351 research outputs found

    Deep Reinforcement Learning based Path-Planning for Multi-Agent Systems in Advection-Diffusion Field Reconstruction Tasks

    Get PDF
    Many environmental processes can be represented mathematically using spatial-temporal varying partial-differential equations. Timely estimation and prediction of processes such as wildfires is critical for disaster management response, but is difficult to accomplish without the availability of a dense network of stationary sensors. In this work, we propose a deep reinforcement learning-based real-time path-planning algorithm for mobile sensor networks traveling in a formation through a spatial-temporal varying advection-diffusion field for the task of field reconstruction. A deep Q-network (DQN) agent is trained on simulated advection-diffusion fields to direct the mobile sensor network to travel along information-rich trajectories. The field measurements made by the mobile sensor network along their trajectories enable identification of field advection parameters, which are required for field reconstruction. A cooperative Kalman filter developed in previous works is employed to receive estimates of the field values and gradients, which are essential for reconstruction as well as for the estimation of the diffusion parameter. A mechanism is provided that encourages exploration in the field domain once a stationary state is reached, which allows the algorithm to identify other information-rich trajectories that may exist in the field improving reconstruction performance significantly. Two simulation environments of different fidelities are provided to test the feasibility of the proposed algorithm. The low-fidelity simulation environment is used for training of the DQN agent. The high-fidelity simulation environment is based on Robot Operating System (ROS) and simulates real robots. We provide results of running sample test episodes in both environments which demonstrate the effectiveness and feasibility of the proposed algorithm

    Physics-Informed Computer Vision: A Review and Perspectives

    Full text link
    Incorporation of physical information in machine learning frameworks are opening and transforming many application domains. Here the learning process is augmented through the induction of fundamental knowledge and governing physical laws. In this work we explore their utility for computer vision tasks in interpreting and understanding visual data. We present a systematic literature review of formulation and approaches to computer vision tasks guided by physical laws. We begin by decomposing the popular computer vision pipeline into a taxonomy of stages and investigate approaches to incorporate governing physical equations in each stage. Existing approaches in each task are analyzed with regard to what governing physical processes are modeled, formulated and how they are incorporated, i.e. modify data (observation bias), modify networks (inductive bias), and modify losses (learning bias). The taxonomy offers a unified view of the application of the physics-informed capability, highlighting where physics-informed learning has been conducted and where the gaps and opportunities are. Finally, we highlight open problems and challenges to inform future research. While still in its early days, the study of physics-informed computer vision has the promise to develop better computer vision models that can improve physical plausibility, accuracy, data efficiency and generalization in increasingly realistic applications

    Physics-based Machine Learning Methods for Control and Sensing in Fish-like Robots

    Get PDF
    Underwater robots are important for the construction and maintenance of underwater infrastructure, underwater resource extraction, and defense. However, they currently fall far behind biological swimmers such as fish in agility, efficiency, and sensing capabilities. As a result, mimicking the capabilities of biological swimmers has become an area of significant research interest. In this work, we focus specifically on improving the control and sensing capabilities of fish-like robots. Our control work focuses on using the Chaplygin sleigh, a two-dimensional nonholonomic system which has been used to model fish-like swimming, as part of a curriculum to train a reinforcement learning agent to control a fish-like robot to track a prescribed path. The agent is first trained on the Chaplygin sleigh model, which is not an accurate model of the swimming robot but crucially has similar physics; having learned these physics, the agent is then trained on a simulated swimming robot, resulting in faster convergence compared to only training on the simulated swimming robot. Our sensing work separately considers using kinematic data (proprioceptive sensing) and using surface pressure sensors. The effect of a swimming body\u27s internal dynamics on proprioceptive sensing is investigated by collecting time series of kinematic data of both a flexible and rigid body in a water tunnel behind a moving obstacle performing different motions, and using machine learning to classify the motion of the upstream obstacle. This revealed that the flexible body could more effectively classify the motion of the obstacle, even if only one if its internal states is used. We also consider the problem of using time series data from a `lateral line\u27 of pressure sensors on a fish-like body to estimate the position of an upstream obstacle. Feature extraction from the pressure data is attempted with a state-of-the-art convolutional neural network (CNN), and this is compared with using the dominant modes of a Koopman operator constructed on the data as features. It is found that both sets of features achieve similar estimation performance using a dense neural network to perform the estimation. This highlights the potential of the Koopman modes as an interpretable alternative to CNNs for high-dimensional time series. This problem is also extended to inferring the time evolution of the flow field surrounding the body using the same surface measurements, which is performed by first estimating the dominant Koopman modes of the surrounding flow, and using those modes to perform a flow reconstruction. This strategy of mapping from surface to field modes is more interpretable than directly constructing a mapping of unsteady fluid states, and is found to be effective at reconstructing the flow. The sensing frameworks developed as a result of this work allow better awareness of obstacles and flow patterns, knowledge which can inform the generation of paths through the fluid that the developed controller can track, contributing to the autonomy of swimming robots in challenging environments

    CWI Self-evaluation 1999-2004

    Get PDF

    Annual Research Report 2021

    Get PDF

    Numerical Computation, Data Analysis and Software in Mathematics and Engineering

    Get PDF
    The present book contains 14 articles that were accepted for publication in the Special Issue “Numerical Computation, Data Analysis and Software in Mathematics and Engineering” of the MDPI journal Mathematics. The topics of these articles include the aspects of the meshless method, numerical simulation, mathematical models, deep learning and data analysis. Meshless methods, such as the improved element-free Galerkin method, the dimension-splitting, interpolating, moving, least-squares method, the dimension-splitting, generalized, interpolating, element-free Galerkin method and the improved interpolating, complex variable, element-free Galerkin method, are presented. Some complicated problems, such as tge cold roll-forming process, ceramsite compound insulation block, crack propagation and heavy-haul railway tunnel with defects, are numerically analyzed. Mathematical models, such as the lattice hydrodynamic model, extended car-following model and smart helmet-based PLS-BPNN error compensation model, are proposed. The use of the deep learning approach to predict the mechanical properties of single-network hydrogel is presented, and data analysis for land leasing is discussed. This book will be interesting and useful for those working in the meshless method, numerical simulation, mathematical model, deep learning and data analysis fields

    Optimal control and approximations

    Get PDF
    corecore