854 research outputs found

    Locating regions in a sequence under density constraints

    Get PDF
    Several biological problems require the identification of regions in a sequence where some feature occurs within a target density range: examples including the location of GC-rich regions, identification of CpG islands, and sequence matching. Mathematically, this corresponds to searching a string of 0s and 1s for a substring whose relative proportion of 1s lies between given lower and upper bounds. We consider the algorithmic problem of locating the longest such substring, as well as other related problems (such as finding the shortest substring or a maximal set of disjoint substrings). For locating the longest such substring, we develop an algorithm that runs in O(n) time, improving upon the previous best-known O(n log n) result. For the related problems we develop O(n log log n) algorithms, again improving upon the best-known O(n log n) results. Practical testing verifies that our new algorithms enjoy significantly smaller time and memory footprints, and can process sequences that are orders of magnitude longer as a result.Comment: 17 pages, 8 figures; v2: minor revisions, additional explanations; to appear in SIAM Journal on Computin

    Enhanced Symmetries in Multiparameter Flux Vacua

    Full text link
    We give a construction of type IIB flux vacua with discrete R-symmetries and vanishing superpotential for hypersurfaces in weighted projective space with any number of moduli. We find that the existence of such vacua for a given space depends on properties of the modular group, and for Fermat models can be determined solely by the weights of the projective space. The periods of the geometry do not in general have arithmetic properties, but live in a vector space whose properties are vital to the construction.Comment: 32 pages, LaTeX. v2: references adde

    Faster Geometric Algorithms via Dynamic Determinant Computation

    Full text link
    The computation of determinants or their signs is the core procedure in many important geometric algorithms, such as convex hull, volume and point location. As the dimension of the computation space grows, a higher percentage of the total computation time is consumed by these computations. In this paper we study the sequences of determinants that appear in geometric algorithms. The computation of a single determinant is accelerated by using the information from the previous computations in that sequence. We propose two dynamic determinant algorithms with quadratic arithmetic complexity when employed in convex hull and volume computations, and with linear arithmetic complexity when used in point location problems. We implement the proposed algorithms and perform an extensive experimental analysis. On one hand, our analysis serves as a performance study of state-of-the-art determinant algorithms and implementations. On the other hand, we demonstrate the supremacy of our methods over state-of-the-art implementations of determinant and geometric algorithms. Our experimental results include a 20 and 78 times speed-up in volume and point location computations in dimension 6 and 11 respectively.Comment: 29 pages, 8 figures, 3 table

    Prefix Codes for Power Laws with Countable Support

    Full text link
    In prefix coding over an infinite alphabet, methods that consider specific distributions generally consider those that decline more quickly than a power law (e.g., Golomb coding). Particular power-law distributions, however, model many random variables encountered in practice. For such random variables, compression performance is judged via estimates of expected bits per input symbol. This correspondence introduces a family of prefix codes with an eye towards near-optimal coding of known distributions. Compression performance is precisely estimated for well-known probability distributions using these codes and using previously known prefix codes. One application of these near-optimal codes is an improved representation of rational numbers.Comment: 5 pages, 2 tables, submitted to Transactions on Information Theor

    Meeting in a Polygon by Anonymous Oblivious Robots

    Full text link
    The Meeting problem for k≄2k\geq 2 searchers in a polygon PP (possibly with holes) consists in making the searchers move within PP, according to a distributed algorithm, in such a way that at least two of them eventually come to see each other, regardless of their initial positions. The polygon is initially unknown to the searchers, and its edges obstruct both movement and vision. Depending on the shape of PP, we minimize the number of searchers kk for which the Meeting problem is solvable. Specifically, if PP has a rotational symmetry of order σ\sigma (where σ=1\sigma=1 corresponds to no rotational symmetry), we prove that k=σ+1k=\sigma+1 searchers are sufficient, and the bound is tight. Furthermore, we give an improved algorithm that optimally solves the Meeting problem with k=2k=2 searchers in all polygons whose barycenter is not in a hole (which includes the polygons with no holes). Our algorithms can be implemented in a variety of standard models of mobile robots operating in Look-Compute-Move cycles. For instance, if the searchers have memory but are anonymous, asynchronous, and have no agreement on a coordinate system or a notion of clockwise direction, then our algorithms work even if the initial memory contents of the searchers are arbitrary and possibly misleading. Moreover, oblivious searchers can execute our algorithms as well, encoding information by carefully positioning themselves within the polygon. This code is computable with basic arithmetic operations, and each searcher can geometrically construct its own destination point at each cycle using only a compass. We stress that such memoryless searchers may be located anywhere in the polygon when the execution begins, and hence the information they initially encode is arbitrary. Our algorithms use a self-stabilizing map construction subroutine which is of independent interest.Comment: 37 pages, 9 figure

    Nonlinear control synthesis by convex optimization

    Get PDF
    A stability criterion for nonlinear systems, recently derived by the third author, can be viewed as a dual to Lyapunov's second theorem. The criterion is stated in terms of a function which can be interpreted as the stationary density of a substance that is generated all over the state-space and flows along the system trajectories toward the equilibrium. The new criterion has a remarkable convexity property, which in this note is used for controller synthesis via convex optimization. Recent numerical methods for verification of positivity of multivariate polynomials based on sum of squares decompositions are used
    • 

    corecore