∈ 4abc ⊂ S lies to the left of the
oriented line supporting −→e =

−→
ab. The set of points c is saved in a data structure ∆ so that

we can retrieve it in O(1) time.
The algorithm by Ray and Seidel is a divide-and-conquer algorithm that uses memoization

for efficiency. The algorithm considers a closed polygon whose vertices are points of the
input order type S, and which might contain other points of S. We call such a polygon, with
its contained points, a pointgon P . The task is to count all different triangulations of P .
The algorithm chooses an edge ab of the boundary of P . Afterwards, all empty triangles
4abc fully contained in P are enumerated. Observe that (1) the set of triangles 4abc is
pairwise-crossing, (2) no two such triangles can appear in the same triangulation of P , and
(3) every triangulation of P contains exactly one of those triangles. Hence the number
of triangulations tr(P ) of P can then be expressed as tr(P ) =

∑
4abc

tr(P | 4abc), where
tr(P | 4abc) is the number of triangulations of P containing the triangle 4abc.
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Table 2 Minimum number of triangulations for n points with h extreme points. Overall tight
lower bounds for t(n) for fixed 3 ≤ n ≤ 15 are selected in gray.

n\h 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3 1 – - – - – - – - – - – - –
4 1 2 – - – - – - – - – - – –
5 2 3 5 – - – - – - – - – - –
6 4 6 9 14 – - – - – - – - – –
7 11 13 19 28 42 – - – - – - – - –
8 32 30 43 62 90 132 – - – - – - – –
9 96 89 102 145 207 297 429 – - – - – - –

10 305 272 250 352 497 704 1001 1430 – - – - – –
11 991 849 776 878 1230 1727 2431 3432 4862 – - – - –
12 3297 2694 2453 2236 3114 4344 6071 8502 11934 16796 – - – –
13 11204 9022 7865 7147 8025 11139 15483 21554 30056 41990 58786 – – –
14 ? ? ? 23128 20979 29004 40143 55626 77180 107236 149226 208012 – –
15 ? ? ? ? 68448 76473 105477 145620 201246 278426 385662 534888 742900 –
16 ? ? ? ? ? 203748 280221 385698 531318 732564 1010990 1396652 1931540 2674440

If for the empty triangle 4abc, the point c is a vertex of P , then the algorithm divides P
into two sub-pointgons Pac, Pcb and proceeds recursively on each one. For such a splitting
triangle 4abc, the number of triangulations is tr(P | 4abc) = tr(Pac) · tr(Pcb). If c is fully
contained inside P , the algorithm continues counting with the pointgon Pc = P \4abc (Pc is
a pointgon where the edge ab is replaced by the two edges ac, cb). Thus tr(P | 4abc) = tr(Pc).
Observe that in both cases the resulting sub-polygon(s) are smaller than P (less triangles in
any of their triangulations than in P ) and hence the algorithm eventually terminates. To
compute the number of triangulations of S, the convex hull of S (with its interior points) is
used as initial pointgon P .

5 A huge induction base

From the abstract extension described in the last section we obtain exact values of t(i, h) for
3 ≤ i+ h ≤ 16 as shown in Table 2.

The entries of Table 2 marked with a question mark are entries that do currently not
seem to be computable within a reasonable amount of time (approx. six to twelve months of
computation using a cluster of several CPUs). To extend Table 2 with lower bounds (not
with exact values) for t(i, h), for larger values of n = i+ h, we use the inequalities provided
by Theorem 7 along with two other inequalities from previous work of Sharir, Sheffer, and
Welzl [22], and Aichholzer, Hurtado, and Noy [3], respectively.

Sharir, Sheffer, and Welzl [22] derived lower bounds for the number of triangulations by
considering the expected number of vertices with degree three in a triangulation. Let v̂3
be the expected number of inner vertices with degree three for a triangulation of a set S of
n = i+ h points, with i the number of inner points and h the number of extreme points.

Let f(i, h) be an upper bound for v̂3. Then there exists an inner vertex v ∈ S for which
it holds that, in a (random) triangulation, P (deg(v) = 3) ≤ f(i, h)/i (the probability that v
has degree 3). From that we get tr(S \ {v}) = tr(S) · P (deg(v) = 3), as any triangulation of
S \ {v} corresponds to a triangulation of S where v has degree 3 (just remove v and its three
incident edges). This implies tr(S) ≥ i

f(i,h) tr(S \ {v}), which in turn implies:

t(i, h) ≥ i

f(i, h) t(i− 1, h) (3)

The following two upper bounds for v̂3 where shown by Sharir et al. [22]: (1) v̂3 ≤ i
2 for

n ≥ 7 (Lemma 2.2 in [22]) and (2) v̂3 ≤ 2i+h/2
5 for n ≥ 6 (Lemma 2.3 in [22]). Combining
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them with (3) we obtain:

t(i, h) ≥ 2t(i− 1, h) for n ≥ 7 (4)

t(i, h) ≥ 5i
2i+ h/2 t(i− 1, h) for n ≥ 6 (5)

Observe that our lower bound (2) from Theorem 7 is better than bound (4) of Sharir et
al. by the rather small additive factor of n − 7. Our bound (2) is, however, considerably
stronger in the sense that we know it holds for an interior-extremal point while bound (4)
holds for some inner point of S, not necessarily interior-extremal. This additional property
of our bound made it feasible to extend our computations to 15 points.

Aichholzer, Hurtado, and Noy [3] proved the following lower bound for t(i, h):

t(i, h) ≥
⌈(
h ·
∑

EXT
+ i ·

∑
INT

)
/(6n− 4h− 6)

⌉
for n = i+ h ≥ 4, (6)

where
∑

INT is bounded by

∑
INT
≥ t
(n

2 + 1
)2

+2·
n
2−1∑
k=1

min
j

{
t
(n

2 + 1 + j
)
· t
(n

2 + 1− j
)
| 0 ≤ j ≤ min

{
k,
n

2 − 2
}}

for n ≥ 4 even2, and by

∑
INT
≥ 2 ·

n−3
2∑

k=0
min

j

{
t

(
n+ 3

2 + j

)
· t
(
n+ 1

2 − j
)
| 0 ≤ j ≤ min

{
k,
n− 5

2

}}

for n ≥ 5 odd. For all n ≥ 4,
∑

EXT is bounded by
∑

EXT ≥
∑n−1

k=3 t(k) · t(n+ 2− k) .
Observe that (6) makes use of the general minimum number of triangulations t(n). To see

that this gives indeed a recursive inequality observe that
∑

EXT and
∑

INT denote expressions
that involve values of t(k) only for k < n.

Combining the bounds. We want to extend Table 2 with lower bounds for t(i, h) for higher
values of n = i+ h. For this we consider lower bounds (2), (5), and (6), and for each new
entry t(i, h) of Table 2 we keep the largest value found among the three inequalities. For
the missing entries of Table 2 with n ≤ 15 we additionally test the largest bound found
against the general tight lower bound found at t(n) and we keep the largest of the two. As
a reference, the missing entries (marked with a question mark) of Table 2 are filled as in
Table 3. Observe, for example, that for n = 15 entries for h ≤ 6 match that of entry for
h = 7. This is because the general tight lower bound for n = 15 is larger than the bounds we
obtain using the three aforementioned inequalities. For n ≥ 16, a lower bound on t(n) can
be set after the corresponding entries t(i, h) of Table 2 have been computed. More precisely
(and by definition of t(n)): t(n) = minn=i+h t(i, h).

2 Note that in [3] there was a typo in that formula, as the sum was wrongly taken up to n/2 + 1. However,
in the text right after the formula this was stated correctly and it was also used correctly for the
computations given in [3].

SoCG 2016



7:14 An Improved Lower Bound on the Minimum Number of Triangulations

Table 3 Completing missing entries of Table 2. Overall lower bounds for fixed 3 ≤ n ≤ 16 are
selected in gray. Entries for h ≥ 9 are omitted for readability.

n\h 3 4 5 6 7 8
3 1 – – – – –
4 1 2 – – – –
5 2 3 5 – – –
6 4 6 9 14 – –
7 11 13 19 28 42 –
8 32 30 43 62 90 132
9 96 89 102 145 207 297
10 305 272 250 352 497 704
11 991 849 776 878 1230 1727
12 3297 2694 2453 2236 3114 4344
13 11204 9022 7865 7147 8025 11139
14 ≥26223 ≥20979 ≥20979 23128 20979 29004
15 ≥68448 ≥68448 ≥68448 ≥68448 68448 76473
16 ≥161787 ≥157957 ≥153659 ≥148800 ≥143264 203748

6 Improved Asymptotics

Aichholzer et al. [3] proved a structural theorem which provides the mechanism to obtain
asymptotic bounds from a large induction base such as the one we provide in Table 2. For
simplicity and completeness we summarize their results (mainly Theorem 2 and Corollary 1
of [3]) in the following theorem.

I Theorem 12 ([3]). Let a ≥ 3 be an integer. The following four independent rela-
tions hold:
1. If t(n) ≥ τn−2 for a ≤ n ≤ 2a− 2, then t(n) ≥ τn−2 holds for all n ≥ a.
2. If t(n) ≥ 1

2τ
n−2 for a ≤ n ≤ 2a+ 2, then t(n) ≥ 1

2τ
n−2 holds for all n ≥ a.

3. If t(n) ≥ 1
3τ

n−2 for a ≤ n ≤ 2a2 − 11a+ 21, then t(n) ≥ 1
3τ

n−2 holds for all n ≥ a.
4. If t(n) ≥ 1

4τ
n−2 for a ≤ n ≤ 2a2 − 13a+ 29, then t(n) ≥ 1

4τ
n−2 holds for all n ≥ a.

To use Theorem 12 we need to ensure a lower bound t−(n, k) = 1
k · τ

n−2, for 1 ≤ k ≤ 4,
within a given interval a ≤ n ≤ b(a, k). For k = 3, 4 the upper end b(a, k) of the interval is
quadratic in a, resulting in very large intervals for which t(n) ≥ t−(n, k) has to be checked.
Hence, for proving a bound of t(n) ≥ 1

k · τ
n−2 for some chosen τ and all n ≥ a ≥ 3,

we have to verify t(n) ≥ t−(n, k) for all a ≤ n ≤ b(a, k) for large enough values of n,
see Section 5. In other words, consider four closed intervals [ak, bk = b(ak, k)] and define
τmax = max1≤k≤4{minak≤n≤bk

(k · t(n))
1

n−2 } and let kmax be the 1 ≤ k ≤ 4 at which τmax is
achieved. Theorem 12 implies that t(n) ≥ 1

kmax
· τn−2

max = Ω(τn
max) for all n ≥ akmax . Table 4

shows lower bounds on t(n) for 16 ≤ n ≤ 40 along with values of τ = τ(n, k), for 1 ≤ k ≤ 4.
For example, using Table 4 and following Theorem 12 we obtain that for k = 2 and a

base range of 19 ≤ n ≤ 40, τ(n, 2) ≥ 2.3778, and thus t(n) ≥ Ω(2.3778n) for n ≥ 19. To
obtain a better lower bound for t(n) we extend Table 4 for larger values of n. More precisely,
we extend it up to n ≤ 70131. Due to the lack of space we only mention that the largest
bound was achieved for k = 2. That is: τ(n, 2) ≥ 2.631035 for 35064 ≤ n ≤ 70130. In the
full version of the paper we will provide information about the best bounds found for each
of the four values of k. Theorem 12 now implies that t(n) ≥ Ω(2.631035n) for n ≥ 35064,
which proves Theorem 1.

Computational limits. With our current methods a stronger lower bound on t(n) seems
not feasible. The current bound required (exact) computations on very large numbers —
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Table 4 Lower bounds on t(n) and τ(n, k) for 16 ≤ n ≤ 40 and k = 1, . . . , 4.

n t(n) ≥ Eq. k = 1 k = 2 k = 3 k = 4
16 143264 (5) 2.3350 2.4535 2.5256 2.5781
17 304818 (5) 2.3206 2.4303 2.4969 2.5453
18 657451 (5) 2.3100 2.4122 2.4742 2.5190
19 1434439 (5) 2.3022 2.3981 2.4559 2.4978
20 3160629 (5) 2.2966 2.3868 2.4412 2.4805
21 7023620 (5) 2.2926 2.3778 2.4291 2.4662
22 17826487 (6) 2.3043 2.3856 2.4344 2.4697
23 461173087 (6) 2.3171 2.3948 2.4415 2.4752
24 121862959 (6) 2.3309 2.4055 2.4503 2.4825
25 315689696 (6) 2.3417 2.4133 2.4562 2.4871
26 837664309 (6) 2.3539 2.4229 2.4641 2.4939
27 2205647348 (6) 2.3645 2.4309 2.4707 2.4993
28 5849635236 (6) 2.3749 2.4391 2.4774 2.5050
29 14684224691 (5) 2.3798 2.4417 2.4786 2.5052
30 37399997550 (6) 2.3856 2.4454 2.4810 2.5067
31 95073504069 (6) 2.3908 2.4486 2.4831 2.5079
32 241432822521 (6) 2.3956 2.4516 2.4850 2.5089
33 612064398552 (6) 2.4000 2.4543 2.4866 2.5098
34 1561238258557 (6) 2.4046 2.4572 2.4886 2.5110
35 3973209273535 (6) 2.4087 2.4598 2.4902 2.5120
36 9878502893156 (6) 2.4109 2.4606 2.4901 2.5113
37 24308011357985 (6) 2.4124 2.4606 2.4893 2.5098
38 59495132694369 (5) 2.4133 2.4602 2.4881 2.5081
39 145702365782129 (5) 2.4143 2.4599 2.4870 2.5065
40 357019041982701 (5) 2.4152 2.4597 2.4861 2.5050

for both, the number of triangulations (integer arithmetic) and for τ(n, k) (floating-point
arithmetic). For the former we eventually deal with integers that require between 48,000 and
98,000 bits of precision. For the latter we performed exact floating-point arithmetic with
truncation up to 128 bits of precision. Extending Table 4 up to n ≤ 70131 and computing the
respective τ(n, k), for 1 ≤ k ≤ 4, took about 65 hours on a desktop machine with a somewhat
recent processor: Intel i7-4770 CPU at 3.40GHz. For arithmetic on big integers we used the
well-known GMP library (for C), and for exact floating-point arithmetic we used the also
well-known MPFR library (also for C). The data produced for this paper can be downloaded
from: http://www.victoralvarez.net/papers/aahpsv.tgz (around 500 MB).

Acknowledgements. We would like to thank Ruy Fabila Monroy, Raimund Seidel, and
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References
1 Oswin Aichholzer, Franz Aurenhammer, and Hannes Krasser. Enumerating order types

for small point sets with applications. Order, 19(3):265–281, 2002. doi:10.1023/A:
1021231927255.

2 Oswin Aichholzer, Thomas Hackl, Clemens Huemer, Ferran Hurtado, Hannes Krasser, and
Birgit Vogtenhuber. On the number of plane geometric graphs. Graphs Combin., 23:67–84,
2007. doi:10.1007/s00373-007-0704-5.

3 Oswin Aichholzer, Ferran Hurtado, and Marc Noy. A lower bound on the number of
triangulations of planar point sets. Comput. Geom., 29(2):135–145, 2004.

4 Oswin Aichholzer and Hannes Krasser. Abstract order type extension and new results on
the rectilinear crossing number. Comput. Geom., 36(1):2–15, 2007.

SoCG 2016

http://www.victoralvarez.net/papers/aahpsv.tgz
http://dx.doi.org/10.1023/A:1021231927255
http://dx.doi.org/10.1023/A:1021231927255
http://dx.doi.org/10.1007/s00373-007-0704-5


7:16 An Improved Lower Bound on the Minimum Number of Triangulations

5 Selim G. Akl. A lower bound on the maximum number of crossing-free Hamiltonian cycles
in a rectilinear drawing of Kn. Ars Combin., 7:7–18, 1979.

6 Victor Alvarez, Karl Bringmann, Radu Curticapean, and Saurabh Ray. Counting trian-
gulations and other crossing-free structures via onion layers. Discrete Comput. Geom.,
53(4):675–690, 2015.

7 Victor Alvarez and Raimund Seidel. A simple aggregative algorithm for counting trian-
gulations of planar point sets and related problems. In Proc. 29th Annual Symposium on
Computational Geometry (SoCG 2013), pages 1–8. ACM, 2013.

8 Adrian Dumitrescu, André Schulz, Adam Sheffer, and Csaba D. Tóth. Bounds on the
maximum multiplicity of some common geometric graphs. SIAM Journal on Discrete
Mathematics, 27(2):802–826, 2013.

9 Jacob E. Goodman. Proof of a conjecture of Burr, Grünbaum, and Sloane. Discrete Math.,
32(1):27–35, 1980. doi:10.1016/0012-365X(80)90096-5.

10 Jacob E. Goodman and Richard Pollack. Proof of Grünbaum’s conjecture on the stretch-
ability of certain arrangements of pseudolines. J. Comb. Theory, Ser. A, 29(3):385–390,
1980. doi:10.1016/0097-3165(80)90038-2.

11 Jacob E. Goodman and Richard Pollack. Multidimensional sorting. SIAM J. Comput.,
12(3):484–507, 1983.

12 Jacob E. Goodman and Richard Pollack. Semispaces of configurations, cell complexes of
arrangements. J. Comb. Theory, Ser. A, 37(3):257–293, 1984.

13 Michael Hoffmann, André Schulz, Micha Sharir, Adam Sheffer, Csaba D. Tóth, and Emo
Welzl. Thirty Essays on Geometric Graph Theory, chapter Counting Plane Graphs: Flip-
pability and Its Applications, pages 303–325. Springer New York, New York, NY, 2013.

14 Hannes Krasser. Order Types of Point Sets in the Plane. PhD thesis, Institute for Theo-
retical Computer Science, Graz University of Technology, October 2003.

15 Paul McCabe and Raimund Seidel. New lower bounds for the number of straight-edge
triangulations of a planar point set. In Proc. 20th European Workshop on Computational
Geometry (EWCG 2004), pages 175–176, 2004.

16 Alexander Pilz and Emo Welzl. Order on order types. In Proc. 31st Int. Symposium on
Computational Geometry (SoCG 2015), volume 34 of LIPIcs, pages 285–299, 2015.

17 Saurabh Ray and Raimund Seidel. A simple and less slow method for counting triangu-
lations and for related problems. In Proc. 20th European Workshop on Computational
Geometry (EWCG 2004), pages 177–180, 2004.

18 Andreas Razen, Jack Snoeyink, and Emo Welzl. Number of crossing-free geometric graphs
vs. triangulations. Electr. Notes Discrete Math., 31:195–200, 2008.

19 Francisco Santos and Raimund Seidel. A better upper bound on the number of triangula-
tions of a planar point set. J. Comb. Theory, Ser. A, 102(1):186–193, 2003.

20 Micha Sharir and Adam Sheffer. Counting triangulations of planar point sets. Electr. J.
Comb., 18(1), 2011.

21 Micha Sharir and Adam Sheffer. Counting plane graphs: Cross-graph charging schemes.
Combinatorics, Probability & Computing, 22(6):935–954, 2013.

22 Micha Sharir, Adam Sheffer, and Emo Welzl. On degrees in random triangulations of point
sets. J. Comb. Theory, Ser. A, 118(7):1979–1999, 2011.

http://dx.doi.org/10.1016/0012-365X(80)90096-5
http://dx.doi.org/10.1016/0097-3165(80)90038-2

	Introduction
	A factor 2 for points on the second convex layer
	Certificates for triangulations
	Distributing weights
	Combining the results

	Small convex hulls
	Tight lower bounds for up to 15 points
	A huge induction base
	Improved Asymptotics

