
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

Fall 2020

Deep Reinforcement Learning based Path-Planning for Multi-Deep Reinforcement Learning based Path-Planning for Multi-

Agent Systems in Advection-Diffusion Field Reconstruction Tasks Agent Systems in Advection-Diffusion Field Reconstruction Tasks

Deepak Talwar
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

Recommended Citation Recommended Citation
Talwar, Deepak, "Deep Reinforcement Learning based Path-Planning for Multi-Agent Systems in
Advection-Diffusion Field Reconstruction Tasks" (2020). Master's Theses. 5164.
DOI: https://doi.org/10.31979/etd.e36p-dxjt
https://scholarworks.sjsu.edu/etd_theses/5164

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU
ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_theses
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/5164?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5164&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

DEEP REINFORCEMENT LEARNING BASED PATH-PLANNING FOR
MULTI-AGENT SYSTEMS IN ADVECTION-DIFFUSION FIELD

RECONSTRUCTION TASKS

A Thesis

Presented to

The Faculty of the Department of Computer Engineering

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Deepak Talwar

December 2020

© 2020

Deepak Talwar

ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

DEEP REINFORCEMENT LEARNING BASED PATH-PLANNING FOR
MULTI-AGENT SYSTEMS IN ADVECTION-DIFFUSION FIELD

RECONSTRUCTION TASKS

by

Deepak Talwar

APPROVED FOR THE DEPARTMENT OF COMPUTER ENGINEERING

SAN JOSÉ STATE UNIVERSITY

December 2020

Wencen Wu, Ph.D. Department of Computer Engineering

Kaikai Liu, Ph.D. Department of Computer Engineering

Magdalini Eirinaki, Ph.D. Department of Computer Engineering

ABSTRACT

DEEP REINFORCEMENT LEARNING BASED PATH-PLANNING FOR
MULTI-AGENT SYSTEMS IN ADVECTION-DIFFUSION FIELD

RECONSTRUCTION TASKS

by Deepak Talwar

Many environmental processes can be represented mathematically using

spatial-temporal varying partial-differential equations. Timely estimation and prediction

of processes such as wildfires is critical for disaster management response, but is difficult

to accomplish without the availability of a dense network of stationary sensors. In this

work, we propose a deep reinforcement learning-based real-time path-planning algorithm

for mobile sensor networks traveling in a formation through a spatial-temporal varying

advection-diffusion field for the task of field reconstruction. A deep Q-network (DQN)

agent is trained on simulated advection-diffusion fields to direct the mobile sensor

network to travel along information-rich trajectories. The field measurements made by the

mobile sensor network along their trajectories enable identification of field advection

parameters, which are required for field reconstruction. A cooperative Kalman filter

developed in previous works is employed to receive estimates of the field values and

gradients, which are essential for reconstruction as well as for the estimation of the

diffusion parameter. A mechanism is provided that encourages exploration in the field

domain once a stationary state is reached, which allows the algorithm to identify other

information-rich trajectories that may exist in the field improving reconstruction

performance significantly. Two simulation environments of different fidelities are

provided to test the feasibility of the proposed algorithm. The low-fidelity simulation

environment is used for training of the DQN agent. The high-fidelity simulation

environment is based on Robot Operating System (ROS) and simulates real robots. We

provide results of running sample test episodes in both environments which demonstrate

the effectiveness and feasibility of the proposed algorithm.

ACKNOWLEDGMENTS

First and foremost, I would like to thank my thesis advisor, Dr. Wencen Wu, professor

in the Computer Engineering department at San José State University for her guidance

throughout my time at SJSU. She has always been ready to answer my questions, provide

me with feedback, and help me understand concepts related to and unrelated to this

research. Her encouragement, positivity and belief in me has helped me tremendously in

successfully completing this work.

Also, I would like to express my sincere gratitude to Dr. Kaikai Liu and Dr. Magdalini

Eirinaki who took their precious time to participate in my thesis defense. I am grateful for

their valuable comments on my thesis.

I would also like to thank my parents and grandparents for their unconditional love

and constant support throughout my life. I can never repay for all the sacrifices that my

mother has made in order to get me where I am today. I will forever be grateful. I would

also like to thank my girlfriend, Qin Bian, for her continuous encouragement throughout

my study and research, and her unique ways of pushing me to make myself better. Finally,

I would like to thank my friends Sachin Guruswamy and Seung Won Lee, for

brainstorming with me and being my soundboards.

v

TABLE OF CONTENTS

List of Tables . viii

List of Figures . xiv

1 Introduction. 1

2 Literature Review . 5

3 Problem Formulation . 9
3.1 Advection-Diffusion Fields . 9
3.2 Mobile Sensor Robots . 10
3.3 View-Scope of Mobile Sensing Robots . 12

4 Preliminaries . 14

5 Proposed Algorithm. 17
5.1 Inputs to the Proposed Algorithm . 19
5.2 Deep Reinforcement Learning-Based Path-Planning for Field Recon-

struction . 19
5.2.1 Tabular Q-Learning . 20
5.2.2 States, Actions, Reward function and Termination Criteria 21
5.2.3 Deep Q-Network (DQN) Learning . 25

5.3 Procedure for Triggering Identification of Advection Parameters 27
5.4 Identification of Advection Coefficients . 28
5.5 Destination Selection for Further Exploration . 29
5.6 Advection-Diffusion Field Reconstruction . 32

6 Training in Low-Fidelity Simulation Environment . 36
6.1 Low-Fidelity Simulation Environment . 36

6.1.1 Advection-Diffusion Field Representation . 36
6.1.2 Setup as OpenAI Gym Environment. 38

6.2 Deep Q-Network (DQN) Training Setup . 38
6.2.1 Exploration using ε-greedy algorithm . 38
6.2.2 Experience Replay Buffer . 40
6.2.3 Issue with Bootstrapping . 40
6.2.4 DQN Training Pseudo-code . 41

6.3 Training Results. 41
6.3.1 DQN Training on Field-1. 47
6.3.2 DQN Training on Field-2. 48
6.3.3 DQN Training on Field-3. 49

vi

6.4 Testing Results . 51

7 Field Reconstruction Results in Low-Fidelity Simulation Environment 56
7.1 Advection-Diffusion Field Reconstruction in Low-Fidelity Simula-

tion Environment . 56
7.2 Reconstruction Results . 57

7.2.1 Testing on Field-1 . 58
7.2.2 Testing on Field-2 . 63
7.2.3 Testing on Field-3 . 68

7.3 Aggregated Mapping Errors with Random Starting Locations 73
7.4 Testing Results on Unseen Test Fields . 75
7.5 Aggregated Mapping Errors with Random Starting Locations on

Unseen Fields . 84

8 In-lab Testbed . 86
8.1 Robotic Platform. 86
8.2 Field Map Setup . 87

9 High-Fidelity Simulation Testing Environment . 89
9.1 Robot Operating System (ROS) based Simulation Framework 89

9.1.1 Gazebo Simulator . 89
9.1.2 RViz Visualizer . 90

9.2 Advection-Diffusion Field Representation . 91
9.3 Simulated Field Map . 94
9.4 Simulated Robot Platform. 94

9.4.1 Simulated 2D LiDAR Sensor . 96
9.4.2 Simulated Odometry . 97
9.4.3 Frames of Reference (TF-Tree) . 97

9.5 Localization . 100
9.5.1 Point Cloud Matching using Iterative Closest Point Algorithm . . 101
9.5.2 Procedure . 101

9.6 Motion and Formation Control . 102

10 Testing Results in High-Fidelity Simulation Environment . 106

11 Conclusion. 114

12 Future Work . 115

Literature Cited . 117

vii

viii

LIST OF TABLES

Table 1. Summary of Advection-Diffusion Parameters Chosen for the Simu-
lated Fields . 43

Table 2. Summary of Advection-Diffusion Parameters Chosen for the Simu-
lated Test Fields . 76

ix

LIST OF FIGURES

Fig. 1. A symmetric formation composed of four mobile robots ri, i =
0,1,2,3 shown in blue. The formation center rc is shown in red. The
distance between each robot and the formation center is ∆r. The
shaded region is the time-varying view-scope Γ(t). 13

Fig. 2. Flowchart providing an overview of the proposed algorithm. Inputs
to the algorithm are marked in blue, the components of the proposed
algorithm are marked in purple, and the blocks in gray are the
preliminaries. The mobile robot formation being controlled is marked
in red, while the output reconstructed field is marked in green. 18

Fig. 3. Neural-Network used for Deep-Q Learning function approximation. . 26

Fig. 4. Illustration demonstrating the destination selection algorithm. In this
figure, r0,r1,r2 and r3 are the four mobile sensor robots making the
formation, while rc is the formation center. The area inside the black
dashed line marks the view-scope Γ. The yellow location Cu denotes
the centroid of the unvisited regions within Ω. The region marked in
gray has been previously visited by the formation. The dashed orange
circle denotes all locations d distance away from rc which form the
candidate set D. A few sample candidates from this set are labeled
with ci, i = 0,1,2...8. Among the sample candidates, c3 and c4 are
removed from consideration since they lie outside the field domain
Ω, while c7 and c8 are removed from consideration since they lie
within the visited region. Eventually, c0,c1,c2,c5 and c6 are added to
set Du and considered as candidate destinations. Locations rv,0,rv,1
and rv,2 denote the closest visited locations in the direction of rc for
candidates c0,c1 and c2 respectively. For this example, candidate c1
would achieve the largest probability for being selected since it is
towards Cu. 35

Fig. 5. A small 3× 3 section of the discretized advection-diffusion field
representation. 37

Fig. 6. A single agent-environment interaction. 39

Fig. 7. These figures show the state of the Field-1 simulated advection-
diffusion field at the following time steps (a) k = 0, (b), k = 150, (c)
k = 300. 44

x

Fig. 8. These figures show the state of the Field-2 simulated advection-
diffusion field at the following time steps (a) k = 0, (b), k = 150, (c)
k = 300 . 45

Fig. 9. These figures show the state of the Field-3 simulated advection-
diffusion field at the following time steps (a) k = 0, (b), k = 150, (c)
k = 300 . 46

Fig. 10. Accumulated episode rewards over time steps during training on
Field-1 . 48

Fig. 11. Accumulated episode rewards over time steps during training on
Field-2 . 49

Fig. 12. Accumulated episode rewards over time steps during training on
Field-3 . 50

Fig. 13. Sample test episode 1 using trained DQN model on Field-1 at
following time steps (a) k = 100, (b) k = 300 . 52

Fig. 14. Sample test episode 2 using trained DQN model on Field-1 at
following time steps (a) k = 100, (b) k = 300 . 53

Fig. 15. Sample test episode 1 using trained DQN model on Field-2 at
following time steps (a) k = 100, (b) k = 300 . 53

Fig. 16. Sample test episode 2 using trained DQN model on Field-2 at
following time steps (a) k = 100, (b) k = 300 . 54

Fig. 17. Sample test episode 1 using trained DQN model on Field-3 at
following time steps (a) k = 100, (b) k = 300 . 54

Fig. 18. Sample test episode 2 using trained DQN model on Field-3 at
following time steps (a) k = 100, (b) k = 300 . 55

Fig. 19. Sample test episode 1 performed on Field-1 . 60

Fig. 20. Sample test episode 2 performed on Field-1 . 61

Fig. 21. Mapping error for sample test episode 1 performed on Field-1 62

Fig. 22. Mapping error for sample test episode 2 performed on Field-1 62

Fig. 23. Sample test episode 1 performed on Field-2 . 65

xi

Fig. 24. Sample test episode 2 performed on Field-2 . 66

Fig. 25. Mapping error for sample test episode 1 performed on Field-2 67

Fig. 26. Mapping error for sample test episode 2 performed on Field-2 67

Fig. 27. Sample test episode 1 performed on Field-3 . 70

Fig. 28. Sample test episode 2 performed on Field-3 . 71

Fig. 29. Mapping error for sample test episode 1 performed on Field-3 72

Fig. 30. Mapping error for sample test episode 2 performed on Field-3 72

Fig. 31. Mean mapping errors over 30 episodes with random starting locations
on Field-1. The shaded region shows the minimum and maximum
bounds. 74

Fig. 32. Mean mapping errors over 30 episodes with random starting locations
on Field-2. The shaded region shows the minimum and maximum
bounds. 74

Fig. 33. Mean mapping errors over 30 episodes with random starting locations
on Field-3. The shaded region shows the minimum and maximum
bounds. 75

Fig. 34. These figures show the state of the Test Field-1 simulated advection-
diffusion field at the following time steps (a) k = 0, (b), k = 150, (c)
k = 300 . 77

Fig. 35. These figures show the state of the Test Field-2 simulated advection-
diffusion field at the following time steps (a) k = 0, (b), k = 150, (c)
k = 300 . 78

Fig. 36. Sample test episode performed on Test Field-1 . 81

Fig. 37. Sample test episode performed on Test Field-2 . 82

Fig. 38. Mapping error for test episode performed on Test Field-1. 83

Fig. 39. Mapping error for test episode performed on Test Field-2. 83

Fig. 40. Mean mapping errors over 30 episodes with random starting locations
on Test Field-1. The shaded region shows the minimum and maximum
bounds. 85

xii

Fig. 41. Mean mapping errors over 30 episodes with random starting locations
on Test Field-2. The shaded region shows the minimum and maximum
bounds. 85

Fig. 42. Photo of the Robotic Platform based on NVIDIA Jetbot kit. 87

Fig. 43. Temporary field bed set up for in-lab testing. 88

Fig. 44. The Field Map PointCloud generated by the 2D LiDAR on the
Robotic Platform. 88

Fig. 45. Simulated version of the Robotics Platform derived from NVIDIA
Jetbot kit as rendered in Gazebo. 90

Fig. 46. Simulated version of the Robotics Platform derived from NVIDIA
Jetbot kit as rendered in RViz. 91

Fig. 47. Representation of an advection-diffusion field grid map in RViz at
three different time steps – (a) k = 0, (b) k = 150, (c) k = 300. 93

Fig. 48. 3D representation of an advection-diffusion field grid map in RViz at
three different time steps – (a) k = 0, (b) k = 150, (c) k = 300. Field
concentration values are used to visualize the heights of all the cells.
The progression through time demonstrates the effect of diffusion. . . . 93

Fig. 49. Simulated Field Map as it appears in Gazebo. 95

Fig. 50. Simulated Field Map as it is served in RViz by the map_server
node. 95

Fig. 51. Point cloud output (in red) from the simulated 2D LiDAR sensor
(with Gaussian noise added) mounted on a single robot near the
center of the Field Map as visualized in RViz. 96

Fig. 52. Important frames of reference for a single robot as visualized in RViz. 98

Fig. 54. Overview of the localization process for a single robot. 101

Fig. 53. Frames of reference and their relationships in a single robot (known
as sambot in simulation) simulation. This is the output of the
rqt_tf_tree node provided by ROS. This representation of the
frames of reference is commonly known as TF-Tree. 105

xiii

Fig. 55. ROS computation graph while running a test episode in the High-
Fidelity Simulation Environment. This output is generated using the
rqt_graph tool. Two important subgraphs are highlighted in this
graph and zoomed-in images for these regions are provided below.
The green highlighted section corresponds to all the nodes that are
responsible for running the proposed algorithm and maintaining the
advection-diffusion fields. Fig. 56 shows this subgraph zoomed in.
The purple highlighted section shows all the nodes running within
the sambot1 namespace. Fig. 57 shows this subgraph zoomed in. . . . 108

Fig. 56. This subgraph shows all the nodes required for running the episode
with the proposed algorithm. run_experiment_node is respon-
sible for managing the entire episode. It runs all major components
of the proposed algorithm, decides the action that the formation must
take and publishes the subsequent location on the center_goal
topic. The goals_publisher node is responsible for computing
and publishing goal locations for each of the four robots. The
spatial_temporal_field_publisher_node is responsi-
ble for maintaining the simulated advection-diffusion field as well as
evolving the reconstructed field as the formation travels through the
field. The gazebo node runs Gazebo Simulator’s server-side node
responsible for running the physics engine and simulating the robots’
movements. 109

Fig. 57. This subgraph shows the nodes that need to be run for one simulated
mobile robot. This figure shows the namespace for sambot1. All
nodes in this namespace are replicated for each of the other three
robots. The joint_state_publisher node is responsible for
publishing the states of each of the joints in the robot which change
as the robot moves in the field. The robot_state_publisher
consumes the joint states and publishes them as transforms over
the tf topic. The map_to_odom_broadcaster node publishes
simulated odometry and the scan_to_pointcloud node con-
verts LaserScan messages from the simulated LiDAR sensor to
PointCloud2 type messages and publishes them. The move_base
node is responsible for sending velocity commands to the robot to
reach the goal locations specified by the proposed algorithm at each
time step. 110

Fig. 58. Sample test episode performed on Field-1 in High-fidelity Simulation
Testing environment. 111

xiv

Fig. 59. Mapping error for test episode performed on simulated Field-1 in
High-fidelity testing environment. Please note that the units on the
x-axis are seconds elapsed during the simulation in ROS and not the
time steps (k) as in previous mapping error plots. 112

Fig. 60. Snapshot of the mobile robot formation moving in the simulated
advection-diffusion field. 113

1 INTRODUCTION

A number of environmental, physical, chemical, and biological processes are often

called distributed parameter systems (DPSs) as their states vary both temporally and

spatially. Examples of such spatial-temporal varying fields include pollution

concentration, temperature, salinity, etc. These DPSs are often modeled mathematically as

partial differential equations varying over space and time (PDEs) [1], [2]. In this work, we

focus on a special form of such spatial-temporal PDE called the advection-diffusion

equation, which for example may be used to describe the dynamics of a smoke plume in a

given region over time. The advection term describes the movement of the smoke plume

due to the velocity of the carrier wind, and the diffusion term describes the spatial

spreading of the smoke from regions of higher concentration to regions of lower

concentration. In such environmental monitoring and pollution management tasks, timely

estimation, prediction and reconstruction of advection-diffusion fields become very

important and can assist disaster management response. For instance, prediction of the

propagation of a wildfire can assist with firefighting, and identifying the source of oil

leakage in an ocean can be important for pollution containment.

Networks of static sensors are often used to provide distributed measurements across a

spatial domain [3]. However, several challenges exist in the estimation and reconstruction

of spatial-temporal fields using static sensor networks, such as low spatial resolution or

complete lack of sensor measurements in the regions of interest, and high computational

cost of solving PDEs over both spatial and temporal domains. Tasks that require exploring

unknown fields are often distributed across a large area in scenarios like ocean science

and wildfires, which makes installing and maintaining sensor networks infeasible. It takes

a large number of stationary sensors to obtain snapshots of the concentration field in such

areas. To overcome this issue, it is ideal to use a small number of mobile sensing agents

to scout the large area by taking measurements along the motion trajectories [4]–[6]. Such

1

mobile sensing agents may consist of intelligent robots that can collaboratively

accomplish exploration tasks by exploiting their on-board sensing, computing, mapping

and locomotion capabilities. In this work, we explore how intelligent paths can be planned

for such mobile sensing robots for the advection-diffusion field reconstruction task.

The field reconstruction task involves two major sub-tasks: (1) identification of the

advection-diffusion parameters governing the unknown field, and (2) state estimation of

the concentration field in the chosen spatial domain. The performance of the state

estimation depends heavily on the paths that the mobile sensing agents travel on. Thus,

there is a need to efficiently solve real-time path planning problems to guide agents to

move along information-rich trajectories. In recent years, various techniques have

emerged as solutions to this problem. In works [5] and [7], the authors incorporate the

dynamics of the mobile robot agents into the dynamics of the spatial-temporal varying

field, which allows them to compute trajectories for the mobile robot agents deployed in a

spatial field domain. However, the cost functions used for path optimization in works [5]

and [7] only aim to reduce the mapping error, which can make the solutions get stuck in

local minima and fail to account for fields with multiple high-concentration areas or

sources and limit their ability to reconstruct more complicated fields. In literature [8], the

authors propose using a geometric reinforcement learning based approach for

path-planning in fields that may contain multiple high-concentration regions within the

spatial domain. With this approach, the authors encode the mapping error and the length

of the robots’ trajectories into a time-varying reward matrix, which enables them to

convert the problem into a shortest-path finding problem in a weighted graph that can be

solved using dynamic programming [8]. This approach, however, requires the user of the

algorithm to provide a destination location that can be used to search for in the graph, and

the quality of the field reconstruction depends heavily on this chosen destination. In

unknown fields with complicated concentration surfaces, choosing this destination may

2

not be trivial. In this research, we propose a deep reinforcement learning-based algorithm

that does not require the user to provide a destination for the formation, and encourages

exploration in situations when a local minimum for the mapping error is reached, thus

enabling the capability to reconstruct fields with complicated concentration surfaces and

multiple high-concentration zones.

Over the years, a variety of different methods have been developed for estimation of

advection-diffusion parameters. With the identification of advection-diffusion parameters

in the advection-diffusion PDE, we are able to obtain some preliminary knowledge on the

evolution of the field, which makes it possible to use only a small number of mobile

sensor robots to reconstruct a large dynamic field. In this research, we use the cooperative

filtering scheme developed for online identification of the diffusion parameter in dynamic

diffusion field in works [9] and [10]. In [9], authors use the data collected by a mobile

sensor network moving in a diffusion field to develop a cooperative Kalman filter that

provides estimates of field values, the gradient and temporal variations of the field values

along trajectories of the mobile robot formation. Furthermore, the authors develop a

recursive least squares (RLS) based method for estimation of the unknown diffusion

coefficient of the field. In this work, we use the estimated field values and the gradient

provided by the cooperative Kalman filter for training the deep reinforcement learning

models, as well as for field reconstruction. Additionally, the estimates of the diffusion

coefficient are used to reconstruct the field as the mobile robot formation travels through

the field domain. Moreover, we are able to extend these results by also providing a

method that uses the trained deep reinforcement learning model to plan trajectories for the

mobile robot formation that allow for online estimation of advection parameters for the

advection-diffusion field as well.

Finally, in this work, we develop and present results in two simulation environments

of varying fidelities that show satisfactory performance. The Low-Fidelity Simulation

3

Environment is a 2D environment that simulates advection-diffusion fields in spatially

discretized grids and represents mobile robots as omni-directional particles, and is used

for training of the deep reinforcement learning models, as well as for testing and

validation of the proposed algorithms. The High-Fidelity Simulation Environment is a

Robot Operating System (ROS) [11] based 3D environment that employs simulated

differential drive robots, and is used to validate the developed path-planning algorithms.

The key contributions of this research include:

1) A deep reinforcement learning based path-planning algorithm for mobile sensing

robots traveling in a formation through an advection-diffusion field for the task of

field reconstruction.

2) Procedure for estimation of advection coefficients as the formation travels through

the advection-diffusion field following the paths planned by the deep reinforcement

learning based algorithm.

3) A Low-Fidelity Simulation Environment, that is used for training the deep

reinforcement learning models, as well as to validate and test the performance of the

proposed algorithms.

4) A Robot Operating System (ROS) [11] based High-Fidelity Simulation Environment

that is used to test the proposed algorithm with realistic simulated robot agents.

The problem is formulated in Chapter 3. Chapter 5 presents the proposed algorithm,

Chapter 6 elaborates on the deep reinforcement training process and Chapter 7 shows

simulation results in the Low-Fidelity Simulation Environment. Chapter 9 presents the

High-Fidelity Simulation Environment and Chapter 10 presents simulation results in the

High-Fidelity Simulation Environment.

4

2 LITERATURE REVIEW

A large body of work concerning with state estimation and parameter identification of

distributed parameter systems (DPSs) using sensor networks has been produced. Many

approaches address this problem using static sensor networks [12]–[14]. However, in large

spatial domains, it is often impractical to set up stationary sensors, and instead mobile

sensor networks are deployed to perform a variety of tasks including parameter

identification, state estimation, coordinated exploration and multi-target tracking [1], [6],

[15], [16]. One popular approach for parameter estimation, which is applicable to both

static as well as mobile sensor networks, is to first identify optimal locations of stationary

sensors, or trajectories for mobile sensors offline, and then formulate a least squares

problem to find parameters that minimize the errors between the state estimations and true

states at the locations or trajectories chosen offline [17], [18]. However, in many realistic

environmental monitoring tasks, there is no prior knowledge of the field and it is desirable

to obtain parameter identification while the mobile sensor network is traveling through the

field domain. As mentioned previously, in works [9], [10], authors develop an online

parameter identification algorithm that iteratively estimates the diffusion coefficient as the

mobile robots travel through the field domain in a formation. In this work, we extend this

result to produce a field reconstruction algorithm that can also estimate the advection

coefficients in an advection-diffusion field.

Reinforcement learning, and specifically deep reinforcement learning, has recently

been used for a variety of decision-making tasks. Some of the most popular use of

reinforcement learning has been done in the realm of computer gaming. In [19], a

convolutional neural network trained using a variant of Q-learning is shown to

successfully play many Atari computer games. Path-planning for robots is another

decision-making domain where reinforcement learning has been increasingly used.

In [20], the authors introduce Globally Guided Reinforcement Learning framework

5

(G2RL), which is a hierarchical path-planning algorithm that combines global guidance

(using a graph-based search method such as A*) and a local RL-based planner that uses

local observations to plan obstacle free paths. In [21], the authors demonstrate the use of

double Q-network (DDQN) in solving local path-planning for robots in unknown dynamic

environments with LiDAR (Light Detection and Ranging) signal. Some work using

reinforcement learning has also emerged in path-planning of mobile sensor networks in

the problem of reconstructing spatial-temporal varying fields. As mentioned previously,

in [8], the authors propose using a geometric reinforcement learning based approach for

path-planning in fields that may contain multiple high-concentration regions within the

spatial domain. In this approach, the authors build a time-varying reward matrix, which

encode the quality of the field reconstruction and the length of the robots’ trajectories, and

enables them to convert the problem into a shortest-path finding problem in a weighted

graph that can be solved using dynamic programming [8]. This approach uses the

user-supplied global destination as a way for the formation to not get stuck in local

minima of the mapping error function, which may assist in discovery of other

information-rich regions. However, the quality of the field reconstruction depends heavily

on this chosen destination and in unknown fields with complicated concentration surfaces,

choosing this destination may not be trivial. In this work, we explore how deep

reinforcement learning could be applied to plan paths for a collection of mobile robots

moving in a formation to reconstruct spatially and temporally varying advection-diffusion

fields. In most works mentioned here, the user is responsible for providing a global

destination to the planner, and the main task is to reach the destination avoiding collisions.

However, in this work, the main task is to reconstruct the field as accurately as possible

and there is no need for the user to supply a destination. The algorithm developed

identifies information-rich paths that improve the reconstruction of the field, and is also

capable of exiting local minima when they are detected.

6

Over the last two decades, several middleware message-passing software have been

developed and popularized which are useful for robotics applications. These middleware

software provide an abstraction layer above the underlying operating system and provide

convenient inter-process communication methods, which are useful in a robotics

application that may have many asynchronous processes running that need to share data.

Lightweight Communications and Marshalling (LCM) [22] is a library for data passing

and marshalling specifically designed for robotics research applications, and was first

developed during the DARPA Urban Challenge. LCM is language independent and

processes can share data through publish/subscribe message-passing system.

ZeroMQ [23] is a generic open-source message-passing library that can be used for

in-process, inter-process, TCP and multicast data sharing, and has been used in a number

of robotics projects. The most popular robotics framework, however, is Robot Operating

System (ROS) [11]. ROS is fully open-source and not only provides TCP/IP based

message-passing, but also comes with a rich ecosystem of useful tools and robotics

algorithms. In this work, we use ROS as our middleware of choice in the development of

the in-lab testbed (Chapter 8) and the High-Fidelity Simulation Environment (Chapter 9).

Simulation has become an integral part of robotics development and testing, and the

fidelity of simulation environments has improved substantially over the last few decades.

Most robotics algorithms are developed and iterated upon in simulation before they are

deployed on real robots, as it is much easier, faster, cheaper and safer to test in simulation

environments. As the graphics quality of 3D simulations have improved, simulators are

also being used as sources of cheap training data for machine learning and deep learning

models. As a result, a number of commercial, as well as, open-source simulators have

emerged focusing on various robotics domains. Several open-source simulators such as

the LGSVL Simulator [24], CARLA [25] and Voyage Deepdrive [26] are focusing on the

Autonomous Driving domain, and provide vehicles with simulated sensors that can be

7

driven in simulated 3D environments. Other simulators such as Webots [27], Gazebo [28]

and CoppeliaSim [29] provide simulation for all kinds of robotic applications including

drones, wheeled robots and robotic arms. Several companies such as Applied

Intuition [30], rFpro [31] and Cognata [32] have commercialized simulators and are

providing them as a service. For this work, our simulation platform of choice is

Gazebo [28] as it has deep integration with ROS, is open-source, a large community of

users, and provides good simulation support for wheeled robots.

Over the last few years, a large number of open-source robotics platforms have been

introduced focusing on a variety of robotic research applications. The Multi-agent System

for non-Holonomic Racing (MuSHR) [33] project provides an open-source platform

designed for autonomous robotics racing which supports ROS [11]. The Khepera IV

Mobile Robot [34] aims at providing a robotics platform that can bring robotics system

research from simulation to the real world, and is specifically designed for indoor robotics

experiments. The TurtleBot [35] is a low-cost robotics kit that is expandable and comes

tightly integrated with ROS [11]. In this work, we use the NVIDIA Jetbot AI Robot

kits [36] as our choice of robotic platform, for its small size, low cost and upgradeability.

Chapter 8 elaborates on the modifications we made to this kit for this research.

8

3 PROBLEM FORMULATION

In this chapter, we formulate the problem of reconstructing an unknown

spatial-temporal varying field obeying the advection-diffusion equation by planning paths

for mobile sensing robots moving in a formation through the field.

3.1 Advection-Diffusion Fields

Many spatial-temporal varying processes such as atmospheric and waterborne

pollution transport processes can be modelled as two-dimensional (2D) partial differential

equations in some domain Ω of the following form:

∂ z
∂ t

(r, t) = F (z(r, t),∇z(r, t),∇2z(r, t)), r ∈Ω, (1)

where Ω is the domain that the robots are operating in, z(r, t) is the field concentration

function that is spatial-temporal varying, ∇ represents the gradient operator, ∇2 represents

the Laplacian operator, and F (·) is an unknown non-linear function.

The 2D advection-diffusion partial differential equation is a specific version of

Equation (1) which incorporates advection (spatial movement of concentration values)

and diffusion (movement of concentration values from high-concentration zones to

low-concentration zones) processes. We are interested in the reconstruction of fields

obeying the advection-diffusion equation, which can be written as follows:

∂ z
∂ t

(r, t) = θ∇
2z(r, t)+v∇z(r, t), r ∈Ω, (2)

where θ > 0 is the constant diffusion coefficient and the v is the constant 2D velocity

vector. Therefore, given a field Ω with z(r, t),r ∈Ω defining the field values, Equation (2)

defines how the field evolves over time. Additionally, in many practical environmental

monitoring applications, the field domain Ω is much larger than the robots, and so the

9

boundary can be modeled as a flat surface. This allows us to assume initial and Dirichlet

boundary conditions on the boundary ∂Ω [6],

z(r,0) = z0(r),

z(r, t) = 0, r ∈ ∂Ω.

(3)

The field concentration function z0(r, t = 0) may consist of a number of

high-concentration regions forming a non-linear surface over the field domain Ω. The task

of field reconstruction, then, involves the following two sub tasks:

1) Identification of advection-diffusion coefficients in Equation (2). These include the

advection coefficients v = [vx,vy], the velocity of the field, and θ , the diffusion

coefficient. While v specifies how fast the field is moving and in what direction, θ

specifies how quickly the concentration values of the field are diffusing.

2) State estimation of the concentration field z(r, t) in the field domain Ω to reproduce

the field map.

3.2 Mobile Sensor Robots

In this work, we consider mobile sensor robots to be modeled as points with the

ability to move omni-directionally as commanded. The algorithm proposed in this work

commands a formation of such mobile sensing robots to travel on information-rich paths

to efficiently reconstruct advection-diffusion fields. We make certain assumptions

regarding these mobile sensing agents.

Assumption 3.1. Robots follow single-integrator dynamics.

The robots are controlled to move in the field domain Ω in a coordinated formation.

Consider a formation of N mobile sensing robots traveling in the field; these robots follow

single-integrator dynamics as follows:

ṙi(t) = ui(t), i = 1,2,3...N, (4)

10

where, ri(t)⊆ R2 is the location of the ith robot in Ω and ui(t)⊆ R2 is the velocity

command for the ith robot at time t. The single-integrator dynamics in Equation (4) allow

the robots to follow the commanded velocity exactly. While this assumption does not hold

well for wheeled robots that are generally not omni-directional, it is a reasonable motion

assumption for drones flying in a plane. Furthermore, in Chapter 9, we demonstrate how

this assumption can be shown to work for wheeled robots following differential-drive

dynamics. Additionally, there exist several results for formation control of mobile robotic

agents in [37], [38] which we apply here such that the robots stay in a desired formation.

Assumption 3.2. Each sensing robot has the ability to localize itself in Ω and share its

location with other robots.

The ability for a mobile robot to localize itself is critical for the ability to associate

sensor measurements to physical locations, as well as for the ability to maintain

formations. Our assumption here is that each robot i is equipped with sensors to localize

itself in field domain Ω at discrete time step k and share its location rk
i with the other

robots.

Additionally, using the locations of all the robots in the formation at time step k, we

can determine the location of the formation center rk
c at time step k using the following

equation:

rk
c =

1
N

N

∑
i

rk
i . (5)

Assumption 3.3. Each sensing robot is equipped with a sensor to measure the field

concentration value at its current location.

At each discrete timestep k, each robot has the ability to measure and report the

concentration value of the field at its location. The measurement of the ith sensing robot

11

at time step k is modeled as follows:

p(rk
i ,k) = z(rk

i ,k)+ni, (6)

where, ni is assumed to be i.i.d Gaussian noise.

3.3 View-Scope of Mobile Sensing Robots

Provided that the robots will coordinate and move in a formation, it is important to

specify the benefits of this coordination. Here, we define the time-varying view-scope

Γ(t) of the formation. The view-scope Γ at time t is the area of the field domain Ω that

falls within the polygon formed by the locations of sensing robots. The shaded region in

Fig. 1 illustrates the time-varying view-scope Γ(t), in which the blue circles represent the

four mobile robots at the current time step in a formation, and the red circle represents the

formation center at the current time step. While the mobile sensing robots can only

measure and share the concentration values at their locations at any given time, the field

values z(r, t), r ∈ Γ(t) can be obtained through interpolating the values measured by the

robots. Thus, it is reasonable to assume that the estimated field values, z(r, t),r ∈ Γ(t) are

available to us at all times. Additionally, as stated previously, a cooperative Kalman filter

developed in [9], [10] and explained further in Chapter 4 is employed to output estimates

of concentration, z(rc, t) and gradients, ∇z(rc, t), at the formation center rc. These

estimated values will play a major role in the developed algorithm described in Chapter 5.

The cooperative Kalman Filter implementation requires that the robots stay relatively

close to each other to collect measurements in the field [9], [10]. Therefore, it is important

to have formation control for the mobile sensor robots as they move through the field

domain. Since the robots are controlled to stay in a formation, the problem reduces to

planning the path for formation center rc instead of planning paths for each robot in the

formation. We will revisit the topic of formation control when discussing the

12

High-Fidelity 3D Simulation Environment in Chapter 9, where formation control needs to

be implemented for testing of the proposed algorithm.

Fig. 1. A symmetric formation composed of four mobile robots ri, i = 0,1,2,3 shown in
blue. The formation center rc is shown in red. The distance between each robot and the
formation center is ∆r. The shaded region is the time-varying view-scope Γ(t).

13

4 PRELIMINARIES

In this chapter, we describe the results of works [9], [10] that are critical to the

development of the algorithm in this research. In [9], [10], the authors consider the task of

online parameter identification of 2D diffusion processes using data collected by a mobile

sensor network in a diffusion field. To realize this task, the authors incorporate the

diffusion equation into the information dynamics associated with the trajectories of

mobile sensor networks and develop a cooperative Kalman Filter to provide estimates of

field values, gradients and the temporal variations in the field along the trajectories. Then,

utilizing the estimates from the cooperative Kalman Filter, they develop a recursive

least-squares (RLS) based algorithm to iteratively estimate the diffusion coefficient of the

field. The outputs of the cooperative Kalman Filter are used in this research for the

training and inference of the deep reinforcement learning models which are explained in

Chapter 6. The estimated diffusion coefficient is used in the reconstruction of the

advection-diffusion field.

Since the main focus of this work is in development of the path-planning algorithm,

we will not reproduce the mathematical derivation and proof of convergence for the

cooperative Kalman Filter. Interested readers can refer to [9], [10] for the complete

derivation and proof of convergence. The developed cooperative Kalman Filter provides

estimates of the information state at each time step k when the measurements from the

mobile sensors in the formation are available. The information vector X(k) is defined as

follows:

X(k) = [z(rk
c,k),∇z(rk

c,k),z(r
k
c,k−1),∇z(rk

c,k−1)]T , (7)

where, rc refers to the center of the mobile robot formation and k is the current time step.

Fig. 1 illustrates four mobile robots traveling in a symmetric formation through the field

domain. Therefore, given that the mobile robots maintain a symmetric formation, and are

14

close to the formation center, the cooperative Kalman Filter can provide estimates of the

concentration (z(rk
c,k)) and gradients (∇z(rk

c,k)) at the current formation center at the

current time step, as well as the estimates of the concentration (z(rk
c,k−1)) and gradients

(∇z(rk
c,k−1)) at the current formation center at the previous time step. As elaborated in

Section 5.2.2 and shown in Equation (16), the state used for training of the deep

reinforcement learning models contains the concentration and gradient estimates at the

formation center produced by the cooperative Kalman Filter.

Similarly, we will not reproduce the mathematical derivation and proof of

convergence for the recursive least-squares (RLS) algorithm developed for the estimation

of the diffusion coefficient. Interested readers can refer to [9], [10] for the complete

derivation and proof of convergence. To develop the RLS algorithm, the authors use the

values of the information state at time steps k and k+1 from the filter and calculate the

temporal variations of the field along the trajectory of the formation center, given by
z(rk

c ,k+1)−z(rk
c ,k)

ts
, where ts is the sampling frequency. Then, given an initial estimate of the

diffusion coefficient, RLS can be applied to update that estimate according to the

following equation:

θ̂k = θ̂k−1 +g(k)
(

z(rk
c,k+1)− z(rk

c,k)
ts

−∇
2z(rk

c,k)θ̂k−1

)
g(k) = η(k−1)(∇2z(rk

c,k))
T
[
∇

2z(rk
c,k)η(k−1)(∇2z(rk

c,k))
T +Re

]−1

η(k) =
(

I−g(k)∇2z(rk
c,k)

)
η(k−1),

(8)

where g(k) is the estimator gain matrix, η(k) is the estimation error covariance matrix,

and Re is the noise covariance. The discrete Laplacian ∇2z(rk
c,k) is calculated by using

the sensor measurements directly from the mobile sensors using the following equation:

∇
2z(rk

c,k)≈
p(rk

0,k)+ p(rk
1,k)+ p(rk

2,k)+ p(rk
3,k)−4z(rk

c,k)
∆r2 , (9)

15

where p(rk
i ,k), i = 0,1,2,3 are the sensor measurements from each of the four robots in

the formation at time step k, and ∆r is the distance between each of the robots to the

formation center. The estimated diffusion coefficient is used in the discretized

advection-diffusion Equation (30) for the reconstruction.

16

5 PROPOSED ALGORITHM

In this chapter, we propose an algorithm that provides a solution to the problem

formulated in Chapter 3. The key idea of the proposed algorithm is to use learning

assisted path-planning for the mobile sensor robot formation that enables it to take

information-rich paths that enable efficient reconstruction of the evolution of the field, as

well as identification of its advection-diffusion parameters.

Fig. 2 provides an overview of all the major components of this algorithm and how

they are used. The blocks in purple are the components of the proposed algorithm that are

explained in this chapter, while the blocks in gray are the preliminaries that are introduced

in Chapter 4. At the beginning of the episode, a starting location is provided for the

mobile robot formation. The robots measure the field values at their respective locations

which are sent to the cooperative Kalman Filter (Chapter 4) and the recursive least

squares (RLS) algorithm (Chapter 4). The measurements are interpolated to obtain

estimates of field values inside the view-scope. Components from the output of the

cooperative Kalman filter are used as the input state for the trained Deep Q-Network

(introduced in Section 5.2), which then outputs the optimal action for the formation to

take. The same state is also used by an algorithm that triggers identification of advection

parameters (introduced in Section 5.3) when a stationary state is reached. Now, the

advection parameters can be identified using the algorithm introduced in Section 5.4.

Once the advection parameters are identified, a destination selector algorithm (introduced

in Section 5.5) chooses a destination location for the formation to encourage exploration.

Then, a controller transports the formation to the chosen destination. Once the destination

is reached, the control of the formation is transferred back to the trained Deep Q-Network

and the algorithm continues until the episode is terminated. The estimated field values and

advection-diffusion parameters are used to reconstruct the field (elaborated in Section 5.6).

17

Fig. 2. Flowchart providing an overview of the proposed algorithm. Inputs to the algorithm
are marked in blue, the components of the proposed algorithm are marked in purple, and
the blocks in gray are the preliminaries. The mobile robot formation being controlled is
marked in red, while the output reconstructed field is marked in green.

18

5.1 Inputs to the Proposed Algorithm

The proposed algorithm is designed such that a minimum number of inputs are

required from the user. The proposed algorithm requires the following two inputs for

functioning in an advection-diffusion field domain:

1) Starting location for the center of the formation: The users of this algorithm need to

provide a starting location for the center of the formation, r0
c ∈Ω. Since most

practical applications would require the mobile sensor robots to start the field

reconstruction task at some known starting location, this is a reasonable requirement.

Importantly, the algorithm does not require the starting locations of the mobile

robots and instead only requires the starting location of the center.

2) Maximum duration (Tmax) of an episode: This is the maximum time for which the

advection-diffusion field reconstruction task must run for.

5.2 Deep Reinforcement Learning-Based Path-Planning for Field Reconstruction

Reinforcement learning has been shown to solve a large variety of problems that

involve optimal decision making. In general, these problems involve an agent acting in an

environment which in return provides rewards as well as some observations for taking

those actions. The agent’s goal is to choose actions at each time step such that it can

maximize the cumulative reward it receives. Since the agent does not know what reward it

may receive from the environment on taking a particular action, it needs to learn the

quality of taking that action through trial and error. The reward, which is a scalar value, is

a way to incentivize the robot to learn what we want it to learn.

In this section, we develop a reinforcement learning based algorithm for controlling

our mobile sensor robot formation to travel along information-rich trajectories that lead to

accurate field reconstruction. It is important to note that the field of reinforcement learning

is a collection of large number of algorithms and problem formulations; however, in this

work we develop our algorithm using the family of Q-learning algorithms. First, we will

19

introduce the idea behind tabular Q-learning, then we will elaborate on the components of

our reinforcement learning problem formulation, show why tabular Q-learning is

intractable for this problem, and then show how it can be extended to Deep Q-learning.

5.2.1 Tabular Q-Learning

Before introducing the idea of Q-learning, it is important to understand the ideas of

state (s), state values (V (s)) and state-action values (Q(s,a)). The observations that the

agent receives from the environment after taking an action is referred to as the state, and

the set of all possible states for an environment is called its state space. The value of a

state V (s) can be thought of as the expected total reward that the agent can obtain from

that state [39]. Formally,

V (s) = E

[
∞

∑
t=0

γ
trt

]
, (10)

where rt is the award obtained at current time step t of the episode, E is the expectation

operator and γ is a discount factor. While the problem can be formulated as non-episodic

(or continuous), in this work we formulate it as an episodic learning problem in which

each episode has a starting state and many possible termination states. In general, the goal

of any reinforcement learning problem is to learn a policy π that maximizes the state

value function V (s) for all states. Formally, the policy is defined as a probability

distribution of actions over all possible states in the state space, [39]

π(a|s) = P[At = a|St = s], (11)

which can be read as the probability of choosing action a, when in state s at time step t. A

good policy would assign a higher probability to an action that leads to a state with a

large value, and in-turn a large reward.

Additionally, we can define a new quantity called state-action value, known as Q(s,a).

This value is the total reward that can be obtained by taking action a in state s and can be

20

defined in terms of state values V (s) as follows:

Q(s,a) = Es′[r(s,a)+ γV (s′)], (12)

where s′ is the resulting state after taking action a in state s. Additionally, Equation (10)

can be re-written as the following:

V (s) = max
a∈A

Q(s,a), (13)

where A is the set of all actions. Now, combining Equations (12) and (13), we obtain a

recursive definition for Q(s,a) which can be used for learning:

Q(s,a) = r(s,a)+ γ max
a′∈A

Q(s′,a′). (14)

The application of Equation 14 to learn state-action values for all sets of states and actions

is known as Tabular Q-learning. It is important to note, however, that Equation (14) is not

used directly in practice as replacing values at each step can make the learning process

unstable. Instead, a blending approach is used where the previous value is updated

towards the new value based on some learning rate α:

Q(s,a)← (1−α)Q(s,a)+α(r(s,a)+ γ max
a′∈A

Q(s′,a′)). (15)

We do not include the entire Tabular Q-learning algorithm here since we do not use it in

this work. The entire algorithm with pseudo-code is provided in [39].

5.2.2 States, Actions, Reward function and Termination Criteria

With the Q-learning framework defined, we can now develop the algorithm for

learning information-rich paths in an advection-diffusion field. First, we need to define a

representation of the field domain Ω. For the purpose of this training, we consider the

field domain to be an E×F grid, which each grid cell representing a single location, r

21

and having a single concentration value at a given time, z(r, t). Given K mobile sensor

robots moving in a formation, the location of the centroid of the formation is represented

by rc and the area enclosed by the polygon formed by the formation represents the

view-scope Γ(t). Additionally, recall that we are employing the cooperative Kalman filter

introduced in chapter 4 which provides us with estimates of concentration at formation

center z(rc, t) as well as the gradients at formation center ∇z(rc, t) at all time steps

concentration measurements from mobile sensor robots are available.

We can now specify the definition of state s(t) chosen for this algorithm:

s(t) = [z(rc, t),∇zx(rc, t),∇zy(rc, t)], (16)

where ∇zx(rc, t),∇zy(rc, t) are the concentration gradient estimates at formation center rc

at time t in the x and y directions respectively. The definition of the input state vector is

critical to successful learning of the state-value function. Here, z(rc, t) provides an

estimate of the value of the current location at the current time step – a high z(rc, t) value

indicates that the formation is currently in a highly “polluted” environment and

contributes a large amount to the reconstruction, whereas a small value indicates that the

current location is not as “valuable” and contributes less to the reconstruction. The

gradients, ∇zx(rc, t),∇zy(rc, t) provide an estimate of the direction of largest

concentration value change at rc, which can be useful in determining which action would

result in obtaining the most information from the field. It is important to note that the

formation center rc, or the location of any of the mobile robots is not part of the state

vector s. This is important for generalizability of the algorithm since we do not want our

learned model to associate the value of an action based on the location of the formation in

Ω. Specifically, an ideal action to take at the same location r ∈Ω might be different for

different advection-diffusion fields. Similarly, it is important to note that time step t is not

part of the state vector s. This follows the same reasoning that the ideal action to take at

22

the same time step in different fields may be different. Therefore, our definition of the

state vector s constraints the model to learn state-action values based only on the field

characteristics.

With the state vector s defined, we can now define the set of actions A that the robots

can take to move in the field domain Ω. As mentioned previously, the problem

formulation allows us to plan paths solely for the formation center rc instead of planning

paths individually for each of the robots. Thus, it is reasonable to think of actions being

taken by the formation center rc instead of each of the robots in the formation, and that

the robots replicate the action applied to the formation center to maintain that formation.

The action space A consists of 9 actions and is defined as follows:

A= {“up”, “down”, “left”, “right”, “up-left”, “up-right”, “down-left”, “down-right”, “stay”}.

(17)

As evident from Equation (17), in a single time step, robots can move to any of their

adjacent cells (including diagonals) or choose to stay in the current cell. This action-space

allows the reinforcement learning model to move the formation as flexibly as possible.

As mentioned previously, we formulate the reinforcement learning problem as an

episodic task. Thus, it is important to define termination criteria for each of the episodes.

In our formulation, we have the following two termination criteria:

1) We impose a max time limit on the duration of an episode specified by Tmax. This

limit is important since advection-diffusion fields eventually diffuse away and the

concentration values within the field domain Ω converge to 0. Thus, it is not

important to continue the task until time reaches infinity. Additionally, mobile robots

have limited access to power source and may only be able to operate for a certain

length of time.

2) If any of the mobile robots in the formation move outside of the field domain Ω

before Tmax is reached, the episode terminates.

23

Therefore, we want the mobile robots to operate for the maximum time possible (Tmax)

without any of the robots in the formation exiting the field domain Ω. These incentives

are encoded in the reward function.

One of the most important components of a reinforcement learning problem is the

definition of a reward function as it can severely impact the quality of the training. In this

work, we want the model to incentivize moving the formation on information-rich

trajectories while running for the entire episode length of Tmax, and ensuring that all

robots in the formation remain inside the field domain Ω for the duration of the episode.

Thus, to meet these requirements the following piece-wise reward function is developed:

R(t) =

a∑r∈Γ(t) z(r, t) t < Tmax

−Rmax rk(t) 6∈Ω ∀k = 1,2,3...N

+Rmax t = Tmax,

(18)

where, a is scalar coefficient to weigh the reward, Rmax is some large scalar value, N is

the number of mobile robots in the formation and Γ(t) is the view-scope of the formation.

Here, a large negative reward of −Rmax is provided if any of the mobile robots

rk ∀k = 1,2,3...N leaves the field domain Ω before the episode is over, incentivizing the

model to run the episode till Tmax is reached. A large positive reward of +Rmax is provided

when t = Tmax is reached. This reward indicates to the model that we want it to collect

field values for the entire length of the episode. For the duration of the episode before

termination, a reward proportional to the sum of all concentrations inside the view-scope

Γ(t) is returned. Recall that we are interpolating robot sensor measurements at each time

step to obtain estimates of the concentration values z(r, t),r ∈ Γ(t). Since regions with

large concentration values contribute more to the field reconstruction, a reward

proportional to the sum of concentration values inside the view-scope encourages the

24

model to learn to move towards areas with large concentration values which reduce the

error in reconstruction (Equation (28)) to a greater extent, and thus are information-rich.

5.2.3 Deep Q-Network (DQN) Learning

In this section, we first discuss why tabular Q-learning is insufficient for solving this

problem, then we introduce how neural networks can be used as state-value function

approximators and finally show how we adapt this problem to be solved using Deep

Q-Network (DQN) Learning. As explained in the previous section, the state s is

composed of three floating-point values, however, the tabular Q-learning approach expects

discrete states and actions and stores the state-action values in a tabular form with states

and actions as keys. While the combination of all values states can take is finite as they’re

represented by a finite number of bits, this number is extremely large and can lead us into

memory constraints [39]. Therefore, storing the Q-values for each state-action pair

quickly becomes intractable. To solve this issue, we can frame the learning problem as a

regression task of approximating the state-action value function with a deep

neural-network.

Fig. 3 shows the architecture of the neural-network we chose for this purpose. This

network consists of three hidden layers of size 512 each, an input layer of size 3 which

takes the state s as input, and an output layer of size 9, which outputs the estimate of

state-action value for each of the 9 actions. The layers are fully-connected with random

dropouts to help with generalizability, and the non-linear activation function of choice is

rectified linear unit (ReLU). This network is trained using the stochastic gradient descent

(SGD) algorithm [40] using interactions from the advection-diffusion field environment.

Training implementation details are provided in Chapter 6.

Finally, we can define the loss function that we want to minimize during the training

of this neural network. Since we want the network to provide state-action value estimates

25

for all possible actions from a state, our target y for the neural-network loss should be

defined as follows,

y =

r if episode has ended

r+ γ maxa′∈A Q̂(s′,a′) otherwise,
(19)

where r is the immediate reward, s′ is the next state received from interaction with the

environment, γ is the discount factor and Q̂ is our current best estimate of the state-action

value function. Then, we can define the loss function to be minimized as follows,

L = (Q(s,a)− y)2, (20)

where Q(s,a) is the output of the neural-network being trained. The neural-network is

trained until the loss function value converges.

Fig. 3. Neural-Network used for Deep-Q Learning function approximation.

26

5.3 Procedure for Triggering Identification of Advection Parameters

As explained in the previous section, the Deep Q-Network based control is designed

to move the robot formation along information-rich trajectories that minimize the field

reconstruction error (Equation (28)). At the beginning of the task, the DQN controller is

responsible for directing the mobile robot formation, and it will make the formation travel

on information rich paths until a stationary state is reached. A stationary state is

characterized by flat estimated gradients at the formation center, that is, ∇z(rc, t) tends

towards 0, while the estimated concentration at the formation center z(rc, t) stays high. At

this time, the formation has reached a stationary state in the advection-diffusion field and

is traveling at approximately the same velocity as the local field, making it an ideal state

to estimate the field’s advection parameters at. However, the DQN controller itself cannot

identify when such a stationary state is reached, and an additional procedure is required to

identify such a state and trigger identification of advection parameters.

Given that both the estimated concentration value at the formation center z(rc, t), and

the gradients at the formation center ∇z(rc, t) are provided to us at all times t by the

cooperative Kalman Filter (introduced in Chapter 4), we can develop an

averaging-window based algorithm to detect when a stationary point is reached, and the

formation must be directed to search for other information-rich trajectories.

Let W specify the length of the averaging-window we desire, then buffers of length W

for each of the state variables (z(rc, t),∇zx(rc, t),∇zy(rc, t)) are created. We use

double-ended queues (also known as deque) as the choice of data structure for these

buffers. These buffers contain only the most recent W values inserted into them, which

makes them a good choice for moving-averages. At each time step when the state output

is available from the advection-diffusion field, the buffers are populated with their

corresponding state values. Then, the arithmetic means for the values in the buffers are

calculated. Let µ(z(rc, t)),µ(∇zx(rc, t)) and µ(∇zy(rc, t)) denote the moving averages for

27

each of the state variables respectively, then, a stationary state is reached when

µ(z(rc, t))≥ zmin, |µ(∇zx(rc, t))| ≤ ε and |µ(∇zy(rc, t))| ≤ ε , for some minimum field

concentration zmin > 0 and some small ε > 0. The procedure for this algorithm is

described below in Algorithm 1.

Algorithm 1 Procedure for detecting when Stationary State has been reached and
identification of advection coefficients can begin

bufz = deque(W) . Initialize buffers for all state variables of max length W
buf∇zx = deque(W)
buf∇zy = deque(W)
procedure STATIONARYSTATEREACHED(s, zmin, ε)

bufz.insert(s[0]) . Insert state variables into their buffers
buf∇zx .insert(s[1])
buf∇zy .insert(s[2])
µ(z(rc, t))← 1

|bufz|∑
|bufz|
i=0 bufz[i] . Calculate mean values

µ(∇zx(rc, t))← 1
|buf∇zx |

∑
|buf∇zx |
i=0 buf∇zx [i]

µ(∇zy(rc, t))← 1
|buf∇zy |

∑
|buf∇zy |
i=0 buf∇zy[i]

. If conditions are met, return true
if µ(z(rc, t))≥ zmin and |µ(∇zx(rc, t))| ≤ ε and |µ(∇zy(rc, t))| ≤ ε then

return true
return false

Once the above described algorithm returns true, the velocity of the formation is

expected to match the velocity of the field and thus, we can begin estimating the

advection coefficients of the field.

5.4 Identification of Advection Coefficients

As explained in the previous section, Algorithm 1 allows us to detect when the

formation has reached a stationary state in the advection-diffusion field where the velocity

of the movement of the formation matches the velocity of the local field. Since stationary

states are characterized with very small gradients and high concentration values, and the

DQN controller is designed to direct the formation towards states with such values, at

such states the velocity of the formation as controlled by the DQN controller must

28

represent the velocity of the advection-diffusion field. This allows us to estimate the

advection coefficients v̂ = [v̂x, v̂y] as the average velocity of the mobile robot formation

for M time steps after a stationary point has been found.

Let kS > 0 be a time step at which a stationary state has been identified using

Algorithm 1, and M > 0 be the number of time steps we want to estimate the formation

velocity for, then the following equations provide us with estimates of the advection

coefficients:

v̂x =
rc,x(t = kS +M)− rc,x(t = kS)

M

v̂y =
rc,y(t = kS +M)− rc,y(t = kS)

M
,

(21)

where, rc ∈Ω is the location of the formation center as controlled by the DQN

controller. With these advection coefficient estimates, and the diffusion coefficient

estimate obtained as explained in Chapter 4, we have all the information to begin

reconstructing the advection-diffusion field and is explained in Section 5.6.

5.5 Destination Selection for Further Exploration

Once the mobile robot formation has reached a stationary state and identified

advection coefficients, it is important to encourage the formation to explore other

information-rich trajectories in the field domain. Many environmental processes may

contain multiple high-concentration zones that may lead to complex concentration

surfaces, all of which will need to be measured by the formation in order to produce an

accurate reconstruction. Since the DQN controller is designed to solely follow

information-rich trajectories, it will not encourage the formation to move away from local

information-rich paths to search for other trajectories that may improve the accuracy of

the reconstruction further. In that case, the formation is likely to never leave a local

information-rich path and the reconstructed field will be highly inaccurate. In this section,

we develop an algorithm to encourage exploration in search for other information-rich

29

trajectories away from visited areas in the field domain Ω. The output of this algorithm

would be a destination rd ∈Ω that the formation will travel to, and then recommence

following information-rich paths using the DQN controller.

The destination selection algorithm must select locations as destinations that follow

the following criteria:

1) The selected destination must be away from already explored locations, if any.

2) The algorithm must be biased towards choosing unexplored areas or regions within

field domain Ω.

3) The selected destination must be far away enough such that the DQN controller can

identify previously unidentified information-rich paths if they exist.

To develop this algorithm, let’s first define a distance d that we want the chosen

destination to be far away from the current formation center location (rc). Then, given this

distance d, we build a set D of candidate destinations. Among the candidate destinations,

any locations that lie outside of the field domain Ω or are previously visited will be

removed. Let Du denote this pruned set of unvisited candidate locations. The next task is

to choose a destination among these candidate locations that follows our criteria. To do

this, for ith candidate ci in Du, we assign a weight wi that will then be used as the weight

for this candidate for weighted random sampling using the following equation:

wi = similarity(rc−Cu,ci−Cu)‖ci− rv,i‖2, ∀ci ∈ Du, (22)

where rv,i is the closest visited location to the candidate ci in the direction of rc, Cu is the

centroid of the unvisited regions U in the field domain Ω and similarity is the cosine

similarity operator which performs the following operation given two n-dimensional

vectors A and B:

similarity(A,B) =
A ·B
‖A‖‖B‖

, (23)

30

and determines cosine of the angle between the two vectors. Thus, the

similarity(rc−Cu,ci−Cu) factor in Equation (22) measures the cosine of the angle

formed between the rc−Cu vector (vector between formation center’s current location

and the centroid of the unvisited regions) and the ci−Cu vector (vector between the ith

candidate and the centroid of the unvisited regions). Therefore, the candidates in the

direction towards Cu are weighted higher than candidates in directions away from it. The

‖ci− rv,i‖2 term in Equation 22 measures the Euclidean distance between the ith candidate

ci and the closest visited location to it in the direction of rc. Thus, among candidates that

are towards the centroid of unvisited regions, candidates farther from the visited regions

are weighted higher. Fig. 4 illustrates an example scenario for destination selection.

To convert the assigned weights into a probability distribution that can be used to

randomly draw a destination, we exponentiate and normalize the weights using the

following equation:

Pr(ci) =
ewi

∑
|Du|
i=0 ewi

. (24)

Here, the exponentiation operation helps with assigning a higher weightage to better

candidates and reducing weightage from unfavorable candidates leading to better

randomly drawn locations. The resulting probability values are then used as probability

distribution for drawing of the chosen destination. The procedure for this algorithm is

described below in Algorithm 2.

Once the destination is selected, the formation must be controlled to reach that

destination. Recall that the mobile sensor robots follow single-integrator dynamics as

explained in Equation (4). Therefore, constant velocity commands u(t) are given to each

of the robots in the formation until the formation center rc reaches the chosen destination.

Once the chosen destination is reached, the control of the formation movement is

transferred back to the DQN controller so that information-rich paths can continue to be

tracked.

31

Algorithm 2 Procedure for selecting destination for further exploration

procedure CHOOSEEXPLORATIONDESTINATION(rc,d,U) . Given current location,
distance and unvisited regions, select destination

D← candidate destinations d distance away from rc
Du = []
for ci ∈ D do

if ci ∈Ω and ci ∈U then . Prune set of candidates
Du.insert(ci)

Cu =
1
|U |∑

|U |
i=0 ri . Calculate centroid of unvisited regions

weights = [] . Initialize empty weights array
for ci ∈ Du do

rv,i← trace ray from ci to rc to find first visited location
w = similarity(rc−Cu,ci−Cu)‖ci− rv,i‖2
weights.insert(w)

probabilities = [] . Initialize probabilities array
for wi ∈ weights do

p = ewi

∑
|Du|
i=0 ewi

probabilities.insert(p)
idx← randomly drawn index with probabilities as probability distribution
return Du[idx]

5.6 Advection-Diffusion Field Reconstruction

As stated previously, and as shown in Fig. 2, the task of field reconstruction consists

of two major sub-tasks: (1) identification of the advection-diffusion parameters governing

the unknown field, and (2) state estimation of the concentration field in the chosen spatial

domain. In this section, we describe how we use the algorithms developed in this chapter,

and the preliminaries described in Chapter 4 to reconstruct the unknown

advection-diffusion field.

As the mobile sensor robots travel through the field domain in a formation, they

collect measurements along their trajectories. At any time step, as mentioned previously,

the field measurements from the sensors are interpolated to provide estimates of the state

of the field within the view-scope. Since the field is a spatial-temporal varying dynamic

32

field, these interpolated estimates, are only valid for the current time step. However, these

collected field estimates can be evolved over time using the advection-diffusion field

Equation (2) if we had the knowledge of the advection parameters v and diffusion

parameter θ , which makes the task of reconstruction possible by using only a few mobile

robots. Thus, the field measurements are also used by the Recursive Least Squares (RLS)

method introduced in Chapter 4 to estimate the diffusion parameter, θ . The cooperative

Kalman Filter (introduced in Chapter 4) also uses the measurements to provide estimates

of the information state in Equation (7), which is further used by the Deep Q-Network to

provide the action for the formation to take. As the formation reaches a stationary state in

the field, the process for identification of advection parameters is triggered. The advection

parameters, v, are then identified using the process explained in Section 5.4.

Applying Equation (2) for the task of reconstruction with estimated

advection-diffusion parameters takes the following form:

∂ ẑ
∂ t

(r, t) = θ̂∇
2ẑ(r, t)+ v̂∇ẑ(r, t), r ∈Ω, (25)

where, θ̂ is the estimated constant diffusion coefficient, v̂ is the estimated constant 2D

advection parameter vector, and ẑ(r, t) is the reconstructed field concentration function. To

be able to apply Equation (25) for propagating the field, we need to have the initial and

boundary conditions defined. Assuming that we have no knowledge of the field at the start

of the experiment, the initial condition can be stated as:

ẑ(r,0) = 0, r ∈Ω, (26)

over the entire field domain. Additionally, as stated earlier, in many practical

environmental monitoring applications, the field domain Ω is much larger than the robots’

size, and so the boundary can be modeled as a flat surface. This allows us to assume

33

Dirichlet boundary conditions on the boundary ∂Ω [6],

ẑ(r, t) = 0, r ∈ ∂Ω. (27)

Now, at each time step k, at which robots measure the concentration field, we obtain

estimates of the field concentration function inside the view-scope, that is, ẑ(r,k) r ∈ Γ(k).

Therefore, at each such time step k, we can populate the estimated concentration values at

the current view-scope and apply Equation (25) to propagate the field. This process

allows us to reconstruct the field with only sparse measurements along the robots’

trajectories. Please note that in practice, we discretize Equation (25) over space and time

to evolve the field spatially and temporally. Please refer to Section 7.1 which elaborates

on how the field is reconstructed in practice as it requires the introduction of the

Low-Fidelity Simulation Environment (Section 6.1). Equations (31) and (32) show how

Equation (25) is discretized spatially and temporally for the reconstruction process.

As evident from Equation (25), the accuracy of identifying advection-diffusion

parameters is crucial in the quality of the reconstruction over time. Inaccurate

advection-diffusion parameters will cause the reconstructed field to diverge from the true

field over time and deteriorate the quality of the reconstruction. To evaluate the quality of

the reconstruction, we use the mapping error, also known as field reconstruction error, as

a metric. The mapping error at time step k is defined as follows:

eM(k) = ∑
r∈Ω

|z(r,k)− ẑ(r,k)|, (28)

where, z(r,k) is the true field concentration function at time step k and the ẑ(r,k) is the

concentration function for the reconstructed field at time step k. Therefore, in a successful

reconstruction, the mapping error eM(k) should decrease over the course of the episode.

34

Fig. 4. Illustration demonstrating the destination selection algorithm. In this figure, r0,r1,r2
and r3 are the four mobile sensor robots making the formation, while rc is the formation
center. The area inside the black dashed line marks the view-scope Γ. The yellow location
Cu denotes the centroid of the unvisited regions within Ω. The region marked in gray has
been previously visited by the formation. The dashed orange circle denotes all locations d
distance away from rc which form the candidate set D. A few sample candidates from this
set are labeled with ci, i = 0,1,2...8. Among the sample candidates, c3 and c4 are removed
from consideration since they lie outside the field domain Ω, while c7 and c8 are removed
from consideration since they lie within the visited region. Eventually, c0,c1,c2,c5 and
c6 are added to set Du and considered as candidate destinations. Locations rv,0,rv,1 and
rv,2 denote the closest visited locations in the direction of rc for candidates c0,c1 and c2
respectively. For this example, candidate c1 would achieve the largest probability for being
selected since it is towards Cu.

35

6 TRAINING IN LOW-FIDELITY SIMULATION ENVIRONMENT

Having proposed the algorithm in Chapter 5, we can now move to the experimentation

and implementation of the algorithm. In this chapter, we first introduce the Low-Fidelity

Simulation Environment and then show how we set it up to be used for training of the

deep reinforcement learning model proposed in Section 5.2. Then we provide training as

well as testing results if we were to use the trained deep reinforcement learning model

solely for path-planning. The Low-Fidelity Simulation Environment introduced here will

also be used for testing of the complete proposed algorithm, and the results are presented

in Chapter 7.

6.1 Low-Fidelity Simulation Environment

The Low-Fidelity Simulation Environment is a 2D environment that represents the

field domain Ω as a discretized E×F matrix with E = F = 100, with each grid cell

r ∈Ω holding a concentration value z(r, t) at time t. Since one of the major purposes of

this environment is to enable training of the deep reinforcement learning model, it is set

up as an OpenAI Gym [41] environment, which allows us to use a standard interaction

interface during the learning task.

6.1.1 Advection-Diffusion Field Representation

As introduced in Chapter 3, an advection-diffusion field is a special spatial-temporal

varying field expressed by the partial differential Equation (2). Therefore, given the initial

state of the field z(r,0)∀r ∈Ω, Equation (2) provides us with how the field evolves over

space and time for certain advection and diffusion coefficients v and θ , respectively. Since

the field representation is discretized spatially, the Equation (2) will need to be discretized

spatially and temporally to be applied to this field. Consider the 3×3 section of the

36

discretized advection-diffusion field representation in Fig. 5. Then, using the finite

difference method, we can discretize Equation (2) as follows:

z(r0,k+1)− z(r0,k)
ts

=θ

[
z(r2,k)+ z(r4,k)−2z(r0,k)

∆r2
x

+
z(r1,k)+ z(r3,k)−2z(r0,k)

∆r2
y

]
+

vT
∇z(r0,k)+ e(r0,k),

(29)

where k is the discretized time stamp, ts is the sampling interval and e(r0,k) accounts for

the approximation error. Assuming square grid cells, i.e., ∆rx = ∆ry, Equation (29)

simplifies to the following.

z(r0,k+1)− z(r0,k)
ts

= θ
∑

4
i=1 z(ri,k)−4z(r0,k)

∆r2
x

+vT
∇z(r0,k)+ e(r0,k). (30)

Thus, by choosing advection and diffusion coefficients v and θ we can simulate the

evolution of an advection-diffusion field applying Equation (30) for each grid cell r0 ∈Ω.

Fig. 7 shows the evolution of an example advection-diffusion field over 300 time steps.

Fig. 5. A small 3×3 section of the discretized advection-diffusion field representation.

37

6.1.2 Setup as OpenAI Gym Environment

As introduced earlier, the advection-diffusion field is implemented as an OpenAI

Gym [41] environment in Python 3. Using OpenAI Gym provides a number of benefits

and conveniences for the reinforcement learning task. First, it provides standard

interaction patterns between the agent and the environment. These patterns make it easy

to develop and test different algorithms on the same environment or the same algorithm

on different environments and quickly compare performance and results. Second, OpenAI

gym environments provide concept of Space which is used for defining state and action

spaces called observation_space and action_space, respectively. These spaces

define the valid format of states and actions, respectively. We use the derived Discrete

space for defining the action space. This space allows us to map the 9 actions in Equation

(17) as non-negative integers that can then be sampled from the action_space object.

For the observation_space we use the derived Box space. We define

observation_space as 3-dimensional bounded box of floats corresponding to our

definition of the state in Equation (16). This object allows us to sample a random valid

state and check the validity of a state with ease.

6.2 Deep Q-Network (DQN) Training Setup

Having described the setup of the advection-diffusion field environment, we can now

begin the training of the Deep Q-Network (DQN) based on the formulation described in

Section 5.2. In this section, we first address some implementation issues with DQN

training and then provide the full training algorithm.

6.2.1 Exploration using ε-greedy algorithm

For the purposes of training the neural network, we need to interact with the

environment and collect rewards. Fig. 6 shows the steps involved in a single interaction

with the environment. Therefore, for an episode to proceed, the agent needs to make a

38

decision on which action it must take. If we had a good policy π(a|s), we could simply

use this policy to make this decision, however, since the goal of training is to obtain a

good policy, we cannot assume the existence of such a policy [39]. An alternative

approach is to sample a random action from the action_space at each time step to

interact with the environment, however, it is likely that the agent will spend time

exploring states that are not very useful and the training may take a long time to converge.

While random exploration is important for the discovery of good actions to take from a

state at the beginning of training, it is also important to use what the model has learned

thus far during the later stages in the training.

Fig. 6. A single agent-environment interaction.

A way to combine the two approaches is to use the ε-greedy method for action

selection, where ε is a training hyperparameter that is reduced over the duration of the

training. In this method, during each interaction a random floating point number α is

drawn from a uniform distribution. If α < ε , a random action is sampled from the

action_space and used for the interaction. Otherwise, the trained neural network is

queried using the current state s to produce an estimate of the state-action values

(Q(s,a)), and the action corresponding to the largest Q-value is chosen. The ε training

parameter is reduced linearly over the course of the training which encourage exploration

by enabling usage of random behavior at the beginning of training, while exploiting the

previously learned behavior more as the training progresses [39].

39

6.2.2 Experience Replay Buffer

As noted in Section 5.2, we will be using the stochastic gradient descent (SGD)

algorithm [40] for training the neural network, with Equation (20) serving as the loss

function to minimize, effectively converting the DQN training problem into a supervized

learning problem. However, the usage of SGD algorithm requires that the training data be

independent and identically distributed (i.i.d.), meaning that a batch of training samples

must be independent from each other and must represent the overall distribution of

training data. Therefore, the way we build batches of training data for SGD is important.

It is important to note that the requirement of i.i.d. is not fulfilled if we use interactions

from a single episode in a batch due to the following reasons:

1) Consecutive interactions in an episode are not independent as the resulting state for

the first interaction is the input state for the next.

2) Distribution of the training data will be different from the optimal policy we wish to

learn [39]. Instead the data will be based on the ε-greedy policy introduced in the

previous section.

To counter this issue, we create a large buffer called the Experience Replay Buffer using a

double-ended queue (also known as deque) data structure that stores tuples of

agent-environment interactions in the form (s,a,r,s′) of a given length B. This buffer

holds the B most recent interactions from multiple recent episodes. Then, to build our

batch of training data, we sample random interactions from this buffer, which gives us

interactions that are more likely to be independent from each other, while providing us

with fresh experience to learn from.

6.2.3 Issue with Bootstrapping

As evident from the Q-learning Equation (14), the Q(s,a) (value of the current

state-action pair) is improved using Q(s′,a′) (value of the next state-action pair). This

process is known as bootstrapping since the improvement of the current state-action pair

40

is dependent on the estimate of the next state-action pair [39]. The issue with using

bootstrapping with neural-networks is that the states s and s′ are only a single step apart

and very similar to each other [39]. Since neural networks are unable to discriminate

between states that are very similar [42], updating the weights of the neural network to

make Q(s,a) closer to our target value, may inadvertently also change the state-action

values of s′ and other nearby states. It is important to note that this is a special property of

using neural networks for function approximation, where update in the weights impacts

multiple state-action values, as opposed to Tabular Q-learning where updating one

state-action value does not impact any other state-action pairs. This issue with

neural-networks can make the training very unstable where in an effort to improve one

state-action value we worsen nearby state-action values.

To counter this issue, we need to separate the model that is being trained and the

model where we extract the target state-action value Q(s′,a′) from, called the target

network [39]. This network is a copy of the network being trained and the weights

between the two networks are synchronized every Tsync interactions with the environment.

By doing so, updating the weights in our training network to train for Q(s,a) does not

impact the value of the target state-action pair and helps with the stability of the training.

6.2.4 DQN Training Pseudo-code

With all the sub components of the training defined, we are now ready to provide the

entire DQN training algorithm. This algorithm is a modified version of the algorithm

provided in [39] and is provided in Algorithm 3 below.

6.3 Training Results

In this section, we provide results of training the DQN model with a variety of

advection-diffusion field simulations as performed in the Low-Fidelity Simulation

Environment introduced in Section 6.1. The advection-diffusion field simulations will

differ in their initial state z(r,0) r ∈Ω and their advection and diffusion parameters v and

41

Algorithm 3 DQN Training algorithm

procedure DQNTRAINING(buf_len, max_steps, batch_size, Tsync)
train_net← DQN() . Initialize training network with random weights
target_net← DQN() . Initialize target network with random weights
env← AdvectionDiffusionEnvironment() . Initialize the environment
ε ← 1.0 . Initialize ε

bufreplay = deque(buf_len) . Initialize experience replay buffer
step← 0
s← env.reset() . Get initial state
while not converged or step< max_steps do

if rand()< ε then . Choose a random action
a← sample(env.action_space)

else
Q(s,a)← train_net(s) . Query trained network for Q(s,a)
a← argmaxaQ(s,a) . Choose best current action

r,s′,done← env(a) . Take a step and receive reward and next state
bufreplay.insert((s,a,r,s′)) . Store interaction in the replay buffer
s← s′

batch← sample(bufreplay,batch_size) . Sample a random batch of data

if done then . If episode has ended
y← r . Calculate target for each interaction in the batch
s← env.reset()

else
Q̂(s′,a′)← target_net(s′) . Query target network for Q̂(s′,a′)
y← r+ γ maxa′Q̂(s′,a′) . Calculate target for each interaction in the batch

L← (Q(s,a)− y)2 . Calculate loss value for each interaction in the batch
SGD(train_net,L) . Apply SGD algorithm to minimize loss
ε ← 1.0− step

max_steps . Decay ε linearly

if step % Tsync == 0 then . Synchronize weights every Tsync steps
target_net.weights← train_net.weights

step++

θ respectively. Fig. 7, 8 and 9 show the initial states of the three different simulated fields

with increasing complexity and their evolution over time using their respective

42

advection-diffusion parameters. To easily refer to these fields, we name them Field-1,

Field-2 and Field-3 respectively. Additionally, Table 1 summarizes the advection-diffusion

parameters for each of the simulated fields.

Table 1
Summary of Advection-Diffusion Parameters Chosen for the Simulated Fields

Field Name θ v
Field-1 1.0 [0.6, -0.8]
Field-2 1.0 [0.7, 0.3]
Field-3 1.0 [-0.4, 0.7]

Please take note of the color bars drawn in Fig. 7, 8 and 9. The values representing the

darkest color in the color map decrease as time increases demonstrating the impact of the

diffusion in the simulated fields.

43

Fig. 7. These figures show the state of the Field-1 simulated advection-diffusion field at
the following time steps (a) k = 0, (b), k = 150, (c) k = 300.

44

Fig. 8. These figures show the state of the Field-2 simulated advection-diffusion field at
the following time steps (a) k = 0, (b), k = 150, (c) k = 300

45

Fig. 9. These figures show the state of the Field-3 simulated advection-diffusion field at
the following time steps (a) k = 0, (b), k = 150, (c) k = 300

46

6.3.1 DQN Training on Field-1

The neural-network model described in Fig. 3 was trained using Algorithm 3 with

Field-1 as the advection-diffusion environment. It is important to note that unlike most

path-finding algorithms that require a fixed starting location and destination, each episode

in our training starts at a random location rc ∈Ω. Some of the important

hyper-parameters used for this training are as follows:

• Number of training interactions (max_steps): 4000000

• Optimizer used: Adam [43]

• Initial Learning rate: 0.0001

• Discount factor (γ): 0.99

• Batch size (batch_size): 64

• Experience replay buffer size (buf_len): 200000

• Time steps to synchronize training and target networks (Tsync): 900

Fig. 10 shows the average accumulated reward per episode over the course of the network

training. According to Equation (18), the absolute value of the reward accumulated per

episode depends on the field values and the path taken by the mobile robot formation. As

evident from Fig. 10, the training converged at an average reward per episode of 9815

showing that the network learns to accumulate roughly the same reward each episode

regardless of the formation’s starting location.

47

Fig. 10. Accumulated episode rewards over time steps during training on Field-1

6.3.2 DQN Training on Field-2

The neural-network model described in Fig. 3 was trained using Algorithm 3 with

Field-2 as the advection-diffusion environment. It is important to note that unlike most

path-finding algorithms that require a fixed starting location and destination, each episode

in our training starts at a random location rc ∈Ω. Some of the important

hyper-parameters used for this training are as follows:

• Number of training interactions (max_steps): 4000000

• Optimizer used: Adam [43]

• Initial Learning rate: 0.0001

• Discount factor (γ): 0.99

• Batch size (batch_size): 64

• Experience replay buffer size (buf_len): 200000

• Time steps to synchronize training and target networks (Tsync): 900

48

Fig. 11 shows the average accumulated reward per episode over the course of the network

training. According to Equation (18), the absolute value of the reward accumulated per

episode depends on the field values and the path taken by the mobile robot formation. As

evident from Fig. 11, the training converged at an average reward per episode of 9044

showing that the network learns to accumulate roughly the same reward each episode

regardless of the formation’s starting location.

Fig. 11. Accumulated episode rewards over time steps during training on Field-2

6.3.3 DQN Training on Field-3

The neural-network model described in Fig. 3 was trained using Algorithm 3 with

Field-3 as the advection-diffusion environment. It is important to note that unlike most

path-finding algorithms that require a fixed starting location and destination, each episode

in our training starts at a random location rc ∈Ω. Some of the important

hyper-parameters used for this training are as follows:

• Number of training interactions (max_steps): 4000000

49

• Optimizer used: Adam [43]

• Initial Learning rate: 0.0001

• Discount factor (γ): 0.99

• Batch size (batch_size): 64

• Experience replay buffer size (buf_len): 200000

• Time steps to synchronize training and target networks (Tsync): 900

Fig. 12 shows the average accumulated reward per episode over the course of the network

training. According to Equation (18), the absolute value of the reward accumulated per

episode depends on the field values and the path taken by the mobile robot formation. As

evident from Fig. 12, the training converged at an average reward per episode of 10084

showing that the network learns to accumulate roughly the same reward each episode

regardless of the formation’s starting location.

Fig. 12. Accumulated episode rewards over time steps during training on Field-3

50

6.4 Testing Results

In this section, we use the trained models described in the previous section to perform

inference and generate sample test episodes. Please note that we do not show results of

running the full algorithm proposed in Chapter 5 here, those are provided in Chapter 7.

Please note the following remarks for figures showing the field domain Ω in this section:

• The number of mobile robots in these results is 4 i.e., N = 4. These robots will travel

in a square shaped formation. The square formed by the mobile robots is the time

varying view-scope Γ(k) and is represented by a red colored square.

• The initial location of the formation center rc(k = 0) is denoted by a red colored

circle.

• The trajectory followed by the formation center rc(k) is denoted by filled black

colored circles.

Fig. 13 and 14 show a sample episode each from two different starting locations if the

DQN model trained on Field-1 is followed for the entirety of the episode. In both figures,

the trained DQN model commands the formation to move over information-rich

trajectories to reach high-concentration zones which provide the most information to

reduce the mapping error. After reaching the high-concentration zones, the DQN model

commands the formation to track the high-concentration zones matching the local velocity

of the advection-diffusion field. This feature of the DQN model allows us to identify the

advection coefficients of the field using the algorithm described in Algorithm 1.

Fig. 15 and 16 show a sample episode each from two different starting locations if the

DQN model trained on Field-2 is followed for the entirety of the episode. Both these

figures show that the DQN model commands the formation to move on information-rich

trajectories, and then track high-concentration zones similar to how it did on Field-1 as

shown in Fig. 13 and 14. This shows that the training works as expected over different

initial field concentrations and advection-diffusion parameters.

51

Fig. 13. Sample test episode 1 using trained DQN model on Field-1 at following time
steps (a) k = 100, (b) k = 300

Similar results for test episodes run using DQN model trained on Field-3 are obtained,

as shown in Fig. 17 and 18. In Fig. 18(a), it is important to note that while the DQN

model tracked a high-concentration zone for some time steps, as soon as it discovered a

trajectory that reduces the mapping error to a higher degree, it was able to control the

formation to zone with higher concentration, as apparent in Fig. 18(b). This demonstrates

that the DQN model is able to command the formation towards the areas that reduce the

mapping error the most from the current location, at each time step k.

52

Fig. 14. Sample test episode 2 using trained DQN model on Field-1 at following time
steps (a) k = 100, (b) k = 300

Fig. 15. Sample test episode 1 using trained DQN model on Field-2 at following time
steps (a) k = 100, (b) k = 300

53

Fig. 16. Sample test episode 2 using trained DQN model on Field-2 at following time
steps (a) k = 100, (b) k = 300

Fig. 17. Sample test episode 1 using trained DQN model on Field-3 at following time
steps (a) k = 100, (b) k = 300

54

Fig. 18. Sample test episode 2 using trained DQN model on Field-3 at following time
steps (a) k = 100, (b) k = 300

55

7 FIELD RECONSTRUCTION RESULTS IN LOW-FIDELITY SIMULATION

ENVIRONMENT

In this chapter, we first elaborate on the field reconstruction process (Section 5.6) as it

applies to the Low-Fidelity Simulation Environment and then provide testing results of

using the algorithm proposed in Chapter 5 on the three simulated fields described in Table

1. The trained models described in Section 6.3 are used for the DQN based control

portions of the proposed algorithm in Fig. 2. Additionally, we introduce two new test

fields that were not used in the training process and demonstrate the performance of the

proposed algorithm on these test fields.

7.1 Advection-Diffusion Field Reconstruction in Low-Fidelity Simulation

Environment

In this section, we elaborate on how the advection-diffusion PDE for field

reconstruction (Equation (25)) is discretized using the finite-difference method, and used

to reconstruct the field in the Low-Fidelity Simulation Environment. Similar to the

simulated field described in Section 6.1, the reconstructed field domain Ω is represented

as a discretized E×F matrix with E = F = 100, with each grid cell r ∈Ω holding a

concentration value ẑ(r, t) at time t. Please refer to Fig. 5 as a 3×3 section of the

discretized field representation, as it applies here as well. Therefore, to apply Equation

(25) on this discretized field, we use the finite difference method to spatially and

temporally discretize this equation as follows:

ẑ(r0,k+1)− ẑ(r0,k)
ts

=θ̂

[
ẑ(r2,k)+ ẑ(r4,k)−2ẑ(r0,k)

∆r2
x

+
ẑ(r1,k)+ ẑ(r3,k)−2ẑ(r0,k)

∆r2
y

]
+

v̂T
∇ẑ(r0,k)+ e(r0,k),

(31)

56

where k is the discretized time stamp, ts is the sampling interval, e(r0,k) accounts for the

approximation error, θ̂ is the diffusion parameter estimated by the RLS algorithm

(Chapter 4), v̂ are the advection parameters estimated by the proposed algorithm and

ẑ(r, t) is the reconstructed concentration function. Assuming square grid cells, i.e.,

∆rx = ∆ry, Equation (31) simplifies to the following.

ẑ(r0,k+1)− ẑ(r0,k)
ts

= θ̂
∑

4
i=1 ẑ(ri,k)−4ẑ(r0,k)

∆r2
x

+ v̂T
∇ẑ(r0,k)+ e(r0,k). (32)

Thus, at each time step k, when the estimated field values ẑ(r,k), r ∈ Γ(k) are

available, we populate these values at the current view-scope in the reconstructed field

and apply the discretized Equation (32) to propagate the field. This process allows us to

reconstruct the field with only sparse measurements along the robots’ trajectories. Figures

in the next section demonstrate episodes showing the process of reconstruction.

7.2 Reconstruction Results

To demonstrate the efficacy of the proposed algorithm, we first provide two sample

test episodes each for running the proposed algorithm on each of the three simulated

advection-diffusion fields in Table 1. Second, we provide plots of mapping errors over the

course of 30 episodes with randomized starting locations for each of the simulated

advection-diffusion fields showing the reduction in mapping error regardless of the

formation’s starting location. Third, we create two test fields named Test Field-1 and Test

Field-2 described in Table 2 and provide two sample test episodes on these fields using

the DQN model trained on Field-3 to show the generalizability of the algorithm on unseen

fields. Finally, we provide plots of mapping errors over the course of 30 test episodes with

randomized starting locations for the two test fields, showing the reduction in mapping

error regardless of the formation’s starting location.

Please note the following remarks for figures showing the field domain Ω in this

section:

57

• The number of mobile robots in these results is 4 i.e., N = 4. These robots will travel

in a square shaped formation. The square formed by the mobile robots is the time

varying view-scope Γ(k) and is represented by a red colored square.

• The initial location of the formation center rc(k = 0) is denoted by a red colored

circle.

• The trajectory followed by the formation center rc(k) while the formation is

controlled by the DQN network is denoted by filled black colored circles.

• The trajectory colored in red followed by the formation center rc(k) is the most

recent path followed to reach the destination provided by the destination selector

algorithm described in Section 5.5.

• The figures are organized in 3×2 grids. Images in the first column show the state of

the simulated field, while the images in the second column show the field

reconstructed by the mobile robot formation. Images in the same row represent the

same time step in the episode.

7.2.1 Testing on Field-1

In this section, we discuss the two sample test episodes performed on Field-1 shown

in Fig. 19 and 20. Fig. 19 shows the state of first sample episode at time steps

k = 100,k = 136 and k = 136. At k = 100, Fig. 19(a) shows that the formation has

reached a stationary state in the field, identified the advection coefficients, chosen a

destination and planned the path to the destination. The identified advection parameters

are v̂ = [0.57,−0.82], which are similar to the true advection parameters for Field-1 of

v = [0.6,−0.8] as stated in Table 1. Then, using the estimated advection parameters and

the known diffusion parameters in equation 29, we retroactively reconstruct the field as

explained in Section 5.6 and shown in Fig. 19(b). In Fig. 19(c) and 19(d), the state of the

episode at k = 136 is shown. At this time step, the formation has reached the chosen

destination, and the control is transferred back to the DQN model. The formation then

58

reaches and tracks the second high-concentration zone until the end of the experiment.

Fig. 19(f) shows the state of the reconstructed field at the end of the episode. Additionally,

Fig. 21 shows the reduction in mapping error over the course of this test episode. As

evident from the figure, the mapping error reduces monotonically through out the episode.

It is interesting to note that the mapping error reduces at a higher rate when the formation

is moving towards the high-concentration zones.

Fig. 20 shows us the state of the second sample episode at time steps

k = 118,k = 218 and k = 300. Additionally, Fig. 22 shows the reduction in mapping error

over the course of this test episode. We see similar results in the path planned in this

episode as we did with episode 1. At k = 118, in Fig. 20(a) and 20(b), the formation has

reached a stationary state in the field, identified the advection coefficients, chosen a

destination and planned a path to the destination. The identified advection parameters are

v̂ = [0.59,−0.85], which are similar to the true advection parameters for Field-1 of

v = [0.6,−0.8] as stated in Table 1. At k = 218, in Fig. 20(c) and 20(d), we see that the

formation has reached another stationary state in the field, and thus chooses another

destination to trigger exploration and plans a path to it. After reaching the destination, the

control is transferred back to the DQN model and the formation tracks the second

high-concentration zone until the end of the episode.

59

Fig. 19. Sample test episode 1 performed on Field-1

60

Fig. 20. Sample test episode 2 performed on Field-1

61

Fig. 21. Mapping error for sample test episode 1 performed on Field-1

Fig. 22. Mapping error for sample test episode 2 performed on Field-1

62

7.2.2 Testing on Field-2

In this section, we discuss the two sample test episodes performed on Field-2. As

shown in Fig. 8, Field-2 has 3 high-concentration zones making the initial field surface

more complicated than for Field-1, making the reconstruction task more challenging.

Fig. 23 shows the state of the first sample episode at time steps k = 101,k = 202 and

k = 300. Additionally, Fig. 25 shows the reduction in mapping error over the course of

this test episode. At k = 101, in Fig. 23(a) and 23(b), the formation has reached a

stationary state in the field, identified the advection coefficients, chosen a destination and

planned a path to the destination. The identified advection parameters are v̂ = [0.72,0.34],

which are similar to the true advection parameters for Field-2 of v = [0.7,0.3] as stated in

Table 1. At k = 202, in Fig. 23(c) and 23(d), we see that the formation has reached

another stationary state in the field, and thus chooses another destination to trigger

exploration and moves to the destination. After reaching the destination, the control is

transferred back to the DQN model and the formation tracks the second

high-concentration zone until the end of the episode. As observed in previous episodes,

the mapping error reduces at a higher rate when new high-concentration zones are found.

Fig. 24 shows the state of the second sample episode at time steps k = 107,k = 227

and k = 300. Additionally, Fig. 26 shows the reduction in mapping error over the course

of this test episode. At k = 107, in Fig. 24(a) and 24(b), the formation has reached a

stationary state in the field, identified the advection coefficients, chosen a destination and

planned a path to the destination. The identified advection parameters are v̂ = [0.68,0.28],

which are similar to the true advection parameters for Field-2 of v = [0.7,0.3] as stated in

Table 1. At k = 227, in Fig. 24(c) and 24(d), we see that the formation has reached

another stationary state in the field, and thus chooses another destination to trigger

exploration and moves to the destination. After reaching the destination, the control is

transferred back to the DQN model and the formation tracks the second

63

high-concentration zone until the end of the episode. As observed in previous episodes,

the mapping error reduces at a higher rate when new high-concentration zones are found.

64

Fig. 23. Sample test episode 1 performed on Field-2

65

Fig. 24. Sample test episode 2 performed on Field-2

66

Fig. 25. Mapping error for sample test episode 1 performed on Field-2

Fig. 26. Mapping error for sample test episode 2 performed on Field-2

67

7.2.3 Testing on Field-3

In this section, we discuss the two sample test episodes performed on Field-3. As

shown in Fig. 9, Field-3 has 4 high-concentration zones making the initial field surface

more complicated than for Field-1 and Field-2, making the reconstruction task even more

challenging.

Fig. 27 shows the state of the first sample episode at time steps k = 139,k = 238 and

k = 300. Additionally, Fig. 29 shows the reduction in mapping error over the course of

this test episode. At k = 139, in Fig. 27(a) and 27(b), the formation has reached a

stationary state in the field, identified the advection coefficients, chosen a destination and

planned a path to the destination. The identified advection parameters are

v̂ = [−0.39,0.71], which are similar to the true advection parameters for Field-3 of

v = [−0.4,0.7] as stated in Table 1. At k = 238, in Fig. 27(c) and 27(d), we see that the

formation has reached another stationary state in the field, and thus chooses another

destination to trigger exploration and moves to the destination. After reaching the

destination, the control is transferred back to the DQN model and the formation tracks the

third high-concentration zone until the end of the episode. As observed in previous

episodes, the mapping error reduces at a higher rate when new high-concentration zones

are found.

Fig. 28 shows the state of the second sample episode at time steps k = 127,k = 226

and k = 300. Additionally, Fig. 30 shows the reduction in mapping error over the course

of this test episode. At k = 127, in Fig. 28(a) and 28(b), the formation has reached a

stationary state in the field, identified the advection coefficients, chosen a destination and

planned a path to the destination. The identified advection parameters are

v̂ = [−0.43,0.74], which are similar to the true advection parameters for Field-3 of

v = [−0.4,0.7] as stated in Table 1. At k = 226, in Fig. 28(c) and 28(d), we see that the

formation has reached another stationary state in the field, and thus chooses another

68

destination to trigger exploration and moves to the destination. After reaching the

destination, the control is transferred back to the DQN model and the formation tracks the

third high-concentration zone until the end of the episode. As observed in previous

episodes, the mapping error reduces at a higher rate when new high-concentration zones

are found.

69

Fig. 27. Sample test episode 1 performed on Field-3

70

Fig. 28. Sample test episode 2 performed on Field-3

71

Fig. 29. Mapping error for sample test episode 1 performed on Field-3

Fig. 30. Mapping error for sample test episode 2 performed on Field-3

72

7.3 Aggregated Mapping Errors with Random Starting Locations

In the previous section, we demonstrated a few test episodes for each of the simulated

fields and explained the behavior and performance of the proposed algorithm. In this

section, we will run a number of test episodes using the proposed algorithm on each of

the the simulated fields and provide the mapping errors for these episodes in aggregate.

We run 30 test episodes each for Field-1, Field-2 and Field-3 with randomized

formation center starting locations and aggregate the mapping errors for each of the

episodes. Fig. 31, 32 and 33 plot the aggregated mapping errors for fields Field-1, Field-2

and Field-3 respectively. The mean mapping error is plotted in a dark blue color, and the

blue shaded region shows the minimum and maximum bounds over the 30 episodes. As

evident from the figures, the mapping error reduces monotonically in aggregate showing

that the proposed algorithm is able to command the formation to travel along

information-rich paths, trigger exploration as stationary states are reached regardless of

the starting location of the formation center.

73

Fig. 31. Mean mapping errors over 30 episodes with random starting locations on Field-1.
The shaded region shows the minimum and maximum bounds.

Fig. 32. Mean mapping errors over 30 episodes with random starting locations on Field-2.
The shaded region shows the minimum and maximum bounds.

74

Fig. 33. Mean mapping errors over 30 episodes with random starting locations on Field-3.
The shaded region shows the minimum and maximum bounds.

7.4 Testing Results on Unseen Test Fields

Thus far, we have demonstrated the performance of the algorithm on simulated

advection-diffusion fields that the DQN models had previously been trained on. While it

is shown that the algorithm performs well on the fields described in Table 1, it is

important to show the algorithm can also be used on fields that are unseen by the DQN

model, and can generalize well regardless of the initial concentration surface

z(r,0)∀r ∈Ω, and advection-diffusion coefficients. Therefore, in this section, we create

two test fields named Test Field-1 and Test Field-2 and using the DQN model trained on

Field-3, we perform two sample test episodes of the proposed algorithm. Table 2

summarizes the advection-diffusion coefficients used for the simulated test fields, and Fig.

34 and 35 show the initial states of Test Field-1 and Test Field-2 and their evolution over

time using their respective advection-diffusion parameters. Please note that to be able to

75

easily differentiate testing fields from training fields, a green color map is used in the

figures showing testing fields.

Table 2
Summary of Advection-Diffusion Parameters Chosen for the Simulated Test Fields

Field Name θ v
Test Field-1 1.0 [-0.65, 0.45]
Test Field-2 1.0 [0.8, -0.4]

76

Fig. 34. These figures show the state of the Test Field-1 simulated advection-diffusion
field at the following time steps (a) k = 0, (b), k = 150, (c) k = 300

77

Fig. 35. These figures show the state of the Test Field-2 simulated advection-diffusion
field at the following time steps (a) k = 0, (b), k = 150, (c) k = 300

78

Now, using the DQN model trained on Field-3, we perform one sample test episode

each on Test Field-1 and Test Field-2. Fig. 36 shows the state of the test episode

performed on Test Field-1 at time steps k = 129,k = 214 and k = 300. Additionally, Fig.

38 shows the reduction in mapping error over the course of this test episode. At k = 129,

in Fig. 36(a) and 36(b), the formation has reached a stationary state in the field, identified

the advection coefficients, chosen a destination and planned a path to the destination. The

identified advection parameters are v̂ = [−0.67,0.44], which are similar to the true

advection parameters for Test Field-1 of v = [−0.65,0.45] as stated in Table 2. At

k = 214, in Fig. 36(c) and 36(d), we see that the formation has reached another stationary

state in the field, and thus chooses another destination to trigger exploration and moves to

the destination. After reaching the destination, the control is transferred back to the DQN

model and the formation tracks the third high-concentration zone until the end of the

episode. As observed in previous episodes performed on training fields, the mapping error

reduces at a higher rate when new high-concentration zones are found.

Fig. 37 shows the state of the test episode performed on Test Field-2 at time steps

k = 106,k = 244 and k = 300. Additionally, Fig. 39 shows the reduction in mapping error

over the course of this test episode. At k = 106, in Fig. 37(a) and 37(b), the formation has

reached a stationary state in the field, identified the advection coefficients, chosen a

destination and planned a path to the destination. The identified advection parameters are

v̂ = [0.84,−0.37], which are similar to the true advection parameters for Test Field-2 of

v = [0.8,−0.4] as stated in Table 2. At k = 244, in Fig. 37(c) and 37(d), we see that the

formation has reached another stationary state in the field, and thus chooses another

destination to trigger exploration and moves to the destination. After reaching the

destination, the control is transferred back to the DQN model and the formation tracks the

third high-concentration zone for a short duration before re-triggering exploration. The

episode ends just as the formation reaches the chosen destination. As observed in previous

79

episodes performed on training fields, the mapping error reduces at a higher rate when

new high-concentration zones are found.

80

Fig. 36. Sample test episode performed on Test Field-1

81

Fig. 37. Sample test episode performed on Test Field-2

82

Fig. 38. Mapping error for test episode performed on Test Field-1

Fig. 39. Mapping error for test episode performed on Test Field-2

83

7.5 Aggregated Mapping Errors with Random Starting Locations on Unseen

Fields

In the previous section, we demonstrated test episodes for each of the simulated test

fields and explained the behavior and performance of the proposed algorithm on

previously unseen fields. In this section, we will run a number of test episodes using the

proposed algorithm on both simulated test fields and provide the mapping errors for these

episodes in aggregate.

We run 30 test episodes each for Test Field-1 and Test Field-2 with randomized

formation center starting locations and aggregate the mapping errors for each of the

episodes. Fig. 40 and 41 plot the aggregated mapping errors for fields Test Field-1 and

Test Field-2 respectively. The mean mapping error is plotted in a dark green color, and the

green shaded region shows the minimum and maximum bounds over the 30 episodes. As

evident from the figures, the mapping error reduces monotonically in aggregate showing

that the proposed algorithm is able to command the formation to travel along

information-rich paths, trigger exploration as stationary states are reached regardless of

the starting location of the formation center on unseen test fields as well.

84

Fig. 40. Mean mapping errors over 30 episodes with random starting locations on Test
Field-1. The shaded region shows the minimum and maximum bounds.

Fig. 41. Mean mapping errors over 30 episodes with random starting locations on Test
Field-2. The shaded region shows the minimum and maximum bounds.

85

8 IN-LAB TESTBED

In this chapter, we briefly describe the temporary testbed that we built to develop and

test the proposed algorithm. It is important to note that due to the COVID-19 campus

closures, we were unable to complete building the testbed setup, and instead opted to

perform experiments in a High-Fidelity Simulation Environment (described in Chapter 9)

which closely mimics the in-lab testbed. Therefore, we do not include all the

implementation details of the setup here. Please refer to Chapter 9 for details on how the

High-Fidelity Simulation Environment is built and used.

The in-lab testbed consists of two major components, a field map that mimics the

spatial domain Ω, and mobile robotic agents that can move in the said field map.

8.1 Robotic Platform

Fig. 42 shows an image of the modified NVIDIA Jetbot Robot AI kit [36] using the

NVIDIA Jetson Nano Developer Kit [44] that we use as the Robotic platform for this

work. The NVIDIA Jetson Nano Developer Kit [44] runs a version Ubuntu 18.04 [45] that

comes with full Robot Operating System (ROS) [11] support, allowing us to use and build

cross-compatible robotics packages. We modified the robotics platform in two main ways.

First, we mounted a YDLIDAR G4 sensor [46], which is a 360° two-dimensional

rangefinder to the top of the platform. Second, we mounted hall-effect wheel encoder

sensors to the motors so that we could obtain wheel odometry.

The 2D LiDAR sensor allows us to measure depth in 360° around the robotic

platform in the plane of the sensor. This sensor outputs data as ROS LaserScan

messages [47], which are then converted to PointCloud2 [48] type messages to be

used for localization. Please refer to Section 9.4.1 for details on this conversion. We

added a 3D printed base to the existing platform to mount this sensor.

To enable wheel odometry, we installed a DAGU wheel encoder kit [49] to each of the

two motors on the robotic platform chassis. This encoder kit consists of neodymium

86

8-pole magnets with rubber hubs and two hall-effect sensors, which allow us to measure

the forwards and backwards rotation of the wheels. Combining inputs from both wheels

allows us to accurately predict the pose of the robot platform in the odometry frame. This

input is crucial in the localization process as well, which is further explained in Section

9.5.

Fig. 42. Photo of the Robotic Platform based on NVIDIA Jetbot kit.

8.2 Field Map Setup

In order to perform experiments, we need a representation of the environment that the

robotic platforms move in. Fig. 43 shows the temporary field map that was built using

cardboard boxes. The irregular shape of the map provides local features that are useful for

successful localization of the robots using point cloud matching algorithms. Fig. 44 shows

the point cloud representation of the field map as captured by the 2D LiDAR sensor on a

robot.

87

Fig. 43. Temporary field bed set up for in-lab testing.

Fig. 44. The Field Map PointCloud generated by the 2D LiDAR on the Robotic Platform.

88

9 HIGH-FIDELITY SIMULATION TESTING ENVIRONMENT

A major portion of this work consists of extending the path-planning algorithms

developed in the Low-Fidelity Simulation Environment to a system that more closely

resembles the real-world. To that end, this section elaborates on the High-Fidelity

Simulation Testing Environment that is developed to test, adapt and improve the

developed algorithms in. Originally, it was planned to extend the algorithms to the in-lab

testbed described in Chapter 8. However, due to lack of access to resources on campus

during the COVID-19 pandemic, a High-Fidelity Simulation Environment was developed

that mimics the in–lab testbed as closely as possible.

9.1 Robot Operating System (ROS) based Simulation Framework

As introduced earlier, Robot Operating System (ROS) [11] is a general-purpose

robotics middleware that simplifies the task of setting up communication between various

processes running on a robotics system. ROS is a natural fit for such a simulation system

as it comes with a variety of simulation and sensor data visualization tools, and many

community-created open-source packages. Additionally, using ROS allows us to build

packages that can then directly be used in the in-lab testbed (Chapter 8).

9.1.1 Gazebo Simulator

Gazebo [28] is an open-source robotics simulator that has the ability to simulate

multiple robots in a 3D environment. Gazebo is a good fit for this purpose for a variety of

reasons:

1) Gazebo has a tight integration with ROS [11], which allows us to re-use ROS

packages developed for in-lab testbed (Chapter 8).

2) It provides the ability to simulate a variety of sensors, including the sensors that are

used on the Robotic Platform (Section 8.1).

3) Gazebo provides a robust physics-engine that simulates interactions appropriately.

89

4) NVIDIA [50] provides an open-sourced Gazebo model of the Jetbot [36], which our

Robotic Platform is based on.

Fig. 45 shows the the simulated version of our Robotics Platform as it renders in

Gazebo [28]. The modifications made to the Jetbot model are described in the following

sections.

Fig. 45. Simulated version of the Robotics Platform derived from NVIDIA Jetbot kit as
rendered in Gazebo.

9.1.2 RViz Visualizer

RViz [51] is a sensor data visualizer built for ROS [11]. It provides the capability to

visualize a number of sensor data such as point clouds, images, depth maps, odometry,

frames of reference etc., and is therefore extremely useful throughout the robotics

development process. Moreover, RViz provides the capability of rendering 3D models

which allows us to visualize our robotics platform as well. Fig. 46 shows the visualization

of the simulated version our Robotics Platform as it appears in RViz [51].

90

Fig. 46. Simulated version of the Robotics Platform derived from NVIDIA Jetbot kit as
rendered in RViz.

9.2 Advection-Diffusion Field Representation

As with other components of the system described in Section 6.1, we need a way to

represent the advection-diffusion field in high-fidelity simulation as well. Simulating

advection-diffusion adequately is crucial for the transferability of algorithms developed in

Low-Fidelity Simulation Environment to the High-Fidelity Simulation Environment. To

achieve this, we need a 3D representation of a grid that can hold arbitrary float values. In

addition, we need to be able to efficiently update and extract values in the field, be able to

visualize the current values inside the field as well as their progression.

The grid_map package by ANYbotics [52] fulfills most of these requirements and

is a good candidate for advection-diffusion field representation. While the GridMap data

structure that this package provides was mainly developed for robots to model and

visualize terrain, the functionality for accessing, updating and visualizing the GridMap

makes it an excellent choice to represent the advection-diffusion field in our problem. Fig.

47 and 48 show the 2D and 3D representations of an advection-diffusion field at three

91

separate time steps as visualized inside RViz [51]. Some of the important features of

GridMap data structure include the following [52]:

1) ROS interface: The grid_map meta-package also provides a grid_map_ros

package that provides the ability to publish and subscribe to GridMap messages

over ROS topics. We use this capability to publish the updated state of the field

during the duration of the experiment.

2) Based on Eigen C++ Matrix library [53]: GridMap data is stored as Eigen C++

library [53] data-types, which allows us to directly apply Eigen algorithms and

manipulations to the data. This is especially beneficial as Eigen is used extensively

in many parts of the stack and provides helpful functions for updating the field data

at each time step.

3) Iterators for polygon regions: This package allows users to define polygonal regions

and access data as iterators in that region. This is especially useful for accessing the

field concentration values inside the view-scope. While the view-scope (Section 3.3)

was assumed to be a square of fixed dimension in Low-Fidelity Simulation

Environment, as explained in Section 3.3, making data access easy, in this

environment, however, the view-scope is expected to be a quadrilateral which each

of the vertices positioned by the location of the corresponding robot. Thus, these

positions can no longer be assumed to always form a square, making the iterator

accessor extremely useful. More details on robot formation are provided in Section

9.6.

92

Fig. 47. Representation of an advection-diffusion field grid map in RViz at three different
time steps – (a) k = 0, (b) k = 150, (c) k = 300.

Fig. 48. 3D representation of an advection-diffusion field grid map in RViz at three
different time steps – (a) k = 0, (b) k = 150, (c) k = 300. Field concentration values are
used to visualize the heights of all the cells. The progression through time demonstrates
the effect of diffusion.

93

9.3 Simulated Field Map

With the representation of the advection-diffusion field defined, we now need a way to

anchor it to a fixed frame of reference. This is needed so that we can use the robots’

locations as physical locations on the advection-diffusion field. To achieve this, we create

a simulated version of the Field Map as explained in Section 8.2. The origin of the field

map is named the map inertial frame of reference. This map frame of reference is aligned

such that the transformation from the advection diffusion field’s frame of reference, called

field, to the map frame of reference is Identity – no translation and no rotation. This

allows us to treat each grid cell in the advection-diffusion field as a 2D location on the

XY plane of the map reference frame.

Additionally, the simulated field map has an irregular shape similar to the field map in

the in-lab testbed, as shown in Fig. 43. This irregular shape provides many features that

aid in performing point cloud matching based localization using the 2D LiDAR sensors

on the robots. Fig. 49 and 50 shows the simulated field map as it is visualized in

Gazebo [28] and RViz [51] respectively.

9.4 Simulated Robot Platform

As mentioned earlier, the robot platform used in High-Fidelity Simulation

Environment is derived from the NVIDIA Jetbot [36] robotic platform, which consists of

a differential drive robot base, NVIDIA Jetson Nano [44] as the computing platform and

an RGB camera. The benefit of using this platform is that the NVIDIA Jetson Nano runs

a version of Ubuntu 18.04 [45] operating system that provides full ROS [11] support,

making integration into the overall system possible. Additionally, NVIDIA provides a

Gazebo [28] model of the Jetbot platform [36] which we modified to suit the purpose of

this simulation. Fig. 45 shows the simulated robot platform as it appears in Gazebo [28].

The features and modifications made to this platform are explained in the following

sections.

94

Fig. 49. Simulated Field Map as it appears in Gazebo.

Fig. 50. Simulated Field Map as it is served in RViz by the map_server node.

95

9.4.1 Simulated 2D LiDAR Sensor

The most important addition made to the simulated robot platform is the addition of a

simulated 2D LiDAR sensor. This sensor enables us to perceive distances around the

robot in a single plane. A 2D LiDAR (Light Detection and Ranging) sensor consists of a

single infrared light source and photo-detector mounted on a spinning head. The sensor

shoots light beams in all directions as the head spins and the photo-detector detects the

light as it is reflected back. The time taken by the light to reach back to the sensor in a

particular direction is then used to compute the distance of an obstacle in that direction.

Fig. 45 shows how the 2D LiDAR is mounted on the robot platform, and Fig. 51 shows

an example of a scan generated by one revolution inside the Simulated Field Map.

Fig. 51. Point cloud output (in red) from the simulated 2D LiDAR sensor (with Gaussian
noise added) mounted on a single robot near the center of the Field Map as visualized in
RViz.

One of the features that Gazebo provides is the ability to add simulated sensors. A 2D

LiDAR is available as a plugin into Gazebo, and we employed this plugin to define the

96

placement, configuration and settings to match the real LiDAR sensor deployed on the

Robotic platform described in 8.1. Some of the important chosen settings include:

1) Scanning frequency: 10 Hz

2) Distance range: 0.1 m to 6 m

3) Radial resolution: 0.5°, which results in 720 points per scan

The default output of the 2D LiDAR is in the format of

sensor_msgs/LaserScan [47], which encodes the distance values as radial

distances. That is, distance values (in meters) are associated with yaw angles (in radians)

in the LiDAR reference frame. While this is a natural way to encode distance information

from a spinning sensor, encoding distances in point clouds is more useful in practice.

Point clouds store 3D point locations with respect to the LiDAR’s frame of reference.

Thus, a ROS node is developed for converting incoming

sensor_msgs/LaserScan [47] into sensor_msgs/PointCloud2 [48] type

messages. These point clouds will be used to localize robots in downstream ROS nodes.

Details on localization are provided in Section 9.5.

9.4.2 Simulated Odometry

While Gazebo [28] does not provide the ability to simulate rotary encoders which are

generally used to estimate odometry, it does provide a plugin to output odometry with

respect to the robot’s odom frame of reference directly. This estimate provides perfect

localization of the robot in the odom frame, which is not representative of the real-world

where odometry drifts over time. Thus, random noise is added to this odometry estimate,

which accumulates over time to mimic real-world drift. This drift will be corrected by our

localization algorithm described in Section 9.5.

9.4.3 Frames of Reference (TF-Tree)

Fig. 53 shows the frames of reference in the simulation of a single robot in a field.

The relationships between these reference frames form a tree-like structure often called

97

the TF-Tree (for transformations tree). The tf2 ROS package [54] is responsible for

maintaining this data structure, and providing access to the different frames and their

relationships for the duration of the simulation. The tree can be traversed in both

directions and transformations (represented by the edges of the tree) can be concatenated

to get transformations between any two frames at a given time.

In the section, we elaborate on some of the important frames of references and their

relationships. Fig. 53 is the output of the rqt_tf_tree package [55] provided by ROS.

Please note that ”sambot” is the representative name of a robot in the High-Fidelity

Simulated Environment. Fig. 52 shows the physical locations of the frames of reference

for a single robot and labels the frames discussed below.

Fig. 52. Important frames of reference for a single robot as visualized in RViz.

• map frame: The map frame represents the origin of the local environment that the

robots are operating in. In our case, it is the origin of the Simulated Field Map as

shown in Fig. 50. The pose of a robot in the map frame of reference is referred to as

98

its localization. Additionally, the map reference frame also acts as the origin of the

simulated advection-diffusion field grid map (Section 9.2).

• sambot1/odom frame: The odom frame refers to the map-fixed frame of

reference in which a robot’s (here sambot1) pose, as calculated using wheel

odometry, is defined. Each robot has its own odom frame, and it is usually chosen as

the position of the robot at the beginning of the simulation. As per ROS convention,

odometry is considered to be continuous and thus a good and accurate short-term

reference of the robot’s location. However, odometry accumulates errors and tends to

drift over time making it a poor reference for the robot’s location over a long-term.

• sambot1/chassis frame: The chassis frame represents the root frame for the

TF-Tree of a single robot. The process of determining the pose of a robot’s

chassis frame in the map frame is referred to as the localization of that robot. All

other frames of reference for each robot are linked either statically or dynamically to

the robot’s chassis frame.

• sambot1/laser_frame frame: The laser_frame is the frame of reference

with respect to which all measurements from the 2D LiDAR scanner are defined.

That is, all of the points in a single sensor_msgs/PointCloud2 measurement

from the 2D LiDAR scanner are defined with the laser_frame as their origin.

For each robot, the laser_frame is assumed to be rigidly attached to its

chassis frame, and the relative transformation from the chassis to

laser_frame through base_laser frame is defined by the 3D model of the

robot in Gazebo [28].

In a four-robot simulation, the sub-tree rooted at the odom frame will be replicated

for each of the robots.

99

9.5 Localization

The process of localization of a robot refers to determining the location and

orientation of the robot with respect to an external inertial frame of reference. For the

purpose of this simulation, localization of a robot refers to the process of determining the

pose of its chassis frame with respect to the map reference frame. Determining the

location of each robot in the map reference frame allows us to locate the position of the

grid cell that the robot is currently on top of, and thus, access its values. This allows the

robot to ”sense” the concentration of the advection-diffusion field at that location as

described above.

As explained in Section 9.4.3, the pose of a robot’s chassis frame as expressed in

the robot’s odom frame is provided by simulated odometry in Gazebo. Thus, at a given

time, the transformation from the robot’s chassis frame to its odom frame is known.

Let odomTchassis denote this transformation, which can be read as

1) The pose of the chassis frame as expressed in the odom frame, or

2) as the transformation that transports a point defined in the chassis reference

frame into the odom reference frame.

Additionally, the transform from the robot’s chassis frame to the laser_frame,

chassisTlaser, is provided by the robot’s CAD model and is assumed to be a static transform

as the 2D LiDAR sensor is rigidly attached to the robot.

Thus, the task of the localization system reduces to determining the mapTodom

transform, the pose of the odom reference frame as expressed in the map reference frame.

With mapTodom determined, computing mapTchassis gives us the pose of the robot in the

map reference frame. The overview of this process is provided in Fig. 54.

100

Fig. 54. Overview of the localization process for a single robot.

9.5.1 Point Cloud Matching using Iterative Closest Point Algorithm

The Iterative Closest Point algorithm (ICP) [56] is a point cloud matching algorithm

that is used to align two point clouds observing the same local environment but collected

at different poses within that local environment. The result of this alignment provides the

relative transformation between the two poses at which the point clouds are observed

from. Given that each robot is equipped with a simulated 2D LiDAR sensor, and that the

map that the robots are operating in is static and already known, ICP can be used to get

the relative transformation between the map reference frame and the laser_frame

reference frame, mapTlaser. The ICP algorithm implementation [57] provided by the Point

Cloud Library (PCL) [58] is used for this procedure.

9.5.2 Procedure

With all the transformations, their sources and relationships defined, we can now

develop the procedure to obtain the mapTodom transform. Since the transformations are

expressed as 4×4 invertible matrices in homogeneous coordinates, we can use matrix

101

algebra to obtain the expression for mapTodom. First, traversing the TF-Tree downward, we

obtain the following expression.

mapTlaser =
mapTodom

odomTchassis
chassisTbase

baseTlaser,

which can be simplified and rewritten,

mapTlaser︸ ︷︷ ︸
ICP

= mapTodom
odomTchassis︸ ︷︷ ︸

Simulated Odometry

chassisTbase
baseTlaser︸ ︷︷ ︸

Static Transforms

= mapTodom
odomTchassis

chassisTlaser

= mapTodom
odomTlaser.

Rearranging and right multiplying with (odomTlaser)
−1 yields,

mapTodom
odomTlaser =

mapTlaser

mapTodom
odomTlaser (

odomTlaser)
−1 = mapTlaser (

odomTlaser)
−1

mapTodom = mapTlaser (
odomTlaser)

−1.

(33)

Equation (33) provides us with an expression to determine mapTodom. This transform

is computed each time a 2D LiDAR point cloud is received and is then broadcast over the

TF-Tree, which updates and corrects the mapTchassis transform that represents the location

and orientation of the robot as expressed in the map reference frame.

9.6 Motion and Formation Control

In this section, we describe how the simulated robots are set up so that they can be

controlled by sending velocity commands. As mentioned previously, the simulated robots

follow a differential-drive scheme, which means that the robot’s left and right wheels are

controlled by separate motors, and can be driven forwards or backwards independently,

and at different speeds. This allows the robots to move forwards, backwards, follow an

102

arc, and even rotate in place. The differential-drive scheme is popular for many small

robots for its simplicity and flexibility.

The Gazebo [28] simulator provides simulated motor actuators, as well as a plugin for

a differential-drive controller that we employ. This plugin allows us to abstract away the

low-level control and simply focus on providing velocity commands to the robot’s wheels

to achieve the motion that we desire. This plugin converts the supplied velocity

commands into voltage signals that are sent to the motors to actuate. The Gazebo [28]

server subscribes to the cmd_vel topic for each robot (for example

/sambot1/cmd_vel for sambot1), which carries geometry_msgs/Twist [59]

type messages. The geometry_msgs/Twist contains linear and angular velocity

commands for the robots. Therefore, the task of moving the robots is simplified to

providing velocity commands at each time step.

Recall that are our proposed algorithm is designed to provide discrete actions to move

the formation center (Equation (17)). Knowing the formation’s current location, and using

the current action provided by the proposed algorithm, we can produce the target

locations for the formation center to move to. However, computing velocity commands

for the robots in order to move the formation center to the goal location is a non-trivial

task and requires controller design. Fortunately, the ROS navigation ecosystem provides a

useful package called move_base [60] that is designed specifically to command

differential-drive robots to move from the current location to a goal location. Using this

package allows us to abstract away the velocity commands, and simply provide the goal

locations for each of the robots at each time step to direct them to move in a formation.

The move_base [60] node is set up for each of our robots such that given a goal

location in the map frame, the move_base node publishes velocity commands in order

to reach the specified goal location. Therefore, having accurate localization in the map

frame is extremely important for the proper functioning of the move_base node. The

103

move_base node links together a local and global planner to accomplish the navigation

tasks, and provides a number of parameters that can be tuned to improve navigation

performance.

Now, to complete the navigation and formation tasks, we create a ROS node called

goals_publisher that runs the proposed algorithm at each time step and determines

the action that the robot formation needs to take at each time step. Then, using the current

location of the formation and the current action, it determines the next goal location for

the formation. Since the robots are meant to travel in a fixed formation at fixed distances

away from the formation center throughout the episode, we calculate the goal locations

for each of the robots in the map frame and broadcast them over the TF-Tree and as

geometry_msgs/PoseStamped [61] messages over the

move_base_simple/goal topics for each robot. The move_base node for each

robot then publishes velocity commands until the goal location is reached.

104

Fi
g.

53
.F

ra
m

es
of

re
fe

re
nc

e
an

d
th

ei
r

re
la

tio
ns

hi
ps

in
a

si
ng

le
ro

bo
t(

kn
ow

n
as

sa
m

bo
ti

n
si

m
ul

at
io

n)
si

m
ul

at
io

n.
T

hi
s

is
th

e
ou

tp
ut

of
th

e
r
q
t
_
t
f
_
t
r
e
e

no
de

pr
ov

id
ed

by
R

O
S.

T
hi

s
re

pr
es

en
ta

tio
n

of
th

e
fr

am
es

of
re

fe
re

nc
e

is
co

m
m

on
ly

kn
ow

n
as

TF
-T

re
e.

105

10 TESTING RESULTS IN HIGH-FIDELITY SIMULATION ENVIRONMENT

In this chapter, we show results of implementing and testing the proposed algorithm

on fields simulated in the High-Fidelity Simulation testing environment elaborated in

Chapter 9. To be able to perform test episodes in the High-Fidelity Simulation

Environment, all major components of the proposed algorithm (Section 5) are

implemented as ROS nodes that interact with each other to realize the algorithm. Fig. 55

shows the ROS computation graph showing all the ROS nodes and their connections for

running the algorithm on a formation of four mobile robots. Since this graph is large and

difficult to fully read and interpret, we provide Fig. 56 and 57 which show the two major

subgraphs within the entire computation graph.

To demonstrate the efficacy of the proposed algorithm in the High-Fidelity Simulation

Environment, we perform a test episode on simulated Field-1, described in Table 1 and

shown in Fig. 7. We used the DQN model trained on Field-3 to run this experiment,

showing that a model trained on a complex simulated field can be generalized to a simpler

simulated field. Fig. 58 shows the state of the test episode at time steps k = 126,k = 234

and k = 300. Additionally, Fig. 59 shows the mapping error over the course of this test

episode. Fig. 60 shows a close-up snapshot of the four robots moving in a formation. It is

important to note that the Simulated Field Map (described in Section 9.3) and the point

cloud outputs of the 2D LiDAR sensors (shown in Fig. 51) are hidden in these figures to

avoid clutter. Additionally, the path in red shows the trajectory followed by the formation

center and the green polygon formed by the locations of the four mobile robots represents

the view-scope. Figures in the first column show the simulated-advection diffusion field,

while figures in the second column show the reconstructed field following the proposed

algorithm.

At k = 126, in Fig. 58(a) and 58(b), the formation has reached a stationary state in the

field, identified the advection coefficients, chosen a destination, planned a path to the

106

destination and is moving towards the destination. The identified advection parameters are

v̂ = [0.62,−0.83], which are similar to the true advection parameters for Field-1 of

v = [0.6,−0.8] as stated in Table 1. At k = 234, in Fig. 58(c) and 58(d), we see that the

formation has reached another stationary state in the field, and thus chooses another

destination to trigger exploration and moves to the destination. After reaching the

destination, the control is transferred back to the DQN model and the formation tracks the

second high-concentration zone until the end of the episode. As observed in the episodes

run in the Low-Fidelity Simulation Environment, the mapping error reduces at a higher

rate when new high-concentration zones are found. As evident from Fig. 58 and 38, the

results of running episodes in the High-Fidelity Simulation Environment are very similar

to the results achieved in the Low-Fidelity Simulation Environment, showing that the

algorithm can be adapted to more realistic scenarios.

107

Fig. 55. ROS computation graph while running a test episode in the High-Fidelity
Simulation Environment. This output is generated using the rqt_graph tool. Two
important subgraphs are highlighted in this graph and zoomed-in images for these regions
are provided below. The green highlighted section corresponds to all the nodes that are
responsible for running the proposed algorithm and maintaining the advection-diffusion
fields. Fig. 56 shows this subgraph zoomed in. The purple highlighted section shows all
the nodes running within the sambot1 namespace. Fig. 57 shows this subgraph zoomed
in.

108

Fig. 56. This subgraph shows all the nodes required for running the episode
with the proposed algorithm. run_experiment_node is responsible for manag-
ing the entire episode. It runs all major components of the proposed algorithm,
decides the action that the formation must take and publishes the subsequent lo-
cation on the center_goal topic. The goals_publisher node is responsi-
ble for computing and publishing goal locations for each of the four robots. The
spatial_temporal_field_publisher_node is responsible for maintaining the
simulated advection-diffusion field as well as evolving the reconstructed field as the
formation travels through the field. The gazebo node runs Gazebo Simulator’s server-side
node responsible for running the physics engine and simulating the robots’ movements.

109

Fig. 57. This subgraph shows the nodes that need to be run for one simulated mobile
robot. This figure shows the namespace for sambot1. All nodes in this namespace are
replicated for each of the other three robots. The joint_state_publisher node is
responsible for publishing the states of each of the joints in the robot which change as the
robot moves in the field. The robot_state_publisher consumes the joint states and
publishes them as transforms over the tf topic. The map_to_odom_broadcaster
node publishes simulated odometry and the scan_to_pointcloud node converts
LaserScan messages from the simulated LiDAR sensor to PointCloud2 type
messages and publishes them. The move_base node is responsible for sending velocity
commands to the robot to reach the goal locations specified by the proposed algorithm at
each time step.

110

Fig. 58. Sample test episode performed on Field-1 in High-fidelity Simulation Testing
environment.

111

Fig. 59. Mapping error for test episode performed on simulated Field-1 in High-fidelity
testing environment. Please note that the units on the x-axis are seconds elapsed during
the simulation in ROS and not the time steps (k) as in previous mapping error plots.

112

Fig. 60. Snapshot of the mobile robot formation moving in the simulated advection-
diffusion field.

113

11 CONCLUSION

In this work, our primary goal was to build a path-planning algorithm that can be used

for reconstruction of advection-diffusion fields using a number of mobile sensing robots

traveling through the field domain of interest. We formulated the problem and proposed a

deep reinforcement learning based algorithm that directs the mobile sensing robot

formation to travel along information-rich trajectories. In addition, we added mechanisms

to allow the robot formation to identify advection parameters required to successfully

reconstruct the field. Moreover, our algorithm also encourages exploration in the field

domain as stationary states are reached, which improves field reconstruction performance

significantly as it allows the formation to reach multiple high-concentration zones that

may exist in the field domain.

To train the deep reinforcement learning models, and to validate and test the

performance of the proposed algorithm, we provide a Low-Fidelity Simulation

Environment. We show sample episodes using the proposed algorithm on multiple

training and test advection-diffusion fields that show satisfactory reconstruction results,

and reduction in the mapping error for all episodes. Finally, we also provide a

High-Fidelity Simulation Environment based on Robot Operating System (ROS) [11].

The High-Fidelity Simulation Environment simulates real robots and we show sample test

episode using the proposed algorithm in this environment. We demonstrate that the

proposed algorithm achieves expected results in both the Low-Fidelity Simulation

Environment, as well as the High-Fidelity Simulation Environment.

114

12 FUTURE WORK

In this work, we propose a deep reinforcement learning based path-planning algorithm

that is shown to perform advection-diffusion field reconstruction using multiple mobile

sensing robots to a satisfactory degree in two simulation environments of differing

fidelities. However, there are several practical improvements that be considered for the

future to make the performance better and more generalizable. In this section, we will

focus on future improvements for four components of this research: deep reinforcement

learning, simulation, real-world applications, and extension to other types of mobile

robots.

In Chapter 5.2, we showed how Deep Q-Networks can be trained to control the

mobile robot formation to follow information-rich paths on a simulated

advection-diffusion field. We also showed that a model trained on one advection-diffusion

field is able to generalize on unknown fields as well. However, the performance of

generalization can be improved by training the same model from different simulated

advection-diffusion fields. Additionally, a larger and wider network architecture with more

weights can learn good policies for many different kinds of advection-diffusion fields.

Therefore, training on bigger networks with multiple fields must be tested in the future. In

addition, we would also like to try other deep reinforcement learning algorithms and

techniques to train the models. While DQN models provide good performance, methods

such as policy gradient and actor-critic may result in better policies and/or faster training.

Currently, the High-Fidelity Simulation Environment introduced in Chapter 9 is based

on the ROS version 1 [11]. A newer version of ROS, known as ROS2 [62], provides

substantial benefits to message passing, robustness and scalability. In the future, it would

be important to port the High-Fidelity Simulation Environment to ROS2 [62].

While the High-Fidelity Simulation Environment (Chapter 9) provides a fairly realistic

environment, we still use a simulation of an advection-diffusion field in it. It is important

115

to test the proposed algorithm in an actual environmental advection-diffusion field, and

with mobile robots installed with sensors to directly measure the concentrations. While

testing with real robots, in a real advection-diffusion field was originally planned, we were

unable to perform these tests due to campus closures caused by the COVID-19 pandemic.

Finally, we would like to extend results produced in this work with other types of

mobile robots, such as aerial drones and legged robots. Since both types of robots provide

different kinds of operational field domains, the algorithm designs will need to be adapted

for these domains. We plan to do this in high-fidelity simulation to begin with, and then

extend them to real robots.

116

Literature Cited

[1] S. Martı́Nez and F. Bullo, “Optimal sensor placement and motion coordination for
target tracking,” Automatica, vol. 42, no. 4, pp. 661–668, 2006.

[2] R. Ghez, Diffusion phenomena: cases and studies. Springer Science & Business
Media, 2013.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor
networks: a survey,” Computer networks, vol. 38, no. 4, pp. 393–422, 2002.

[4] S. Martı́Nez and F. Bullo, “Optimal sensor placement and motion coordination for
target tracking,” Automatica, vol. 42, no. 4, pp. 661–668, 2006.

[5] M. A. Demetriou, “Guidance of mobile actuator-plus-sensor networks for improved
control and estimation of distributed parameter systems,” IEEE Transactions on
Automatic Control, vol. 55, no. 7, pp. 1570–1584, 2010.

[6] M. A. Demetriou, N. A. Gatsonis, and J. R. Court, “Coupled controls-computational
fluids approach for the estimation of the concentration from a moving gaseous source
in a 2-D domain with a Lyapunov-guided sensing aerial vehicle,” IEEE Transactions
on Control Systems Technology, vol. 22, no. 3, pp. 853–867, 2013.

[7] J. You and W. Wu, “Sensing-motion co-planning for reconstructing a spatially
distributed field using a mobile sensor network,” in 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), pp. 3113–3118, IEEE, 2017.

[8] You, Jie and Wu, Wencen, “Geometric Reinforcement Learning Based Path Planning
for Mobile Sensor Networks in Advection-Diffusion Field Reconstruction,” in 2018
IEEE Conference on Decision and Control (CDC), pp. 1949–1954, IEEE, 2018.

[9] You, Jie and Zhang, Fumin and Wu, Wencen, “Cooperative filtering for parameter
identification of diffusion processes,” in 2016 IEEE 55th Conference on Decision and
Control (CDC), pp. 4327–4333, IEEE, 2016.

[10] W. Wu, J. You, Y. Zhang, M. Li, and K. Su, “Parameter Identification of
Spatial–Temporal Varying Processes by a Multi-Robot System in Realistic Diffusion
Fields,” Robotica, p. 1–20, 2020.

117

[11] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng, “ROS: an open-source Robot Operating System,” in ICRA Workshop on
Open Source Software, 2009.

[12] M. Krstic and A. Smyshlyaev, “Adaptive control of PDEs,” Annual Reviews in
Control, vol. 32, no. 2, pp. 149–160, 2008.

[13] L. A. Rossi, B. Krishnamachari, and C.-C. Kuo, “Distributed parameter estimation
for monitoring diffusion phenomena using physical models,” in 2004 First Annual
IEEE Communications Society Conference on Sensor and Ad Hoc Communications
and Networks, 2004. IEEE SECON 2004., pp. 460–469, IEEE, 2004.

[14] M. Krstic and A. Smyshlyaev, “Adaptive boundary control for unstable parabolic
PDEs—Part I: Lyapunov design,” IEEE Transactions on Automatic Control, vol. 53,
no. 7, pp. 1575–1591, 2008.

[15] Z. Tang and U. Ozguner, “Motion planning for multitarget surveillance with mobile
sensor agents,” IEEE Transactions on Robotics, vol. 21, no. 5, pp. 898–908, 2005.

[16] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider, “Coordinated multi-robot
exploration,” IEEE Transactions on robotics, vol. 21, no. 3, pp. 376–386, 2005.

[17] D. Ucinski, Optimal measurement methods for distributed parameter system
identification. CRC press, 2004.

[18] D. Ucinski and Y. Chen, “Time-optimal path planning of moving sensors for
parameter estimation of distributed systems,” in Proceedings of the 44th IEEE
Conference on Decision and Control, pp. 5257–5262, IEEE, 2005.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing Atari with Deep Reinforcement Learning,” 2013.

[20] B. Wang, Z. Liu, Q. Li, and A. Prorok, “Mobile Robot Path Planning in Dynamic
Environments through Globally Guided Reinforcement Learning,” 2020.

[21] X. Lei, Z. Zhang, and P. Dong, “Dynamic path planning of unknown environment
based on deep reinforcement learning,” Journal of Robotics, vol. 2018, 2018.

118

[22] A. S. Huang, E. Olson, and D. C. Moore, “LCM: Lightweight Communications and
Marshalling,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 4057–4062, 2010.

[23] “ZeroMQ.” https://zeromq.org/. (Accessed on 10/27/2020).

[24] G. Rong, B. H. Shin, H. Tabatabaee, Q. Lu, S. Lemke, M. Možeiko, E. Boise,
G. Uhm, M. Gerow, S. Mehta, E. Agafonov, T. H. Kim, E. Sterner, K. Ushiroda,
M. Reyes, D. Zelenkovsky, and S. Kim, “LGSVL Simulator: A High Fidelity
Simulator for Autonomous Driving,” 2020.

[25] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An open
urban driving simulator,” 2017.

[26] “Deepdrive from Voyage - Push the state-of-the-art in self-driving.”
https://deepdrive.voyage.auto/. (Accessed on 10/27/2020).

[27] “Webots: robot simulator.” https://cyberbotics.com/. (Accessed on 10/27/2020).

[28] N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an open-source
multi-robot simulator,” in 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE Cat. No.04CH37566), vol. 3, pp. 2149–2154 vol.3,
2004.

[29] “Robot simulator CoppeliaSim: create, compose, simulate, any robot.”
https://www.coppeliarobotics.com/index.html. (Accessed on 10/27/2020).

[30] “Autonomous Vehicle Simulation with Applied Intuition — From Sensor Simulation
to Perception and Control Testing.” https://www.appliedintuition.com/. (Accessed on
10/27/2020).

[31] “Driving Simulation for autonomous driving, ADAS, vehicle dynamics and
motorsport.” http://www.rfpro.com/. (Accessed on 10/27/2020).

[32] “Cognata — Autonomous and ADAS Vehicles Simulation Software.”
https://www.cognata.com/. (Accessed on 10/27/2020).

[33] S. S. Srinivasa, P. Lancaster, J. Michalove, M. Schmittle, C. Summers, M. Rockett,
J. R. Smith, S. Chouhury, C. Mavrogiannis, and F. Sadeghi, “MuSHR: A low-cost,

119

https://zeromq.org/
https://deepdrive.voyage.auto/
https://cyberbotics.com/
https://www.coppeliarobotics.com/index.html
https://www.appliedintuition.com/
http://www.rfpro.com/
https://www.cognata.com/

open-source robotic racecar for education and research,” CoRR, vol. abs/1908.08031,
2019.

[34] J. M. Soares, I. Navarro, and A. Martinoli, “The Khepera IV Mobile Robot:
Performance Evaluation, Sensory Data and Software Toolbox,” in Robot 2015:
Second Iberian Robotics Conference (L. P. Reis, A. P. Moreira, P. U. Lima,
L. Montano, and V. Muñoz-Martinez, eds.), (Cham), pp. 767–781, Springer
International Publishing, 2016.

[35] “TurtleBot.” https://www.turtlebot.com/. (Accessed on 10/30/2020).

[36] “AI Robot Kits from NVIDIA JetBot Partners — NVIDIA.” https://www.nvidia.
com/en-us/autonomous-machines/embedded-systems/jetbot-ai-robot-kit/. (Accessed
on 09/24/2020).

[37] Zhang, Fumin and Leonard, Naomi Ehrich, “Cooperative filters and control for
cooperative exploration,” IEEE Transactions on Automatic Control, vol. 55, no. 3,
pp. 650–663, 2010.

[38] W. Ren and R. W. Beard, Distributed consensus in multi-vehicle cooperative control,
vol. 27. Springer, 2008.

[39] M. Lapan, Deep Reinforcement Learning Hands-On: Apply modern RL methods,
with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and
more. Packt Publishing Ltd, 2018.

[40] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in
Proceedings of COMPSTAT’2010, pp. 177–186, Springer, 2010.

[41] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “OpenAI Gym,” 2016.

[42] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[43] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

120

https://www.turtlebot.com/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetbot-ai-robot-kit/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetbot-ai-robot-kit/

[44] “NVIDIA Jetson Nano Developer Kit — NVIDIA Developer.”
https://developer.nvidia.com/embedded/jetson-nano-developer-kit. (Accessed on
10/26/2020).

[45] “Ubuntu 18.04.5 LTS (Bionic Beaver).” https://releases.ubuntu.com/18.04.5/.
(Accessed on 09/24/2020).

[46] “YDLIDAR-G4-Datasheet.” http://www.ydlidar.com/Public/upload/files/
2020-04-13/YDLIDAR%20G4%20Datasheet.pdf. (Accessed on 10/26/2020).

[47] “sensor msgs/LaserScan Documentation.”
http://docs.ros.org/melodic/api/sensor msgs/html/msg/LaserScan.html. (Accessed on
09/24/2020).

[48] “sensor msgs/PointCloud2 Documentation.”
http://docs.ros.org/melodic/api/sensor msgs/html/msg/PointCloud2.html. (Accessed
on 09/24/2020).

[49] “Wheel Encoder Kit - ROB-12629 - SparkFun Electronics.”
https://www.sparkfun.com/products/12629. (Accessed on 10/26/2020).

[50] “Artificial Intelligence Computing Leadership from NVIDIA.”
https://www.nvidia.com/en-us/. (Accessed on 10/30/2020).

[51] H. R. Kam, S.-H. Lee, T. Park, and C.-H. Kim, “RViz: A Toolkit for Real Domain
Data Visualization,” Telecommun. Syst., vol. 60, p. 337–345, Oct. 2015.

[52] P. Fankhauser and M. Hutter, “A Universal Grid Map Library: Implementation and
Use Case for Rough Terrain Navigation,” in Robot Operating System (ROS) – The
Complete Reference (Volume 1) (A. Koubaa, ed.), ch. 5, Springer, 2016.

[53] G. Guennebaud, B. Jacob, et al., “Eigen v3.” http://eigen.tuxfamily.org, 2010.

[54] “tf2 - ROS Wiki.” http://wiki.ros.org/tf2. (Accessed on 09/25/2020).

[55] “rqt tf tree - ROS Wiki.” http://wiki.ros.org/rqt tf tree. (Accessed on 09/24/2020).

[56] P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2,
pp. 239–256, 1992.

121

https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://releases.ubuntu.com/18.04.5/
http://www.ydlidar.com/Public/upload/files/2020-04-13/YDLIDAR%20G4%20Datasheet.pdf
http://www.ydlidar.com/Public/upload/files/2020-04-13/YDLIDAR%20G4%20Datasheet.pdf
http://docs.ros.org/melodic/api/sensor_msgs/html/msg/LaserScan.html
http://docs.ros.org/melodic/api/sensor_msgs/html/msg/PointCloud2.html
https://www.sparkfun.com/products/12629
https://www.nvidia.com/en-us/
http://wiki.ros.org/tf2
http://wiki.ros.org/rqt_tf_tree

[57] “Point Cloud Library (PCL): pcl::IterativeClosestPoint Class Template Reference.”
https://pointclouds.org/documentation/classpcl 1 1 iterative closest point.html.
(Accessed on 09/30/2020).

[58] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in IEEE
International Conference on Robotics and Automation (ICRA), (Shanghai, China),
May 9-13 2011.

[59] “geometry msgs/Twist Documentation.”
https://docs.ros.org/en/api/geometry msgs/html/msg/Twist.html. (Accessed on
10/27/2020).

[60] “move base - ROS Wiki.” http://wiki.ros.org/move base. (Accessed on 10/27/2020).

[61] “geometry msgs/PoseStamped Documentation.”
http://docs.ros.org/en/api/geometry msgs/html/msg/PoseStamped.html. (Accessed on
10/27/2020).

[62] “ROS 2 Overview.” https://index.ros.org/doc/ros2/. (Accessed on 10/26/2020).

122

https://pointclouds.org/documentation/classpcl_1_1_iterative_closest_point.html
https://docs.ros.org/en/api/geometry_msgs/html/msg/Twist.html
http://wiki.ros.org/move_base
http://docs.ros.org/en/api/geometry_msgs/html/msg/PoseStamped.html
https://index.ros.org/doc/ros2/

	Deep Reinforcement Learning based Path-Planning for Multi-Agent Systems in Advection-Diffusion Field Reconstruction Tasks
	Recommended Citation

	List of Tables
	List of Figures
	Introduction
	Literature Review
	Problem Formulation
	Advection-Diffusion Fields
	Mobile Sensor Robots
	View-Scope of Mobile Sensing Robots

	Preliminaries
	Proposed Algorithm
	Inputs to the Proposed Algorithm
	Deep Reinforcement Learning-Based Path-Planning for Field Reconstruction
	Tabular Q-Learning
	States, Actions, Reward function and Termination Criteria
	Deep Q-Network (DQN) Learning

	Procedure for Triggering Identification of Advection Parameters
	Identification of Advection Coefficients
	Destination Selection for Further Exploration
	Advection-Diffusion Field Reconstruction

	Training in Low-Fidelity Simulation Environment
	Low-Fidelity Simulation Environment
	Advection-Diffusion Field Representation
	Setup as OpenAI Gym Environment

	Deep Q-Network (DQN) Training Setup
	Exploration using -greedy algorithm
	Experience Replay Buffer
	Issue with Bootstrapping
	DQN Training Pseudo-code

	Training Results
	DQN Training on Field-1
	DQN Training on Field-2
	DQN Training on Field-3

	Testing Results

	Field Reconstruction Results in Low-Fidelity Simulation Environment
	Advection-Diffusion Field Reconstruction in Low-Fidelity Simulation Environment
	Reconstruction Results
	Testing on Field-1
	Testing on Field-2
	Testing on Field-3

	Aggregated Mapping Errors with Random Starting Locations
	Testing Results on Unseen Test Fields
	Aggregated Mapping Errors with Random Starting Locations on Unseen Fields

	In-lab Testbed
	Robotic Platform
	Field Map Setup

	High-Fidelity Simulation Testing Environment
	Robot Operating System (ROS) based Simulation Framework
	Gazebo Simulator
	RViz Visualizer

	Advection-Diffusion Field Representation
	Simulated Field Map
	Simulated Robot Platform
	Simulated 2D LiDAR Sensor
	Simulated Odometry
	Frames of Reference (TF-Tree)

	Localization
	Point Cloud Matching using Iterative Closest Point Algorithm
	Procedure

	Motion and Formation Control

	Testing Results in High-Fidelity Simulation Environment
	Conclusion
	Future Work
	Literature Cited

