View metadata, citation and similar papers at core.ac.uk

Downloaded 12/15/15 to 130.102.82.110. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SIAM J. COMPUT. (© 2013 Society for Industrial and Applied Mathematics
Vol. 42, No. 3, pp. 1201-1215

LOCATING REGIONS IN A SEQUENCE UNDER DENSITY
CONSTRAINTS*

BENJAMIN A. BURTONT AND MATHIAS HIRON?

Abstract. Several biological problems require the identification of regions in a sequence where
some feature occurs within a target density range: examples including the location of GC-rich regions,
identification of CpG islands, and sequence matching. Mathematically, this corresponds to searching
a string of 0’s and 1’s for a substring whose relative proportion of 1’s lies between given lower and
upper bounds. We consider the algorithmic problem of locating the longest such substring, as well as
other related problems (such as finding the shortest substring or a maximal set of disjoint substrings).
For locating the longest such substring, we develop an algorithm that runs in O(n) time, improving
upon the previous best-known O(nlogn) result. For the related problems we develop O(nloglogn)
algorithms, again improving upon the best-known O(nlogn) results. Practical testing verifies that
our new algorithms enjoy significantly smaller time and memory footprints, and can process sequences
that are orders of magnitude longer as a result.

Key words. algorithms, string processing, substring density, bioinformatics
AMS subject classifications. 68W32, 92D20

DOI. 10.1137/110830605

1. Introduction. In this paper we develop fast algorithms to search a sequence
for regions in which a given feature appears within a certain density range. Such
problems are common in biological sequence analysis; examples include the following.

(i) Locating GC-rich regions, where G and C nucleotides appear with high fre-
quency. GC-richness correlates with factors such as gene density [24], gene length [8],
recombination rates [10], codon usage [21], and the increasing complexity of organisms
3, 13].

(ii) Locating CpG islands, which have a high frequency of CpG dinucleotides.
CpG islands are generally associated with promoters [17, 20], are useful landmarks
for identifying genes [18], and play a role in cancer research [9].

(iii) Sequence alignment, where we seek regions in which multiple sequences have
a high rate of matches [23].

Further biological applications of such problems are outlined in [11] and [19]. Such
problems also have applications in other fields, such as cryptography [4] and image
processing [12].

We represent a sequence as a string of 0’s and 1’s (where 1 indicates the presence of
the feature that we seek, and 0 indicates its absence). For instance, when locating GC-
rich regions we let 1 and 0 denote GC and TA pairs, respectively. For any substring,
we define its density to be the relative proportion of 1’s (which is a fraction between 0
and 1). Our density constraint is the following: given bounds 6; and 02 with 67 < 605,
we wish to locate substrings whose density lies between #; and 65 inclusive.

The specific values of the bounds 61, 6> depend on the particular application. For
instance, CpG islands can be divided into classes according to their relationships with

*Received by the editors April 13, 2011; accepted for publication (in revised form) March 29,
2013; published electronically June 25, 2013.
http://www.siam.org/journals/sicomp/42-3/83060.html
tSchool of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072, Aus-
tralia (bab@maths.uq.edu.au). This author’s work was supported by the Australian Research Council
under the Discovery Projects funding scheme (project DP1094516).
Hzibi, 7, rue de Vaugrenier, 89190 St Maurice R.H, France (mathias.hiron@gmail.com).

1201

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

<
brought to you by .{ CORE

provided by University of Queensland eSpace

https://core.ac.uk/display/17041342?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Downloaded 12/15/15 to 130.102.82.110. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1202 BENJAMIN A. BURTON AND MATHIAS HIRON

transcriptional start sites [17], and each class is found to have its own characteristic
range of GC content. Likewise, isochores in the human genome can be classified into
five families, each exhibiting different ranges of GC-richness [3, 24].
We consider three problems in this paper:
(i) locating the longest substring with density in the given range;
(ii) locating the shortest substring with density in the given range, allowing
optional constraints on the substring length;
(iii) locating a mazimal cardinality set of disjoint substrings whose densities all
lie in the given range, again with optional length constraints.

The prior state of the art for these problems is described by Hsieh, Yu, and Wang
[14], who present O(nlogn) algorithms in all three cases. In this paper we improve
the time complexities of these problems to O(n), O(nloglogn), and O(nloglogn),
respectively. In particular, our O(n) algorithm for locating the longest substring has
the fastest asymptotic complexity possible.

Experimental testing on human genomic data verifies that our new algorithms
run significantly faster and require considerably less memory than the prior state of
the art, and can process sequences that are orders of magnitude longer as a result.

Hsieh, Yu, and Wang [14] consider a more general setting for these problems:
instead of 0’s and 1’s they consider strings of real numbers (whereupon “ratio of 1’s”
becomes “average value”). In their setting they prove a theoretical lower bound of
Q(nlogn) time on all three problems. The key feature that allows us to break through
their lower bound in this paper is the discrete (noncontinuous) nature of structures
such as DNA; in other words, the ability to represent them as strings over a finite
alphabet.

Many other problems related to feature density are studied in the literature.
Examples include mazimizing density under a length constraint [11, 12, 19], finding
all substrings under range of density and length constraints [14, 15], finding the
longest substring whose density matches a precise value [4, 5], and one-sided variants
of our first problem with a lower density bound #; but no upper density bound 62
[1, 5, 6, 14, 23].

We devote the first half of this paper to our O(n) algorithm for locating the longest
substring with density in a given range. In section 2 we develop the mathematical
framework, and in sections 3 and 4 we describe the algorithm and test its performance.
In section 5 we adapt our techniques for the remaining two problems.

All time and space complexities in this paper are based on the commonly used
word RAM model [7, section 2.2], which is reasonable for modern computers. In
essence, if n is the input size, we assume that each (logn)-bit integer takes constant
space (it fits into a single word) and that simple arithmetical operations on (logn)-bit
integers (words) take constant time.

2. Mathematical framework. We consider a string of digits z1, ..., z,, where
each z; is either 0 or 1. The length of a substring z,, ..., zp is defined to be L(a,b) =
b—a+ 1 (the number of digits it contains), and the density of a substring z,, ..., 2p

is defined to be D(a,b) = Zf:a z;/L(a,b) (the relative proportion of 1’s). It is clear
that the density always lies in the range 0 < D(a,b) < 1.
Our first problem is to find the maximum length substring whose density lies in
a given range. Formally, we have the following problem.
PROBLEM 2.1. Given a string zi1,...,2z, as described above and two rational
numbers 01 = ¢1/dy and 03 = co/da, compute
max {L(a,b)|6; < D(a,b) <6>}.

1<a<b<n

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/15/15 to 130.102.82.110. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

LOCATING REGIONS IN A SEQUENCE 1203

U'sp
02 =1/3
0, =1/4
& |
L 235 %4, 3 29
>
po # digits

F1c. 2.1. The natural representation of the string 1100010101.

We assume that 0 < 61 < 02 < 1, that 0 < dy,d2 < n, and that ged(ci,dr) =
ged(ca,da) = 1.

For example, if the input string is 1100010101 (with n = 10) and the bounds
are §; = 1/4 and 02 = 1/3 then the maximum length is 7. This is attained by the
substring 1100010101 (a = 3 and b = 9), which has density D(3,9) = 2/7 ~ 0.286.

The additional assumptions in Problem 2.1 are harmless. If ; = 0 or 5 = 1 then
the problem reduces to a one-sided bound, for which simpler linear-time algorithms
are already known [1, 6, 23]. If §; = 65 then the problem reduces to matching a precise
density, for which a linear-time algorithm is also known [5]. If some 6; is irrational
or if some d; > n, we can adjust 6; to a nearby rational for which d; < n without
affecting the solution.

We consider two geometric representations, each of which describes the string
Z1,...,%n as a path in two-dimensional space. The first is the natural representation,
defined as follows.

DEFINITION 2.2. Given a string zi,...,2n as described above, the natural rep-
resentation is the sequence of n + 1 points po, - - ., Pn, where each pr has coordinates
(k, Yy 2n)-

The z and y coordinates of pj effectively measure the number of digits and the
number of 1’s, respectively, in the prefix string z1,...,25. See Figure 2.1 for an
illustration.

The natural representation is useful because densities have a clear geometric in-
terpretation:

LEMMA 2.3. In the natural representation, the density D(a,b) is the gradient of
the line segment joining pq—1 with pPp.

The proof follows directly from the definition of D(a,b). The shaded cone in
Figure 2.1 shows how, for our example problem, the gradient of the line segment
joining ps with pg (i.e., the density D(3,9)) lies within our target range [01,62] =
[1/4,1/3].

Our second geometric representation is the orthogonal representation. Intuitively,
this is obtained by shearing the previous diagram so that lines of slope 6; and s
become horizontal and vertical, respectively, as shown in Figure 2.2. Formally, we
define it as follows.

DEFINITION 2.4. Given a string z1,...,zn, and rational numbers 61 = c1/dy
and 0y = ca/dy as described earlier, the orthogonal representation is the sequence of

n 4+ 1 points qo, - ..,dn, where each qi has coordinates (cok — do Zle zi, —c1k +

d Zf:l zi).

From this definition we obtain the following immediate result.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/15/15 to 130.102.82.110. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1204 BENJAMIN A. BURTON AND MATHIAS HIRON

02

Q
q1o0',
\\

F1G. 2.2. The orthogonal representation of the string 1100010101 for [61,02] = [1/4,1/3].

LEMMA 2.5. qo = (0,0), and for i > 0 we have q; = q;—1 + (co, —c1) if z; =0 or
Qi =di—1+ (c2 —da,d1 —c1) if z; = 1.

The key advantage of the orthogonal representation is that densities in the target
range [01, 02] correspond to dominating points in our new coordinate system. Here we
use a nonstrict definition of domination: a point (x,y) is said to dominate (2',y’) if
and only if both x > 2’/ and y > ¥/.

THEOREM 2.6. The density of the substring zq, . .., zp satisfies 01 < D(a,b) < 6o
if and only if qp dominates qq—1.

Proof. The difference q; — q,—1 has coordinates

b b
<Cg(b—a+1)—d222i, —cl(b—a+1)+dlzzk>
= L(a,b) - (ca — d2D(a,b), —c1 + d1D(a,b)),

which are both nonnegative if and ouly if D(a,b) < ¢a/da = 02 and D(a,b) > ¢1/dy =
0. O

The shaded cone in Figure 2.2 shows how qg dominates qo in our example, indi-
cating that the substring zs,. .., 29 has a density in the range [1/4,1/3].

It follows that Problem 2.1 can be reinterpreted as the following.

PROBLEM 2.1’. Given the orthogonal representation qg, . ..,q, as defined above,
find points qs,qs for which q; dominates qs and t — s is as large as possible.

The corresponding substring that solves Problem 2.1 is zgy1, ..., 2.

We finish this section with two properties of the orthogonal representation that
are key to obtaining a linear time algorithm for this problem.

LEMMA 2.7. The coordinates of each point q; are integers in the range [—n?,n?|.

Proof. This follows directly from Lemma 2.5: qo = (0,0), and the coordinates
of each subsequent q; are obtained by adding integers in the range [—n,n] to the
coordinates of q;_1. a

LemMA 2.8. If q; dominates q; then i > j.

Proof. Consider the linear function f: R? — R defined by f(z,y) = diz + day.
It is clear from Lemma 2.5 that f(qp) =0 and f(q;) = f(Qi—1) + d1ca — dacy. Since
01 = Cl/dl < CQ/dQ = 65 it follows that f(ql) > f(qi_l).

Suppose q; dominates q;. By the definition of f we have f(q;) > f(q;), and by
the observation above it follows that ¢ > j. O

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/15/15 to 130.102.82.110. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

LOCATING REGIONS IN A SEQUENCE 1205

A

outer
frontier

inner
frontier

>>
Y Y

Fic. 3.1. The inner and outer frontiers.

3. Algorithm. To solve Problem 2.1’ we construct and then scan along the inner
and outer frontiers, which we define as follows.

DEFINITION 3.1. Consider the orthogonal representation qg, . . ., qQn for the input
string z1,...,zn. The inner frontier is the set of points qx that do not dominate any
q; for i # k. The outer frontier is the set of points qi that are not dominated by any
qQ; fori#£k.

Figure 3.1 illustrates both of these sets. They are algorithmically important
because of the following result.

LEMMA 3.2. If qs and q; form a solution to Problem 2.1, then qs lies on the
inner frontier and q; lies on the outer frontier.

Proof. If qs is not on the inner frontier then qs dominates q; for some i # s. By
Lemma 2.8 we have i < s, which means that qs; and q; cannot solve Problem 2.1/
since q; dominates q; and t — i > t — s. The argument for q; on the outer frontier is
similar. d

3.1. Data structures. The data structures that appear in this algorithm are
simple.

For each point q; = (z;,y;), we refer to i as the inder of q;, and we store the
point as a triple (i,x;,y;). If ¢ is such a triple, we refer to its three constituents as
t.idx, t.x, and t.y, respectively.

We make frequent use of lists of triples. If L is such a list, we refer to the first and
last triples in L as L.first and L.last, respectively. We denote the number of triples in
L by L.size, and we denote the individual triples in L by L[0], L[1],..., L[L.size — 1].
All lists are assumed to have O(1) insertion and deletion at the beginning and end,
and O(L.size) iteration through the elements in order from first to last (as provided,
for example, by a doubly linked list).

For convenience we may write q; € L to indicate that the triple describing q; is
contained in L; formally, this means (¢, z;,y;) € L.

3.2. The two-phase radix sort. The algorithm make use of a two-phase radiz
sort which, given a list of £ integers in the range [0, b?), allows us to sort these integers
in O(£ + b) time and space. In brief, the two-phase radix sort operates as follows.

Since the integers are in the range [0,b?), we can express each integer k as a
“two-digit number” in base b; in other words, a pair («, 3), where k = a+ 8 - b and
«, B are integers in the range 0 < «, 8 < b.

We create an array of b “buckets” (linked lists) in memory for each possible value
of a. In a first pass, we use a counting sort to order the integers by increasing « (the
least significant digit): this involves looping through the integers to place each integer

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/15/15 to 130.102.82.110. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1206 BENJAMIN A. BURTON AND MATHIAS HIRON

in the bucket corresponding to the digit a (a total of ¢ distinct O(1) list insertion
operations), and then looping through the buckets to extract the integers in order of
« (effectively concatenating b distinct lists with total length ¢). This first pass takes
O(¢ + b) time in total.

We then make a second pass using a similar approach, using another O(¢ +
b) counting sort to order the integers by increasing 8 (the most significant digit).
Crucially, the counting sort is stable and so the final result has the integers sorted by
B and then «; that is, in numerical order. The total running time is again O(¢ + b),
and since we have b buckets with a total of £ elements, the space complexity is likewise
O +D).

In our application, we need to sort a list of n + 1 integers in the range [—n?, n?];
this can be translated into the setting above with £ = n + 1 and b = 2n, and so the
two-phase radix sort has O(n) time and space complexity.

This is a specific case of the more general radix sort; for further details the reader
is referred to a standard algorithms text such as [7].

3.3. Constructing frontiers. The first stage in solving Problem 2.1’ is to con-
struct the inner and outer frontiers in sorted order, which we do efficiently as follows.
The corresponding pseudocode is given in Figure 3.2.

AvLGORITHM 3.3. To construct the inner frontier I and the outer frontier O, both
in order by increasing x coordinate:

1. Build a list L of triples corresponding to all n + 1 points qq, ..., Qn, using
Lemma 2.5. Sort this list by increasing x coordinate using a two-phase radix
sort as described above, noting that the sort keys x; are all integers in the
range [-n?,n?] (Lemma 2.7).

2. Initialize I to the one-element list [L.first]. Step through L in forward order
(from left to right in the diagram); for each triple ¢ € L that has lower y than
any triple seen before, append ¢ to the end of I.

3. Construct O in a similar fashion, working through L in reverse order (from
right to left).

In step 2, there is a complication if we append a new triple ¢ to I for which
{.x = I.last.x. Here we must first remove I.last since { makes it obsolete. See lines
11-12 of Figure 3.2 for the details.

Table 3.1 shows a worked example for step 2 of the algorithm, i.e., the construction
of the inner frontier. The points in this example correspond to Figure 3.1, and each
row of the table shows how the frontier I is updated when processing the next triple
¢ € L (for simplicity we only show the coordinate pairs (x;,y;) from each triple). Note
that, although L is sorted by increasing x coordinate, for each fixed = coordinate the
corresponding y coordinates may appear in arbitrary order.

THEOREM 3.4. Algorithm 3.3 constructs the inner and outer frontiers in I and
O, respectively, with each list sorted by increasing x coordinate, in O(n) time and
O(n) space.

Proof. This algorithm is based on a well-known method for constructing frontiers.
We show here why the inner frontier I is constructed correctly; a similar argument
applies to the outer frontier O.

If a triple £ € L with coordinates (x;,y;) does belong on the inner frontier (i.e.,
there is no other point (x;,y;) in the list that it dominates), then we are guaranteed
to add it to I in step 2 because the only triples processed thus far have x < z;, and
must therefore have y > y;. Moreover, we will not subsequently remove ¢ from [
again, since the only other triples with the same x coordinate must have y > y;.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/15/15 to 130.102.82.110. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

LOCATING REGIONS IN A SEQUENCE

1207

124

L +[(0,0,0)]
for i < 1 ton do
if z; = 0 then

Append L.last + (1, ca, —c1) to the end of L

else

Append L.last + (1,¢3 — da,d1 — ¢1) to the end of L

Sort L by increasing x using a two-phase radix sort

I + [L.first]

10:
11:
12:

13:

for all ¢ € L, moving forward through L do
if L.y < I.last.y then

if L.z = I.last.x then
Remove the last triple from [

Append £ to the end of T

: O + [L.last]
: for all ¢ € L, moving backwards through L do
if L.y > O.first.y then

if {.x = O.first.x then
Remove the first triple from O

>/

Prepend / to the beginning of O

> I.last dominates ¢

dominates O.first

F1a. 3.2. The pseudocode for Algorithm 3.3.

TABLE 3.1
Constructing the inner frontier.

Coordinates (z;,y;)
from the triple ¢ € L

Current inner frontier I

(~10, 15)
(-8, 12)
(_87 8)

) 9)
’ 7)

QO OO0 ODODODOOOOO0O

NN AN AN AN N N N S N N N
= e e e e e e e e e

e e el e e e
Ot Ot Ot Ot Ot Ot O Ot Ot Ot Ut Ot Ot
NONS NSNS NSNS NSNS NSNS NSNS N2

—

NN N N N N N N S

|
0

Q0 00 00 GO 00 00 0O 0O 0O OO

—_
N
~

00 00 00 00 00 00 0O 00 00 0O
NGNS AN
NN N N N N e

DI DO D

~ =~~~ =~
JJJazxaz

P —

|
-

|
e

(=KX=}
=

[N
NN
.
S

=
=

If a triple £ € L with coordinates (z;,y;) does not belong on the inner frontier,
then there is some point (z;, ;) that it dominates. If z; < x; then we never add ¢ to
I, since by the time we process £ we will already have seen the coordinate y; (which
is at least as low as y;). Otherwise x; = x; and y; < y;, and so we either add and
then remove ¢ from I or else never add it at all, depending on the order in which we
process the points with = coordinate equal to x;. Either way, ¢ does not appear in
the final list I.

Therefore the list I contains precisely the inner frontier; moreover, since we pro-
cess the points by increasing x coordinate, the list I will be sorted by x accordingly.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/15/15 to 130.102.82.110. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1208 BENJAMIN A. BURTON AND MATHIAS HIRON

Fia. 3.3. A sequence of sliding windows on the outer frontier.

The main innovation in this algorithm is the use of a radix sort with two-digit
keys, made possible by Lemma 2.7, which allows us to avoid the usual O(nlogn)
cost of sorting. The two-phase radix sort runs in O(n) time and space, as do the
subsequent list operations in steps 2—3, and so the entire algorithm runs in O(n) time
and space as claimed. O

3.4. Sliding windows. The second stage in solving Problem 2.1’ is to simul-
taneously scan through the inner and outer frontiers in search of possible solutions
as € I and q; € O.

We do this by trying each qs in order on the inner frontier, and maintaining a
sliding window W of possible points q;; specifically, W consists of all points on the
outer frontier that dominate q,. Figure 3.3 illustrates this window W as qs moves
along the inner frontier from left to right.

For each point qs € I that we process, it is easy to update W in amortized O(1)
time using sliding window techniques (pushing new points onto the end of the list
W as they enter the window, and removing old points from the beginning as they
exit the window). However, we still need a fast way of locating the point q; € O
that dominates qs and for which ¢ — s is largest. Equivalently, we need a fast way of
choosing the triple w € W that maximizes w.idz.

To do this, we maintain a sublist M C W: this is a list consisting of all triples
w € W that are potential mazima. Specifically, for any triple w € W, we include w in
M if and only if there is no w’ € W for which w'.x > w.z and w’.idz > w.idz. The
rationale is that, if there were such a w’, we would always choose w’ over w in this or
any subsequent window.

As with all of our lists, we keep M sorted by increasing = coordinate. Note that
the condition above implies that M is also sorted by decreasing index. In particular,
the sought-after triple w € W that maximizes w.idz is simply M.first, which we can
access in O(1) time.

Crucially, we can also update the sublist M in amortized O(1) time for each point
qs € I that we process. As a result, this sublist M allows us to maximize w.idz for
w € W while avoiding a costly linear scan through the entire window W.

The details are as follows; see Figure 3.4 for the pseudocode.

ALGORITHM 3.5. Let the inner and outer frontiers be stored in the lists I and O in
order by increasing x coordinate, as generated by Algorithm 3.3. We solve Problem 2.1’
as follows.

1. Initialize M to the empty list.
2. Step through the inner frontier I in forward order. For each triple inner € I:

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/15/15 to 130.102.82.110. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

LOCATING REGIONS IN A SEQUENCE 1209

1 M <] > empty list
2: Spest ¢ 0, thest < 0 > best solution so far
3: next <+ 0 > next element of O to scan through
4: for all inner € I, moving forward through I do

5: while next < O.size and Olnext].y > inner.y do

6: next < nexrt + 1

7: while M.size > 0 and O[next].idz > M.last.idz do

8: Remove the last triple from M

9: Append Of[next] to the end of M

10: while M.size > 0 and M.first.x < inner.x do

11: Remove the first triple from M

12: if M.first.idx — inner.idz > tpest — Spest then
13: Sbest < inner.idr

14: thest < M.first.idx

Fic. 3.4. The pseudocode for Algorithm 3.5.

(a) Process new points that enter our sliding window. To do this, we scan

through any new triples outer € O for which outer.y > inner.y and
update M accordingly.
FEach new outer € O that we process has outer.x > m.z for all m € M,
so we append outer to the end of M. However, before doing this we must
remove any m € M for which m.idz < outer.idr (since such triples
would violate the definition of M). Because M is sorted by decreasing
index, all such m € M can be found at the end of M. See lines 5-9 of
Figure 3.4.

(b) Remove points from M that have exited our sliding window. That is,
remove triples m € M for which m.z < inner.z.

Because M is sorted by increasing x coordinate, all such triples can be
found at the beginning of M. See lines 10-11 of Figure 3.4.

(c) Update the solution. The best solution to Problem 2.1' that uses the
triple inner € I is the pair of points Qinner.ids, AM. first.idz - 1f the differ-
ence M.first.ide — inner.idr exceeds any seen so far, record this as the
new best solution.

THEOREM 3.6. Algorithms 3.3 and 3.5 together solve Problem 2.1' in O(n) time
and O(n) space.

Proof. Theorem 3.4 analyzes Algorithm 3.3, and the preceding discussion shows
the correctness of Algorithm 3.5. All that remains is to verify that Algorithm 3.5 runs
in O(n) time and space.

Each triple t € O is added to M at most once and removed from M at most once,
and so the while loops on lines 5, 7 and 10 each require total O(n) time as measured
across the entire algorithm. Finally, the outermost for loop (line 4) iterates at most
n + 1 times, giving an overall running time for Algorithm 3.5 of O(n).

Each of the lists I, O, and M contains at most n + 1 elements, and so the space
complexity is O(n) also. O

4. Performance. Here we experimentally compare our new algorithm against
the prior state of the art, namely, the O(nlogn) algorithm of Hsieh, Yu, and Wang [14].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/15/15 to 130.102.82.110. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1210 BENJAMIN A. BURTON AND MATHIAS HIRON

[ee}
S |+ Range: 0.6326 to 0.7428
o Range: 0.69905 to 0.69915 4t *
X Range: 2/3 to 3/4 ®
. ;&F o
[$) o
8 w
£
£ <
o o
kel
o X
g X %
Zz ﬁ
o
- R
2 *
0 2 4 6 8 10

Hsieh et al. (sec)

Fic. 4.1. Performance comparisons on genomic data.

Our trials involve searching for GC-rich regions in the human genome assembly
GRCh37.p2 from GenBank [2, 16]. The implementation that we use for our new
algorithm is available online,! and the code for the prior O(nlogn) algorithm was
downloaded from the respective authors’ website.? Both implementations are written
in C/CH++.

Figure 4.1 measures running times for 24 x 4 x 3 = 288 instances of Problem 2.1:
we begin with 24 human chromosomes (1-22, X, and Y), extract initial strings of
four different lengths n (ranging from n = 100000 to n = 3000 000), and search each
for the longest substring whose GC-density is constrained according to one of three
different ranges [61, 62].

These ranges are: [0.6326, 0.7428], which matches the first CpG island class of
Toshikhes and Zhang [17]; [0.69905, 0.69915], which surrounds the median of this class
and measures performance for a narrow density range; and [2/3, 3/4], which measures
performance when the key parameters d; and ds are very small.

The results are extremely pleasing: in every case the new algorithm runs at least
10x faster than the prior state of the art, and in some cases up to 42x faster. Of
course such comparisons cannot be exact or fair, since the two implementations are
written by different authors; however, they do illustrate that the new algorithm is
not just asymptotically faster in theory (as proven in Theorem 3.6), but also faster
in practice (i.e., the constants are not so large as to eliminate the theoretical benefits
for reasonable inputs).

The results for the range [2/3, 3/4] highlight how our algorithm benefits from
small denominators (in which the range of possible x and y coordinates becomes
much smaller).

Memory becomes a significant problem when dealing with very large data sets.
The algorithm of Hsieh, Yu, and Wang [14] uses “heavy” data structures with large
memory requirements: for n = 3000000 it uses 1.64 GB of memory. In contrast,
our new algorithm has a much smaller footprint—just 70 MB for the same n—and
can thereby process values of n that are orders of magnitude larger.® In Figure 4.2
we run our algorithm over the full length of each chromosome; even the worst case

For Ct++ implementations of all algorithms in this paper, visit http://www.maths.uq.edu.
au/"bab/code/.

2The implementation of the prior algorithm [14] is taken from http://venus.cs.nthu.edu.
tw/"eric/FIF.htm.

3All figures measure real memory usage (rsize).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/15/15 to 130.102.82.110. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

LOCATING REGIONS IN A SEQUENCE 1211

3 + Range: 0.6326 to 0.7428 o
o Range: 0.69905 to 0.69915
x Range: 2/3 to 3/4 +1
e}
o
R 8 PR
S o
@ o +
£ 9 F
= o %
3+
. ® g x %
o XX
P ¢ woxx| x0T
xx X [*
xx XX
5.0e+07 1.0e+08 1.5e+08 2.0e+08 2.5e+08

Number of base pairs

Fic. 4.2. Performance of the new algorithm on full-length chromosomes.

(chromosome 1) with n = 249 250 621 runs for all density ranges in under 85 seconds,
using 5.6 GB of memory.

All trials were run on a single 3 GHz Intel Core i7 CPU. The time spent on input
and output is included in all running times, though detailed measurements show this to
be insignificant for both algorithms (which share the same input and output routines).

5. Related problems. The techniques described in this paper extend beyond
Problem 2.1. Here we examine two related problems from the bioinformatics litera-
ture, and for each we outline new algorithms that improve upon the prior state of the
art. As usual, all problems take an input string 21, ..., 2, where each z; is 0 or 1.

The new algorithms in this section rely on van Emde Boas trees [22], a tree-based
data structure for which many elementary key-based operations have O(nloglogn)
time complexity. We briefly review this data structure before presenting the two
related problems and the new algorithms to solve them.

5.1. van Emde Boas trees. Here we briefly recall the essential ideas behind
van Emde Boas trees. For full details we refer the author to a modern textbook on
algorithms such as [7].

A van Emde Boas tree is a data structure that implements an associative array
(mapping keys to values), in which the user can perform several elementary opera-
tions in O(logm) time, where m is the number of bits in the key. These elementary
operations include inserting or deleting a key-value pair, looking up the value stored
for a given key, and looking up the successor or predecessor of a given key k (i.e., the
first key higher or lower than k, respectively). In our case, all keys are in the range
[-n?,n?] (Lemma 2.7), and so m € O(logn?) = O(logn); that is, these elementary
operations run in O(loglogn) time.

The core idea of this data structure is that each node of the tree represents a
range of p consecutive possible keys for some p, and has /p children (each a smaller
van Emde Boas tree) that each represent a subrange of /p possible keys. Each node
also maintains the minimum and maximum keys that are actually present within its
range. The root node of the tree represents the complete range of 2™ possible keys.

Furthermore, for each node V of the tree representing a range of p possible keys,
we also maintain an auziliary van Emde Boas tree that stores which of the ,/p children
of V are nonempty (i.e., have at least one key stored within them).

To look up the successor of a given key k we travel down the tree, and each time
we reach some node V; that represents p; potential keys, we identify which of the /p;

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/15/15 to 130.102.82.110. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1212 BENJAMIN A. BURTON AND MATHIAS HIRON

children contains the successor of k£ by examining the auxiliary tree attached to V;.
This induces a query on the auxiliary tree (representing ,/p; potential nonempty child
trees) followed by a query on the selected child (representing ,/p; potential keys), and
so the running time follows a recurrence of the form 7'(m) = 27 (m/2) + O(1); solving
this recurrence yields the overall O(log(m)) time complexity. The running times for
inserting and deleting keys follow a similar argument, and again we refer the reader
to a text such as [7] for the details.

5.2. Shortest substring in a density range. The first related problem that
we consider is a natural counterpart to Problem 2.1: instead of searching for the
longest substring under given density constraints, we search for the shortest.

PROBLEM 5.1. Find the shortest substring whose density lies in a given range.
That is, given rationals 61 < 03, compute

min {L(a,b)|0; < D(a,b) <62}.

1<a<b<n

The best known algorithm for this problem runs in O(nlogn) time [14]; here we
improve this to O(nloglogn).

By Theorem 2.6 and Lemma 2.8, this is equivalent to finding points qs # q; for
which q; dominates q5 and for which ¢ —s is as small as possible. To do this, we iterate
through each possible endpoint q; in turn, and maintain a partial outer frontier P
consisting of all nondominated points among the previous points {qo, q1,...,q¢—1};
that is, all points q; (0 < ¢ < t — 1) that are not dominated by some other q;
(i < j <t—1). When examining a candidate endpoint g, it is straightforward to
show that any optimal solution qs, q; must satisfy qs € P.

ALGORITHM 5.2. To solve Problem 5.1:

1. Initialize P to the empty list.
2. For eacht =0,...,n in turn, try q; as a possible endpoint:

(a) Update the solution. To do this, walk through all points qs € P that are
dominated by q¢. If the difference t — s is smaller than any seen so far,
record this as the new best solution.

(b) Update the partial frontier. To do this, remove all qs € P that are
dominated by q:, and then insert q; into P.

The key to a fast time complexity is choosing an efficient data structure for storing
the partial outer frontier P. We keep P sorted by increasing x coordinate, and for
the underlying data structure we use a van Emde Boas tree [22].

To walk through all points qs € P that are dominated by q; in step 2(a), we
locate the point p € P with the smallest x coordinate larger than x;; a van Emde
Boas tree can do this in O(loglogn) time. The dominated points qs can then be
found immediately prior to p in the partial frontier. Adding and removing points in
step 2(b) is likewise O(loglogn) time, and the overall space complexity of a van Emde
Boas tree can be made O(n) [7].

A core requirement of this data structure is that keys in the tree can be described
by integers in the range 0,...,n. To arrange this, we presort the x coordinates
q0-Z,...,qn.z using an O(n) two-phase radix sort (as described in section 3.2) and
then replace each x coordinate with its corresponding rank.

To finalize the time and space complexities, we observe that each point qs € P
that is processed in step 2(a) is immediately removed in step 2(b), and so no point
is processed more than once. Combined with the preceding discussion, this gives the
following theorem.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/15/15 to 130.102.82.110. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

LOCATING REGIONS IN A SEQUENCE 1213

THEOREM 5.3. Algorithm 5.2 runs in O(nloglogn) time and uses O(n) space.

We can add an optional length constraint to Problem 5.1: given rationals 1 < 65
and length bounds L; < Lo, find the shortest substring z,,..., 2, for which 6; <
D(a,b) <62 and Ly < L(a,b) < L. This is a simple modification to Algorithm 5.2:
we redefine the partial frontier P to be the set of all nondominated points amongst
{qo,41,---,9t—1,}. The update procedure changes slightly, but the O(nloglogn)
running time remains.

5.3. Maximal collection of substrings in a density range. The second
related problem involves searching for substrings “in bulk”: instead of finding the
longest substring under given density constraints, we find the most disjoint substrings.

PROBLEM 5.4. Find a maximum cardinality set of disjoint substrings whose
densities all lie in a given range. That is, given rationals 61 < 02, find substrings
(Zags---2by)s (Zags-«vr2by)yevs (Zags---s2p,), where 61 < D(a;,b;) < 03 and b; <
a;+1 for each i, and where k is as large as possible.

As before, the best known algorithm runs in O(n log n) time [14]; again we improve
this bound to O(nloglogn).

For this problem we mirror the greedy approach of Hsieh, Yu, and Wang [14]. One
can show that, if z,,. .., 2 is a substring of density 61 < D(a,b) < 02 with minimum
endpoint b, then some optimal solution to Problem 5.4 has b; = b (i.e., we can choose
Zay -« -, 2p as our first substring); see [14, Lemma 6].

Our strategy is to use our previous Algorithm 5.2 to locate such a substring
Zay-- -5 2p, sStore this as part of our solution, and then rerun our algorithm on the
leftover n — b input digits zpy1,...,2,. We repeat this process until no suitable
substring can be found.

ALGORITHM 5.5. To solve Problem 5.4:

1. Initialize i < 1.
2. Run Algorithm 5.2 on the input string z;, ..., z,, but terminate Algorithm 5.2
as soon as any dominating pair qs,q: s found.

3. If such a pair is found, add the corresponding substring zsi1,...,2t to our
solution set, set i < t + 1, and return to step 2. Otherwise terminate this
algorithm.

It is important to reuse the same van Emde Boas tree on each run through
Algorithm 5.2 (simply empty out the tree each time), so that the total initialization
cost remains O(nloglogn).

THEOREM 5.6. Algorithm 5.5 runs in O(nloglogn) time and requires O(n)
space.

Proof. Running Algorithm 5.2 in step 2 takes O([t — i]loglogn) time, since it
only examines points qg,...,q: before the dominating pair is found. The total run-
ning time of Algorithm 5.5 is therefore O(by loglogn + [ba — b1]loglogn + - - - + [br —
bi—1]loglogn) = O(nloglogn). The O(n) space complexity follows from Theorem 5.3
plus the observation that the final solution set can contain at most n disjoint sub-
strings. a

As before, it is simple to add a length constraint to Problem 5.4, so that each
substring z,,, . . ., zp, must satisfy both 61 < D(a;,b;) < 02 and Ly < L(a;, b;) < Lo
for some length bounds L; < Ls. We simply incorporate the length constraint into
Algorithm 5.2 as described in section 5.2, and nothing else needs to change.

5.4. Performance. As before, we have implemented both Algorithms 5.2 and 5.5
and tested each against the prior state of the art using human genomic data, follow-
ing the same procedures as described in section 4. Our van Emde Boas tree im-

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/15/15 to 130.102.82.110. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1214 BENJAMIN A. BURTON AND MATHIAS HIRON

plementation is based on the MIT-licensed libveb by Jani Lahtinen, available from
http://code.google.com/p/libveb/.

For the shortest substring problem, our algorithm runs at 12-62 times the speed
of the prior algorithm [14], and requires under 1/50th of the memory. For finding a
maximal collection of substrings, our algorithm runs at 0.94-13 times the speed of
the prior algorithm [14], and uses less than 1/20th of the memory.?

Once again, these improvements—particularly for memory usage—allow us to
run our algorithms with significantly larger values of n than for the prior state of the
art. For chromosome 1 with n = 249250621, the two algorithms run in 221 and 176
seconds, respectively, both using approximately 5.6 GB of memory.

6. Discussion. In this paper we consider three problems involving the identi-
fication of regions in a sequence where some feature occurs within a given density
range. For all three problems we develop new algorithms that offer significant perfor-
mance improvements over the prior state of the art. Such improvements are critical
for disciplines such as bioinformatics that work with extremely large data sets.

The key to these new algorithms is the ability to exploit discreteness in the
input data. All of the applications we consider (GC-rich regions, CpG islands, and
sequence alignment) can be framed in terms of sequences of 1’s and 0’s. Such discrete
representations are powerful: through Lemma 2.7, they allow us to perform O(n)
two-phase radix sorts, and to reindex coordinates by rank for van Emde Boas trees.
In this way, discreteness allows us to circumvent the theoretical Q(nlogn) bounds
of Hsieh,Yu, and Wang [14], which are only proven for the more general continuous
(nondiscrete) setting.

In a discrete setting, an obvious lower bound for all three problems is ©(n) time
(which is required to read the input sequence). For the first problem (longest substring
with density in a given range), we attain this best possible lower bound with our O(n)
algorithm. This partially answers a question of Chen and Chao [6], who ask in a more
general setting whether such an algorithm is possible.

For the second and third problems (shortest substring and maximal collection of
substrings), although our O(nloglogn) algorithms have smaller time complexity and
better practical performance than the prior state of the art, there is still room for
improvement before we reach the theoretical (n) lower bound (which may or may
not be possible). Further research into these questions may prove fruitful.

The techniques we develop here have applications beyond those discussed in this
paper. For example, consider the problem of finding the longest substring whose
density matches a precise value 8. This close relative of Problem 2.1 has cryptographic
applications [4]. An O(n) algorithm is known [5], but it requires a complex linked
data structure. By adapting and simplifying Algorithms 3.3 and 3.5 for the case
61 = 02 = 0, we obtain a new O(n) algorithm with comparable performance and a
much simpler implementation.

This last point raises the question of whether our algorithms for the second and
third problems can likewise be simplified to use only simple array-based sorts and
scans instead of the more complex van Emde Boas trees. Further research in this
direction may yield new practical improvements for these algorithms.

4The few cases in which our algorithm was slightly slower (down to 0.94 times the speed) all
involved large denominators di,d2 and maximal collections involving a very large number of very
short substrings.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/15/15 to 130.102.82.110. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

2]
3]

[4]

[5]

[6]

[11]

[12]

[13]

[14]

LOCATING REGIONS IN A SEQUENCE 1215

REFERENCES

L. ALLISON, Longest biased interval and longest non-negative sum interval, Bioinform., 19
(2003), pp. 1294-1295.

D. A. BENSON, I. KARSCH-MIZRACHI, D. J. LIPMAN, J. OSTELL, AND D. L. WHEELER, GenBank,
Nucleic Acids Res., 36 (2008), pp. D25-D30.

G. BERNARDI, Isochores and the evolutionary genomics of vertebrates, Gene, 241 (2000), pp. 3—
17.

S. Bozrag, S. J. PucLisi, AND A. TURPIN, Testing stream ciphers by finding the longest sub-
string of a given density, in Information Security and Privacy, Lecture Notes in Comput.
Sci. 5594, Springer, Berlin, 2009, pp. 122-133.

B. A. BURTON, Searching a bitstream in linear time for the longest substring of any given
density, Algorithmica, 61 (2011), pp. 555-579.

K.-Y. CHEN AND K.-M. CHAO, Optimal algorithms for locating the longest and shortest seg-
ments satisfying a sum or an average constraint, Inform. Process. Lett., 96 (2005), pp. 197—
201.

T. H. CorMEN, C. E. LEISERSON, R. L. RIVEST, AND C. STEIN, Introduction to Algorithms,
3rd ed., MIT Press, Cambridge, MA, 2009.

L. DURET, D. MOUCHIROUD, AND C. GAUTIER, Statistical analysis of vertebrate sequences
reveals that long genes are scarce in GC-rich isochores, J. Mol. Evol., 40 (1995), pp. 308—
317.

M. ESTELLER, CpG island hypermethylation and tumor suppressor genes: A booming present,
a brighter future, Oncogene, 21 (2002), pp. 5427-5440.

S. M. FULLERTON, A. B. CARVALHO, AND A. G. CLARK, Local rates of recombination are
positively correlated with GC' content in the human genome, Mol. Biol. Evol., 18 (2001),
pp. 1139-1142.

M. H. GOLDWASSER, M.-Y. Kao, aAND H.-I. Lu, Linear-time algorithms for computing
mazimum-density sequence segments with bioinformatics applications, J. Comput. System
Sci., 70 (2005), pp. 128-144.

R. I. GREENBERG, Fast and space-efficient location of heavy or dense segments in run-length
encoded sequences, in Computing and Combinatorics, Lecture Notes in Comput. Sci. 2697,
Springer, Berlin, 2003, pp. 528-536.

R. HARDISON, D. KRANE, D. VANDENBERGH, J.-F. CHENG, J. MANSBERGER, J. TADDIE, S.
ScuwARTz, X. HUANG, AND W. MILLER, Sequence and comparative analysis of the rabbit
a-like globin gene cluster reveals a rapid mode of evolution in a G + C-rich region of
mammalian genomes, J. Mol. Biol., 222 (1991), pp. 233-249.

Y.-H. HsieH, C.-C. YU, AND B.-F. WANG, Optimal algorithms for the interval location problem
with range constraints on length and average, IEEE/ACM Trans. Comput. Biol. Bioinfor-
matics, 5 (2008), pp. 281-290.

X. HUANG, An algorithm for identifying regions of a DNA sequence that satisfy a content
requirement, Comput. Appl. Biosci., 10 (1994), pp. 219-225.

INTERNATIONAL HUMAN GENOME SEQUENCING CONSORTIUM, Finishing the euchromatic se-
quence of the human genome, Nature, 431 (2004), pp. 931-945.

I. P. TOSHIKHES AND M. Q. ZHANG, Large-scale human promoter mapping using CpG islands,
Nature Genetics, 26 (2000), pp. 61-63.

F. LARSEN, G. GUNDERSEN, R. LopPEz, AND H. PrYDZ, CpG islands as gene markers in the
human genome, Genomics, 13 (1992), pp. 1095-1107.

Y.-L. LN, T. JIANG, AND K.-M. CHAO, Efficient algorithms for locating the length-constrained
heaviest segments, with applications to biomolecular sequence analysis, in Mathematical
Foundations of Computer Science 2002, Lecture Notes in Comput. Sci. 2420, Springer,
Berlin, 2002, pp. 459-470.

S. Saxonov, P. BERG, AND D. L. BRUTLAG, A genome-wide analysis of CpG dinucleotides in
the human genome distinguishes two distinct classes of promoters, Proc. Natl. Acad. Sci.
USA, 103 (2006), pp. 1412-1417.

P. M. SHARP, M. AVEROF, A. T. LLOYD, G. MATAssi, AND J. F. PEDEN, DNA sequence
evolution: The sounds of silence, R. Soc. London Philos. Trans. Ser. B Biol. Soc., 349
(1995), pp. 241-247.

P. vaNn EMDE Boas, R. Kaas, AND E. ZIJLSTRA, Design and implementation of an efficient
priority queue, Math. Systems Theory, 10 (1977), pp. 99-127.

L. WaNG AND Y. Xu, SEGID: Identifying interesting segments in (multiple) sequence align-

ments, Bioinform., 19 (2003), pp. 297—-298.
. ZoUBAK, O. CLAY, AND G. BERNARDI, The gene distribution of the human genome, Gene,
174 (1996), pp. 95-102.

wn

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

