
Clemson University Clemson University

TigerPrints TigerPrints

All Dissertations Dissertations

12-2023

Physics-based Machine Learning Methods for Control and Physics-based Machine Learning Methods for Control and

Sensing in Fish-like Robots Sensing in Fish-like Robots

Colin Rodwell
Clemson University, crodwel@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

 Part of the Acoustics, Dynamics, and Controls Commons, Applied Mechanics Commons, and the

Ocean Engineering Commons

Recommended Citation Recommended Citation
Rodwell, Colin, "Physics-based Machine Learning Methods for Control and Sensing in Fish-like Robots"
(2023). All Dissertations. 3466.
https://tigerprints.clemson.edu/all_dissertations/3466

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been
accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information,
please contact kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_dissertations
https://tigerprints.clemson.edu/dissertations
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3466&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/294?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3466&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/295?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3466&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/302?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3466&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/3466?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3466&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Physics-based machine learning methods for control and
sensing in fish-like robots

A Dissertation
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
Mechanical Engineering

by
Colin Rodwell
December 2023

Accepted by:
Dr. Phanindra Tallapragada, Committee Chair

Dr. Ardalan Vahidi
Dr. Javad Velni
Dr. Yue Wang

Abstract

Underwater robots are important for the construction and maintenance of underwater in-

frastructure, underwater resource extraction, and defense. However, they currently fall far behind

biological swimmers such as fish in agility, efficiency, and sensing capabilities. As a result, mimicking

the capabilities of biological swimmers has become an area of significant research interest. In this

work, we focus specifically on improving the control and sensing capabilities of fish-like robots.

Our control work focuses on using the Chaplygin sleigh, a two-dimensional nonholonomic

system which has been used to model fish-like swimming, as part of a curriculum to train a reinforce-

ment learning agent to control a fish-like robot to track a prescribed path. The agent is first trained

on the Chaplygin sleigh model, which is not an accurate model of the swimming robot but crucially

has similar physics; having learned these physics, the agent is then trained on a simulated swimming

robot, resulting in faster convergence compared to only training on the simulated swimming robot.

Our sensing work separately considers using kinematic data (proprioceptive sensing) and

using surface pressure sensors. The effect of a swimming body’s internal dynamics on proprioceptive

sensing is investigated by collecting time series of kinematic data of both a flexible and rigid body in

a water tunnel behind a moving obstacle performing different motions, and using machine learning

to classify the motion of the upstream obstacle. This revealed that the flexible body could more

effectively classify the motion of the obstacle, even if only one if its internal states is used.

We also consider the problem of using time series data from a ‘lateral line’ of pressure

sensors on a fish-like body to estimate the position of an upstream obstacle. Feature extraction

from the pressure data is attempted with a state-of-the-art convolutional neural network (CNN),

and this is compared with using the dominant modes of a Koopman operator constructed on the

data as features. It is found that both sets of features achieve similar estimation performance using

a dense neural network to perform the estimation. This highlights the potential of the Koopman

ii

modes as an interpretable alternative to CNNs for high-dimensional time series. This problem is

also extended to inferring the time evolution of the flow field surrounding the body using the same

surface measurements, which is performed by first estimating the dominant Koopman modes of

the surrounding flow, and using those modes to perform a flow reconstruction. This strategy of

mapping from surface to field modes is more interpretable than directly constructing a mapping of

unsteady fluid states, and is found to be effective at reconstructing the flow. The sensing frameworks

developed as a result of this work allow better awareness of obstacles and flow patterns, knowledge

which can inform the generation of paths through the fluid that the developed controller can track,

contributing to the autonomy of swimming robots in challenging environments.

iii

Acknowledgments

I would like to thank my advisor, Dr. Phanindra Tallapragada, for his invaluable advice

and mentorship. His broad expertise has allowed me to explore a wide range of interesting problems,

and his insight has allowed my solutions to these problems to have a broad impact. I would also like

to acknowledge Dr. Paul Joseph and Dr. Joshua Bostwick, whose undergraduate classes sparked

my interest in dynamical systems. I would also like to thank my collaborators, Jake Buzhardt,

Prashanth Chivkula, and Kumar Sourav, whose expertise has enabled my work to be more relevant

and impactful. I would also like to thank these collaborators, as well as labmates Andrew Zheng,

Beau Pollard, Vitaliy Fedonyuk, and Kartik Loya, for helping to keep up morale and liven up the

office. Finally, I would like to thank my parents for their boundless support.

iv

Table of Contents

Title Page . i

Abstract . ii

Acknowledgments . iv

List of Tables . vii

List of Figures . viii

1 Introduction . 1
1.1 Summary of Chapters . 5

2 Curriculum Reinforcement Learning for Path Tracking 7
2.1 Introduction . 7
2.2 Nonholonomic Constraints - Chaplygin Sleigh and the Joukowski Foil in an Inviscid

Fluid . 10
2.3 Periodic Forcing and Limit Cycles in Reduced Velocity Space 14
2.4 Parameter Estimation for the Surrogate Model . 17
2.5 Reinforcement Learning . 19
2.6 Results - Velocity and Path Tracking . 27
2.7 Conclusion . 32

3 Nonholonomic constraint-induced bistability . 35
3.1 Introduction . 35
3.2 Mechanical model and governing equations . 37
3.3 Tunable limit cycles and configuration changes . 41
3.4 Conclusion . 48

4 Sensing with passive appendages . 51
4.1 Introduction . 51
4.2 Experiments . 54
4.3 Wake Classification and Neural Network Architecture 59
4.4 Wake Classification Results . 62
4.5 Discussion and Conclusion . 72

5 Obstacle Localization using spectral properties of the Koopman operator 74
5.1 Introduction . 74
5.2 Problem Definition . 76
5.3 Dynamic Mode Decomposition . 80
5.4 Estimation Approaches . 85
5.5 Results . 92

v

5.6 Conclusion . 94

6 Flow Field Reconstruction from Surface Measurements in Fluid-Structure In-
teraction . 97
6.1 Introduction . 97
6.2 Numerical Simulation of Fluid-Structure Interaction 100
6.3 Dynamic Mode Decomposition . 107
6.4 Flow Reconstruction . 111
6.5 Results . 120
6.6 Conclusion . 122

7 Conclusions .124

Appendices .126
A Two-link Sleigh Equations . 127
B Kinematic Classification Confusion Matrices . 130

vi

List of Tables

6.1 Comparison of characteristic flow and vibration quantities for three different mesh
densities. 105

vii

List of Figures

2.1 Diagrams of the Chaplygin sleigh and swimming foil. 11
2.2 Trajectories of the Chaplygin sleigh and simulated swimmer. 16
2.3 Velocity limit cycles for the swimmer and a fit Chaplygin sleigh model. 19
2.4 A schematic of the DPG training procedure for the Chaplygin sleigh. 22
2.5 Reward plots with and without pre-training on the Chaplygin sleigh, and limit cycles

for the trained policy. 28
2.6 Trajectories on the hydrofoil after training on a low speed surrogate model. 29
2.7 Training a high-speed surrogate model actor. 30
2.8 RL without surrogate model or curriculum learning. 32
2.9 Pure-pursuit based path tracking for the simulated swimmer. 33

3.1 A diagram of a two link Chaplygin sleigh system. 39
3.2 The largest real component of the eigenvalues of the Jacobian about the forward

non-buckled fixed point. 42
3.3 Dependence of the locations of fixed points u∗x and ω∗

1 on ϵ for a sampling of energy
levels for the conservative system. 43

3.4 The eigenvalues with the highest real component of the Jacobian J of positive ux
buckled fixed points of the conservative system. 44

3.5 Limit cycles and trajectories of the dissipative system. 46
3.6 The turning limit cycles of the dissipative system at varying forcing amplitudes. . . 47
3.7 The eigenvalues η of the T-periodic Poincaré map of the forced and dissipative system. 49
3.8 A decaying turning limit cycle in three dimensions. 50

4.1 A schematic and photograph of the experimental setup. 55
4.2 The steady-state time series of angular velocities. 57
4.3 Overlayed frequency spectra of the coupled head and coupled tail angular velocity. . 58
4.4 The architecture of the classifier. 61
4.5 The overall cross-entropy loss on the validation dataset by training epoch. 63
4.6 Confusion matrices for classifying the time period T 65
4.7 Confusion matrices for the forcing amplitude of the upstream hydrofoil. 66
4.8 Confusion matrices for the free stream velocity u∞. 67
4.9 Confusion matrices for the Strouhal number. 68
4.10 The classification accuracy of the Strouhal number. 69
4.11 Summary of the classification accuracy of all data and parameters. 71

5.1 System Diagram. 78
5.2 The refined computational mesh. 79
5.3 The pressure field and pressure vs. time on the surface. 80
5.4 DMD modes of the field pressure . 84
5.5 Cumulative magnitude and eigenvalues of the surface and field modes. 85
5.6 A schematic of the estimation methods. 87

viii

5.7 DMD modes of the surface pressure. 88
5.8 Training curve for the four estimation methods. 93
5.9 Predicted vs. real values of b and d. 96

6.1 Schematic representation of the unforced system. 101
6.2 Schematic representation of the forced system. 102
6.3 The mesh and refinement regions. 104
6.4 Validation of the fluid-structure interaction simulaion. 106
6.5 The pressure field and pressure over time on the surface. 106
6.6 Mode magnitudes and eigenvalues for free oscillations. 112
6.7 Mode magnitudes for forced oscillations. 114
6.8 The actual and reconstructed modes for the free oscillation case. 119
6.9 Pressure reconstruction for the free oscillation case 120
6.10 Velocity reconstruction for the free oscillation case. 121
6.11 Pressure reconstruction for the forced case. 122
6.12 Velocity reconstruction for the forced case. 123

1 Strouhal number classification using coupled head kinematics. 130
2 Strouhal number classification using coupled tail kinematics. 131
3 Strouhal number classification using coupled head and tail kinematics. 132
4 Strouhal number classification using rigid foil kinematics. 133
5 Strouhal number classification using uncoupled head kinematics. 134
6 Strouhal number classification using uncoupled tail kinematics. 135

ix

Chapter 1

Introduction

In recent decades, the emerging field of robotics has sought to use robots to perform tasks in

environments that are unsuitable for humans. This has taken them to many extreme environments,

from minefields and collapsed buildings to the surface of Mars. However, no terrestrial environment

is as simultaneously inhospitable and extensive as the bodies of water covering the Earth. These

bodies of water conceal immense quantities of raw materials beneath their surfaces, and are invaluable

as routes for communication and transportation. Utilizing these environments requires labor, but

humans are poorly suited to working underwater, with shallow water work requiring highly skilled

specialists, and deeper work requiring submarine vehicles. However, current submarine vehicles have

limited capabilities, and are greatly outperformed by biological swimmers.

The locomotion of fish and other aquatic swimmers has many desirable characteristics such

as energy efficiency, agility, and stealth [1–4], which have inspired the design of many biomimetic

robots. Designs for fish-like robots include those that are assemblages, rigid links actuated by motors

imitating the motion of tails and fins [5], motor-driven flexible links [6, 7], elongated snake and eel

like robots [8, 9], soft robots making use of dielectric elastomers, electroactive polymers or fluidic

elastomer actuators [10–14], or robots with internal reaction wheels [15, 16]. In all such designs,

the small size of the fish-like robots and the resulting constraints on actuation and power require

that the morphology and control of the robots are designed to harness the fluid structure and fluid-

structure interaction for efficient and agile motion. This motivates the two broad directions of my

research: effective sensing of the flow structure, and controls that can exploit this knowledge for

efficient autonomous locomotion.

1

The fields of controls and sensing are currently being revolutionized with parametric learn-

ing methods. Control algorithms were historically manually designed for a specific system, often

leveraging knowledge of the system’s physics, either implicitly using knowledge of the system to ap-

proximate appropriate gains, or explicitly using a physics model, such as Model Predictive Control

and the Linear Quadratic Regulator. By contrast, the current state-of-the-art parametric controller

architecture, Reinforcement Learning, is generally blind to the physics of the system, and can learn

an optimal control using data alone. In the field of sensing a similar trend has ocurred, where

approaches that rely on the physics of the fluid (such as potential flow models in [17, 18]) are often

overtaken by parametric data driven approaches [19], particularly in more complex environments

where simple flow models are not accurate, such as near flapping airfoils (a common abstraction

for swimming robots) [20, 21]. In both sensing and control, merging the lack of required training

and physical understanding generated from these physics-based approaches with the generality and

effectiveness of parametric approaches is an important goal and a key theme of this work. However,

as was perhaps best stated by Sutton [22], leveraging human knowledge to develop machine learning

architectures for specific problems is often counterproductive, as the specially designed architectures

often scale poorly with increasing computation compared to more generalist architectures, leading

to the generalist architectures ultimately displacing the specialist ones as the available computing

power inevitably increases. We incorporate this observation by integrating generalist machine learn-

ing architectures with abstracted knowledge of the physics in general frameworks which should be

applicable to a broad range of problems and scale well with increasing availability of computing

resources.

Utilizing the physics of a swimming robot to improve its controls is challenging because

of the complexity of the physics. The fluid in which the robot swims is turbulent and infinite-

dimensional, and the interaction with that fluid and the surfaces of the body is difficult to even

simulate, and much more challenging (or perhaps impossible) to incorporate fully into a reduced-

order model. This makes approaches such as model-based RL [23] intractable unless a neural network

is used to fit the model, which sacrifices many of the advantages of physics-based approaches, such

as human understandability and leveraging existing knowledge. Our contribution is the concept

that even inaccurate models with vastly lower order than the modelled system can be leveraged

to improve reinforcement learning, as long as the model captures the qualitative physics of the

full system. We demonstrate this by modelling a swimming airfoil by a Chaplygin sleigh, a two-

2

dimensional nonholonomic system that has been shown to have many parallels to the basic physics

of swimming. We design a curriculum where reinforcement learning is first trained on the sleigh

model to incorporate knowledge of the underlying physics of the system, and is then transferred to

a simulation of the full system to complete training.

With the utility of the Chaplygin sleigh for training a rigid swimmer demonstrated, a flexible

Chaplygin sleigh composed of two rigid links and a flexible joint is investigated to determine if it can

model the qualitative physics of a flexible swimmer, which is a precursor to applying the curriculum

technique to flexible swimmers. The resulting dynamics were surprisingly rich (curious readers can

see [24] for an extensive discussion of these dynamics), but perhaps the most interesting feature to

emerge from the dynamics is a pair of stable turning gaits, where a symmetric forcing can result in a

‘bent’ configuration of the flexible sleigh to either the left or right, which results in turning. This type

of bistability can be useful for control and is typically introduced to a system intentionally through

a geometric bistability, but our result is unique in finding this bistability to be present simply from

the interaction between the sleigh and its substrate, or if this extends to realistic swimmers, between

the tail of a swimmer and the water. This work adds to our theoretical understanding of turns by

swimmers while motivating the idea that a curriculum using the flexible sleigh may be able to teach

efficient turning behavior to a flexible swimmer.

In the sensing problem, such pre-training is generally not useful for convergence, so we

require a different approach. As mentioned previously, simple potential flow models can be used for

simple sensing or estimation problems by simply inverting the flow model (e.g. if you know what

the distribution of pressures on a set of sensors are as a function of the position of a source (x, y),

given a specific distribution of pressures, solve for (x, y)). Unlike the control problem where errors

in the model are acceptable because the controller will be honed further on the actual system, in

this case there is no equivalent final training step, so errors in the model equate directly to errors

in the estimation or classification. For the turbulent, rotational flows around a swimmer and the

various obstacles that can appear in realistic navigation scenarios, the only reasonably accurate

models are simulations of the Navier-Stokes equations, which are not easily invertible. Instead,

our work to incorporate the physics of swimming into sensing has two main directions. One is to

change the dynamics of the swimmer itself to make the data it generates more amenable to black-box

parametric classifiers. The other focuses on extracting features from the dynamic modes of a time

series of pressure measurements from the surface of the body, which then enable parametric methods

3

to sense obstacles or reconstruct the flow.

The dynamic modes, or Koopman modes, of a fluid (or complex system in general) provide

an interesting means to explore the dynamics of a system, even when the governing equations are

not known or are untractable. As a brief summary (more details are available in chapter 5), they

emerge from the Koopman-von Neumann formulation of dynamics [25], whereby finite dimensional,

generally nonlinear systems can be represented as a generally infinite dimensional linear system in

a lifted space. For a typical dynamical system

xn+1 = F (xn), (1.1)

there also exists a linear operator such that

g(xn+1) = Kg(xn), (1.2)

where g is a typically infinite-dimensional Hilbert space of functions in L2, and K is the Koopman

operator. Though working with the infinite dimensional operator is not practical, this formulation

has an interesting interpretation that bridges between physics-based and data-driven approaches: the

time evolution of observations (data) of a system is equivalent to the physics of its underlying states,

in the limit as the available observations go to L2. In practice, g is taken as a finite basis of functions,

allowing a finite dimensional approximation of the Koopman operatorK to be approximated from the

data. This approximated operator is both data-driven and physics-based: it can be calculated with

no knowledge of the governing equations as long as data is present, but it also has the useful properties

of a linear system, such as eigenfunctions, that can give insight into the underlying dynamics.

Because the majority of the dynamics is often governed by a small number of eigenfunctions, this

also allows for a reduced representation of the dynamics which can be used to approximate its

training data.

This ability to extract a reduced and meaningful representation of time series data origi-

nating from a dynamical system has a previously unexplored synergy with dense neural network (or

in general parametric) classifiers and estimators. These networks take as input a vector of features,

which are a compressed representation of the data in a latent space, where each element contains

information about an abstracted quality of the data. The state-of-the-art for feature extraction

4

from time series are parametric methods, such as convolutional neural networks and recurrent neu-

ral networks, and the resulting features are selected by the optimization process, and as a result are

abstract and difficult or impossible for humans to interpret. Our contribution is taking the most

important eigenvectors of the Koopman operator constructed on the data as the features, which

results in a more interpretable estimation algorithm. This is applied to two problems. In one, a

time series of pressure data from points on an airfoil (representing pressure sensors on a swimmer)

with an upstream obstacle is collected, and the position of the obstacle is estimated. In the second,

this is extended to using the surface pressure data to reconstruct the entire surrounding flowfield

by estimating its dominant Koopman modes, taking advantage of the reduced representation of the

broader flowfield that the Koopman modes offer to simplify the problem.

1.1 Summary of Chapters

• Chapter 2: Surrogate models that capture the primary physics of the system can be a useful

starting point for training a Deep Reinforcement Learning (DRL) agent which is subsequently

transferred to train with a higher fidelity simulation. We demonstrate the utility of such

physics-informed reinforcement learning to train a policy that can enable velocity and path

tracking for a planar swimming (fish-like) rigid Joukowski hydrofoil. This is done through a

curriculum where the DRL agent is first trained to track limit cycles in a velocity space for a

representative nonholonomic system, and then transferred to train on a small simulation data

set of the swimmer. The results show the utility of physics-informed reinforcement learning

for the control of fish-like swimming robots.

• Chapter 3: This chapter finds that two bodies pinned together with a linear rotational

spring can exhibit multistable behavior with the introduction of a nonholonomic constraint.

Multistable fixed points of the unforced and undamped system are found to correspond to

multistable limit cycles with the introduction of damping and periodic forcing, some of which

result in fast net turning. This finding has potential implications in understanding the sharp

turns executed by biological swimmers, and could be exploited to perform efficient turns in

low degree of actuation robots.

• Chapter 4: In this chapter we show that the kinematics of a body with a passive tail encode

5

information about the ambient flow, which can be deciphered through machine learning. We

demonstrate this with experimental data of the angular velocity of a hydrofoil with a passive

tail that lies in the wake generated by an upstream oscillating body. Using convolutional

neural networks, we show that with the kinematic data from the downstream body with a tail,

the wakes can be better classified than in the case of a body without a tail. This superior

sensing ability exists for a body with a tail, even if only the kinematics of the main body are

used as input for the machine learning. This shows that beyond generating ‘additional inputs’,

passive tails modulate the response of the main body in manner that is useful for hydrodynamic

sensing. These findings have clear application for improving the sensing abilities of bioinspired

swimming robots.

• Chapter 5: Besides the necessary sensing hardware, a more important aspect of sensing

is related to the algorithms needed to extract the relevant information about the flow. This

paper advances a framework for such an algorithm using the setting of a pitching hydrofoil in

the wake of a thin plate (obstacle). Using time series pressure measurements on the surface

of the hydrofoil and the angular velocity of the hydrofoil, a Koopman operator is constructed

that propagates the time series forward in time. Multiple approaches are used to extract

dynamic information from the Koopman operator to estimate the plate position, and are

benchmarked against a state-of-the-art convolutional neural network (CNN) applied directly

to the time series. We find that using the Koopman operator for feature extraction improves

the estimation accuracy compared to the CNN for the same purpose, enabling ‘blind’ sensing

using the lateral line.

• Chapter 6: In this chapter, we demonstrate that it is possible to identify certain modes

of fluid flow and then reconstruct the entire flow field from these modes. We use Dynamic

Mode Decomposition (DMD) to parameterize complex, dynamic features across the entire

flow field. We then leverage deep neural networks to infer the DMD modes of the pressure

and velocity fields within a large, unsteady flow domain, employing solely a time series of

pressure measurements collected on the surface of an immersed obstacle. Our methodology is

successfully demonstrated to diverse fluid-structure interaction scenarios, including cases with

both free oscillations in the wake of a cylinder and forced oscillations of tandem cylinders,

demonstrating its versatility and robustness.

6

Chapter 2

Curriculum Reinforcement Learning

for Path Tracking

This chapter is adapted from a paper in Scientific Reports:

C. Rodwell and P. Tallapragada, “Physics-informed reinforcement learning for motion control

of a fish-like swimming robot,” Scientific Reports, vol. 13, no. 1, p. 10754, 2023.

2.1 Introduction

Motion control of robots, either physical or simulated with high fidelity, moving in unstruc-

tured environments with complex or unmodelled governing physics has traditionally presented many

challenges. Low-fidelity models using simplified formulas for drag and lift forces lead to models that

are amenable for control, but do not capture key physics that can play an especially important

role in the swimming of small-scale robots with limited actuation. Deep Reinforcement Learning

(DRL) holds considerable promise for motion control of robots with complex dynamics, such as

swimming robots. Reinforcement learning can be particularly useful when precise governing models

are absent [26–28].

Reinforcement learning requires the acquisition of large amounts of data from the robotic

system in the form of states, control actions, and the resulting state updates. Such data can be

acquired either through experiments, field tests, or simulations of the robot and its interaction with

7

the environment. In the case of mobile robots, experiments and field tests could prove to be very

expensive or unsafe to the robot. As a result, simulations play an important role in reinforcement

learning for robotics [29–31]. Simulations can in theory generate large amounts of data at low cost,

exploring a large subset of the state space that is challenging to explore in experiments. This is true

in the case of robotic manipulators, inverted pendulums and other toy systems whose physics is well

understood and can be efficiently and quickly computed. However, where the governing physics is

complex or the state space is high-dimensional with possibly discontinuous dynamics, high fidelity

simulators are often impractical and significant model reduction or the use of surrogate models is

essential [31].

The control of swimming robots is an important example where the governing physics is

complex enough that reinforcement learning should be a tool of choice for control, but the dynamics

of the fluid-structure interaction can be challenging to simulate. While reinforcement learning is

being widely applied in many areas of robotics [27, 32] and fluid control [33, 34], swimming robots

have for the most part not received much attention. A few notable recent exceptions employed

reinforcement learning for tasks such as predicting efficient schooling configurations for pairs of

swimmers [35] or larger schools [36], gait generation [37], or efficient start and escape patterns [38]

. However, important problems related to mobile robotics such as station keeping, velocity tracking

under disturbances, or path tracking have not been addressed in the area of fish-like swimming

robots due to the computational challenges of running a large number of high-fidelity simulations.

We address this challenge with curriculum learning [39, 40] and transfer learning [41], in

the context of a swimming robot. It has been observed that when applying reinforcement learning

using the Deterministic Policy Gradient (DPG) algorithm for complex tasks, much of computational

time is spent going from the initialized random policy to an intermediate policy that, while sub-

optimal, has qualitative similarities to the optimal policy [39–41]. Going from this policy to the

optimal policy is often very fast. The intermediate policy does not have to be trained using high-

fidelity state data, and can instead be cheaply trained using lower-fidelity simulations or models,

before being transferred to a higher-fidelity environment to complete the final steps of training.

Efficient multi-model training has been demonstrated in fluids for flow control [42], and here we

extend it to the swimming problem. Here we utilize knowledge of the physics of fish-like swimming,

specifically two important qualitative features of swimming, to estimate these intermediate policies,

from which finding an optimal policy is faster. The first feature is that fish-like propulsion is enabled

8

by periodic ‘tail beating’ (for carangiform fish) or body undulations (anguiliform fish) [4,43], at least

in steady state motion. In a suitable reduced velocity space this feature can be modelled by limit

cycles created by periodic forcing. A second surprising feature is that swimming by a hydrofoil,

which resembles a cross-section of a fish-like body, can be approximately modelled as motion of a

nonholonomically constrained system. This surprising feature arises because the Kutta condition,

which creates vorticity at sharp corners of a body moving in an otherwise approximately inviscid

fluid, acts as a nonholonomic constraint on a swimming hydrofoil [44, 45].

The swimming robot in this paper is modeled as a free-swimming Joukowski hydrofoil,

propelled and steered by an internal reaction wheel [15, 16]. A particularly simple surrogate model

that emulates the dynamics of such a swimmer is a nonholonomic system known as the Chaplygin

sleigh. Periodic torque on the Chaplygin sleigh produces ‘figure-8’ limit cycles in the velocity space,

which are similar in structure to the observed limit cycles of swimmers. Analytical approximations

for these limit cycles as a function of the forcing frequency and amplitude of the torque, as well as the

inverse dynamics problem of finding the periodic torque to generate a limit cycle, have been shown

in [46]. Torques for steering the Chaplygin sleigh [16,46] and path tracking for the Chaplygin sleigh

using a vector pursuit method were demonstrated in [47]. Since we are interested in transfer learning

using the low-dimensional model of the Chaplygin sleigh, we revisit the problem of simultaneous

velocity tracking and steering using a reinforcement learning framework. A DPG agent [48, 49]

is trained to generate the action (torque) to steer a Chaplygin sleigh which has parameters that

have been fit to match the dynamics of the swimming Joukowski foil. The agent is trained on

the Chaplygin sleigh model to track a limit cycle in the velocity space at a specified translational

velocity. This DPG agent of the Chaplygin sleigh is then transferred to a fluid simulation for

training to steer the hydrofoil and track a speed. This second training requires fewer simulations to

fine tune the DPG agent’s precision in tracking a reference velocity. This step-by-step curriculum

reinforcement learning circumvents the problem of high computational time to simulate the physics

of the system [39,40] and allows a way to imprint qualitative physics into a DPG agent.

This paper sets forth a framework for using physics-informed surrogate models to train a

DPG agent which is then subsequently trained using data generated from fast simulations of fluid-

robot interaction. A very high fidelity computational method need not be used in the second step

for two reasons: going from an intermediate sub-optimal policy to an optimal policy can be slowed

down significantly, but more importantly the computation of the fluid-robot interaction is intended

9

to be another intermediate step before actual experiments. The paper is organized as follows: in

section 2.2 a short review of nonholonomic constraints with particular reference to the Chaplygin

sleigh is provided and the Kutta condition on a Joukowski foil is shown to be formally similar to

this constraint. In section 2.3 limit cycles are shown to exist via simulations in a reduced velocity

space for the Chaplygin sleigh and a hydrofoil excited by a periodic torque. Here we make use of a

panel method to simulate the motion of the hydrofoil. In section 2.4 we select two sets of Chaplygin

sleigh parameters that model the swimming hydrofoil at different translational velocities. In section

2.5 we describe the reinforcement learning framework with a curriculum to enable path tracking by

a Chaplygin sleigh and the transfer of this skill to the simulated swimming hydrofoil.

2.2 Nonholonomic Constraints - Chaplygin Sleigh and the Joukowski

Foil in an Inviscid Fluid

2.2.1 Chaplygin sleigh

The Chaplygin sleigh [50] or cart, shown in Fig. 2.1, has a knife edge or a small inertia-less

wheel at the rear at point P and is supported on a single castor or wheel at the front that allows

motion in any direction. The sleigh is also assumed to have an internal reaction wheel whose angular

acceleration can apply a torque τ to the sleigh. The configuration manifold of the physical system

is Q = SE(2) × S1. Because the rotor angle and angular velocity are not coupled with the rest

of the system, we eliminate the rotor coordinate except for the torque τ , reducing the system to

Q = SE(2). This is parameterized locally by q = (x, y, θ), where (x, y) denote the position of the

sleigh center of mass and θ denotes its fixed frame angle relative to the horizontal. The generalized

velocities are q̇ = (ẋ, ẏ, θ̇). The tangent space to Q at q is denoted by TqQ ∼= R3 and spanned by

combinations of the generalized velocities; the standard basis being {[1, 0, 0], [0, 1, 0], [0, 0, 1]}. These

three basis vectors are respectively translations ẋ, ẏ and rotation θ̇. The spatial frame is denoted by

FS with axes X−Y and the body frame, which is collocated at the mass center C and rotated by the

yaw angle θ with respect to the spatial frame, is denoted by FB with axes Xb−Yb. The velocity (ẋ, ẏ)

in the spatial frame transforms to velocity (u, v) in the body frame as [u v]⊺ = R(θ) · [ẋ ẏ]⊺, where

R(θ) is the rotation matrix. We assume that the rear wheel at P prevents slipping in the transverse

(Yb) direction but rolls freely in the longitudinal direction along (Xb). While dim(TqQ) = 3, the

10

Yb

Xb

P

b

Y

X

θ

(a)

Xb

Yb

X

Y θ

V1
V2

Ω

(b)

Figure 2.1: (a) A Chaplygin sleigh shaped as a Joukowski foil with a no slip constraint at P in the
transverse (Yb) direction. The internal reaction wheel is shown by the grey circle. (b) A Joukowski
foil with singular distributions of vorticity (red circles corresponding to positive (counterclockwise)
vorticity, and blue circles corresponding to negative (clockwise) vorticity) in an otherwise inviscid
flow.

velocity constraint at point P is given by

− sin θẋ+ cos θẏ − bθ̇ = 0 (2.1)

or in the body frame v − bθ̇ = 0. In terms of the standard basis for TqQ, the velocity of sleigh is

restricted to lie in the subspace W = span{[cos θ, sin θ, 0]⊺, [−b sin θ, b cos θ, 1]⊺}, with the comple-

mentary subspace being defined by (2.1), W⊥ = span{− sin θ, cos θ,−b}. Physically, this means that

the allowable motions are such that the sleigh can translate along its longitudinal (Xb) direction and

have no spin velocity i.e. in the fixed frame the velocity of the center of the sleigh is cos θẋ+ sin θẏ,

or if the spin angular velocity of the sleigh is θ̇ and the constraint point does not translate, then the

center of the sleigh can only translate with (ẋ = −b sin θθ̇, ẏ = b cos θθ̇). The distribution (a smooth

assignment of a subspace of the tangent space at each q ∈ Q) D(q) = {w ∈W (q) ⊂ TqQ} is nonholo-

nomic if and only if D(q) is closed under the Jacobi-Lie brackets of the vector fields in D(q). The

Lie-bracket of two vector fields w1 and w2 is formally defined as [w1, w2] = (∇w2) · w1 − (∇w1)w2.

Setting the vectors w1 and w2 as the basis vectors defining the span of W respectively, their Lie

bracket yields [w1, w2] = [− sin θ, cos θ, 0]⊺ /∈ W showing that the constraint (2.1) is nonholonomic,

see [45] for further details.

11

2.2.2 Nonholonomic constraints and swimming in an inviscid fluid

Nonholonomic constraints on the locomotion of a body in a fluid are easiest to realize if

one considers the motion of a body with corners in an inviscid fluid. One such common example

of a body relevant to both flight and fish-like swimming is the motion of a Joukowski foil whose

geometry is described by mapping its boundary from a circle of radius rc centered at the origin in

the mapped plane through the Joukowski transformation

z = F (ζ) = ζ + ζc +
a2

ζ + ζc
, (2.2)

where ζc ∈ C and a ∈ R are geometric parameters. We refer to the plane of the foil’s motion as

the foil plane and the plane of the circle’s motion as the circle plane. For the symmetrical shape

of the foil shown in Fig. 2.1 (b), ζc ∈ R. The pre-image of the sharp trailing edge of the foil

is given by ζt = a − ζc. We assume the fluid could contain singular distributions of vorticity in

the form of N point vortices as shown in Fig. 2.1 (b). The motion of the fluid is governed by a

linear superposition of potential functions. Following Milne-Thomson [51], the complex potential

W (z) = w(ζ) describing the velocity of the fluid in a body frame of reference (Xb − Yb) (see Fig.

2.1(b)) may be decomposed in terms of its dependence on the translation of the foil, the rotation of

the foil, and each of the N point vortices in the form

w(ζ) =W (z) = V1w1(ζ) + V2w2(ζ) + Ωw3(ζ) +

N∑
n=1

wn
v (ζ).

Here w1, w2 and w3 are the rigid-body (Kirchoff) potential functions due to the translation of

the foil in the Xb and Yb directions and rotation about the out-of-plane Z axis, respectively.

The potential function wn
v (ζ) due to the nth point vortex with circulation Γn located at ζn out-

side a circular cylinder can be constructed according to the Milne-Thomson circle theorem [51] in

terms of an image vortex of circulation −Γn located inside the cylinder at r2c/ζ̄n. Thus wn
v (ζ) =

Γn

2πı

(
log (ζ − ζn)− log

(
ζ − r2c

ζ̄n

))
.

The image vortex inside the cylinder introduces a net circulation around the cylinder, consis-

tent with Kelvin’s circulation theorem. This development of net circulation around the foil introduces

a lift force on the foil and is essential to its propulsion. The complex velocity of the fluid in the foil

plane in a body fixed frame is related to the complex velocity of the fluid in the circle plane by the

12

equation,
dW

dz
=
dw

dz

dz

dζ
=
dw

dz

1

F ′(ζ)
(2.3)

where F ′(ζ) = 1− a2

(ζ+ζc)2
. Since the fluid has been modeled to be inviscid, the boundary conditions

on the body of the foil allow the fluid to slip along the surface. An additional constraint on the

velocity of the fluid is necessitated by the geometry of the foil. The pre-image of the trailing edge

of the foil is a singularity of the Joukowski transformation, i.e., the derivative F ′(ζt) = 0. It can be

seen from equation 2.3 that the complex velocity of the fluid in the circle plane has to be zero to

ensure that the velocity of the fluid at the trailing edge of the foil in the foil plane does not become

undefined; this is the Kutta condition. The Kutta condition requires that at the pre-image ζt of the

trailing edge,

dw

dζ

∣∣∣∣
ζ=ζt

= V1
dw1

dζ

∣∣∣∣
ζ=ζt

+ V2
dw2

dζ

∣∣∣∣
ζ=ζt

+Ω
dw3

dζ

∣∣∣∣
ζ=ζt

+

n=N∑
1

dwn
v

dζ

∣∣∣∣
ζ=ζt

= 0.

A formal calculation shows that dw1

dζ

∣∣∣∣
ζ=ζt

= 0 and dw2

dζ

∣∣∣∣
ζ=ζt

= −2. The term 1
2
dw3

dζ

∣∣∣∣
ζ=ζt

, subsequently

denoted by −b, is a constant that is determined by the numerical values of the parameters a and

ζc. Denoting the velocity of the fluid at the trailing edge due to the distribution of point vortices

uv = 1
2

∑n=N
1

dwn
v

dζ

∣∣∣∣
ζ=ζt

, the Kutta condition can be re-written as

−ẋ sin θ + ẏ cos θ − bθ̇ = uv. (2.4)

Equation (2.4) constrains the velocity of the foil and it is an affine-nonholonomic constraint. This

condition constrains the velocity in the system’s phase space to an affine distribution A of the form

A(q) = {w − w0 ∈ We(q)|w0 = [−uv sin θ, uv cos θ, 0]⊺}, where We(q) = span{W,V 1, ..., V 2N} is

the subspace containing the allowable vector fields w1 and w2 associated with the motion of the

foil and the vector field V 1, ..., V 2N being the velocities of each of the N point vortices. This is an

affine-distribution not simply on SE(2) but on the Cartesian product of SE(2) with configuration

manifold R2N for the vortices. The vector fields V 1, ..., V 2N represent translational velocities of

the vortices, potentially dependent on (x, y, θ), that are compatible with the constraint when the

position and orientation of the foil are fixed.

13

2.3 Periodic Forcing and Limit Cycles in Reduced Velocity

Space

2.3.1 Limit Cycles in Reduced Velocity Space of the Chaplygin Sleigh

The equations of motion of the Chaplygin sleigh can be calculated in a straightforward

manner. Here we will assume that the Chaplygin sleigh experiences viscous resistance as it moves

on the ground and that it is actuated by periodic torque generated by the periodic oscillation of

the reaction wheel. The Lagrangian of the system is L = 1
2m(ẋ2 + ẏ2) + 1

2Icθ̇
2 where m is the

mass of the sleigh, I is its moment of inertia, and x and y are the coordinates of the center of

mass. Assuming a viscous resistive force to motion described by the Rayleigh dissipation function

R = 1
2 (cu(ẋ cos θ + ẏ sin θ)2 + cω θ̇

2), where cu and cω are viscous damping coefficients for the

translational and rotational velocity respectively. The Euler-Lagrange equations are

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= Bijλj −
∂R
∂q̇i

+ τi(t), (2.5)

where B = [− sin θ, cos θ,−b] (obtained from W⊥, the complementary space of W), λj is the La-

grange multiplier for each j constraint and τi are any external forces or torques acting on sleigh.

Here i varies from 1 to 3 and j = 1, so only τ1 is nonzero and consequently it is denoted henceforth

as just τ . The equations can be transformed to a body frame using [u v]⊺ = R · [ẋ ẏ]⊺ to obtain the

dimensionless reduced velocity equations

u̇ = bω2 − cu
m
u (2.6)

ω̇ =
τ −mbωu− cωω

I +mb2
, (2.7)

where u = ẋ cos θ + ẏ sin θ is the translational velocity at the constraint. Due to the nonholonomic

constraint, the evolution of the velocities is governed by two equations instead of three. The evolution

14

of the configuration variables is given by

θ̇ = ω (2.8)

ẋ = u cos θ − ωb sin θ (2.9)

ẏ = u sin θ + ωb cos θ. (2.10)

When the torque due to the reaction wheel is periodic, τ = τ0 sinΩt, a limit cycle exists in the

reduced velocity space [52] and the sleigh moves along a serpentine path with its time averaged path

converging to a straight line illustrated by a sample result in Fig. 2.2(a).

2.3.2 Limit Cycles in Reduced Velocity Space of a Hydrofoil

We consider a hydrofoil modeled as a NACA 0018 symmetrical airfoil that contains an

internal reaction wheel with a moment of inertia Ir and angular velocity Ωr. The oscillatory motion

of the reaction wheel generates a periodic torque on the hydrofoil given by τ = −IrΩ̇r. We simulate

its motion due to a periodic torque τ using a vortex panel method. Panel methods are a form of

computational fluid dynamics (CFD) that relies entirely on potential flow theory with point and line

vortices. In these methods boundary (structure) surfaces are decomposed into discrete panels with

source and vortex distributions on each panel such that flow does not pass through the surface. While

the lack of viscous effects can reduce simulation fidelity compared to modern meshed Navier-Stokes

solvers, panel methods have lower computational cost and easily incorporate body movement due to

the lack of meshing. For these reasons, panel methods continue to be the preferred simulation tool

for high Reynolds number fluid interaction problems [53,54], where the flow is largely dominated by

inertial effects which are easily captured by the panel method, and the neglected viscous effects are

comparatively insignificant. This includes the dynamics of swimming of large and/or fast swimmers,

where experimentally validated panel methods have long been used from quantifying the efficiency

of flipper shapes [55] or flapping airfoil kinematics [56] and explaining the flow dynamics of full fish

models [57]. Though the decreasing cost of computing power has lead to increasing use of meshed

finite volume techniques in swimming problems, new panel methods are still in development [58],

and they are still widely used for swimming problems, including anguilliform [59] and cetacean [60]

swimming.

In a vortex panel method, each of the N panels has a source distribution of strength σi,

15

-1 5
X

0

20

40

Y

0 0.5 1
u

-0.5

0

0.5

ω

(a)

0 0.5 1
u

-2

0

2
ω

(b)

Figure 2.2: (a) (left) A sample serpentine trajectory for the Chaplygin sleigh where the mean
converges to a straight line. (right) In the reduced velocity space the trajectory converges to a
‘figure-8’ limit cycle in (u, ω). (b) A sample trajectory of the simulated swimmer starting from rest
when forced by a periodic torque τ = A sinωt. The inset figure shows convergence to a limit cycle
in the reduced velocity, (u, ω), space that is similar to the that of the Chaplygin sleigh, indicating
similar underlying dynamics. The velocity is scaled into body lengths per second ([BL/s]). The
swimmer moves along a serpentine path (in black) with the average path converging to a straight
line.

which varies between panels, and a vortex distribution of strength γ which is constant over the body.

The Neumann boundary condition is applied, which stipulates that no flow passes through a panel

midpoint, or ⟨ui, ηi⟩ = 0 ∀ i ∈ {1, . . . , N}, where ui is the flow velocity vector at the center of panel

i relative to the body, and ηi is the surface normal unit vector at the same control point. The Kutta

condition enforces the condition that static pressure p is continuous at two panel midpoints adjacent

to the tail, i.e., p1 = pN . To enforce this condition, vortex shedding occurs at the tail, by calculating

16

the change in circulation about the body at every time step and applying an opposite circulation to

a wake panel at the tail, which is then shed as a point vortex of equal circulation at its center. The

structure of the system allows γ to be solved independently, and because the flow velocity due to a

specific source or vortex panel is linear in its unknown strength, the N unknown σi values can be

found by solving the linear system of N equations arising from the Neumann boundary condition.

With γ and the σi found, the flow field is fully determined, and the pressure distribution around the

body can be computed from the unsteady Bernoulli equation. This is implemented by calculating

the velocity potential at each point on the body relative to the leading edge via a path integral of

fluid velocity along the body, neglecting circulation. The time derivatives of these potentials are

calculated by finite differences. The moving potential reference point results in a value that varies

with time but is equal across the body added to all of the pressures, but because of body closure, this

value has no effect on the calculated forces or moments. From the pressures, the resultant torques

and forces acting on the body can be computed. An additional linear dissipation force is applied

on each body degree of freedom linearly proportionally to the velocity, which prevents drag-free

gliding that would otherwise be possible without skin friction. A snapshot from a sample simulation

of the motion of the vortex wake due to a periodic torque on a Joukowski foil is shown in Fig.

2.2b. The panel code was validated in steady flow by comparing computed lift coefficients to known

experimental values for a range of angles of attack [61]. It was also validated in unsteady flow [46]

where it was compared to a rotor-driven swimming hydrofoil experiment, and it was found that the

swimming model results in similar trajectories to the experimental system.

2.4 Parameter Estimation for the Surrogate Model

The similarity of the limit cycles of the Chaplygin sleigh and the hydrofoil and their trajec-

tories in the plane, in response to periodic control input (torque) together with the similar nonholo-

nomic constraints on the both the systems, motivates the use of the Chaplygin sleigh as a surrogate

model for the swimming foil. The limit cycles of the Chaplygin sleigh in the reduced velocity space

depend on the parameters p = (m, I, b, cu, cω). For an accurate surrogate model, these parameters

need to be chosen such that resultant limit cycles due to periodic torques are nearly the same (with

the same mean value and amplitudes) as those of a hydrofoil. This is accomplished by first gathering

data from simulating the motion of the hydrofoil, with each simulation being 100 seconds long with

17

data acquired at time increments dt = 0.1 with forcing τ = A sin t. Two different models are fit,

one where A = 1.0 and another where A = 1.2, and the sensitivity of the results to the forcing

amplitude used to fit the surrogate model is explored. The surrogate model fit from simulations

using the lower forcing amplitude resulting in a smaller u0 = 0.606 (of the swimmer) will be referred

to as the “low speed surrogate model", while the latter model fit from simulations using the higher

forcing amplitude with a higher u0 = 1.90 will be referred to as the “high speed surrogate model".

For each time step, the current state s = (u, ω), action τ , and next state s+1 = (u+1, ω+1) are stored

in buffer B. An optimization routine is then performed to minimize the least squares error

p0 = argmin
p

∑
B

((
u+

(
bω2 − c

m
u
)
dt− u+1

)2
+

(
ω +

(
τ −mbωu

I +mb2

)
dt− ω+1

)2
)
. (2.11)

Figure 2.3(a) shows the trajectories of the swimmer (blue) and the surrogate model (red) obtained

from (2.11) for the low speed model (on the left) and the high speed model (on the right). In both

the cases the surrogate models’ trajectories in the reduced velocity space converge to limit cycles

that are qualitatively similar to those of the swimmers. In the pair of limit cycles on the left, the

apparent mismatch of the limit cycles is largely due to an error (about 10%) in the mean value of

the speed u0. This is evident in Fig. 2.3(b) which shows the evolution (in red) of u̇ and ω̇ for the

low speed surrogate model. The evolution of these state variables for the hydrofoil are also shown in

Fig. 2.3(b) in blue. The error in the angular velocity (and its derivative) is negligible between the

hydrofoil and its nonholonomic surrogate model and the error in u̇ is small, with a value of 0.021

for the low velocity surrogate, which results in an error in mean translational velocity u0 of 0.066.

Error in u0 for the higher velocity surrogate model is significantly lower, at 3.11× 10−5.

Here we note that the surrogate modeling fits the parameters of a three degree of freedom

rigid body model to approximate the complex high-dimensional interaction with the vortex wake

of a hydrofoil. Therefore, the mapping from the dynamics of a swimmer to that of a Chaplygin

sleigh cannot be unique. The same surrogate model can be mapped non-uniquely to the dynamics

of different swimmers. For example, for the low speed surrogate model, the dimensionless parameter

values are found to be m = 0.93, I = 0.98, b = 0.068, cu = 0.041, and cω = 0.0043. For the high

speed surrogate model, the corresponding parameters are m = 0.36, I = 0.93, b = 0.17, cu = 0.026,

and cω = 0.058. Moreover, the error between the dynamics of the surrogate model and the true

swimmer it models, increases with changing the velocity or forcing. We use both of these surrogate

18

0 0.5 1 1.5 2
u [BL/s]

-1

0

1

2

ω
 [

ra
d/

s]

(a)

-0.05

0

0.05

̇ u
[B

L/
s2]

0 20 40
t [s]

-1

0

1

ω̇
 [r

ad
/s

2]

(b)

Figure 2.3: (a) Limit cycles of the surrogate Chaplygin sleigh (red) and the swimmer (blue) for the
same periodic forcing, demonstrating convergence to similar limit cycle trajectories in the reduced
velocity space. Two sets of limit cycles are shown, one due to applied periodic torque τ = sin t
(limit cycles on the left) and the other due to τ = 1.2 sin t (limit cycle on the right). (b) The vector
field of the governing equations for the surrogate Chaplygin sleigh (red) and the swimmer (blue) at
the lower velocity. The units shown are for the simulated swimmer, the Chaplygin sleigh states are
dimensionless.

models in the subsequent curriculum learning to demonstrate that the qualitative similarity between

the physics (mainly that efficient motion lies on an invariant manifold) is more important to the

training than quantitative similarity, as the two surrogate models have quantitatively dissimilar

parameters.

2.5 Reinforcement Learning

Control for fish robots is challenging due to the high complexity of the fluid-body interaction

and the need for periodic motion. The most popular current approach is based on the central

pattern generator (CPG), a neural assembly found in vertebrates that has periodic outputs which

provide the rhythm for periodic locomotion [62]. Artificial attempts to reproduce this functionality

often determine the deflection of each actuator as an oscillator, where parameters determine the

amplitude, frequency, and relative phases of the actuators [63]. While this does typically result in

swimming behavior, the exact oscillator parameters are typically chosen heuristically, and though

formal parameter optimization can result in large improvements in swimming speed, they must be

performed by algorithms such as particle-swarm optimization that select parameters to optimize the

reward over entire trajectories in an open-loop fashion [64]. Reinforcement learning has emerged as

a more efficient way to optimize controller parameters than pure trajectory optimization because

it can utilize knowledge about intermediate states within the trajectory to improve the controller

19

(policy), provided that the control action is only a function of the states and controller parameters.

Here, we teach the controller to perform oscillations based on feedback using a curriculum, instead of

encoding the oscillator directly into the controller architecture. This allows parameter optimization

to be performed on comparatively few trajectories of the simulated swimmer.

We apply a Deterministic Policy Gradient (DPG) algorithm with curriculum learning to

control the foil in the panel method simulated swimming environment to track a reference path

at a reference velocity. This path tracking algorithm is decomposed into two parts: a pure pursuit

algorithm [65,66] that determines a target turning angle given the path geometry, and a DPG-trained

actor that performs the specified turn at the desired velocity.

The pure pursuit algorithm is the simpler of the two: given a sequential list of points (X,Y)

defining a path, a list of vectors r̄ spanning from the center of the pursuer to each point can be

constructed, and a target point (Xi, Yi) with vector r̄i can be selected with i initialized at 0. At

every time interval, all vectors r̄ are reconstructed based on the current pursuer position, and if

|r̄i| < d, where d is a constant which specifies the sight horizon, then i is increased iteratively until

the inequality becomes false. The vector r̄i is then taken as the pursuit vector, and the angle of r̄i

in the fixed frame is recorded as θtarget, and in the local frame the error between the current and

desired heading is defined as θe = θtarget − θ. In the limit as (d, θe) → 0 and for a continuous path

(X,Y), the tracking error goes to zero. Such a pursuit algorithm was implemented for path tracking

by a Chaplygin sleigh in Fedonyuk [47]. The trajectory (x(t), y(t), θ(t)), of the Chaplygin sleigh in

the plane when the torque is periodic is serpentine, but the time averaged trajectory converges to a

straight line. If the sight horizon d is too small, i.e. (d
ur

≪ 1
Ω) for a reference velocity ur and stroke

frequency Ω, the pursuit vector r̄i and θtarget oscillate rapidly to direct the body back to the path,

which interferes with the agent’s derived stroke frequency. In contrast, a control method chasing a

more distant point tends to smooth the small-scale features of the path and minimize oscillations

of the trajectory, but where the desired path is sharply curved, track a chord cutting through the

required path. Here we take d = 10 body lengths, such that d ∼ ur

Ω for speeds considered, which we

find to be appropriately small to capture the details of the paths considered, while not small enough

to interfere significantly with the frequency of oscillations.

20

2.5.1 Curriculum Learning

The curriculum learning has three training steps: a supervised step of pre-training the policy

to model a given control on the surrogate Chaplygin sleigh, a DPG training step to optimally control

the surrogate Chaplygin sleigh model, and a third step transferring the same trained model into the

fluid-robot simulation environment for further training.

The supervised step of pre-training the sleigh to model a given control on the Chaplygin

sleigh imprints into an actor a known control algorithm as an initial policy from which further

exploration can enable the actor to learn policies for other reward functions (control goals), as will

be seen by results in Fig. 2.5 in the following section. The first supervised step is inspired by previous

work to control the surrogate Chaplygin sleigh, such as [47] in which velocity tracking with a purely

sinusoidal input and in [67] where steering with a purely proportional control was investigated.

Initializing the actor to perform a superposition of these control methods with arbitrarily chosen

constants is a better starting point than a fully random actor. The initial control function is selected

as

τ = 0.3 sin t− 0.05θe, (2.12)

which, with constant θtarget converges to a limit cycle and θ̄e −→ 0 and u0 −→ 0.32 for any initial

conditions (u(0), θe(0)) in a neighborhood of zero. This pre-training control function is arbitrary

and any other target velocity within a pre-defined feasible range u0 ∈ [0, umax] could have been

achieved without affecting the subsequent algorithm. The pre-training generates a deterministic

policy µ(s|θ1) with weights θ1 and no explicit time dependence that generates a similar periodic gait

to that generated by the time-dependent prescribed forcing in (2.12). This is achieved by collecting

state and action vectors (s, a) of a trajectory using the latter time-dependent policy, and finding θ1

(the network architecture corresponding to these weights is explained in section 2.5.2) that minimize

the sum of the error (a − µ(s|θ1))2 over the points sampled from the trajectory using stochastic

gradient descent. The chosen trajectory has length t = 100 seconds at intervals dt = 0.1s. This

optimization is done in 5 epochs which prevents over fitting, which is particularly important as data

is used from only one trajectory. A schematic of this pre-training procedure is shown in Fig. 2.4(a).

21

(a)

(b)

Figure 2.4: (a) A schematic of pre-training to encode the limit cycle features of the reduced velocity
space and periodic gaits into the policy output of an actor. (b) A schematic illustration of the
application of the modified DPG algorithm to train a policy that can make the surrogate Chaplygin
sleigh track a limit cycle and heading angle.

2.5.2 Deterministic Policy Gradient for Tracking Limit Cycles and Head-

ing angle by Chaplygin Sleigh

Knowing θe and prescribing a target velocity ut, the optimal control problem can be reduced

into a regulation problem: find a policy µ(u, ω, θtarget, ut) such to maximize the cumulative reward

r = −(u− ut)
2 − 0.2|u− ut| − 0.5(θe)

2 − 0.1|θe| (2.13)

which can otherwise be denoted as

argmax
µ

∫ tf

t0

r(u, ω, θe, ut)dt (2.14)

22

regulating u → ut and θe → 0. The policy µ(u, ω, θe, ut) is the same as the (control) torque τ with

state feedback of (u, ω, θe, ut). Though ut is not strictly a state of the system and does not have

any dynamics except for those prescribed to it (variable speed tracking for instance), it must be

relayed to the policy together with the states to allow appropriate control, so from the perspective

of the DPG algorithm it is a state, and we will henceforth refer to it as such. This reward function

is designed to simultaneously minimize the error in angle and velocity tracking, which are mutually

exclusive goals: maintaining the target velocity requires “flapping” motion that results in periodic

deviation from the desired heading angle. While the L2 norm is traditionally used in cost functions

for regularization problems and regression, it penalizes large deviations from the target value much

more harshly than small ones, which makes it impossible to select a weight on the angle tracking

reward that will adequately penalize small biases, while not penalizing flapping oscillations too

much, which would result in swimming speeds well below the velocity target. However, allowing

small biases to exist in the tracking angle can cause the swimmer to deviate from the prescribed

path over time. This problem is alleviated by introducing an L1 term on the angle tracking error

to penalize those small biases. Similarly, an L1 term is included in the velocity tracking reward to

reduce the small negative bias in the velocity that results from the oscillation magnitude-velocity

tradeoff. Specific weights were tuned on the surrogate model by repeated trials.

Approaches to this and similar problems include using an analytical harmonic balance cal-

culation to solve the inverse problem of finding a biased sinusoidal input capable of reaching desired

limit cycles for the Chaplygin sleigh such as in [52]. An extension for the case of a hydrofoil tracking

a limit cycle was shown in [46] but this approach cannot be extended for path tracking or tracking

variable velocities. The approach in [67] successfully uses proportional control on the heading angle,

but there is not clear way to expand this approach to simultaneous velocity tracking. In the absence

of a standard control method for even the path tracking problem for the Chaplygin sleigh, and the

associated difficulty in carrying a similar approach to a swimmer we consider this problem well suited

for reinforcement learning. Since the action space (allowable control) τ is continuous, DPG has the

ability to utilize the entire action continuum [48,49], which makes it suitable for this problem. Our

DPG implementation is explained graphically in Fig. 2.4(b), and explained in text below.

Denote s = (u, ω, θe, ut) and define the policy µ(s) as a neural network with weights w. The

reward maximization problem can be approached with any sufficiently general numerical optimiza-

tion algorithm, by perturbing the weights of µ, then recalculating the trajectory and its associated

23

cumulative reward. While this Monte-Carlo approach will typically arrive at a maximum, it requires

many trajectory iterations and an extensive training process, which combined take a long time to

achieve convergence to any optimal policy. Policy gradient methods make this much faster by also

calculating the value of a given state-action pair using a critic network Q(s, a). Quantifying the

value of an action in the context of a specific state allows for specific updates to the policy to perform

higher-value actions, which requires fewer trajectories than the Monte-Carlo approach because there

is only one cumulative reward per simulation, but many actions, generating more data that allows

for finer training. In simple terms, it is more effective to promote and curtail specific actions than

it is to promote or curtail a set of weights based on the value of its average action.

In a traditional policy gradient algorithm, the policy π is a probability distribution that

estimates the appropriate action out of a discrete pre-determined set. While this is effective in

many benchmark problems that feature discrete (and often small set of) actions [68, 69] or more

commonly in games with discrete on/off controls [70], it is a limitation where a continuous spectrum

of allowable actions is available. DPG has the ability to utilize the entire action continuum [48,49],

which makes it an intuitive choice for this problem.

More formally, the traditional DPG algorithm features two function approximators: an

actor µθ1(s) and a critic Qθ2(s, a) where θ1 and θ2 are weights that define the approximation.

The approximators used with this algorithm, such as in [49], are typically neural networks due to

their utility as universal function approximators [71] and the ill-suitedness of competing discrete

approximators, such as tables, to a continuous state and action space. These weights are typically

initialized in a Gaussian distribution, and an empty experience buffer R is also generated. We use

an ϵ greedy exploratory policy β(s), which when sampled has a 1− ϵ chance of returning µ(s) and an

ϵ probability of returning a random value pulled from a normal distribution with deviation σ. The

environment is simulated and the results stored in the experience buffer in the form (s, r, a, s+1),

where s+1 is the next state which is transitioned into. The discounted expected future reward

Q(s, a) can be updated to equal the sum of the current reward and the discounted approximated

future reward for the known next state, a process known as bootstrapping which can be written as

Qtarget(s, a) = r + γQθ2(s
+1, µθ1(s

+1)), (2.15)

where γ is the discount factor. A new set of actions can then be selected that maximize expected

24

reward by performing one step of gradient ascent:

µtarget(s) = µθ1(s) + α
∂Qθ2(s, a)

∂a
(2.16)

where the gradient can be computed efficiently along one dimension by a finite difference approxi-

mation
∂Qθ2(s, a)

∂a
≈ Qθ2(s, a+ da)−Qθ2(s, a− da)

2da
. (2.17)

This gradient can also be computed by automatic differentiation, which is more efficient than fi-

nite difference methods for higher-dimension action spaces. Updating both networks Qθ2(s, a) →

Qtarget(s, a) and µθ1(s, a) → µtarget(s, a) is then a supervised learning problem, where we minimize

the least-square-error using 5 epochs of the adam algorithm [72], which is a stochastic gradient

descent algorithm with momentum. This supervised approach is a departure from the original al-

gorithm, which instead updates both sets of weights with a single step of gradient descent; we find

that higher optimization speed of the adam algorithm compared to deterministic gradient descent

makes this supervised approach faster on this problem. We use the adam parameters recommended

in page 2 of [72], except with ε = 10−7. These updates are repeated n times before a new batch of m

environment simulations are generated and appended to the experience buffer, ensuring that there

is enough data about perturbations local to the current trajectories to allow local optimization.

We selected initial parameter values of n = 10, m = 10 for the Chaplygin sleigh training,

and n = 10 and m = 1 for the fluid simulation training. Additionally, we used values of α = 0.01,

γ = 0.99 σ = 3, a = 10−5, and an experience buffer of size up to 3× 105. As the training progresses,

the values of ut for each simulations are drawn from a widening probability distribution. At first,

training is performed with ut = 1. After 500 iterations, the target velocity for each trajectory is

drawn from a uniform distribution such that 0.8 ≤ ut ≤ 1.2, and the target velocity is held constant

within a trajectory. This is broadened to 0.6 ≤ ut ≤ 1.6, 0.4 ≤ ut ≤ 2.0, and 0.2 ≤ ut ≤ 3.0 after

1000, 1500, and 2500 iterations, respectively. This gradual introduction of different target velocities

serves as another layer of curriculum, and reduces the risk of non-convergence. One modification is

made to the DPG algorithm described thus far: because the critic is initialized with random weights

but the actor is pre-trained, actor updates are disabled by defining α = 0 for the first 10 iterations,

at which point the critic has grown consistent with the actor and the learn rate can be reset to

α = 0.01.

25

When the episode reward on the sleigh environment qualitatively is seen to reach a peak or

asymptotic convergence to a solution, the actor and critic are transplanted to the fluid simulation.

The states used as policy inputs remain the same, however in the Chaplygin sleigh they correspond

to full state feedback; in the simulated swimmer, the limited state feedback is insufficient to even

fully describe the motion of the rigid body, let alone the high-dimensional fluid. This lack of

observability makes training on the swimming simulations more data expensive, as the underlying

Markov assumption that every state-action pair has a fixed probability distribution of states that

it will transition to is not accurate. Though the overall system is Markov in that a complete state-

action pair does transition deterministically to a specific next state, because the “state” given to

the policy is a small subspace of the true state, it appears as if the system is non-Markov from the

perspective of the agent. This reduced data efficiency, combined with the increased computational

cost of generating data, makes training very slow in terms of wall-time.

Dense neural networks are the most popular choice of function approximator for DPG. A

dense network contains one or more layers of neurons, and the value of each neurons is computed

as a weighted sum of the neurons of the previous layer, with different weights for each neuron. The

values are then passed through an activation function before being passed to the next layer, where

the process is repeated until it reaches a neuron that is read as the output. We selected a 6-layer

dense neural network, featuring an input layer of size 3 for the actor and size 4 for the critic, 5 layers

of 40 neurons each with rectified linear unit (ReLU) activation, and a single output node with linear

activation. In the policy a function τ = τm tanh a
τm

was used to smoothly attenuate the prescribed

output a to a bounded torque value τ , which improves convergence. We select τm = 4 as the range

of allowed forcing, which we find to be large enough to perform effective control but small enough

to not cause numerical problems in the fluid simulation.

The reinforcement learning uses an in-house implementation of DPG in Python with Ten-

sorflow, accessed through the Keras API. Both of the neural networks are implemented in Keras,

and the supervised updates of both the actor and critic networks are performed with Model.fit(),

the Keras supervised learning utility, on batches of 1000 state transitions from the experience buffer.

Both environments are implemented in Python with state transitions saved at interval ∆t = 0.1 s.

The sleigh simulations are trained with an ϵ-greedy exploration strategy with ϵ = 0.2. The fluid

simulations instead follows a Gaussian exploration approach, where normally distributed noise of

deviation 0.2 is added to every action during exploration, which reduces the large discontinuities in

26

torque that are seen in ϵ-greedy exploration, because they in turn cause large magnitudes of shed

vorticity which results in an unrealistic wake.

2.6 Results - Velocity and Path Tracking

The supervised step of pre-training the sleigh to model a given control on the Chaplygin

sleigh imprints into an actor a known control algorithm as a starting policy from which further

exploration can enable the faster learning of policies for other reward functions (control goals).

Figure 2.5(a) shows the reward during training by the low speed surrogate model that has been pre-

trained to output periodic control actions (given in eq. (2.12)). The red curve shows the reward while

the agent is learning a policy to track a high speed (ut = 2.5) while the blue graph is for tracking a

low speed (ut = 0.8). Figure 2.5(b) shows the reward function during training of an actor without

pre-training to a sub-optimal policy and instead using an actor network with weights initialized to

Gaussian noise. The pre-training torque has an amplitude of only 0.3 while the torques required

to track the low and high speed velocities are 1 and 1.2 respectively. Despite pre-training with

such a suboptimal policy, the pre-trained actor learns faster and better, with the reward converging

to higher values −350 (blue) for lower speeds while the reward for the agent without pre-training

converges to −800 while also taking more epochs.

The limit cycles generated in the reduced velocity space as a result of this trained policy

are shown for three different target velocities ut = (0.8, 1.5, 2.5) in Fig. 2.5(c) along with the

limit cycle produced in pre-training where u0 = 0.32. It can be seen that the actor adapts from

generating a quazi-periodic trajectory to generating consistent limit cycles near the desired velocities.

It also becomes more efficient at converting rotation into translation; the blue (trained) and green

(untrained) trajectories have similar maximum amplitudes of ω, but the trained trajectory achieves

a higher velocity u.

The mean value of the velocity u for the limit cycles shown in Fig. 2.5(c) have an error

that does not decay, due to the fact that the reward function is a sum of the rewards accrued by

minimizing the error u − ut as well as the error θe. The serpentine motion of the sleigh results

in a necessary non-zero error in the heading angle, which can be reduced by smaller amplitude

torques which slows down the sleigh. The learned policy, with the reward shown in Fig.2.5(d), is a

compromise between achieving ut and minimizing the error in the heading angle θ.

27

0 2500 5000
Epoch

-6000

-4000

-2000

0

R
ew
ar
d

(a)

0 25000 50000
Epoch

-50000

-25000

0

R
ew
ar
d

10000 30000 50000

-8000

-4000

0

(b)

0 1 2
u [BL/s]

-2

0

2

ω
 [

ra
d/

s]

(c)

0 50 100
t [s]

-6

-3

0

R
ew

ar
d

(d)

Figure 2.5: Total reward during epochs of training on the low-speed Chaplygin sleigh surrogate
model for (a) the pre-trained actor and (b) an actor without pre-training. The red and blue lines
show the reward while learning a policy to track a high speed (ut = 2.5) versus a low speed (ut = 0.8)
respectively. (c) Limit cycles resulting from the policy learned on the surrogate model for target
velocities of 0.8, 1.5 and 2.5 (blue, black, and red respectively) as well as the policy before training
(green), and (d) The reward function for this policy in each case.

In the next stage of the curriculum learning, the agent trained on the surrogate Chaplygin

sleigh is transferred to train in the fluid-hydrofoil simulation environment using the panel method,

for the velocity and heading angle tracking problem with the aim of improving the sub optimal

policy of the surrogate sleigh actor. A total of 150 trajectories of the swimmer and 7500 DPG

iterations were used to adapt the policy of the Chaplygin sleigh to the swimmer, at a rate of 16.1

minutes per 1000 DPG updates and 5.49 minutes per trajectory generated on an Intel Xeon Gold

6148F processor. For comparison, a batch of 10 Chaplygin sleigh trajectories can be generated in

6.1s. As a result, the training time with the curriculum is much smaller than what would usually be

required if the swimmer were to be directly trained without the intermediate training on the surrogate

Chaplygin sleigh model. Figure 2.6(a) shows the reward function during each epoch using the low

speed surrogate sleigh model to track a high (red) speed of ut = 2.5 and low (blue) speed of ut = 0.8.

The reward at the beginning of the first epoch is due to the optimal policy learned on the surrogate

28

0 2500 5000 7500
Epoch

-1500

-1000

-500

0
R
ew
ar
d

(a)

0 50 100
t [s]

-6

-3

0

R
ew

ar
d

(b)

0 1 2 3
u [BL/s]

-2

0

2

ω
 [

ra
d/

s]

(c)

0 1 2 3
u [BL/s]

-2

0

2

ω
 [

ra
d/

s]

(d)

0 50 100
t [s]

0

1

2

3

u
[B

L
/s

]

(e)

0 50 100
t [s]

-2

0

2

θ
[r

ad
]

(f)

Figure 2.6: Trajectories on the hydrofoil after training on a low speed surrogate model - (a) Reward
function during the epochs of training on fluid-hydrofoil simulations and (b) reward while executing
the optimal policy tracking velocities and heading angle starting from rest. (c) Trajectories in the
reduced velocity space due to the optimal policy of an actor trained on just the surrogate model
and (d) produced by the optimal policy by an actor trained on additional fluid-hydrofoil simulation.
(e) Velocity tracking by the hydrofoil for two tracking velocities and (f) simultaneously tracking 0◦

heading angle. Color legend - tracking speed ut = 0.8 blue , ut = 1.5 black and ut = 2.5 red.

sleigh. The reward during the training on the fluid-hydrofoil interaction simulation does not change

significantly. However this seeming lack of learning is deceptive, as borne out by examining the

velocity of the hydrofoil. Figure 2.6(c) shows the trajectories in the reduced velocity space (ignoring

a 50 second transient solution) for a swimmer produced by the optimal policy of the actor trained

only on the surrogate sleigh model while 2.6(d) shows the same trajectories for a swimmer produced

by the optimal policy of the actor trained further on the fluid-hydrofoil simulations. The trajectories

in the reduced velocity space visit a larger range of u values after training on the fluid simulation.

While the velocity of the swimmer does not converge to the target velocities, it does oscillate with a

mean value close to the target velocity, when the target velocity is high (red) as shown in Fig. 2.6(d).

This strategy forgoes the compromise between oscillation angle and velocity seen in the Chaplygin

sleigh training, and instead features intervals of high-torque, low-reward periods of acceleration,

followed by high-reward periods of low-torque coasting. The low-frequency periodic component of

the velocity and pitch angle for the high-velocity tracking in this swimming strategy are shown in

Fig. 2.6(e) and (f), respectively. This style of ‘burst-and-coast’ swimming is frequently observed in

29

fish [73], and is consistent with other results in the RL swimming literature [38]. This strategy does

not emerge during training on the surrogate model, but does emerge for high swimming velocities

after transfer to the swimming simulation, even before continuing training. The continued training

on the fluid simulations expands the range of target velocities for which the ‘burst-and-coast’ strategy

is used.

A similar result is seen when the policy trained on the high speed surrogate model is further

trained using the fluid-hydrofoil simulations to learn a policy to track different velocities and a

heading angle of 0◦. The reward function during the training does not increase significantly or can

in fact decrease as seen in Fig. 2.7(a). Picking the optimal policy using the actor that produces the

highest epoch reward as described in section 2.5 (B), produces a reward shown in Fig. 2.7(b). The

burst and coast technique is once again seen in Figs.2.7(c)-(d) when tracking a high velocity (red)

while a steady error is seen when tracking a lower velocity (blue).

0 2500 5000
Epoch

-1000

-500

0

R
ew
ar
d

(a)

0 50 100
t [s]

-10

-5

0

R
ew

ar
d

(b)

0 50 100
t [s]

0

1

2

3

u
[B

L
/s

]

(c)

0 50 100
t [s]

-2

0

2

θ
[r

ad
]

(d)

Figure 2.7: Training a high-speed surrogate model actor - (a) Reward function during the epochs
of training on fluid-hydrofoil simulations and (b) the reward while executing the optimal policy
tracking velocities and heading angle while starting from rest. (c) Velocity tracking by the hydrofoil
for two tracking velocities and (d) simultaneously tracking 0◦ heading angle. Color legend - tracking
speed ut = 0.8 blue and ut = 2.5 red.

It is to be emphasized that the lack of a significant increase in the reward function during

30

the training on the fluid-hydrofoil simulations, compared to the reward obtained from the just the

optimal policy of the surrogate sleigh actor is not a failure of the training; it can be attributed to

two reasons. The first reason is that the reward function consists of a sum of terms that individually

seek to minimize the error in the tracking velocity and heading angle. The oscillatory nature of the

motion resulting in an oscillating heading angle, guaranteeing that the reward is always negative.

The second reason is more subtle: the states s used in training the actor for swimming are merely a

subset of the kinematic variables of the swimmer and do not include the distribution of vorticity in

the fluid. The kinematics of a swimmer can be the same (or nearly so) for two different distributions

of the vortex field. Moreover, an action (torque) for a given state s can produce a transition to

completely different states that depend on the distribution of the vortex field. Since the vortex

field is not an observed variable or state in the training, the state-action pair do not have a constant

probability distribution, making the system seemingly non Markov from the perspective of the agent.

The combination of the surrogate model and curriculum learning outperforms direct rein-

forcement learning of a policy using fluid-hydrofoil simulations for tracking velocity and heading

angle. Figure 2.8(a) shows the learning curve during such direct training, and Fig. 2.8(b-d) shows

the trajectory generated by the trained policy after 4750 training iterations. The reward converges

to a lower value than seen in Fig. 2.6(a) or Fig. 2.7(a). The reward per step due to the optimal

policy ≈ −3 (shown in 2.8(b)) is also lower than the reward due to the optimal policies seen in Fig.

2.6(b) or Fig. 2.7(b), which have a value of > −1 per step. This is a result of poor velocity and

angle tracking, and consequently graphs of u(t) and θ(t) show large errors from the target velocities

and heading angles.

The last step in path tracking is to give the time dependent θe(t) determined by a pure

pursuit algorithm as an input (amongst the other states s) to the DPG agent trained in the fluid-

robot simulation environment. We show the results of three such simulations of the agent tracking

a path while also simultaneously tracking a specified time-varying velocity. Figure 2.9 shows the

swimming hydrofoil tracking (pa) a straight line, (pb) a sinusoidal path and (pc) a circle. In each

case the reference velocities for the hydrofoil are shown in Fig.2.9 (va)-(vc). The reference velocities

are piecewise constant and either increase or decrease midway during the simulation time. The

action (torque) due to the policy before attenuation by the inverse tangent in each case is shown

in Fig. 2.9(Ta)-(Tc). The control torques are not just sinusoidal as in the pre-training, but have

significant amplitude modulation and multiple harmonics, as a result of the series of training with

31

0 2500 5000
Epoch

-5000

-2500

0

R
ew
ar
d

(a)

0 50 100
t [s]

-6

-3

0

R
ew

ar
d

(b)

0 50 100
t [s]

0

1

2

3

u
[B

L
/s

]

(c)

0 50 100
t [s]

-2

0

2

θ
[r

ad
]

(d)

Figure 2.8: RL without surrogate model or curriculum learning - (a) Reward function for epoch
training and (b) Reward function executing the optimal policy by a hydrofoil starting from rest. (c)
Tracking low (blue) speed and high speed (red) and (d) simultaneously tracking 0◦ heading angle.
For both cases, reward is lower than when trained with a curriculum. This is largely due to higher
velocity error, with the swimmer tasked with reaching the low target speed instead coasting to a
near-stop.

different models and curriculum which fine tuned the policy into a ’burst-and-coast’ strategy.

2.7 Conclusion

Reinforcement learning methods in mobile robotics, particularly swimming robots with com-

plex unmodelled physics, require large amounts of data covering a large subset of the relevant state

space, which can be expensive and time consuming to obtain in both simulations and experiments.

The results in this paper show the utility of surrogate models and curriculum-based reinforcement

learning, wherein a DPG agent is trained in steps, for the control of a planar swimming robot. In

each step the agent learns to generate and control certain features of the dynamics of the robot-

environment action. An agent was trained to perform a series of increasingly complex tasks: tracking

limit cycles in a reduced velocity space for a surrogate model, tracking heading angle and speed in

the surrogate model and then finally transferred to learn doing these same tasks in a fluid-robot

32

-300 -250 -200
X [BL]

-10

0

10

Y
 [

B
L

]

(pa)

-300 -150 0
X [BL]

-50

0

-50

Y
 [

B
L

]

(pb)

-50 0 50
X [BL]

-50

0

50

Y
 [

B
L

]

(pc)

0 150 300
t [s]

0

2

4

u
[B

L
/s

]

(va)

0 150 300
t [s]

0

2.5

5

u
[B

L
/s

]

(vb)

0 150 300
t [s]

0

2.5

5

u
[B

L
/s

]

(vc)

0 150 300
t [s]

-5

0

5

a
[N

 m
]

(Ta)

0 150 300
t [s]

-5

0

5

a
[N

 m
]

(Tb)

0 150 300
t [s]

-15

0

15

a
[N

 m
]

(Tc)

Figure 2.9: Pure-pursuit based path tracking for the simulated swimmer on (pa) a straight line
and (pb) sinusoidal path and (pc) a circle. The target velocities for the case of the straight line,
sinusoidal path and circle are shown by the dashed lines in (va), (vb) and (vc) respectively. The
torques generated to track the straight line, sinusoidal path and circle are shown in (Ta), (Tb) and
(Tc), respectively.

interaction environment. This approach reduces computational time, but more importantly creates

a physics-informed Reinforcement Learning framework.

As a proof of concept, we have demonstrated only a limited range of curriculum on which

a DPG agent can be trained. For instance, in the path tracking results in Fig. 2.9 the policy is

trained for constant values of θtarget, and compensates for the variable θtarget values prescribed by

the pure pursuit algorithm with higher torque values, resulting in higher velocities and deviations

from the reference velocity. Further improvement is possible by including variable θtarget cases in

a curriculum. While the robot considered in this paper is a planar swimming oscillating hydrofoil,

more ‘fish-like’ robots can be trained using a similar framework to the one proposed in this paper.

Fish-like robots usually have more than one body segment in their skeleton with joints that could

33

be elastic. Recent work, for example [74], shows that in robots with elastic joints, tunable stiffness

enables faster and more efficient swimming. Surprisingly, analogous results exist for ground-based

multi-segment nonholonomic systems, see for example [75, 76], where effective stiffness tunable by

periodic forcing leads to different limit cycles of varying efficiency, and multistable configurations for

fast turning. Such nonholonomic systems can be used as surrogate models for multi-body fish-like

robots using the same curriculum learning framework. With low-latency velocity feedback (either

inertially on the body or from external measurement), the actor trained on the fluid surrogate model

can be directly transplanted to the physical system, a new experience buffer can be generated, and

the training can be continued on the physical system with little required setup.

This approach can be extended to three-dimensional swimming with suitable surrogate mod-

els. In three dimensions, additional control goals such as stabilization of roll and pitch may exist,

while simultaneously tracking a path and/or a velocity. Both simulations of fluid-robot interactions

and acquiring a large experimental data set in such cases can be even more challenging, further ne-

cessitating physics-based reinforcement learning with surrogate models. The current paper describes

a preliminary proof of concept for such a framework.

34

Chapter 3

Nonholonomic constraint-induced

bistability

This chapter has been adapted from a paper appearing in Nonlinear Dynamics:

C. Rodwell and P. Tallapragada, “Induced and tunable multistability due to nonholonomic

constraints,” Nonlinear Dynamics, vol. 108, no. 3, pp. 2115–2126, 2022.

3.1 Introduction

Mechanical systems with two or more stable configurations are of increasing interest in soft

robotics from the perspective of generating gaits and locomotion, stabilization, and manipulation

[77–79]. The general approach to achieve multistability in mechanical systems is to design a potential

energy function for the system that has multiple local minima. Each of the minima of the potential

function represents a stable configuration and the system’s state can transition from one potential

minimum to another under certain mechanical actuation. Much of the research has focused on

two means to achieve a multi-well potential function: either by designing a system with geometric

nonlinearities or by using materials or elastic elements with intrinsic or material nonlinearities. A

variety of compliant systems and soft robotic systems possess one or both types of nonlinearities

[77,79–82].

In this paper we forego both of the above approaches and instead show that it is possible

35

for a mechanical system whose associated potential energy has a single well to perform multiple

unique stable limit cycle oscillations under the same periodic excitation. Motivated by the rich

history of the use of pseudo-rigid body models of continuum and soft mechanical systems [83–

87, 87–89], we base our investigation on a planar system with two rigid bodies connected by a

linear torsional spring. Specifically, we consider the example of a four degree of freedom planar

system with one nonholonomic constraint that is subjected to an internal periodic torque generated

between the bodies. This mechanical system is a variation of the Chaplygin sleigh [90–94], a well

known nonholonomic system. In earlier works [76] it was shown that a similar idealized version

of this system in the absence of any damping, frictional resistance, or forcing has multiple stable

configurations that arise from the nonlinear torsional spring or could demonstrate chaotic motion [95]

in the absence of any spring connecting the two bodies.

In this paper we show that when damping is introduced into this system, along with peri-

odic forcing, limit cycles in reduced velocity space are produced. We show that depending on the

amplitude and frequency of the applied torque, the state of the system can oscillate around different

mean states. The feature of tunable multistability that is demonstrated here is not merely one of

possessing multiple stable static configurations, but is of a more dynamic nature. When subjected

to periodic excitation the system has multiple stable limit cycles in its reduced state space, and

depending on which limit cycle the system’s state switches to, the motion of the body can be qual-

itatively different: in one case the mean path of the body is a straight line, while in the other it

moves along a circular arc. We thus show gait selection that is determined by switching between limit

cycles governed by the interplay of the nonholonomic constraint and the periodic forcing. Such in-

teraction between nonholonomic constraints and periodic excitation has received less attention from

the robotics perspective. It has however been investigated in the context of a spherical bearings

such as for support of long span bridges, ball vibration absorbers. For instance [96,97] investigated

the problem of a ball rolling in a spherical cavity subjected to parametric excitation and showed

rich variety of dynamics, limit cycles and quasi-periodic motion depending on the damping and the

excitation parameters.

The results in this paper have applications to mobile soft robots which, by the nature of their

interaction with the ground or a substrate, can be subject to nonholonomic constraints. Designing

soft robots which exploit such constraints on their dynamics can open up a new means to achieve

the properties of multistable mechanical systems. This work also has potential significance to the

36

design and control of swimming robots; in previous work it was demonstrated that nonholonomic

constraints are present in the swimming motion of fish-like bodies [44,98,99] and this recognition can

enable the design of better controllers for swimming robots [16,47,99,100]. The results in this paper

show the possibility of achieving different stable limit cycles in physically different configurations

and associated gaits for swimming robots without changing the input forcing, which can greatly

improve their agility. Within the context of nonholonomic systems, which is a very well studied

topic [92, 101–104] in mechanics and robotics, the findings in this paper show the importance of

periodic excitation in producing a variety of gaits.

The paper is organized as follows. In section 3.2 the model of Chaplygin sleigh with an

additional appendage and the governing equations of motion are discussed and their relation to

previous work is reviewed. In section 3.3.1 the special case of a non dissipative and unforced Chap-

lygin sleigh with an elastic appendage is discussed. The fixed points for velocity of the undamped,

unforced sleigh exist as shown in [76].The undamped unforced case bears significance to the damped

and periodically forced Chaplygin sleigh; although these fixed points disappear for the damped and

forced sleigh, limit cycles are produced around them. The stability and bifurcations of these limit

cycles and their relevance to the physical gaits of the Chaplygin sleigh are discussed in section 3.3.

3.2 Mechanical model and governing equations

The Chaplygin sleigh is a rigid body with a knife edge at one end that prevents slipping in

the transverse direction as it moves in a plane. This no-slip condition is a nonholonomic constraint,

and this seemingly simple mechanical system can exhibit very rich dynamics [50,90–94,105]. In this

paper we consider a modified two-link Chaplygin sleigh as depicted in fig. 3.1. The rear link of

length ϵl will be referred to as the “tail", and it is connected to the other link (referred to as the

“head" link) at a revolute joint with a linear torsional spring of constant stiffness K. The two link

Chaplygin sleigh is motivated by potential applications to fish-like swimming robots as well as the

multi-link snake-like terrestrial robots. The torsional spring at the revolute joint mimics the stiffness

of the tail of a fish or a reptile. The spatial frame is denoted by X−Y , and the body frame denoted

by Xb − Yb is attached to the tail link with its origin collocated with the revolute joint. The tail

link has a massless wheel or a knife edge at its end which prevents slipping in the transverse (Yb)

direction but allows motion in the longitudinal (Xb) direction.

37

The configuration space of the system is Q = SE2 × S1 and is parameterized by the co-

ordinates q = (x1, y1, θ1, θ2) where (x1, y1) are the coordinates of the center of mass of the sleigh

tail link, θ1 is the angle made by the body frame with respect to the spatial frame and θ2 is the

angle of the vector between the revolute joint and the center of mass of the head link with respect

to the spatial frame. The Lagrangian of the system is L = T (q, q̇) − V(q) with kinetic energy

T = 1
2 q̇

TM(q)q̇ and potential energy V(q) = 1
2Kδ

2. It is emphasized that K is taken as a constant,

so the potential function is a single-well potential and does not by itself produce multiple equilibria.

The mass matrix M is defined in Appendix A. We imagine that a motor at the revolute joint applies

an internal periodic torque A sinΩt, which results in equal and opposite torques on the head and tail

links. The resulting spin and translation of the tail link has to satisfy the nonholonomic constraint,

which defines that transverse velocity uy (along the Yb direction) of the point P is constrained to be

zero,

uy = − sin θ1 ẋ1 + cos θ1 ẏ1 − ϵ l θ̇1 = 0. (3.1)

The constraint can be expressed compactly as W(q)q̇ = 0 with W(q) = [− sin θ cos(θ) − ϵl 0].

We further assume that the sleigh experiences viscous dissipation with the Rayleigh function

R =
1

2

(
cu(ẋ1 cos θ1 + ẏ1 sin θ1)

2 + cω θ̇1
2
+ cδ δ̇

2
)
, (3.2)

where δ = θ2 − θ1 and cu, cθ, and cδ refer to the damping on the translational velocity at the

constraint, the rotational velocity of the tail link, and the interlink rotational velocity, respectively.

The Euler-Lagrange equations with the constraint forces are

M −WT

W 0

q̈
λ

 =

B(q, q̇)

−Ẇ q̇

+

[
τ (t)

]
. (3.3)

The forcing term is τ and the only non-zero forcing terms are the joint torque τ3 = −τ4 = A sinΩt.

The vector B(q, q̇) contains the gyroscopic terms and the elastic forces, the ith entry of which is

Bi =
1

2

(
∂Mik

∂qj
+
∂Mji

∂qk
− ∂Mjk

∂qi

)
q̇j q̇k − ∂V

∂qi
− ∂R
∂q̇i

The resulting Euler-Lagrange equations are independent of (x, y, θ1) and a reduction of the

equations to the body frame creates a reduced system of velocity equations decoupled from the

38

Y

X

Xb

Yb

P
εl

(1
− ε

)l

δ τ

Figure 3.1: A two link Chaplygin sleigh system of total length l and total mass m. The tail link of
length ϵl, mass m1, and moment of inertia I1 and the head link of mass m2 and moment of inertia
I2 are connected by a revolute joint. The body frame Xb − Yb is fixed to the revolute joint and the
Xb axis is aligned with the tail longitudinal axis. The velocity of the point P on the tail link is
constrained to be zero in the Yb direction. The angle θ1 is the angle between the body frame and
the spatial frame while angle δ is the relative angle between the links, and δ = 0 corresponds to the
fully extended configuration. The center of mass of the tail link is along the line joining P to the
revolute joint. The center of mass of the head link is at a distance of l

2 (1− ϵ) from the joint and the
special case where the head link length is l(1− ϵ) is considered.

grouped variables (x, y, θ1). Setting ξ = [ux, ω1, ω2, δ]
T where ux is the velocity at the constraint,

ω1 = θ̇1, and ω2 = δ̇, the velocities can be transformed to the body frame as

ẋ
ẏ

 = R

ux
0

 and

ẍ
ÿ

 = R

u̇x
0

+ ω1 ×R

ux
0

 (3.4)

for rotation matrix R(θ). Note that (x1, y1) denote the position of the center of mass of the tail

link, and (x, y) denote the position of the constraint.

While the derivation to this point is applicable for arbitrary geometry, for our analysis we

will consider a specific geometry where both links are rectangular with total width l
2 , moment of

39

inertia coefficient γ = 1/12 and constant density. In this case the mass and inertia parameters of

the links defined in the caption of fig. 3.1 can be defined in terms of the geometric parameters

and overall mass defined in the same figure as m1 = ϵl
m , m2 = (1−ϵ)l

m , I1 = 4γm1

(
(ϵl)2 + l2

4

)
and

I2 = 4γm2

(
((1− ϵ)l)2 + l2

4

)
. The variables and parameters are then rescaled to eliminate m and

l by defining u′x = ux

l , A′ = A
ml2 , α =

√
K
ml2 , c′u = cu

m , c′ω = cω
ml2 , c′δ = cδ

ml2 , I ′1 = I1
ml2 , I ′2 = I2

ml2 ,

m′
1 = m1

m , and m′
2 = m2

m . A new variable E′ representing the rescaled energy is introduced as

E′ = E
ml2 where E = T + V. As a further simplification, we consider the rescaled damping ratios

equal, so c = cu = cθ = cδ, and rescaled stiffness α is taken to be
√
10 throughout the paper. For

simplicity of notation, the ′ superscripts are dropped, and all instances of the redefined constants

henceforth are taken to be in their scaled form, unless noted otherwise.

The rescaled equations of motion are of the form

N ξ̇ = g(ξ) + f(t), (3.5)

where the rescaled inertia-like matrix N (ξ) is described by (2) in Appendix A. The four entries of

the vector field g ∈ R4 are

g1 = (ω1 + ω2)
2
(ϵ− 1)

2
cos δ + (2− ϵ) ϵω2

1 (3.6)

− cuux

g2 = 2ϵω2 (2ω1 + ω2) (ϵ− 1)
2
sin δ (3.7)

− ω1ux (ϵ− 1)
2
cos δ + (ϵ− 2)ω1uxϵ− cωω1

g3 = −ω1ux (ϵ− 1)
2
cos δ − 2ω2

1ϵ (ϵ− 1)
2
sin δ (3.8)

− α2δ − ω2cδ

and

g4 = ω2. (3.9)

40

The forcing term f(t) is periodic with frequency Ω,

f(t) =

0

0

A sinΩt

0

. (3.10)

3.3 Tunable limit cycles and configuration changes

The periodically forced two-link Chaplygin sleigh demonstrates complex dynamics that de-

pend on the frequency and amplitude of the forcing as well as geometric parameters such as ϵ. Un-

derlying this behavior are dynamics of the unforced and non-dissipative two-link Chaplygin sleigh

system. This is a general theme in many dynamical systems, such as the multi-well Duffing oscil-

lator, where the fixed points of the unforced Duffing oscillator form the skeleton of the dissipative

forced dynamics. Therefore we first discuss the somewhat simpler case of the dynamical system with

no dissipation and free of forcing, i.e. c = 0 and f(t) = 0.

3.3.1 Multistability in the conservative system

Suppose h(ξ) = g(ξ; cu = 0, cω = 0, cδ = 0, A = 0): it will be shown that the limit cycles of

interest of the dynamical system (3.5) are created around the fixed points of the dynamical system

N ξ̇ = h(ξ). (3.11)

One observation that can be made about the dynamical system (3.11) is that the total energy

E = T +V is constant along its integral curves in the absence of any damping or forcing. The inertia

tensor N is symmetric and positive definite and thus invertible except at ϵ = 1. The fixed points of

(3.11) are therefore given by N−1h(ξ) = 0, and since the determinant det(N) ̸= 0, the only solution

to this is h(ξ) = 0. The fixed points of (3.11) are non-isolated due to the conservation of energy;

a continuous family of fixed points exists as the energy of the system is varied, and perturbations

from a fixed point that change the energy of the system can never decay to the same fixed point.

To isolate the fixed points, we perform a reduction of dimension of (3.11) by considering dynamics

restricted to a constant energy manifold. This reduced dynamical system denoted by ξ̇r = Hr(ξr;E)

41

is described in Appendix A (13) where ξr = [ω1, ω2, δ]
T and the longitudinal velocity denoted as

a function of ξr as ux = ux(ξr;E). We will then consider perturbations around a fixed point that

preserve energy.

This system has two distinct types of fixed points. It can be verified that (ux = ±
√
2E,ω1 =

0, ω2 = 0, δ = 0) is one set of fixed points. This set of fixed points corresponds to straight line motion

where the sleigh shape is straight with δ = 0; the sleigh could be moving forward
(
ux =

√
2E
)

or

backward
(
ux = −

√
2E
)
. The Jacobian J is the gradient of the reduced vector field Hr(ξr;E). The

eigenvalues of J , denoted by (µ1, µ2, µ3) in descending order of their real component, are in the left

half plane when evaluated for fixed points corresponding to ux =
√
2E as shown in fig. 3.2 and in

the right half plane for fixed points corresponding to ux = −
√
2E [76].

0.0 0.2 0.4 0.6 0.8 1.0

ε

−15

−10

−5

0

R
e(
µ

)

E = 50

E = 250

E = 500

Figure 3.2: The largest real component of the eigenvalues of the Jacobian J about the forward
non-buckled fixed point (ux =

√
2E,ω1 = 0, ω2 = 0, δ = 0) for varying energies with ϵ = 0.15, c = 0,

and A = 0. The real component of the largest eigenvalue, and thus all the eigenvalues, is always
negative, indicating that the non-buckled fixed points with positive ux are always stable within the
considered energy range 0 < E < 1000.

The other set of fixed points corresponds to a buckled shape with δ = ± δ∗ (symmetrically

placed to the “left" and “right" of the longitudinal axis of the tail link) where

δ∗ = cos−1

(
ϵ (ϵ− 2)

ϵ2 − 2 ϵ+ 1

)
(3.12)

is obtained from solving (3.7) g1 = 0 or g2 = 0. The buckled fixed points exist only if ϵ < ϵ0 = 1− 1√
2
.

For each of the ±δ∗ there exist at most four pairs of ω∗
1 and u∗x which satisfy ξ̇ = 0 for a given energy

42

level. The values of u∗x and ω∗
1 are given in (14) and (15) in Appendix A. All four fixed points exist

for ϵl < ϵ < ϵ0, where ϵl is a function of energy, with sample values shown in fig. 3.3. There

are thus a total of eight fixed points for the buckled state of motion. The four values of u∗x and ω∗
1

corresponding for each of the symmetric shapes ±δ∗ imply that at each of the symmetric equilibrium

shapes, the kinetic energy of the system can be partitioned into two possible values of translational

and rotational energies. Because these energies can result in either forward or backwards motion, for

the two fixed points in positive ux, (u∗x, ω∗
1), the two pairs −(u∗x, ω

∗
1) are also fixed points. Numerical

evaluation of the eigenvalues of the Jacobian, J(ω∗
1 , ω2 = 0, δ∗, E) show that only of one of these

partitions of energy is stable, so there are two stable and six unstable equilibrium states of motion

in the buckled state. For reasons of symmetry, we show results of these simulations only for the

buckled state with δ = +δ∗ and the same result holds for the other buckled state δ = −δ∗. Fig.

3.3 shows a plot of the variation of the fixed points (u∗x, ω
∗
1) as the bifurcation parameter ϵ varies

for different energies E of the system. The portion of the curves shown by solid lines represent the

stable fixed points and the dashed lines represent the unstable fixed points.

−20 0 20

ux

−20

0

20

ω
1

E=100

E=100

E=200

E=200

E=300

E=300

E=400

E=400

Figure 3.3: Dependence of the locations of fixed points u∗x and ω∗
1 on ϵ for a sampling of energy levels

for the conservative system. Circles indicate ϵ = 1− 1√
2
, the maximum ϵ value for which δ∗ ̸= 0 fixed

points exist. The fixed point locations then vary with decreasing ϵ until their annihilation at ϵl(E),
indicated by triangular markings. The lower bound ϵl(E), varies with energy, and corresponds to
ϵ = 0.134, 0.053, 0.034, 0.025 for energies E = (100, 200, 300, 400), respectively. Dashed lines indicate
unstable fixed points while solid lines indicate stable fixed points.

Fig. 3.4 shows a plot of the eigenvalues of the Jacobian J(ω∗
1 , ω2 = 0, δ∗, E) with the largest

43

real component evaluated at the stable and unstable fixed points with positive ux. For the stable

fixed point, the eigenvalues with the highest real part, shown by blue solid lines for different values

of E, are in the left half plane, with the exception of a small region in the right half plane at high E

values. The black solid line shows the highest real eigenvalue of the Jacobian evaluated at the lower

ω∗
1 fixed point in positive ux. The eigenvalues start at the upper ϵ limit ϵ0 with a value of µ = 0+0i,

and as ϵ decreases the stable fixed points gain a complex component, while the unstable eigenvalues

remain on the real axis. As ϵ decreases further to a critical value ϵl (shown by the triangles in fig.

3.3), the pairs of fixed points collide and annihilate in a saddle-node bifurcation, and the eigenvalues

of J about the four fixed points return smoothly to µ = 0 + 0i. Jacobian matrices calculated about

the fixed points in negative u∗x are found to always have at least one eigenvalue with a positive real

component.

−2.5 0.0 2.5 5.0 7.5

Re(µ)

−30

−20

−10

0

10

20

30

Im
(µ

)

E=400
E=300

E=200

E=100

Figure 3.4: The eigenvalues with the highest real component of the Jacobian J of positive ux buckled
fixed points of the conservative system shown in fig. 3.3. Four energy values, E = 100, 200, 300, and
400, are selected, and ϵ is varied between the maximum ϵ value ϵ0 = 1− 1√

2
and the minimum ϵl(E).

The highest eigenvalue of the black curve from fig. 3.3, which has the lower ω∗
1 value in positive

ux, is purely real and never negative. The fixed points for the blue line start at µ = 0 + 0i at the
upper epsilon bound and return there at the lower bound. Between those bounds, the eigenvalues
can mostly be found in the left-half plane, indicating stability with the exception of a small ϵ region
at high energies which coincides with the dashed portion of the blue line in fig. 3.3.

44

3.3.2 Multistability in the dissipative forced system

With the addition of damping, all the fixed points of the conservative system (3.11), with

the exception of the origin ξ = [0, 0, 0, 0]T , disappear. This can be shown based on the movement

of energy into and out of the system, which is given by

dE

dt
=
(
−cuu2x − cωω

2
1 − cδω

2
2 + ω2A sinΩt

)
. (3.13)

In the absence of any forcing, A = 0, Ė < 0 except for the rest state (ux = 0, ω1 = 0, ω2 = 0).

Furthermore the rest state ξ = [0, 0, 0, 0]T is a fixed point and it can be checked that g(ξ =

[0, 0, 0, 0]T) = 0. Setting E as a Lyapunov function, we can therefore conclude that ξ = [0, 0, 0, 0]T

is a global attractor for this system if spring stiffness is positive.

When the forcing f(t) ̸= 0, the origin is no longer a fixed point of (3.5) since g(ξ) = 0 and

f(t) ̸= 0. In fact, the periodically forced dynamical system (3.5) has no fixed points. However, the

effect of the “ghost fixed points” of (3.11) persists in that limit cycles of the dissipative system are

created around fixed points of the conservative system. The existence and stability of these limit

cycles is dependent on the amplitude and frequency of the forcing torque, making it possible to tune

or select the limit cycles of the system in real time. Much like the fixed points of the conservative

system, the limit cycles of the forced dissipative system can be broadly classified into two types. The

first type features oscillations of the tail where the mean value of the angle δ is zero. A set of such

limit cycles are shown in fig. 3.5(a) in the space of (ux, ω1, δ) for varying amplitudes of the forcing

torque. As the amplitude of the forcing increases, the amplitude of the oscillations of the tail and of

the flexing of the body increase, as does the longitudinal speed ux. These limit cycles have a slight

twist which manifests in the self-intersecting “figure-8” curves that appear when the limit cycles are

projected onto the ω1 − ux subspace. These self-intersecting curves indicate that the longitudinal

velocity ux has a fundamental frequency twice that of the angular velocity ω1, which is reminiscent

of similar behavior for a single link Chaplygin sleigh [94].

These small amplitude limit cycle oscillations around the δ = 0 non-buckled configuration

lead to a trajectory of the constraint point which is serpentine with small peak-to-peak variation in

the physical plane such as shown in fig. 3.5(c). However, the time averaged (over integer multiples

of T = 2π
Ω) path is a straight line. The amplitude of tail oscillations is small as shown in fig. 3.5(d).

An animation of this motion is shown in the supplementary video.

45

ux

10

15

20

ω 1

−0.4

0.0

0.4

δ

−0.03

0.00

0.03

A = 0.8

A = 1

A = 1.2

A = 1.4

(a)

12.916 12.917 12.918

ux

−0.4

−0.2

0.0

0.2

0.4

ω
1

(b)

0 10 20
X

5

0

5

Y 5 6 7
0.025
0.000
0.025

(c)

Y

X
(d)

Figure 3.5: (a) Limit cycles of the forced dissipative system with c = 0.001, ϵ = 0.15, and Ω = 21
about the δ = 0 fixed points of the conservative system (indicated by a dashed line). These limit
cycles take the form of near-circular orbits. The response to increasing forcing amplitude is an
increased amplitude of oscillations and increased velocity ux. (b) A projection of the limit cycle
(for A = 0.8) onto the ux-ω1 plane with two self crossing loops symmetric about ω1 = 0. (c) The
serpentine path of the sleigh with average straight-line motion. (d) Small amplitude oscillations of
the tail with the extreme angles δ shown by the dashed lines.

A different set of stable limit cycles coexist when the forcing frequency Ω is close to a

natural frequency of oscillations seen in the conservative system around the buckled fixed points.

A natural frequency for this system can be defined as the imaginary component of the eigenvalue

with the highest real component, µ1, of the Jacobian J evaluated at the buckled fixed points of

the conservative system. Fig. 3.6(a) shows limit cycles in the ux − ω1 − δ space due to a forcing

frequency of Ω = 21. This forcing frequency is close to the natural frequency Im(µ1) = 20.8 of the

stable buckled fixed point of the conservative system at ϵ = 0.15 and E = 300. This energy value

46

u x

15

20

25ω1

10
20

30

δ

1.8

2.0

2.2

A = 0.8

A = 1

A = 1.2

A = 1.4

(a)

0.5 0.0 0.5
X

2

1

0

Y

(b)

Y

X

δ∗

(c)

Figure 3.6: (a) The limit cycles of the dissipative system at varying forcing amplitudes, with constant
damping c = 0.001, forcing frequency Ω = 21, and ϵ = 0.15. The locus of stable fixed points of
the conservative system as energy varies energy pass through the dissipative limit cycles. Due to
symmetry, an identical set of fixed points and limit cycles exists reflected about δ = 0 and ω1 = 0,
corresponding to turning in the other direction. (b) The path traced by the constraint point over
a single forcing period, indicating fast turning motion along curved paths with the limit cycle
oscillations about the buckled tail configuration. (c) The small amplitude of interlink oscillations
are shown by the dashed lines around the buckled state.

is roughly representative of the cycles shown in fig. 3.6(a), which have energies that vary with both

time and forcing amplitude, but are bounded between a minimum of E = 297 for A = 0.8 and a

maximum of E = 317 for A = 1.4. The limit cycles grow in diameter and energy as the amplitude

of the forcing increases. Interestingly, the limit cycles are centered around and enclose the locus of

the buckled state fixed points of the conservative system, shown by the dashed (magenta) curve.

The time-averaged value of ω1 along these limit cycles is clearly non-zero, and as a result the sleigh

moves along a sharply curved path in the X−Y plane as shown in fig. 3.6(b) with the tail oscillating

about the buckled state as shown in fig. 3.6(c). The supplementary video also shows an animation

of this type of gait.

To understand the stability of the limit cycles in the buckled configuration, we analyze the

47

stability of the fixed points of the time T -Poincare map. Suppose the flow map for the dynamical

system (3.5) is Φt
t0 : ξ(t0) 7→ ξ(t). The T-periodic Poincaré map is

P : ξ(t) 7→ ξ(t+ T). (3.14)

Here T = 2π
Ω is the time period of the forcing function. Any initial condition on a limit cycle (or any

periodic solution) with a fundamental frequency that is an integer multiple of Ω is a fixed point of the

Poincaré map P. The stability of a limit cycle is characterized by the stability of the corresponding

fixed points of the Poincaré map (3.14). The Jacobian of P evaluated at a fixed point ξ∗ will be

denoted by Jp(ξ
∗) and its eigenvalues by η, and is calculated numerically using finite differences.

The stability of the fixed points of P depends on the forcing frequency Ω, which acts as a

bifurcation parameter. Figure 3.7(a) shows the magnitude of the eigenvalues of Jp(ξ
∗) for ξ∗ on

the buckled limit cycle with A = 1, and fig. 3.7(b) shows the same eigenvalues in the complex

plane. For these parameters all the eigenvalues of Jp(ξ
∗) are less than one in magnitude for forcing

frequency Ω in a small range around 21, specifically between two critical values of the bifurcation

parameter Ω = 18.71 and Ω = 24.65. At these critical frequencies one of the eigenvalues crosses the

unit circle along the real axis. Beyond these critical values, the limit cycle becomes unstable and

adjacent trajectories are repelled and instead converge to the limit cycle around the non-buckled

ξ = [ux, 0, 0, 0]
T state as show in fig. 3.8. This bifurcation behavior invites the possibility of tuning

Ω to attract or repel trajectories from certain limit cycles. Numerical simulations show that this

switchable multistability that depends on the forcing frequency Ω exists for a large range of forcing

amplitudes and frequencies.

3.4 Conclusion

This paper demonstrates that a mobile mechanical system with a nonholonomic constraint

and periodic forcing can exhibit multistable limit cycles in a reduced velocity space. This multista-

bility is achieved in the absence a of multi-well elastic potential function and is the result of the

nonholonomic constraint. The different limit cycles correspond to different types of motion or gaits

in the plane: an averaged straight line motion and a rapid turning motion. Additionally, the stability

of some of these limit cycles can be changed in real time by changing forcing parameters such as

48

20 22 24

Ω

0.00

0.25

0.50

0.75

1.00

1.25

|η
|

(a)

0.00 0.25 0.50 0.75 1.00

Re(η)

−0.4

−0.2

0.0

0.2

0.4

Im
(η

)

(b)

Figure 3.7: The eigenvalues η of the T-periodic Poincaré map of the forced and dissipative system
performing limit cycle oscillations with varied forcing frequency Ω in a turning gait with A = 1,
ϵ = 0.15, and c = 0.001. Subfigure (a) shows the evolution of the eigenvalues of the Jacobian about
the fixed point with varying Ω, and (b) shows the eigenvalue trajectories in the complex plane for
the same range of Ω. Bifurcations at Ω = 18.71 and Ω = 24.65 bound a range of forcing frequency
which leads to stable limit cycles around the buckled state. Outside of this range, all tested initial
conditions were found to converge to straight-motion limit cycles.

the frequency, so switching between gaits can be achieved by controlling the forcing frequency. The

significance of these findings is that tunable multistability can be achieved in mechanical systems

using the interplay of nonholonomic constraints and forcing, without the necessity of complex ge-

ometric or material nonlinearities. This has important implications for the area of mobile robots,

particularly soft robots, where such constraints are often ignored. Such constraints can be designed

and exploited to easily induce multistability for manipulation or mobility tasks.

49

u
x

12

18

24

ω 1

0

15

30

δ

0

1

2

Figure 3.8: A trajectory with A = 1, Ω = 25, ϵ = 0.15 and c = 0.001, corresponding to slightly
above the upper Ω bound for stable limit cycles derived in fig. 3.7(a). Starting at initial conditions
indicated by a circle, the trajectory is drawn towards the buckled fixed points of the conservative
system, represented by a magenta line. However, in contrast to the stable range in fig. 3.7(a), the
oscillations do not provide enough energy to counteract dissipation, and the cycles decay along the
fixed point until the fixed point is annihilated in saddle-node bifurcation, at which point it jumps
to a non-buckled limit cycle about the δ = 0 fixed point, indicated by a black line.

50

Chapter 4

Sensing with passive appendages

This chapter is adapted from a paper that appears in Bioinspiration & Biomimetics:

C. Rodwell, B. Pollard, and P. Tallapragada, “Proprioceptive wake classification by a body

with a passive tail,” Bioinspiration & Biomimetics, vol. 18, no. 4, p. 046001, 2023.

4.1 Introduction

The ability of animals to identify and exploit vortex wakes in water or air is well documented,

from the famous ‘V’-shaped formation of migratory geese which allows trailing individuals to derive

thrust from the wakes of those in front [106], to the ability of trout in fast-flowing streams to use

the wakes of obstacles to allow station keeping with low to zero energy investment, even when

the trout in question is dead [107]. Closely related to and aiding the locomotion is the ability

of fish to sense and process the spatiotemporal information in the water around them. Objects

moving in water or stationary objects in streams perturb the flow in their immediate area, and for

a wide range of Reynolds numbers will create a vortex wake. A swimming animal or an underwater

robot encountering the wake created by another body experiences disturbance forces and moments.

These disturbances can be associated with the disturbance velocity field and the bodies creating

them. Essentially, information about fluid flow and the objects that create these flows is encoded

in the spatiotemporal evolution of the vortical structures, whether the bodies creating them are

cylinders, hydrofoils, underwater robots or fish [108–113]. Many species of fish sense these flow

51

features using their lateral lines, a grouping of mechanosensors utilizing small sensing hairs, as part

of their multimodal sensing [107, 114–120]. Researchers have long been captivated by the sensing

capabilities of the lateral line and have sought to mimic these. Considerable research and engineering

has been devoted to creating artificial lateral lines through a variety of electromechanical sensors

such as miniature pressure sensors [121–125], ionic polymer-metal composite sensors [126,127], multi-

layered silicon beams [128], and micro-fabricated hot-wire anemometry sensors [129], and these

sensors have been useful to perform state estimation [130] and improve the swimming efficiency of

robots [123]. The whiskers of aquatic mammals have been shown to serve a similar role in flow

detection by translating the fluid flow into detectable whisker vibrations [131].

While these sophisticated sensors mimicking the lateral line have undeniably improved the

sensing of the local flow field, alternative sensing abilities that augment the lateral lines in fish

are being better understood. The discovery [107] that a dead animal can ‘sense’ the wake well

enough to exploit it, with no sensory input beyond the fluid passively deforming its limp body,

offers an indication that passive degrees of freedom may instill this wake sensing ability into an

artificial robotic swimmer. Proprioception has been demonstrated to be used by fish as part of

their multimodal sensing. For instance, the rays and membranes of fins have been shown to act as

mechanosensors in catfish [132], bluegill sunfish [133], and wrasses [134]. Fin mechanosensation has

been found to encode the velocity of fin bending as well as respond to cyclic stimuli of biologically

relevant frequencies with the mechanosensory system being capable of providing stroke by stroke

feedback [135]. Beyond flow sensing, it has been shown that fish can use proprioception to improve

their efficiency of swimming with improved energy harvesting from the flow [136], in fact the mere

presence of passive tails has been shown to increase the agility of swimming robots [137]. Such recent

research in the proprioceptive ability of fish fins suggests that in the context of bioinspired robots,

useful information about the flow, and in particular the vortex field around a robot, can be inferred

from the kinematics of the robot or a part of it such as its tail, which can passively improve the

robot’s sensing capabilities in conjunction with existing lateral-line based approaches.

Extracting useful information about the fluid vortex field using even direct measurements of

the fluid velocity field is, in general, a non-trivial problem [21,138–140]; extracting such information

using only the kinematic information of a body immersed in the fluid is even more challenging

due to the inherent complexities associated with coupled fluid-body dynamics. However, the body

immersed in the fluid acts as a reservoir computer, with the input being the hydrodynamic forcing

52

due to a vortex wake and its output being the resultant kinematics. Recent research into the

computing power of dynamic systems in the context of reservoir computing [141, 142], finds that

applying complex time-series information as forcing to a complex nonlinear system (referred to as a

‘reservoir’) can result in information about the original system being encoded in simplified form in

the states of the reservoir. In previous work [143] we introduced a rigid hydrofoil which is pinned

at its leading edge in the vortex wake of a pitching upstream body as a physical reservoir, and

showed that the one degree-of-freedom kinematics of its rotation contains enough information to

accurately classify the wake Strouhal number without the need for sophisticated sensors. Here we

extend that work by showing that a similarly pinned body with an additional freely rotating tail

can serve as a more effective physical reservoir and encode more information about the flow into

its two-dimensional velocity kinematics, allowing more accurate classification of wake parameters.

Performing classification of the resulting time-series data is a well-researched problem in artificial

intelligence with multiple viable solutions. In related prior work [143], a shallow dense artificial

neural network (DNN) was used to perform a classification of time-series data obtained from the

kinematics of the rigid hydrofoil in a vortex wake. Specialist architectures designed to exploit

the specific characteristics of time-series data, such as convolutional neural networks (CNNs) and

recurrent neural networks (RNNs), have been found to match or exceed the performance of the

state-of-the-art non-deep learning algorithms on time series classification [144]. RNNs however are

more complex than the feed forward CNNs with many more variables in the architecture leading to

classification results that are more difficult to explain. CNNs and DNNs with a simpler architecture

suffer less from this problem and can enable future physics informed learning. Therefore in this work

we use a multiple-input CNN architecture for feature extraction on the kinematic data before using

a DNN to classify flow parameters from those features.

We show that the body in the wake encodes more information in its kinematics and thus is

a more effective reservoir if the body has a passive tail. We tested the classifying ability based on

four cases of different time series data from bodies in a vortex wake. The first is the angular velocity

of the large pinned body (head) with a passive tail, the second is the angular velocity of only the

passive tail attached to the head, the third is the angular velocity of a the head and tail attached

together in a fixed assembly, the fourth case is one where the angular velocities of both the head and

tail are fed as inputs to the CNN, the fifth is where the head is tested without a coupled tail, and

the sixth where the tail is tested without a coupled head. Not surprisingly, the classification of the

53

wakes was the most accurate in case four when using two inputs, but very surprisingly in both the

second and third cases classification shows a significant improvement over the first case. The mere

presence of a passive tail on a body can improve its hydrodynamic sensing ability even if data on

the tail dynamics is not directly used in the classification. This result implies that the passive tail

modulates the motion of the rest of the body to better encode information about the vortex wake.

4.2 Experiments

We designed an experimental setup with two hydrofoils placed in a water tunnel as shown

in Fig. 4.1(a). The experiments were conducted in an Engineering Laboratory Flow Visualization

Tunnel. The water tunnel has a working length of 152 cm and a testing cross-section of 232 cm2 and

is capable of producing laminar flow at speed u∞ up to 1 m/s. The leading (upstream) hydrofoil

has a chord length of 7.24 cm. In the first set of experiments, the downstream body consists of

a smaller NACA 0045 airfoil of length 5.39 cm pinned to an ellipse with a major axis of length

7.00 cm and a minor axis length of 5.54 cm, which we refer to as the “pinned assembly”. In the

second set, the same body is considered but with the pin locked, resulting in a streamlined body

that we refer to as the “fixed assembly”. In the third and fourth sets of experiments, the downstream

body from previous experiments is separated into its two constituent bodies, and each is tested

individually. In each experiment, the trailing body is tethered from its leading edge to a bar of

extruded aluminum which does not contact the water, so the movement of the hydrofoil is solely the

result of its body interacting with the vortex wake. The tether is a lightweight fishing line that is 1

centimeter in length to limit the heaving motion in the trailing hydrofoil, effectively acting as a very

low-friction pin. The upstream hydrofoil is actuated to perform periodic pitch oscillations about

its centroid by a Spektrum H6210 servo motor controlled by a Raspberry Pi Pico. This generates

a reverse Kármán vortex street as shown in the supplementary video 1. Supplementary videos 2-5

show sample dynamics of the pinned-assembly, fixed assembly, the head and the tail respectively.

The distance D between the leading edges of the upstream and downstream foils can prescribed by

moving the downstream foil’s supporting structure. With such an arrangement each experiment is

repeated for D ∈ {16.5, 30.0} cm.

The leading hydrofoil is actuated to execute prescribed yaw oscillations of angular amplitude

A and time period T in the prescribed flow of the water tunnel. The trailing hydrofoil is free to

54

1

2

3

U

(a)

1

4

U

(a)

(c)

(d)

Figure 4.1: Schematic of (a) a body with two free to rotate segments and (b) a body with two rigidly
attached segments in the wake of a forced upstream hydrofoil in a water tunnel with flow velocity u∞.
Both the upstream and downstream hydrofoils are pinned at the black dots with low-friction pins.
The two segment body has a second pin connecting the head and tail, where the head is elliptical
and the tail is an airfoil. All bodies have circles drawn on their upper surface (in light grey) which
are identified by cameras and used to calculate the angles θ1, θ2, θ3, and θ4 in post-processing. (c)
The top view of the experimental setup with a two segment body downstream. (d) A sample dye
visualization of the wake generated by the oscillations of the upstream hydrofoil.

execute yaw oscillations in response to the hydrodynamic forcing of the vortex wake created by

the leading hydrofoil. This combination of A, T , and u∞ constitute the control parameters of this

experiment.

The oscillations of the leading hydrofoil are programmed to generate nominally periodic

55

motion corresponding to a square wave of angular position. A perfect servo would then generate

thin peaks of very high angular velocity, which results in an unrealistic wake. To mitigate this

effect, the magnitude of the angular velocity is limited by the controller to 200 deg/s. As a result,

the angular velocity takes the form of broad peaks which can be described as the superposition of

multiple frequencies (or harmonics). Furthermore, torque constraints and jitter of the forcing servo

cause deviations from periodic angular velocity producing small changes in both the amplitude and

frequency of oscillations. The angular motion of upstream and downstream hydrofoils is measured

using overhead cameras. Multiple circles are drawn on the top of each body (indicated in Fig. 4.1(a)

and (b) by pale dots), whose positions are recorded by a video camera at 30 Hz. The positions of

the centers of the pale circles are then identified in each frame of the video using a circular Hough

transform [145], which are then used to calculate body angles θ1, θ2, θ3, and θ4. The angular

velocities ω1 = θ̇1, ω2 = θ̇2, ω3 = θ̇3, and ω4 = θ̇4 are then computed using first-order forward finite

differences. This numerical derivative introduces noise to the velocity data, but this step would not

be necessary in an autonomous robot, which would likely have angular velocities calculated by an

accelerometer. To preserve as much of the information as possible, no filtering is applied to the data.

Figure 4.2 shows a sample time series of these processed kinematics.

Each experiment was performed for a period of 10 minutes, giving angular velocity time

series of the same duration at intervals of 1/30 seconds. A discrete Fourier transform is performed

on these time series of the angular velocity of the downstream hydrofoil. The calculated peaks in

the frequency domain are converted to time periods and shown in Fig. 4.3(a,b). The peaks in this

figure correspond to the prescribed nominal forcing periods and their harmonics, though small noise

is present about each peak, showing the small variations in frequency. The post processed angular

velocity data is broken down into smaller time series, each of duration 5 seconds. The measured

amplitudes of velocities of the trailing body are calculated for each of these 5 second windows. A

histogram of the overlayed distribution of amplitudes from two experiments measured in this manner

is shown in Fig. 4.3(c,d). The amplitudes are broadly distributed within each experiment, and there

is overlap between the amplitudes of the two experiments, which indicates that this classification

problem is non-trivial.

The angular position θ1 of the leading hydrofoil with respect to the free stream can therefore

be described by the equation

θ1 = A(t)F (t) (4.1)

56

10 15 20
Time (s)

π

0

−π

ω
 (

ra
d/

s)

(a)

10 15 20
Time (s)

π

0

−π

ω
 (

ra
d/

s)

(b)

10 15 20
Time (s)

π

0

−π

ω
 (

ra
d/

s)

Head Tail

(c)

10 15 20
Time (s)

π

0

−π
ω

 (
ra

d/
s)

Head Tail

(d)

Figure 4.2: The steady-state time series of angular velocities of (a) the upstream forcing body, (b)
the single segment hydrofoil, (c) the hydrofoil with a head and a tail segment, and (d) the uncoupled
head and tail placed in the water separately, where squares mark the larger head link and triangles
mark the smaller tail link. The head and tail respond to the flow differently, with the tail accelerating
more sharply and showing larger differences in amplitude between oscillations. The single segment
hydrofoil performs oscillations similar to those of the head link of the hinged body, but smaller in
magnitude.

where A(t) is the oscillation amplitude, F (t) is time periodic function of unit amplitude with T

as the time period of oscillations. While the actual amplitudes and time periods vary, these are

clustered around the nominal prescribed values given by the ordered label sets,

A ={20.0o, 30.0o, 40.0o}

T ={1.5, 2.0, 2.5} seconds

u∞ ={8, 10, 12} centimeters/second. (4.2)

While all of the three parameters above are needed to uniquely specify a wake, a single non-

dimensional number reflecting the wake structure is useful to assign as a label to a wake generated

57

0 1 2 3 4
Frequency (Hz)

0.0

0.015

0.03
S

pe
ct

ra
l A

m
pl

it
ud

e
T=2.0 s

T=2.5 s

(a)

0 1 2 3 4
Frequency (Hz)

0.0

0.015

0.03

S
pe

ct
ra

l A
m

pl
it

ud
e

T=2.0 s

T=2.5 s

(b)

0.9 1.0 1.1 1.2 1.3
Angular Velocity (rad/s)

0

2

4

6

8

N
um

be
r

of
 S

am
pl

es

T=2.0 s

T=2.5 s

(c)

1.2 1.4 1.6 1.8
Angular Velocity (rad/s)

0

2

4

6

8

10

12

N
um

be
r

of
 S

am
pl

es

T=2.0 s

T=2.5 s

(d)

Figure 4.3: Overlayed frequency spectra of the (a) coupled head and (b) coupled tail angular velocity.
The periods are assessed via a discrete Fourier Transform (DFT) of 10 minutes of post-processed
angular position at velocity u = 12 cm/s. Despite the noisy appearance of the angular velocity
time series, the DFT reveals sharp peaks in line with harmonics of the upstream forcing period.
This indicates that the angular velocity has encoded information that will enable the period of the
upstream body to be classified. A histogram for the root-mean-square value of the angular velocity
of each sample is also shown for the corresponding experiments for (c) the coupled head and (d) the
coupled tail, where the rms value is computed for each a total of 120 successive 5 second snapshots
for each of the two overlayed time series. These results show significant variation between different
snapshots of the same dataset, which indicates that features may not cluster clearly and so may not
be amenable to traditional classification approaches.

by the leading hydrofoil. The Strouhal number, St, is suitable for this purpose, and is defined as

St =
2f
u∞

L sin θM (4.3)

where f = 1
T , θM is the mean one-sided oscillation amplitude for a dataset, and L is the distance

from the center of rotation to the trailing edge of the leading hydrofoil, as shown in Fig. 4.1(a).

58

The non-dimensional Strouhal number, frequently used in fluid mechanics and specifically in the

context of fish swimming to describe the periodic motion of flapping bodies and the associated vortex

wakes [146], is a suitable label that encodes information about the motion of the body generating

the vortex wake for body Reynolds numbers ranging from 103 to 108 [112]. The Strouhal number,

in this case, contains information about the frequency of the vortex shedding, the distance between

the consecutively shed vortices, and the length of the source body that creates the vorticity.

4.3 Wake Classification and Neural Network Architecture

Though multiple minutes of data are available for every wake, our objective is to develop a

classifier that can determine changes in the wake in near real time, requiring high performance on

only a portion of the available data. Previous work [143] with a different network architecture found

that, for a rigid hydrofoil, windows of input exceeding 5 seconds in length do not show significant

increases in classification accuracy, so we adopt a 5 second time series, or 150 points at 30 Hz,

as the input. We will denote the set of all 5 second windows of time series extracted from the

experimental measurements as X. Corresponding to each data window are three known parameters:

T , A, and u∞. The objective of classification is to assign a probabilistic label T̄ , Ā, ū∞ and S̄t and

compare these with the known values of the labels T , A, u∞ and St respectively. However, letting

the classifier make this assignment directly does not allow the classifier to express uncertainty, and

is difficult to train because the gradient of accuracy with respect to classifier parameters is either 0

or infinite throughout the parameter space, because each classification is either correct or incorrect

with no partial credit. To generate smoother error gradients, we instead consider estimation of

discrete probability distributions. For instance, given a 5 second time series input xi we estimate

a discrete probability distribution T̄ (xi) : X 7→ pt ∈ R3 such that pt(j) ≥ 0 and
∑3

j pt(j) = 1.

Therefore T̄ (xi) is a probabilistic vector of size 3 (since there 3 labels in the set T) with the jth

entry in this vector being the probability that the time period associated with the time series input

xi is Tj . The probabilistic vector labels Ā(xi) (of length 3), ū∞(xi) (of length 3) and S̄t (of length

27) are defined similarly. With the classifier output defined as a probability distribution, we can

redefine the objective of our classifier: instead of trying to maximize accuracy directly, we attempt

to find a classifier that minimizes the cross-entropy

59

e = −
∑
xi∈X

T (xi) log T̄ (xi)−
∑
xi∈X

A(xi) log Ā(xi)−
∑
xi∈X

u∞(xi) log ū∞(xi) (4.4)

−
∑
xi∈X

St(xi) log S̄t(xi)

for every segment of data.

Estimating T̄ (x), Ā(x), ū∞(x) and S̄t(x) given 150 points of time series data is a general

time-series classification problem, and many algorithms exist that can perform such a classification.

Recent advances in automatic differentiation have led to the dominance of neural networks for this

task, which have recently reached parity with state-of-the-art non-neural network classifiers [144].

In particular, convolutional neural networks are well-suited to time series classification for their

tolerance of shifted input [147].

Though CNNs were originally based on the visual cortex of cats and designed primarily in

the context of visual processing [147], their properties have recently led to their increased adoption

in time-series classification [148]. CNNs apply a constant kernel to sequential windows of data,

with each sequential input window mapping to a sequential element of the output. This leads to

a tolerance of shifted inputs: a change in the phase of the input layer will only cause a change in

the phase of the output layer, a property known as shift equivariance. This property is attractive

for this problem because the overall phase of the time series carries no information about which

experiment it corresponds to.

Pooling functions are often used to sequentially reduce the data dimension and introduce

nonlinearity during each iteration. Here we use max pooling with width two, reducing the dimen-

sionality of the transformed data by half per layer. Convolving and pooling are repeated iteratively

until information is condensed into a ‘feature vector’ of much lower dimension than the input, and

the feature vector is typically an input to a dense neural network (DNN) which performs the esti-

mation. The specific network used here is illustrated in Fig. 4.4. We use four convolution iterations

with 5 kernels in each iteration, with a kernel size of 7 and step of 1. The dense ReLU-activated

neural network has four layers, with 200, 100, 100, and 50 neurons, listed in order from input to

output. Directly densely connected to the 50 unit layer are three output layers each with 3 units

corresponding to T̄ (x), Ā(x), and ū∞(x) respectively, each using a softmax activation function to

60

ensure that the probability vector sums to 1. The Strouhal number St is predicted by a separate

network of the same architecture, except with a different output layer corresponding to the 27 la-

bels, also with a softmax function. For the case where time series from both the head and tail are

considered simultaneously, a CNN is created for each of the two inputs, with each allowed to have

different weights. The two resulting feature vectors are concatentated and input to a single DNN of

the same dimensions as above. Evaluating this network for a single time series takes a total of 14

ms on an Intel generation 8 i5 processor, which is fast enough to be run real-time on an onboard

microprocessor.

Convolution Pooling Repeat 3x Flatten
4 Dense
 Layers Repeat 3x Output

T

A

u

Figure 4.4: The architecture of the classifier for (T,A, u∞) given a time series of kinematic data.

Because of the limited amount of training data and the complexity of the network it is

susceptible to overtraining, so we use a modified version of the early-stopping algorithm [149] which

determines a stopping time based on generalization loss and selects the correct network based on

its performance on a separate validation data set, which prevents overfitting to the training data.

In every iteration, a new 75 data vectors are derived from the designated training data for each

experiment, and stochastic gradient descent is used to minimize the loss. The location that these 5

second time series data vectors are extracted from in the longer training time series is random and

allowed to overlap with past and future data vectors, so the total number of 5 second windows that

can be constructed from 10 minutes of experiment data is vastly greater than the 120 that would be

allowed without overlap. Every five training iterations, cross-entropy loss is then calculated for 150

time series from the validation data and the lowest value seen so far, denoted ei, is stored with its

corresponding network weights. The training is terminated at iteration k when ek > 1.2 ei, which

indicates that the validation error has passed its minimum and overfitting has begun. The network

61

weights corresponding to the lowest validation loss value are taken as the optimal classifier. This

methodology has two potential problems that make comparison for the results between different

classifiers difficult: it is possible that the stochastic gradient optimization becomes trapped in a

local minimum, and noise is introduced into the validation error because the error calculated on a

subset of the validation data is similar but not equal to the true validation error over the entire set

of possible validation data vectors, which is too expensive to compute. These problems are both

mitigated by repeating this procedure 30 times, and selecting the best of the 30 resulting network

weights by their performance on a large validation data set of 60, 000 overlapping time series vectors.

To perform the above procedure, three data sets are needed: training, validation, and

testing. These must be selected carefully to avoid overlap between windows, as the classifier will

likely be more accurate on data that it has already seen, even if only partially, and that could lead to

overconfidence in the classifier’s accuracy on truly new data. The simplest method to avoid overlap

is to split the time series into three portions of different lengths, from which each type of data can

be drawn. We designated the first 70% of each experiment as training data, the next 20% as testing

data, and the final 10% as validation data.

4.4 Wake Classification Results

Training on the different datasets resulted in different training rates and convergence to

significantly different loss values, as demonstrated in Fig. 4.5, where the evolution of the distribution

of loss values for the 30 trained networks for each dataset are shown. The fixed assembly data causes

convergence to a high loss value, the head and tail data classifiers both converge to a similar medium

loss value, and the classifier using both head and tail data as input reaches the lowest overall loss.

However, this loss is the sum of the time period, amplitude, and flow velocity losses, and it also

gives no indication what specific parts of the parameter space each classifier has difficulty with. To

visualize these details, we use confusion matrices.

The performance of each deep network is quantified through a confusion matrix C whose

elements Ci,j represents the fraction of wake i sample that were classified as wake j. The diagonal

elements of this matrix Ci,i represent the fraction of correctly classified wakes of label i. By definition

0 ≤ Cij ≤ 1 for all i and j. For an effective classifier, large values are found along a diagonal, and

for our axis labeling convention that axis is from the top-left to bottom-right. Values off of this

62

0 100 200 300 400 500 600
Episode

0

0.5

1

1.5

2

Lo
ss

Combined

Head (coupled)

Tail (coupled)

Rigid

Head (uncoupled)

Tail (uncoupled)

Figure 4.5: The overall cross-entropy loss on the validation dataset by training epoch, which contains
the sum of losses on u∞, A, and T , for the coupled and uncoupled head data (upwards triangle
marker), coupled and uncoupled tail data (downward triangle), combined head and tail data (circle),
and fixed assembly data (square). On each dataset 30 networks are trained, and the plotted lines
represent the mean loss of the networks, surrounded by bands defining one standard deviation
distance. The slow asymptotic convergence of the validation loss indicates that overfitting did not
occur.

63

diagonal represent incorrect classification; a large Cij means that wake label i is frequently confused

to be wake label j.

4.4.1 Time period, Amplitude, and Flow Velocity

Wakes can be categorized by the parameters of the motion of the leading hydrofoil generating

these wakes. Separate confusion matrices for the classification of wakes based only on the individual

parameters of time period T , amplitude A and free stream velocity u∞ were created. The confusion

matrices for the forcing period are shown in Fig. 4.6. Accuracy appears roughly consistent for

the different forcing periods, and no individual forcing period has an accuracy of less than 99%.

The only bodies to not accurately classify the period to within rounding distance of 100% are the

coupled and uncoupled tails, which can likely be attributed to their small inertia and streamlined

shape causing excessive sensitivity to components of the wake with frequencies different than the

driving frequency. Given the clearly evident forcing period in frequency spectra in 4.3, the upstream

forcing period was clearly encoded into the kinematics of the body, so the result that the CNN was

able to extract the forcing period from the kinematics with high accuracy is not surprising.

The oscillation amplitude of the upstream hydrofoil is more prone to classification errors,

with accuracies for the classification accuracy varying between 78% and 97% as shown in Fig. 4.7.

The kinematics of the head body with the attached tail enable better classification for every ampli-

tude than either the uncoupled head or uncoupled tail, indicating that the richer dynamics induced

by the coupling between the bodies allows more effective encoding of wake structures corresponding

to amplitude into the kinematics. When data from both the head and tail kinematics are used

simultaneously, the accuracy improves further for every label, indicating that while the kinematics

are coupled, the kinematics of each body still holds information that cannot be easily extracted from

the other.

Free stream velocity classification has a higher accuracy than that of classifying amplitude

but is less accurate than that of forcing period classification, with Fig. 4.8 showing peak classifica-

tion accuracy for each dataset falling between 91% and 99%. Similar to the amplitude classification

problem, the head kinematics and the tail kinematics yield similar classifications, but the data en-

coded by each is different enough that the combined classification can greatly outperform both. The

coupling of the two bodies yields benefits to both, though is effect is most clear for the coupled head

link, which has higher accuracy for all amplitude values than either uncoupled body or the fixed

64

1.5 2.0 2.5

1.5

2.0

2.5

1.00 0.00 0.00

0.00 1.00 0.00

0.00 0.00 1.00

(a)

1.5 2.0 2.5

1.5

2.0

2.5

1.00 0.00 0.00

0.00 0.99 0.00

0.00 0.01 0.99

(b)

1.5 2.0 2.5

1.5

2.0

2.5

1.00 0.00 0.00

0.00 1.00 0.00

0.00 0.00 1.00

(c)

1.5 2.0 2.5

1.5

2.0

2.5

1.00 0.00 0.00

0.00 1.00 0.00

0.00 0.00 1.00

(d)

1.5 2.0 2.5

1.5

2.0

2.5

1.00 0.00 0.00

0.00 1.00 0.00

0.00 0.00 1.00

(e)

1.5 2.0 2.5

1.5

2.0

2.5

1.00 0.00 0.00

0.00 0.99 0.01

0.00 0.00 1.00

(f)

Figure 4.6: Confusion matrices for classifying the time period T , of the motion of the upstream
hydrofoil using angular velocity data of (a) only the head and (b) only the tail of the two segment
hydrofoil, (c) both the head and the tail of the two segment hydrofoil, (d) using the angular velocity
of only the fixed assembly, (e) the uncoupled head, and (f) the uncoupled tail. Accuracy is high for
all cases, but the tail segment data, both coupled and uncoupled, appears to have lower accuracy
than the other bodies.

assembly. The coupling increases the classification accuracy of the tail on the low amplitude, but

decreases it on the medium and large amplitudes. This may indicate that the tail is oversensitive

to the flow due to its small mass and sharp edge, and the additional information passed through

the coupling is counterproductive when the high amplitude upstream oscillations are already induc-

ing rich tail oscillations. However, when the forcing amplitude and corresponding tail oscillation

amplitude are lower, the increased sensitivity to the wake provided by the coupling provides a net

benefit.

65

20
.0

30
.0

40
.0

20.0

30.0

40.0

0.96 0.02 0.01

0.03 0.90 0.07

0.02 0.09 0.89

(a)

20
.0

30
.0

40
.0

20.0

30.0

40.0

0.94 0.04 0.02

0.06 0.82 0.11

0.04 0.11 0.85

(b)

20
.0

30
.0

40
.0

20.0

30.0

40.0

0.97 0.02 0.01

0.01 0.91 0.07

0.01 0.05 0.94

(c)

20
.0

30
.0

40
.0

20.0

30.0

40.0

0.95 0.04 0.01

0.06 0.86 0.08

0.03 0.15 0.82

(d)

20
.0

30
.0

40
.0

20.0

30.0

40.0

0.92 0.06 0.02

0.08 0.78 0.14

0.03 0.15 0.82

(e)

20
.0

30
.0

40
.0

20.0

30.0

40.0

0.91 0.06 0.03

0.03 0.86 0.10

0.02 0.12 0.86

(f)

Figure 4.7: Confusion matrices for the forcing amplitude of the upstream hydrofoil in degrees,
divided into 3 labels. Kinematic data is derived from from (a) the head and (b) the tail of the
pinned assembly, (c) both the head and the tail, (d) the fixed assembly, (e) the uncoupled head,
and (f) the uncoupled tail. The higher amplitudes appear more difficult to classify than the lower
amplitude, with most mistakes involving mistaking the high amplitude as medium, and conversely
the medium amplitude as high.

4.4.2 Strouhal Number Classification

In this problem, the desired information about the upstream hydrofoil is encoded twice: it

is first encoded into the wake structure, which then encodes it into the downstream body through a

complex fluid-body interaction. In the previous section we demonstrated that different downstream

bodies have substantially different classification accuracies when placed in identical wakes, indicating

a loss of information in the second encoding step. There is also a loss of information in the first step,

because a given wake Strouhal number, which is a scalar quantification of wake structure, cannot

be mapped back to a unique combination of parameters for the upstream hydrofoil. Performing a

classification of St directly should reduce the loss of information loss in the first encoding step and

66

8.0 10
.0

12
.0

8.0

10.0

12.0

0.98 0.01 0.01

0.01 0.97 0.02

0.00 0.03 0.97

(a)

8.0 10
.0

12
.0

8.0

10.0

12.0

0.96 0.02 0.02

0.02 0.94 0.04

0.01 0.02 0.98

(b)

8.0 10
.0

12
.0

8.0

10.0

12.0

0.99 0.00 0.00

0.00 0.99 0.01

0.00 0.01 0.99

(c)

8.0 10
.0

12
.0

8.0

10.0

12.0

0.96 0.02 0.01

0.03 0.91 0.05

0.01 0.02 0.97

(d)

8.0 10
.0

12
.0

8.0

10.0

12.0

0.95 0.04 0.01

0.04 0.91 0.05

0.01 0.05 0.94

(e)

8.0 10
.0

12
.0

8.0

10.0

12.0

0.96 0.04 0.00

0.01 0.95 0.03

0.00 0.04 0.95

(f)

Figure 4.8: Confusion matrices for the free stream velocity u∞ in cm/s, divided into three labels.
Kinematic data is derived from from (a) the head and (b) the tail of the pinned body, (c) both the
head and the tail, (d) the fixed assembly, (e) the uncoupled head, and (f) the uncoupled tail. The
larger bodies (uncoupled head and rigid foil) appear to be the least accurate at this task, but the
coupling appears to improve the classification accuracy from the coupled head to be higher than
that of either uncoupled body.

67

0.1
44

0.6
75

0.144

0.675

(a)
0.1
44

0.6
75

0.144

0.675

(b)
0.1
44

0.6
75

0.144

0.675

(c)

0.1
44

0.6
75

0.144

0.675

(d)
0.1
44

0.6
75

0.144

0.675

(e)
0.1
44

0.6
75

0.144

0.675

(f)

Figure 4.9: Confusion matrices for the Strouhal number, divided into 27 labels. Kinematic data is
derived from from (a) the head and (b) the tail of the pinned assembly, (c) both the head and the
tail, and (d) the fixed assembly, (e) the uncoupled head, and (f) the uncoupled tail. All cases have a
strong diagonal indicating that the classification accuracy is high, though a slight decreasing trend
can be seen in the accuracies as the Strouhal number increases.

68

allow the second encoding step, which is the main interest of this work, to be investigated more

directly.

We repeat the classification procedure from the previous section, with identical network

hyperparameters (excluding the output layer) and with 30 networks trained per kinematic dataset.

As each unique set of (A, T, u∞) has a unique Strouhal number, there are half as many labels as there

are experiment runs (due to the distance parameter D not affecting St), which are not necessarily

distributed evenly. Confusion between cases with similar Strouhal numbers but dissimilar underlying

parameters indicates confusion due to similar wake structures, and the ability of different classifiers

to discern the differences between similar wakes can be observed.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
St

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac
y

(a) Head

0.1 0.2 0.3 0.4 0.5 0.6 0.7
St

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac
y

(b) Tail

0.1 0.2 0.3 0.4 0.5 0.6 0.7
St

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(c) Combined Head and Tail

0.1 0.2 0.3 0.4 0.5 0.6 0.7
St

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac
y

(d) Fixed Assembly

0.1 0.2 0.3 0.4 0.5 0.6 0.7
St

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac
y

(e) Uncoupled Head

0.1 0.2 0.3 0.4 0.5 0.6 0.7
St

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac
y

(f) Uncoupled Tail

Figure 4.10: The classification accuracy of the Strouhal number determined from kinematic data
of (a) the head and (b) the tail of the pinned assembly, (c) both the head and the tail, (d) the fixed
assembly, (e) the uncoupled head, and (f) the uncoupled tail. The coupled head and tail both show
similar trends, with generally high accuracy for St < 0.4, whereas without the coupling, the correla-
tion in accuracies between both bodies is much less clear. For all cases, adjacent Strouhal numbers
can have very different accuracies, indicating that the classifier relies on the underlying dimensional
features of the wake, and cannot easily classify based on the dimensionless wake structure alone.

The confusion matrices for the Strouhal number classification are provided in condensed

form in Fig. 4.9, while the expanded images with exact probabilities are given in Appendix B

as Figs. 1- 6. A more compact representation of the classification is via the accuracy defined as

the diagonal elements of a confusion matrix. This accuracy of the Strouhal number classification

69

for all the 6 cases, shown in Fig. 4.10, is lower than the accuracy of classifying any of the other

three parameters, as in the best case identifying the specific experiment run correctly is equivalent

to simultaneously identifying all of the other parameters correctly. Additionally, because there are

many labels, experiments with very similar Strouhal numbers must be differentiated, which increases

misattribution error.

The variation in overall St classification accuracy between the sets of kinematic data follows

a familiar pattern: the classification based on the fixed assembly kinematics is substantially less

accurate than that based on either the coupled head or coupled tail kinematics, again indicating

that the existence of the tail passively improves the encoding of wake data into the head kinematics on

average. Additionally, the coupled head kinematics enable higher accuracy than either the uncoupled

head or tail, indicating the positive effect of the coupling.

The results shown in the confusion matrices are using the best neural network, selected from

the 30 networks trained from random weights on the each of the kinematic datasets. To represent

and rank the results of the classification for such a large number of networks more compactly we

choose a single number: the average accuracy for each confusion matrix generated from each neural

network. The average accuracy is merely the average value of the diagonal elements of a confusion

matrix, and the mean of the average accuracy of the T , A, and u∞ confusion matrices is used to select

the representative ‘best’ overall network, which was used to generate the results in Figs. 4.6 - 4.8.

This average accuracy of classification of time period, amplitude, free stream velocity and Strouhal

number by each of the networks is shown by a scatter plot in Fig. 4.11. With this measure, the

classification results, provided in Fig. 4.11 show that every network yields an accuracy of at least

79% for any parameter on any of the downstream bodies. The accuracy does vary substantially

depending on the parameter measured: all of the kinematics can be used to classify frequency

with accuracy greater than 98% and flow velocity with accuracy greater than 91%, but the lower

bounds for the accuracy in classifying forcing amplitude is 79% and for Strouhal number it is 77%.

The high accuracy of the frequency estimation was expected because of the efficient transmission of

frequency information by the wake between the forcing hydrofoil and the forced hydrofoil: the forcing

hydrofoil sets the dominant frequency of the wake, which in turn sets the dominant frequency of the

downstream hydrofoil. This dominant frequency can be seen clearly in Fig. 4.3. By comparison,

the encoding of A and u∞ on the wake manifests itself in a change in wake structure and intensity,

which has a far more complex and nonlinear effect on the downstream hydrofoil making it more

70

difficult to classify based on the angular motion alone of the trailing hydrofoil.

H
ea

d
(c

ou
pl

ed
)

H
ea

d
(c

ou
pl

ed
)

H
ea

d
(c

ou
pl

ed
)

H
ea

d
(c

ou
pl

ed
)

Ta
il

(c
ou

pl
ed

)

Ta
il

(c
ou

pl
ed

)

Ta
il

(c
ou

pl
ed

)

Ta
il

(c
ou

pl
ed

)

H
ea

d
an

d
Ta

il

H
ea

d
an

d
Ta

il

H
ea

d
an

d
Ta

il

H
ea

d
an

d
Ta

il

Fi
xe

d
A

ss
em

bl
y

Fi
xe

d
A

ss
em

bl
y

Fi
xe

d
A

ss
em

bl
y

Fi
xe

d
A

ss
em

bl
y

H
ea

d
(u

nc
ou

pl
ed

)

H
ea

d
(u

nc
ou

pl
ed

)

H
ea

d
(u

nc
ou

pl
ed

)

H
ea

d
(u

nc
ou

pl
ed

)

Ta
il

(u
nc

ou
pl

ed
)

Ta
il

(u
nc

ou
pl

ed
)

Ta
il

(u
nc

ou
pl

ed
)

Ta
il

(u
nc

ou
pl

ed
)

0.80

0.85

0.90

0.95

1.00
A

cc
ur

ac
y

Amplitude Period Velocity Strouhal

Figure 4.11: The accuracy of each of the 30 trained networks for the coupled and uncoupled head and
tail, combined data for the pinned body, and fixed assembly classification tasks on the testing dataset,
shown for forcing period, amplitude, flow velocity, and Strouhal number from left to right. Accuracy
is defined here as the ratio of time-series vectors for which the highest probability corresponds to the
known correct value. The large difference in outcomes for networks trained with the same procedure
but different random weights and stochastic gradient descent choices indicates the non-convexity of
this problem, with classifiers in some local minima having roughly double the loss of the best found
classifier, even trained and evaluated on the same sets of kinematic data.

The significant qualitative result that emerges from the average accuracy of multiple net-

works is that the angular velocity data of just the head of the two segment hydrofoil encodes more

information about the ambient wakes than the angular velocity of a single segment hydrofoil, or of

either segment of the two segment hydrofoil when tested individually and uncoupled. Using two

time series data, that of both the coupled head and coupled tail, further improves the classification

accuracy. We further performed statistical hypothesis testing on the classification shown in Fig.

4.11 to see how likely the improved classification was just a lucky outcome. We assumed the null

hypothesis, H0 to be that “the angular velocity of only a head segment of the pinned assembly

does not result in higher average classification accuracy of the wake Strouhal number than does the

angular velocity of the fixed assembly". We used the p-value to accept or reject the null hypothesis

with the significance level, α set at 5%, which is very commonly used. Using the χ2 test, the p-value

71

was found to be p ≈ 0 which is below the chosen α level, therefore the null hypothesis is rejected.

The very low value p ≈ 0 is due to the fact that the classification accuracy of St the best network

for each dataset are substantially different, with average accuracy 0.94 and 0.88 for the head data

and fixed assembly data, respectively. Combined with a very large number of test data sets (48, 000)

used to evaluate these accuracies, the probability that the underlying networks are not significantly

different becomes negligibly small.

4.5 Discussion and Conclusion

The results in this paper show that the hydrofoil with a passive tail acts as a superior

reservoir that generates a kinematic response encoding more useful information about the ambient

wake than an equivalent hydrofoil without the additional degree of freedom. This is not just because

the additional degree of freedom provides more kinematic information: the mere presence of a tail

modulates the response of the head in a manner such that the head’s own kinematics encode more

information about the wake. The classification results are based on training 30 neural networks, each

of which were randomly initialized. The qualitative result, that the kinematics of the body with two

segments can better classify wakes, is therefore independent of any one particular network. This

result has significance to further understanding the role of passive tail or fin like segments on a fish-

like robot; the resulting kinematics of these passive segments can provide useful information about

the ambient flow to the robot and enhance real-time multi-modal sensing by underwater robots.

The results in this paper as well as in [143] are valid under the assumption that the the

sensing body is directly behind the forced one in the flow. Some lateral displacement (offset) of the

trailing body from the center line of the reverse Kármán vortex wake created by the leading body,

occurs naturally in the experiments due to the short tether with which the trailing foil is connected

to the water tunnel. However, the more general setting where the trailing body has significant lateral

displacement from the center line of the vortex wake can make the classification more challenging,

and may first require an estimation of the lateral offset distance such as in [150]. While it is likely

that passive degrees of freedom will yet confer a sensing advantage in that setting, we leave further

investigation to future work.

Future work on sensing and classification of wakes and identification of flows in water can

be in the direction of combining models and data driven methods using operator methods such

72

as in [150], physics informed machine learning by making use of concepts like Local Interpretable

Model-Agnostic Explanation (LIME) [151], Layer-wise Relevance Propogation (LRP) or Taylor De-

composition [152], where the parts of the signal and their combination that led to the classification

and the evolution of the weights and layers in the network can be identified. Uncertainties (epis-

temic and aleatory) due to real flow conditions can be better handled by Bayesian neural networks

(BNNs) and the work in this paper can be a starting point towards such Bayesian classification

under uncertainties.

Besides the aspects of machine learning, the problem of proprioceptive wake identification

and similar sensing problems can lead to questions and a verifiable pathway for experimental inves-

tigation of the role of the shape, placement and stiffness of tails or fins of a fish. Such structural or

morphological aspects have usually been investigated from the perspective of swimming efficiency,

speed and agility and less so from their role in sensing flow structures.

73

Chapter 5

Obstacle Localization using spectral

properties of the Koopman operator

This chapter has been adapted from a paper which is in review at the time of writing:

C. Rodwell and P. Tallapragada, “Localization of upstream obstacles using spectral properties

of the Koopman operator,” Submitted, 2023.

5.1 Introduction

Closely related to and aiding the locomotion is the ability of fish to sense and process

the spatiotemporal information in the water around them. Objects moving in water or stationary

objects in streams create a vortex wake. An underwater robot encountering the wake created by

another body experiences disturbance forces and moments. These disturbances can be associated

with the disturbance velocity field and the bodies creating them. Essentially, information about

fluid flow and the objects that create these flows is encoded in the spatiotemporal evolution of the

vortical structures, whether the bodies creating them are cylinders, hydrofoils, underwater robots,

or fish. Underwater robots that often function with constrained sensing capabilities can benefit from

extracting this information from vortex wakes. Many species of fish do exactly this, by sensing flow

features using their lateral lines as part of their multimodal sensing [2, 153,154].

The complexity and high (infinite) dimensionality of fluid flows around a swimmer present

74

significant challenges to emulate fish-like hydrodynamic sensing and extract the relevant information

from sensor data of the flow. This particular challenge is not restricted to bioinspired fish-like

swimmers, but has been present in the broad areas of fluid flow estimation, model reduction, and

active flow control. Proper orthogonal decomposition (POD) [155, 156] and gappy POD [157] have

been tools for model reduction in turbulent flows for decades, and have also been applied for unsteady

flow sensing past an hydrofoil and estimation of surface pressure [158, 159]. Model reduction of

complex flows using the Koopman operator approach has extended the POD approach to a dynamical

systems framework [160, 161]. Subsequent developments in the application of machine learning in

dynamical systems have created algorithms for learning the dynamic modes or Koopman modes of

a dynamical system from often sparse data [162–164]. Similar methods combining machine learning

with dynamical systems are increasingly playing an important role in model reduction in fluid

mechanics [143,165–171]. Flow estimation in the near field of a body by selecting from known fluid

DMD modes using surface pressure data has been studied in [172], and incorporating traditional

filtering into this approach was recently shown to allow updating the estimation in real time [173,174].

This paper considers a different but related problem motivated by underwater robots where

on-board sensors such as inertial motion units (IMUs) and pressure sensors can measure only dynamic

and kinematic variables of the robot itself or pressure on the surface of the robot but not measure

the ambient pressure and velocity fields. We consider the problem of the estimation of the spatial

location of an upstream obstacle in a flow past a pitching hydrofoil. It is assumed that pressure on the

surface of the hydrofoil can be measured at a small number of fixed locations on the body. Using time

series pressure measurements on the surface of the hydrofoil, a Koopman operator is constructed that

propagates the snapshots of pressure data forward in time, thereby encoding the system dynamics.

Multiple approaches are considered to extract the encoded information for use in estimating the

position of an upstream obstacle. These include the ‘direct mode estimation’ approach, where the

most important modes (eigenvectors) of the operator are into a dense neural network (DNN), the

‘spectral image estimation’ approach where the spectrum of the operator is extracted and input into

a convolutional neural network (CNN), and comparing the unknown modes with known training

modes in the ‘mode-kernel estimation’ approach. This is benchmarked against the Time CNN [148],

a recent CNN architecture designed for classification of multi-variate time series, in the ‘CNN-based

estimation’ approach.

The remainder of the paper is organized as follows. In section 5.2, we define the exact

75

fluid-interaction problem considered, and discuss its implementation in simulation. In section 5.3

we review the theory behind standard and exact DMD and its connection to the Koopman operator

and their relevance to the estimation problem are explained in section 5.4. The training speed and

accuracy of the estimation methods are investigated on the training data in section 5.5.

5.2 Problem Definition

We consider the problem of flow past a symmetric NACA-0018 hydrofoil of unit chord length,

representing a streamlined swimmer, pinned at its leading edge with a linear spring of stiffness k = 6

Nm/rad and damping coefficient c = 2 Nms/rad. When the spring is at rest, the hydrofoil is

horizontal with the leading edge pointing left. The hydrofoil is immersed in a free-stream flow with

with velocity U∞ = 10 m/s. The fluid is of unit density (equal to that of the hydrofoil) and has

viscosity is ν = 0.001 m2/s. A rectangular bluff body of unit height and width 0.1 m is placed

upstream of the hydrofoil and disturbs the incoming freestream flow by shedding and unsteady wake

in the fluid. This disturbed flow interacts with the downstream hydrofoil, inducing angular motion

and a time-varying pressure profile on the surface. The relative position of the two bodies is defined

by the tuple (b, d) as shown in figure 5.1. Along the body, 10 pressure sensors are placed that are

evenly spaced in the horizontal direction, and record the absolute pressure at a frequency of 40 Hz.

This flow is simulated on a two-dimensional domain of width 30 m and height 16 m. The

leading edge of the hydrofoil defines the origin of the rectangular domain, and is located 1 m to the

left of and vertically collocated with the domain’s center. The center of the rectangular obstacle

is placed b m to the left and d m above the origin. At the left boundary of the domain, an inlet

condition u = 20 m, v = 0 is imposed. To allow unimpeded exit of the flow at the right boundary,

a zero gradient condition is imposed on the velocity, so ∇u = ∇v = 0 . At the top and bottom of

the domain, a ‘slip’ condition enforces that no flow passes through the boundary (v = 0) and that

there is no shear force at the boundary (∂u∂y = 0). On the walls of the plate and hydrofoil, a no-slip

condition ensures that the velocity of the flow relative to the bodies is zero at the surface.

The system is simulated in the open-source Computational Fluid Dynamics (CFD) soft-

ware OpenFOAM® 9. The fluid is modeled by the incompressible two-dimensional Navier-Stokes

76

equations

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u, (5.1)

∇ · u = 0. (5.2)

These are numerically solved with the Pressure-Implicit with Splitting of Operators (PISO) algorithm

over finite volumes of fluid. Turbulence is modeled by a Large Eddy Simulation with k − ω Shear

Stress Transport.

The moment fm on the hydrofoil about the pin is calculated by integrating the pressure on

its surface. This moment then allows solving the hydrofoil equations of motion

Ipθ̈ + cθ̇ + kθ = fm, (5.3)

where θ is the angle of the hydrofoil and Ip is the mass moment of inertia of the hydrofoil about

the pin. Through the forcing term and a surface boundary condition, this equation is coupled with

the fluid equations 5.1 5.2, resulting in complex fluid-body interaction. This interaction is solved by

iteratively solving the flowfield and body acceleration until convergence is achieved. These states

are then integrated forward using the forward Euler method with an adaptive timestep ∆t selected

such that the Courant number C < 0.85 and ∆t ≤ 0.02. This is repeated until time t = 50 s.

The fluid domain is discretized with a finite-volume square mesh, as show in fig. 5.2(a).

The mesh consists of two identical two-dimensional meshes stacked on top of each other, resulting in

a single layer of volumes. Two layers of mesh refinement are used to improve the simulation fidelity

in the region between the bodies and their immediate wake. A further three layers of refinement

are applied to capture the flow near the surface. When the hydrofoil rotates, the mesh points in a

region of 0.3 m from its surface rotate rigidly with it, while the mesh points greater than 1m from

the surface remain fixed. The mesh between these regions deforms while maintaining topology.

5.2.1 Simulations

We use a supervised learning approach to the estimation problem, which necessitates collect-

ing multiple sets of simulations with non-overlapping values of (b, d): one set to train the estimator

(the ‘training’ set), one set to validate how well trained the estimator is (the ‘validation’ set), and

77

14 16

8

8

u/ y = 0, v = 0

u/ y = 0, v = 0

u/ x = 0
v/ x = 0

b
d

1

1

0.1

u = U

v = 0

Figure 5.1: System diagram (border not to scale). A hydrofoil is pinned with a torsional spring at
its leading edge downstream from a vertical plate, with relative position parameterized by b and d.
On the hydrofoil, 10 pressure sensors are placed evenly.

one set to test the accuracy of the resulting estimator (the ‘testing’ set). The parameter values

used for each dataset is show in fig. 5.2(b). The training set has parameters on an even 6× 6 grid

filling the region 4 ≤ b ≤ 9 and 0 ≤ d ≤ 1, which is selected because the wake in that region is

well-developed and has not fully dissipated. The even spacing of these training points is designed

to sample the entire space. However, in practical applications the parameters would likely not fall

on a grid, but rather be scattered throughout the acceptable parameter space. For this reason,

the validation and testing data are selected from a uniform probability distribution in the region

4 ≤ b ≤ 9 and 0 ≤ d ≤ 1, with 20 points for validation and 38 for testing.

From each simulation, pressure is known at 15,493 points in the domain, with 80 of those

points on the surface of the body. The pressures are interpolated with a spline function to determine

the pressures at 10 evenly spaced points, which represent physical pressure sensors and is the only

data extracted from the simulation for the estimation procedure. There is no requirement for any

knowledge of the flowfield beyond the surface of the body to implement this procedure, either in

training or in application.

The pressure field from a simulation is shown in fig. 5.3(a). Regions of alternating low

pressure to the right of the flat plate show a 2S vortex street. As the vortices interact with the

78

(a)

(b)

Figure 5.2: (a) The refined computational mesh, with a high density in important flow regions near
surfaces and between the bodies. (b) Positions of the pinned leading edge of the hydrofoil relative
to the upstream plate for training (black), validation (blue), and testing (red) data sets. Training
points are on a grid for even coverage of the parameter space, while validation and testing points
are placed randomly.

79

(a)

10 11 12 13 14 15
t

-90

-60

-30

0

30

p

(b)

Figure 5.3: (a) The pressure field for a test case where b = 8.15 and d = 0.18 after the transient
period, where red indicates high pressure and blue low pressure. The formation of a periodic vortex
wake is evident, leading to a time-varying pressure distribution on the downstream hydrofoil. (b)
The pressure at four points in the same simulation on the hydrofoil over time, with blue indicating
the trailing edge, orange the top center, green the leading edge, and red the bottom center. The
non-zero value of d results in an asymmetrical pressure profile in time.

hydrofoil, a high-pressure region is generated that, when combined with the low pressure inside the

vortex, generates a net moment on the hydrofoil and thus motion. This pattern repeats in time,

symmetrically on both sides of the hydrofoil for d = 0 and asymmetrically for d ̸= 0. This results in

periodic pressures measured on the surface of the hydrofoil, as shown in fig. 5.3(b).

5.3 Dynamic Mode Decomposition

5.3.1 Theory

Consider a body B immersed in a two-dimensional fluid flow, with the pressure known at

a number of points on its surface. We assume that the system has no explicit time dependence.

While the Navier-Stokes equation governs the fluid flow, we will assume that the flow is spatially

and temporally discretized, i.e. the flow domain is discretized by N points (xi, yi) ∈ R2, and the

vector-valued states are u(t), v(t), p(t) ∈ RN , corresponding the horizontal velocity, vertical velocity,

and pressure, respectively. In the Eulerian approach considered here, each element of these vectors

corresponds to a specific point (xi, yi) which does not vary with time, though the states themselves

do evolve with time. Though the evolution of these variables is governed by a partial differential

equation, there exists an unknown flow map F that can predict the evolution of the states after a

fixed length of time ∆t, e.g.

(un+1, vn+1, pn+1) = F (un, vn, pn), (5.4)

80

where un = u(n∆t). It follows that by defining a generalized coordinate z(t) = (u(t), v(t), p(t)) ∈

R3N , the map can be generalized to

zn+1 = F (zn). (5.5)

It has been shown [25] that the vector-valued Hilbert space of all functions in L2 (often called

observations) of z, denoted g(z) ∈ R, can also be mapped forward by an infinite-dimensional operator

K as

g(zn+1) = Kg(zn). (5.6)

The operator K is linear and known as the Koopman operator, named after its inventor who derived

it for conservative Hamiltonian systems in [25]. This linearity has the potential to enable the

application of linear system analysis techniques (such as modal analysis) to complex and high-

dimensional nonlinear systems such as fluids, however, the infinite-dimensional nature of the operator

has precluded practical applications. This challenge has been mitigated by the development of DMD,

an algorithm that uses a subset of the observations h(z) ∈ Rk and h(z) ⊆ g(z) for k < ∞ and

identifies a linear operator K that minimizes the residual

min
K

m−1∑
n=1

|h(zn+1)−Kh(zn)|2 (5.7)

over m total snapshots can enable practical linear analysis, while introducing some (often small)

amount of error dependent on how effective h(z) is as a basis. In fluids problems where z (typically

extracted from discrete meshpoints) is high-dimensional, it is typical for h(z) ⊆ z. In extended

DMD [175], which is often used in lower-dimensional systems, the lifting h(z) is constructed with a

dictionary of lifting functions, such as radial basis functions [175] or neural networks [176].

Here, we consider two different observable functions, resulting in two different operators.

One observes all of the field pressures at mesh points, zf = hf (z) = p, and is mapped forward by the

operator Kf . The second observable function zs = hs(z) = p(x, y ∈ B) ⊆ zf also contains pressures

at mesh vertices, but only on the vertices that lie in the downstream body B. As a result, every

data point in zs also belongs to zf , and the operator on the second observable function Ks acts on

a subspace of the space acted on by Kf .

81

5.3.2 DMD

Here we use the DMD algorithm to approximate the modes of Ks and Kf . Consider first

the surface observations zs, which are few in number. We construct an observation matrix

Xs =

[
zs,1 zs,2 · · · zs,m−1

]
, Ys =

[
zs,2 zs,3 · · · zs,m

]
.

The operator Ks can then be found by recognizing that these matrices can be used to

reconstruct the optimization problem in 5.7 as

min
Ks

|Ys −KsXs|2, (5.8)

which has the convex solution

Ks = YsX
+
s , (5.9)

where + represents the Moore-Penrose Pseudoinverse. The modes (eigenvectors) of the fluid Φ and

their eigenvalues Λ are then calculated as the eigenvectors and eigenvalues of Ks

KsΦ = ΛΦ, (5.10)

where

Φ =

[
ϕ1 ϕ2 · · · ϕn

]
, (5.11)

Λ =

[
λ1 λ2 · · · λn

]
. (5.12)

By convention, the L2 norm of each component of Φ is unity, ||ϕi||2 = 1. The modes and

eigenvalues can be used to reconstruct the pressure field q timesteps after an initial data snapshot

zs,0 (taken at t=10) by

zs,q ≈ ΦΛqΦ−1zs,0 = ΦΛqα, (5.13)

where

α = Φ−1zs,0 =

[
α1 α2 · · · αn

]
(5.14)

is a vector of complex numbers defining the relative magnitude of the modes, as well as their

82

relative phases. The magnitude of α is roughly equivalent to the concept of ‘mode energy’ in Proper

Orthogonal Decomposition (POD), and in the case that most of the ‘energy’ is concentrated in a

small number of modes, the flow can be reconstructed with high accuracy using only those few modes.

Similarly, neglecting modes with small corresponding values of α causes only minimal reconstruction

error.

While this approach, often referred to as ‘exact DMD’, is applicable for the surface mea-

surements because N is small, applying this method on the field data would be computationally

intractable because of the size of Kf and the resulting complexity of calculating its eigenvalues. For

the field measurements, we use ‘Standard DMD’, which introduces a degree of truncation to greatly

increase the speed of the calculation. Shifted data matrices are first constructed similarly to eq.

5.3.2

Xf =

[
zf,1 zf,2 · · · zf,m−1

]
, Yf =

[
zf,2 zf,3 · · · zf,m

]
.

Instead of directly calculating Kf using the pseudoinverse, first the Singular Value Decom-

position (SVD) is computed

Xf = UΣV ∗, (5.15)

where U and V are the left and right singular matrices respectively, and Σ is a diagonal matrix

containing the singular values. To improve computation speed, Σ can be truncated starting with

its smallest singular values to a smaller r × r matrix Σt, and the corresponding rows and columns

of U and V can be removed, resulting in truncated matrices Ut and Vt, respectively. This allows

approximating the matrix Kf (in a reduced-dimensional space) as

Ã = U∗
t YfVtΣ

−1
t , (5.16)

and its eigenvalues and eigenvectors are computed as

ÃΨr = ΛfΨr. (5.17)

The eigenvectors in the reduced space can be projected back to the full space using the truncated

left singular matrix,

Ψ = UtΨr, (5.18)

83

(a) (b)

(c)

Figure 5.4: Field pressure modes (a) ψ1, (b) ψ3, and (c) ψ5 for b = 8.15 and d = 0.18. Due to the
phase of modes being arbitrary, the red and blue colors are interchangeable, and white signifies a
value of zero.

where this Ψ physically corresponds to modes of the fluid field

Ψ =

[
ψ1 ψ2 · · · ψr

]
. (5.19)

Using a known initial condition, it is again possible to reconstruct the flow field using these truncated

modes as

zf,q ≈ ΨΛq
fΨ

−1zf,0 = ΨΛqαf , (5.20)

where

αf = Ψ−1zf,0 =

[
αf,1 αf,2 · · · αf,r

]
, (5.21)

and zf,0 is a snapshot of the flow field at t=10. We sort the modes of αf such that they are labeled

in descending order of magnitude, αf,1 ≥ αf,1 . . . ≥ αf,r, and the components of Ψ and Λf are also

sorted to be in the same order as αf .

These modes correspond to physical features of the flow, which are illustrated in fig. 5.4.

84

1 2 3 4 5 6 7 8 9 10
Mode Number

0

25%

50%

75%

100%

 (
C

um
ul

at
iv

e)

Surface
Field

(a)

-1 0 1
-1

0

1

(b) (c)

Figure 5.5: (a) The cumulative value of α for the surface modes and αf for the field modes, showing
convergence to greater than 85% of the flow magnitude in the first 5 modes. Eigenvalues (b) Λ
and (c) Λf of the modes plotted in the complex plane, where the 5 corresponding to the highest
magnitudes of α are represented by red circles.

5.4 Estimation Approaches

Surface pressure data from simulations is stored in sets

T = {T 1, T 2, . . . , T 36}, (5.22)

V = {V 1, V 2, . . . , V 20}, (5.23)

E = {E1, E2, . . . , E38}, (5.24)

where T k is an array corresponding to the kth pair of training parameters, and T k
ij is the pressure

at the ith pressure sensor and jth time interval. The arrays V k and Ek correspond to the validation

and training (evaluation) data sets, respectively, and they also contain pressure values of the same

dimension and indexed in the same manner as T k. We define a sampling function S which acts on

these sets and returns a random window of 150 timesteps of continuous data from a random element,

as well as the parameters (b, d) at that element. For instance, S(T) = (T k
ij , b(k), d(k)) where k is

a random variable uniformly distributed over the set {1, 2, . . . , 36}, i is the range of integers where

1 ≤ i ≤ 10, and j is a range {j0, j0 +1, . . . , j0 +150} such that j0 is a uniformly distributed random

integer in the range t0 ≤ j0 ≤ tf − 150. The initial timestep is chosen as t0 = 400 to minimize the

amount of transient information in the sample, and the final time is selected as tf = 1000 to utilize

the entire simulation time.

85

The estimation problem considered here is to construct an estimator that predicts (b, d) as

(bp, dp) = Dθ(Fω(P)), (5.25)

(P, b, d) = S(T), (5.26)

where F is a function that extracts features from the time series, and D is a function that maps those

features to an estimate of (b, d). Both θ and ω are sets of parameters (referred to as ‘weights’) that

support those functions. The objective is to select the parameters θ and ω such that the expected

value of the mean squared error (L) in the estimation is minimized, or

min
θ,ω

Le where Le = E[(bp − b)2 + (dp − d)2)]. (5.27)

Below, four different architectures for the feature extractor F are introduced, two of which are

non-parametric (so ω = ∅). After optimizing the parameters for each, the overall estimation error

values are investigated to determine which feature extractor is most effective. To isolate the effect of

changing F , the architecture of D is kept the same for all feature extractors, though θ is re-optimized

for each F .

The function D is a DNN, selected due to their general utility in estimation problems. It

is fully connected and uses ‘ReLU’ activation, with sequential layers containing 200, 100, 100, 50,

and 50 nodes. The output layer has 2 nodes, representing estimates of b and d, and has a linear

activation function.

5.4.1 CNN-based estimation

For time series classification problems, neural-network based parametric approaches have

been found to be at the same level as the most advanced non-parametric algorithms [144]. The

best suited networks for this task are recurrent neural networks such as long short-term memory

(LSTM) networks, and Convolutional Neural Networks (CNNs), which extract features from time-

series data by repeatedly applying a single-dimensional kernel. We use a CNN as a benchmark

feature extractor, using the hyperparameters determined to be optimal for time series classification

in [148], a network architecture known as the ‘Time CNN’, which has been benchmarked against

other time series classification algorithms in [144]. Though we consider estimation problems instead

86

.

.

Figure 5.6: A schematic of the estimation methods. The top row illustrates the CNN-based esti-
mation approach. The next row down shows spectral image estimation approach. The second to
bottom row shows the mode-kernel estimation approach, and the bottom row shows the direct mode
estimation approach.

of classification, estimation can in a sense be viewed as a subset of parameter classification, as simply

averaging the classification probability distribution on different ‘bins’ of parameter values yields an

estimate. As a result, we expect a network architecture designed for classification to be effective at

estimation. In summary, the architecture requires two layers of alternating 1D convolutional neural

networks with sigmoid activation and average pooling operations. The filters have length 7, and

the pooling operations operate on groups of 3 values, reducing the dimension of the latent space by

roughly a factor of 3 with every application. No padding is used on the convolutional steps. The

single input time-series vector is split into 6 vectors using 6 separate filters at the first step, and

this is increased to 12 vectors for the second step. After the final pooling operation, the vectors

are concatenated into a single feature vector of length 168, which serves as the output of F . This

procedure is visualized in the top row of fig. 5.6.

5.4.2 Direct mode estimation

Though the CNN can extract features from dynamic data, it uses a black-box approach that

does not reveal any specific information about what dynamics it has identified. By contrast, the

highest magnitude Koopman modes of dynamic data also form a reduced basis of the flow dynamics,

which may also serve as features for further estimation. Further, a connection can be seen between

the local modes and the modes of the entire fluid field, as shown in fig. 5.7. Because the modes of the

larger flow field are clearly strongly affected by (b, d), this motivates the possibility that significant

87

(a) (b)

(c) (d)

(e) (f)

Figure 5.7: (a,c,e) Modes ϕ1, ϕ2, and ϕ3, respectively of the Koopman operator computed on the
10 surface pressure measurements, with circles indicating sensor locations. The coloring between
the points is determined by considering the same modes with 100 pressure sensors. (b,d,e) Modes
ψ1, ψ2, and ψ3 respectively of the Koopman operator of the entire flow field, interpolated onto the
hydrofoil surface.

information about (b, d) has been passed from the larger fluid modes to the modes on the surface.

If modes can be identified that exist consistently and with high magnitude throughout

the parameter space, it is possible to construct classifiers based on these modes directly. In the

present example, there are three modes that have consistently high magnitude and similar frequencies

(eigenvalues) throughout the parameter space. The information density of these nodes is shown in

fig. 5.5(a), where the first 5 modes (containing to three unique modes and two conjugates) of the

surface pressure data contain greater than 85% of the information needed to reconstruct the data.

The eigenvalues corresponding to those dominant modes are shown in red in 5.5(b). All of the

dominant modes are near the unit circle, indicating that their corresponding modes do not grow

or decay rapidly with time. The small number of surface pressure measurements used introduces

approximation error that causes slight deviations of the modes from the unit circle; the corresponding

dominant modes of the fluid, denoted as red points in 5.5(c), are much closer to the unit circle

because of the much higher number of spatial points used in the calculation. The eigenvalues of the

dominant surface and field modes have similar phases: one with a phase of zero, one with a phase

near 0.45 (corresponding to the vortex shedding frequency), and another with a phase near 0.90

(corresponding to the second harmonic of the vortex shedding).

Because the dominant three modes have been demonstrated to contain the majority of the

88

information needed to reconstruct the flow, they are selected as features of the data, to be input into

the DNN which performs the final estimation. However, to ensure performance, they must first be

standardized. This takes two forms: standardizing their order, and standardizing their phase. The

motivation for standardizing the order order is simple: if for one (b, d) pair the first mode input to

the DNN corresponds to the zero phase mode, but for an adjacent (b, d) pair the first mode input to

the DNN corresponds to the second harmonic, the large difference between those mode shapes due

to their representing different physical phenomena conceals the subtle changes in the mode shapes

that would be useful in estimating (b, d). More formally, we label modes such that for a mode ϕ1
1

with parameters (b, d) and ϕ2
1 with parameters (b+ ϵ1, d+ ϵ2), for small values of (ϵ1, ϵ2) we expect

< ϕ1
1,ϕ

2
1 >≈ 1, and their corresponding eigenvalues λ1

1

λ2
1
≈ 1 + 0j.

The modes are sorted by first neglecting the complex conjugates, which is done by removing

from Φ, Λ, and α all entries with indices i that satisfy ℑ(λi) < 0. Modes are then labeled using the

procedure

ϕ1 = ϕi where argmax
i

(|αi|) s.t. ∠λi = 0,

ϕ2 = ϕi where argmax
i

(|αi|) s.t. 0 < ∠λi ≤ 0.6,

ϕ3 = ϕi where argmax
i

(|αi|) s.t. 0.6 < ∠λi ≤ 1.2.

The values of λ1, λ2, and λ3 are labeled by the same procedure.

The second inconsistency between the modes that must be standardised is their phases. This

is a result of the properties of eigenvectors: an eigenvector scaled by any arbitrary complex number

remains an eigenvector. As the modes are eigenvectors, the phase of any individual element of the

mode vector is arbitrary, though the relative phases of different elements is not. For simplicity, we

discard the phase information and use only the magnitude of the mode elements in the estimation.

The feature information is concatenated into a vector

Z =

[
|ϕ1| |ϕ2| |ϕ3| |λ1| |λ2| |λ3| ∠λ1 ∠λ2 ∠λ3

]
(5.28)

where |ϕ| denotes the elementwise magnitude of ϕ, and as a result each element is a real scalar. The

vector Z of length 36 is then the output of the feature extractor function F .

89

5.4.3 Mode-kernel estimation

Because modes can be interpreted as features of the system that contain a condensed rep-

resentation of the system dynamics, it is likely that on top of parametric approaches (like DNNs),

non-parametric algorithms which compare the test data directly with the stored training data may

also be applicable. Many such algorithms exist, but here we attempt a kernel-based approach. For

each parameter pair k in the training dataset, sorted benchmark modes [ϕ1 ϕ2 ϕ3]|k are identi-

fied using the procedure for exact DMD and the sorting from section 5.4.2, except using the entire

simulation data T k instead of a sample of T k. These modes are stored in a library Ω such that

Ωk = [ϕ1 ϕ2 ϕ3]|k
The estimation procedure works by estimating the similarity of the modes ϕ1,ϕ2,ϕ3 from

the sample S(T) with the dictionary of benchmark modes using a kernel function. In this case the

kernel function is the inner product, so the similarity between modes is defined as βik =< ϕi, (Ωk)i >,

where a value near 1 indicates a high similarity. This similarity can be used to estimate (b, d) through

simple algorithms, for example the K-nearest neighbors algorithm. However, because of the proven

superior performance of parametric approaches to time series [144] over non-parametric algorithms,

as well as keeping consistency with the other approaches, we instead flatten β into a feature vector

of length 108 to be output from F into D.

5.4.4 Spectral image estimation

While in this case it is simple to order the modes to perform a direct estimation as was

done in both 5.4.2 and in 5.4.3, that may not be the case for more complex fluid flows where more

dominant modes are present, or for larger ranges of the estimation parameters where the modes

change enough throughout the range to be not easily recognisable. The need for a human to derive

the heuristics used to sort the modes for a given flow is also an obstacle to using this approach on an

autonomous vehicle. Here we present a method extract information from Ks without any heuristics

or requirement to sort the modes. We first extract the spectra U of the operator, where

Ks = UKΣKV
∗
K (5.29)

is the singular value decomposition of Ks. The matrix UK is then passed into a two-dimensional

CNN. Because two-dimensional CNNs are most often used for image classification, this can be

90

interpreted as treating UK as an image. For consistency, the hyperparameters of this network are

chosen to be similar to those in section 5.4.1: the convolutional steps have a filter size of 7, and

max pooling is performed with a pool size of 3. However, because the operations are performed

on an input array of size 10 × 10 instead of a vector of size 150, zero padding is required to allow

applying two layers of convolution without the input becoming smaller than the filter. For the same

reason, only one pooling operation is applied, located after both of the convolutional layers. After

the pooling operation, the result is flattened into a feature vector also of length 108, which is then

output from F .

5.4.5 Training

Each of the four estimation approaches are trained separately, with unique weights for each.

In addition, because of the risk of weight optimization finding local minima with different final loss

values, a batch of 10 estimators is trained for each of the estimation approaches, with the training

process of each individual estimator termed a ‘run’. In total, 40 weight optimizations are performed.

Before training, a training dataset is constructed by evaluating many realizations of the

sampling function,

(Pi, bi,di) = S(T) ∀ i ∈ {1, 2, . . . , 3600}. (5.30)

Validation and testing datasets are constructed in a similar manner on V and E , respectively, with

the validation dataset constructed of 400 realizations of S(V) and the testing dataset constructed

of 760 realizations of S(E). The training and validation datasets are recomputed for every run, but

the testing dataset is only calculated once for consistency. The predicted values are given by

(bp,i,dp,i) = Dθ(Fω(P)), (5.31)

(5.32)

where (bp,dp) represent vectors of predicted values of (b, d). The weights are updated such that

min
θ,ω

L where L =

if∑
i=i0

(
(bp,i − bi)

2 + (dp,i − di)
2
)
, (5.33)

which minimizes the error between predicted and actual values of (b, d) in a mean-squares sense.

91

Instead of performing this summation over the entire set at once, it is efficient to iteratively perform

the summation over smaller batches. Here, we chose a batch size of if − i0 = 50. This batch-based

optimization allows the use of the adam algorithm, which calculates the parameter updates at every

step using a combination of the gradient of the current batch and the ‘momentum’ from gradients

calculated on past batches. After the entire dataset has been iterated over (known collectively as

an ‘epoch’), an early-stopping criterion is checked, and either the training stops or continues with a

new set of batches.

The early-stopping algorithm used was first introduced in [149]. After every epoch, the loss

on the validation dataset Lv is calculated. If Lv < Lmin,i, where Lmin,i is the lowest validation

error encountered so far in run i, then Lmin,i := Lv and the weights σmin,i = (θ, ω) are saved before

continuing. However, if at any epoch Lv > 1.3Lmin,i and at least 200 epochs have passed, it is

assessed that the network is overtrained and the training run is terminated. The representative

weights of the estimation approach, σopt, are then defined as

σopt = σmin,iopt (5.34)

iopt = argmin
i

Lmin,i, (5.35)

which selects the weights form the run with the lowest loss.

5.5 Results

The loss values during training on the validation data for the estimation approaches are

shown in fig. 5.8. The mode-kernel estimation approach has the highest average loss after epoch 50,

though the lowest mode-kernel estimation approach loss is still lower than the average loss for all of

the other three estimation approaches at the end of training, indicating that the overall difference

between the estimation approaches is small. The other three estimation approaches have very similar

average losses by the end of their training. However, the direct mode estimation approach has the

run with the lowest loss by a small margin.

The optimal weights σopt can be evaluated on the testing data to compare the best estimated

values of (b, d) for each approach with the true values. These predicted and real values are shown in

fig. 5.9. The number of unique (b, d) pairs in the testing data (38) is much less than the number of

92

0 50 100 150 200 250
Epoch

-2

-1

0

1

lo
g(

L)

Direct mode estimation
CNN-based estimation
Mode-kernel estimation
Spectral image estimation

(b)

Figure 5.8: Training curve for the four estimation methods. The shaded region represents the range
of loss values on the validation data for the 10 networks trained for each method, and the solid lines
reflect the average. The mode-kernel estimation approach consistently performs poorly, and other
three methods have roughly equal average loss, with the direct mode estimation approach having
the lowest minimum loss.

93

samples evaluated (760), leading to many different estimations of the true value distributed along

a vertical line. The CNN-based estimation and spectral image estimation approaches are imprecise

in their estimates of d, with a large range of predicted values arising from different samples of

data associated with the same true value. By contrast, the mode and kernel-based approaches are

precise, with different samples from the same simulation giving similar outputs. This is consistent

with the theoretical motivation of the Koopman operator; a given system has exactly one Koopman

operator K that maps its dynamics forward by a specific length of time, which is valid both during

the transient period and during steady state. The estimated operator Ks does in practice change

slightly depending on which window of data is selected, but is generally much more consistent than

the time series itself. The spectral image estimation approach may be inconsistent because the

SVD is not unique. We make it unique (to within a sign) by constraining the diagonal of ΣK do

be decreasing from the left to the right. However, this presents a problem for the use of UK for

estimation: very small changes in Ks can result in a reordering of ΣK , which in turn results in a

reordering of Uk. This reordering is likely responsible for the large range of estimates for d.

More quantitatively, differences between the estimation methods can be investigated by

considering the loss on the testing dataset. The CNN-based estimation has the highest loss value of

0.0393, followed by the spectral image estimation at 0.0343, the direct mode estimation at 0.0340, and

the mode-kernel estimation at 0.0325. The relative accuracy of the estimation methods is inconsistent

with that calculated on the validation data; this inconsistency could indicate that different estimation

approaches are suited to different regions of the parameter space, which is sampled differently by the

testing and validation data due to the random location of samples. This may be particularly true

for the kernel method, which may have difficulty with testing (b, d) values that are far from those in

the training dataset.

5.6 Conclusion

We have shown that the Koopman operator can extract features amenable for estimation

from a dynamic system as effectively as a state-of-the-art black-box convolutional neural network fea-

ture extractor. Multiple approaches to extract features from the Koopman operator are considered,

and and both directly inputting the modes to a DNN and inputting the spectrum of the operator

into a CNN were found to be as effective as applying a CNN to the time-series data itself. This

94

motivates the use of dynamic mode decomposition in the classification and estimation of parameters

for multivariate time series which are generated by dynamic systems. Future work can consider in

more depth the relationship between the measurable (surface) modes and the broader modes of the

fluid.

95

4 5 6 7 8 9
b (Actual)

4

5

6

7

8

9

b
(E

st
im

at
ed

)

(a)

0 0.2 0.4 0.6 0.8 1.0
d (Actual)

0
0.2
0.4
0.6
0.8
1.0

d
(E

st
im

at
ed

)

(b)

4 5 6 7 8 9
b (Actual)

4

5

6

7

8

9

b
(E

st
im

at
ed

)

(c)

0 0.2 0.4 0.6 0.8 1.0
d (Actual)

0
0.2
0.4
0.6
0.8
1.0

d
(E

st
im

at
ed

)

(d)

4 5 6 7 8 9
b (Actual)

4

5

6

7

8

9

b
(E

st
im

at
ed

)

(e)

0 0.2 0.4 0.6 0.8 1.0
d (Actual)

0

0.2

0.4

0.6

0.8

1.0

d
(E

st
im

at
ed

)

(f)

4 5 6 7 8 9
b (Actual)

4
5
6
7
8
9

b
(E

st
im

at
ed

)

(g)

0 0.2 0.4 0.6 0.8 1.0
d (Actual)

0
0.2
0.4
0.6
0.8
1.0

d
(E

st
im

at
ed

)

(h)

Figure 5.9: Predicted vs. real values of (a,c,e,g) b and (b,d,f,h) d using (a,b) the CNN-based
estimation approach, (c,d) the direct mode estimation approach, (e,f) the mode-kernel estimation
approach, and (g,h) the spectral image estimation approach. The colors of the dots correspond to
the actual value of the other unknown parameter: in the plots for b, blue represents 0 ≤ d ≤ 0.2,
orange represents 0.2 < d ≤ 0.4, green represents 0.4 < d ≤ 0.6, red represents 0.6 < d ≤ 0.8, and
purple represents 0.8 < d ≤ 1.0. For the plots estimating d, blue represents 4 ≤ b ≤ 5, orange
represents 5 < b ≤ 6, green represents 6 < b ≤ 7, red represents 7 < b ≤ 8, and purple represents
8 < b ≤ 9.

96

Chapter 6

Flow Field Reconstruction from

Surface Measurements in

Fluid-Structure Interaction

This chapter has been largely adapted from a paper (in review at the time of writing)

C. Rodwell, K. Sourav, and P. Tallapragada, “Feel the force: From local surface pressure

measurement to flow reconstruction in fluid-structure interaction,” Submitted, 2023.

6.1 Introduction

A body or structure immersed in a fluid flow is subject to hydrodynamic forces due to fluid-

structure interaction. Different flow patterns in general lead to different pressure distributions on the

surface of the body, and it is natural to ask if the fluid flow can be inferred solely based on pressure

or velocity measurements on the surface of the immersed body. Many marine animals seemingly

have an ability to at least sense and localize disturbances, if not generate detailed understanding flow

patterns based on non-visual information such as pressure measurements. A well known example of

such ability is the schooling of fish [177,178] which requires real-time understanding of the positions

and directions of neighboring fish, and can be performed by blind fish using only the “lateral line”,

97

a sophisticated line of biological pressure and velocity sensors located along the sides of many

fish [116,179]. Inspired by this, much research has been focused on developing “artificial lateral lines,”

which mimic biological lateral lines using artificial sensors. Some efforts using artificial lateral lines

have succeeded in determining specific parameters of the flow, such as the location and movements of

sources and dipoles, using analytical approaches by assuming potential flow [17,18] and by employing

learning-based methods [19, 150]. In other related work; black-box neural networks have been used

to classify and predict wake features using the fluid velocity field around oscillating foils in [20, 21]

and variational autoencoders have been used to reconstruct flows using velocity measurements in

the flow domain [180]. Shallow neural networks have also been used to reconstruct flows from

sensor measurements on the surface of a body for scenarios such as flow past a cylinder such as

in [181]. Neural networks have also been used to predict or classify wake features such as the

Strouhal number of a wake based on solely on the kinematics of a trailing body immersed in the

wake in [143, 182]. Physics-informed neural networks, have also been used to solve the inverse

problem of finding the pressure distribution on a body given sparse measurements of the velocity

field of the fluid surrounding the body in [183]. However, designing a more general framework for

understanding the ambient flow dynamics based solely on surface measurements remains an open

problem largely due to the high dimension and unsteady nature of the fluid flow.

The question addressed in this paper then is, “can the flow field around the body be recon-

structed knowing only pressure measurements at a few points on a body immersed in the fluid?"

We show that this can be done by a combination of dynamical systems tools and machine learning.

Instead of directly reconstructing a flow field using black-box machine learning, we first show that

the modal decomposition of a sparsely sampled pressure field on the surface of the body can be

correlated to the modes of the fluid flow field via supervised learning by shallow neural networks.

The full flow field can then be reconstructed using the identified modes. The technique used for

the modal decomposition is Dynamic Mode Decomposition (DMD). We demonstrate this using two

fluid-structure interaction examples, where pressure measurements on a trailing body in the wake

of leading body are used to reconstruct the flow in a domain with a length scale that is many times

bigger than the body length.

Dynamic Mode Decomposition (DMD) [184, 185] offers an approach to approximate an

unsteady flow by modeling it as a superposition of linear modes. Because many of these modes

are often insignificant to the dynamics, only a few modes can typically reconstruct the evolution

98

of the flow with high fidelity, allowing a reduction in the temporal dimension. These modes often

have physical meaning, which makes DMD a useful tool for extracting and elucidating dominant flow

structures and associated dynamics [184–186]. This low dimensionality and practical usefulness raise

the possibility that estimating the DMD modes of the surrounding fluid based on surface pressure

measurements may be both tractable and useful.

A procedure for determining the DMD modes around a body based on surface pressures

was first presented in [172], where the fluid modes at an unknown Reynolds number were selected

from a dictionary of known modes (calculated for a range of Reynolds numbers) based on which

modes could most accurately explain the surface measurements. A different approach was considered

in [173], where the modes of the flow were known, and the correct superposition of those modes to

explain the flow at a given time was selected from surface pressure measurements using a filtering

approach. In this work, we instead take a parametric approach that requires no dictionary of modes

to operate. This is done by training a neural network that estimates the dominant DMD modes of

the flow pressure and velocity, using the DMD modes calculated only using pressure measurements

on the surface as input. The idea of using a neural network with DMD modes to reconstruct the

fluid field has been explored very recently in [187, 188]; however, these works use autoencoders to

map the velocity of the entire fluid field data to a latent space, perform DMD in the latent space,

and map the results back to the same velocity field. By contrast, in this paper DMD is performed on

the surface pressure or the field velocity and pressure directly, and the mapping is from the surface

DMD modes to the DMD modes of the fluid velocity field.

While the primary motivation for the problem investigated is related to sensing by fish-like

underwater robots, other engineering applications are possible. Fluid-structure interaction such as in

vortex induced oscillations [189], wake-induced vibrations (WIV) and forced oscillations in tandem

cylinder arrangements, see for example [190–193] is of critical relevance to structural integrity in

aircraft design, ship design, submersible vehicles, offshore structures and heat exchangers, see for

example [194–198]. The increasing ubiquity of sensors and computing opens up possibilities for near

real time sensing, estimation and control of local flow and structural response. This will require a

framework of estimating flow field from onboard structures immersed in the flow.

The remainder of this paper is structured as follows: After the Introduction, Section II

delves into the problem setup for wake-induced vibration (WIV) and forced oscillations, elaborating

on the governing equations for both fluid dynamics and structural motion. This section also outlines

99

the computational mesh details and studies on mesh independence and validation. Section III

reviews the Dynamic Mode Decomposition (DMD) and discusses its relevance in the context of the

flow reconstruction. Section IV describes the proposed method employed for flow reconstruction.

Section V presents the results concerning the application of DMD and flow reconstruction on both

WIV and forced oscillation systems. Finally, Section VI summarizes the key findings of this research

in the Conclusions.

6.2 Numerical Simulation of Fluid-Structure Interaction

We consider two examples of fluid-structure interaction. In the first example a circular

cylinder mounted on a spring-damper system is free to oscillate laterally in the wake of a stationary

square prism. In the second example, two circular cylinders are forced to oscillate out of phase with

varying amplitudes, aiming to increase flow complexity. A description of the numerical simulation

of the two problems follows.

6.2.1 Fluid-Structure interaction simulations setup

Figure 6.1 illustrates the computational domain setup for the first problem with a down-

stream circular cylinder placed in the wake created by an upstream square prism. While the circular

cylinder is restricted to cross-flow oscillations, the square prism remains stationary. Both bodies

have the same characteristic length, ‘D,’ which equates to the prism’s side length and the circular

cylinder’s diameter. Their center-to-center gap is denoted by the gap ratio (S/D) and is fixed at a

value of 5, which is above the critical value suggested in a number of studies [199–202]. All simu-

lations take place within a two-dimensional space and maintain a constant Reynolds number (Re)

of 100. The downstream cylinder operates as a one-degree-of-freedom (1-DOF) mass-damper-spring

system with a specified mass ratio (m∗) of 10.0 and a damping ratio (ζ) of 0.2. By keeping both

Re and cylinder diameter consistent, the reduced velocity, U∗ = U
fnD

(with fn being the natural

frequency of the oscillating circular cylinder) is varied across simulations from 1 to 15 by modulating

the oscillator’s natural frequency.

The computational fluid domain, shown in Figure 6.1, spans a 60D× 30D rectangular area,

utilizing a rectangular coordinate system with the origin set at the center of the upstream body. This

domain is flanked symmetrically on the top and bottom by boundaries spaced 30D apart, resulting

100

20 D 40 D

3
0

D

D

y

x

D5

u
n

if
o
rm

 f
lo

w
 i

n
le

t
free−slip lateral walls

free−slip lateral walls

st
re

ss
−

fr
ee

 o
u

tl
et

no−slip

k c

Figure 6.1: Schematic representation of the system setup for the study of wake-induced transverse
oscillations of a circular cylinder, positioned 5D downstream of a stationary square cylinder. Both
cylinders have a cross-stream length, ‘D.’ The circular cylinder is attached to a linear spring and
damper system.

in a blockage ratio (B) of 3.33%. The distance between the lateral boundaries has little impact on

the flow field around the cylinders if the blockage ratio is less than 5%, as established by [203–210].

Regardless of changes in cylinder positions or flow attributes, the fluid domain’s upstream and

downstream limits remain constant in all simulations at 20D and 40D from the origin, respectively.

The cylinders’ surfaces observe a no-slip condition, ensuring no relative motion between the fluid

and the cylinder. The free-stream velocity at the upstream boundary is characterized by u = U and

v = 0. The downstream boundary enforces a zero gradient for flow velocities, facilitating the smooth

exit of the fluid. The top and bottom boundaries employ a slip wall condition, defined by ∂u
∂y = 0

and v = 0, mimicking a shear-free environment and mitigating interference with the flow dynamics.

Figure 6.2 is a schematic of the computational domain tailored for the study of forced

transverse oscillations of two tandem circular cylinders. Located at the geometric center of the

upstream circular cylinder, the Cartesian coordinate system’s origin serves as a reference. The

cylinders, separated by a distance of 2.5D (yielding S/D = 2.5), undergo anti-phase oscillations, a

setup crafted to accentuate the intricacies of the flow. The oscillation amplitude A is systematically

adjusted from 0.1 to 1.0 in increments of 0.1 while maintaining a consistent oscillation frequency

for both cylinders at 1.04 rad/s. As the dimensions and boundary conditions of this computational

domain mirror those of the free oscillations problem, further elaboration is omitted for conciseness.

For the sake of conciseness, discussions related to independence studies, mesh details, and validation

101

will be presented exclusively for the first problem henceforth.

20 D 40 D

3
0

D

D

2.5 D

y

x

no−slip

u
n

if
o
rm

 f
lo

w
 i

n
le

t

st
re

ss
−

fr
ee

 o
u

tl
et

free−slip lateral walls

free−slip lateral walls

Figure 6.2: Schematic representation of the system setup for the study of forced transverse anti-
phase oscillations of tandem circular cylinders, separated by a distance of 2.5D. Both cylinders have
a cross-stream length ‘D’. The origin of the Cartesian coordinate system aligns with the geometric
center of the upstream circular cylinder.

6.2.2 Governing Equations and Solution Methodology

The computational analyses leveraged two-dimensional direct numerical simulations per-

formed using the open-source computational fluid dynamics (CFD) platform, OpenFOAM, accessi-

ble at www.openfoam.org. OpenFOAM utilizes the finite volume method for discretizing continuum

mechanics problems, including the unsteady Navier-Stokes equations (6.1) and (6.2). These were

discretized in conjunction with the Pressure Implicit with Splitting of Operators (PISO) algorithm.

A fourth-order cubic interpolation scheme ensured high accuracy for spatial derivatives by discretiz-

ing the convective term in the equations. On the other hand, the diffusion term was discretized using

a second-order linear scheme. The derivative term’s temporal discretization was achieved through

a blended scheme combining the second-order Crank-Nicolson scheme and the first-order Euler im-

plicit scheme, providing a high degree of accuracy in temporal resolution while ensuring numerical

stability.

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u, (6.1)

∇ · u = 0. (6.2)

102

www.openfoam.org

The hydrodynamic forces acting on the cylinder surface are derived directly from solving the Navier-

Stokes equations, subsequently triggering the vibrational response of the circular cylinder. The

governing equation for the cylinder’s cross-flow oscillations can be expressed as

mÿ + cẏ + ky = fL. (6.3)

Here, m represents the mass of the circular cylinder, and ÿ, ẏ, and y respectively denote the cylinder’s

transverse acceleration, velocity, and displacement. The system damping is designated by c; the

spring stiffness is represented by k, and fL corresponds to the unsteady lift force. This equation

integrates the fluid dynamics with the structural dynamics, thereby providing a comprehensive model

for the study of the cylinder’s oscillatory behavior within the fluid flow.

The simulations were carried out in an iterative manner, alternating between solving for

the fluid field and the structural response at each time step. Initially, the velocity and pressure

distributions in the fluid domain were determined, followed by the computation of the drag and

lift forces through the integration of the pressure and shear stress on the cylinder surface. The

calculated hydrodynamic force was then substituted into Equation 6.3, leading to the computation

of the cylinder’s transverse displacement (y) using an enhanced fourth-order Runge-Kutta method.

This displacement information subsequently dictated updating the computational grids, thereby

establishing a new mesh for the fluid field calculation in the following time step. This iterative

process continued until the system’s dynamic behavior reached stabilization and a sufficient number

of cyclical results were accumulated. The selected time steps, denoted by ∆t, for each case adhered

to the Courant-Friedrichs-Lewy (CFL) condition, maintaining a number below 0.85 across the entire

computational domain to ensure numerical stability and the accuracy of simulation results. Note

that for the free oscillations scenario, both the fluid-flow equations (Equations 1 and 2) and the

structural motion equation (Equation 3) are tackled. In contrast, the forced oscillation problem

exclusively focuses on resolving the fluid-flow equations because the displacements of both cylinders

are prescribed.

6.2.3 Mesh Details

As depicted in Figure 6.1, the rectangular computational fluid domain is discretized using

an unstructured finite volume mesh composed of 32,434 nodes. Spatial variation in mesh density is

103

(a)

(b) (c)

Figure 6.3: (a) The unstructured finite volume mesh in the computational fluid domain of size 60D
× 30D. The mesh near the cylinders and the wake region is structured. (b, c) Zoomed-in view of
the structured mesh near the square and circular cylinders.

employed, with higher density in regions proximal to the cylinders and coarser density towards the

domain boundaries, as shown in Figure 6.3(a). Detailed views of this meshing near the upstream

and downstream cylinders are shown in Figures 6.3(b) and 6.3(c), respectively, where 80 grid points

define each cylinder. The cylinders are encapsulated within their respective square blocks of dimen-

sions 1.5D× 1.5D to minimize projection error during oscillations. Structured, non-uniform meshes

discretize the regions between each cylinder and its enclosing square block. The initial grid line

from the cylinder surface is set at a distance of 0.005D and extends geometrically towards the block

boundaries with a progression ratio of 1.05, leading to a line segment between the cylinder and the

block consisting of 44 grid points. During oscillations, the square block moves concurrently with the

104

cylinder, preserving the internal mesh structure, while the surrounding mesh deforms in response to

the transverse motion of the cylinder. To capture the wake dynamics effectively, an additional finely

meshed rectangular region, characterized by dimensions 13D× 4D, is established in the wake of the

downstream cylinder.

6.2.4 Mesh Convergence and Validation

Mesh convergence tests are crucial in computational studies to ensure that the results are

sufficiently independent of the mesh resolution. In this study, three different mesh densities, namely

M1 (fine), M2 (medium), and M3 (coarse), were utilized. These meshes were evaluated at flow

conditions defined by a Reynolds number (Re) of 100 and a reduced velocity (U∗) of 9.

Table 6.1 presents a comparative analysis of characteristic flow and vibration metrics across

the three mesh densities. A close evaluation reveals distinct differences between the results from the

fine mesh, M1, and those from the medium (M2) and coarse (M3) meshes. Notably, the outcomes

from M2 and M3 align closely, demonstrating high consistency. This level of agreement, coupled

with the limited deviation between these meshes, underscores the capability of the medium mesh,

M2, to strike an optimal balance between computational efficiency and accuracy. As a result, M2

was selected as the preferred mesh for all subsequent computations.

Mesh Nodes Ymax/D Clrms Cdavg Fy FCl

M1 56,814 0.5988 0.6637 0.7037 0.1136 0.1136
M2 32,434 0.5936 0.6752 0.7122 0.1152 0.1152
M3 20,657 0.5346 0.7303 0.7773 0.1237 0.1237

Table 6.1: Comparison of characteristic flow and vibration quantities for three different mesh densi-
ties. The data presented is for a vibrating circular cylinder (with a mass ratio m∗ = 10) that is free
to oscillate in the wake of a stationary square cylinder exposed to uniform flow conditions at Re =
100 and U∗ = 9.

The transverse oscillation response of a circular cylinder, normalized as Ymax/D, oscillating

in the wake of a stationary square cylinder is depicted in Figure 6.4(a). This response is juxtaposed

with the findings presented by [204]. The simulations were executed at a Reynolds number (Re)

of 100, with the reduced velocity (U∗) spanning a range from 2 to 15. The vibrating downstream

circular cylinder maintains a mass ratio (m∗) of 1 and a damping ratio (ζ) of 0.01 for the system. A

close examination reveals a commendable concordance between the computed data and the results

from [204]. Therefore, our projected response data for wake-induced vibrations of a circular cylinder

105

aligns satisfactorily with the findings of [204].

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 15 2 4 6 8 10 12 14

Y
m

a
x
/D

U
*

present
Zhu et al.(2019)

m* = 1.0, 0.01ζ =

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

 1 3 5 7 9 11 13 15

Y
m

a
x
/D

U
*

(b)

Figure 6.4: (a) Validation of the numerical model for wake-induced vibrations of a circular cylinder
situated in the wake of a stationary square cylinder separated by a distance of 5D. The normalized
maximum oscillation amplitude (Ymax/D) of the downstream circular cylinder (m∗ = 1) is compared
with that reported by [204]. (b) Wake-induced vibrations of a circular cylinder of m∗ = 10 at Re =
100 and ζ = 0.2: maximum transverse oscillation amplitude (Ymax) normalized with D at S/D = 5.

6.2.5 Simulation Results

Figure 6.5(a) shows the pressure field derived from the free oscillation simulation. A low-

pressure oscillating wake is located behind the square body, which is then advected past the circular

cylinder. This results in periodic forcing on the surface of the cylinder, visualized in Figure 6.5(b).

Once advected past the cylinder, the wake assembles into an organized vortex street.

(a)

100 150 200 250 300
t

-0.6

-0.4

-0.2

0

0.2

S

(b)

Figure 6.5: (a) The pressure field for U∗ = 8 at time t = 300, which has settled into periodic vortex
shedding. (b) The pressure at 5 evenly spaced points around the cylinder for U∗ = 8.

106

6.3 Dynamic Mode Decomposition

6.3.1 Koopman Operator

The Koopman operator calculation here is identical to that done in section 5.3.1, with the

exception that we consider two different sets of observable functions. One maps the observations

to themselves: F = hf (z) = z. The resulting state vector F contains the fluid pressure, vertical

velocity, and horizontal velocity at every vertex of the simulation mesh. The second observable

function S = hs(z) ⊆ z also contains unlifted states at mesh vertices, but only on the vertices

that lie on the surface of B, and only contains pressure measurements. In both the free and forced

oscillation cases, B is defined as the downstream cylinder. The values of S can then be physically

interpreted as measurements from pressure sensors on the surface of the body, which would be

feasible to obtain in practical applications, whereas the field values F are likely not possible to

construct outside of a controlled laboratory setting. DMD is always performed on a subset of g(z),

and though S is a much narrower subset than F , modes calculated on either subset are valid DMD

modes of the fluid system. This motivates the possibility that the more accessible surface modes

may contain information about the broader fluid system that could be useful for flow reconstruction.

6.3.2 Numerical DMD

In this section, we describe our approach to approximate the eigenvalues and eigenvectors of

K on S and F from specific windows of time within the simulations. These windows contain m ∈ N

snapshots, starting from snapshot b ∈ N, and the window is not allowed to continue past the available

data (m+b ≤M). The windows of data are taken from a specific simulation, defined by both its type

w ∈ {1, 2} (1 denoting the free oscillations and 2 denoting the prescribed oscillations), and its specific

simulation parameters d, with d = U∗ ∈ {1, 2, . . . , 15} for w = 1 or d = A ∈ {0.1, 0.2, . . . , 1.0} for

w = 2. Let the set C define the set of unique tuples (m, b, w, d) that it is possible to construct under

the given constraints. Here we demonstrate the DMD approach for an arbitrary c ∈ C. Because all

of the quantities defined beyond this point, such as the data windows, operators, and modes, depend

on c, we drop this dependence from our notation for conciseness.

The observations from the simulation can be constructed into time-shifted surface data

arrays X ∈ Rks×(m−1) and X̄ ∈ Rks×(m−1), as well as field data arrays and Y ∈ Rkf×(m−1) and

Ȳ ∈ Rks×(m−1) (where k denotes the number of meshpoints and the subscripts s and f generally

107

refer to quantities calculated for the surface data and broader field data, respectively), as

X =

[
Sb Sb+1 · · · Sb+m−1

]
(6.4)

X̄ =

[
Sb+1 Sb+2 · · · Sb+m

]
(6.5)

Y =

[
Fb Fb+1 · · · Fb+m−1

]
(6.6)

Ȳ =

[
Fb+1 Fb+2 · · · Fb+m

]
. (6.7)

The operator on the surface measurements Ks ∈ Rks×ks and the operator of the field

measurements Kf ∈ Rkf×kf can then be found by recognizing that these matrices can be used to

reconstruct the optimization problem in eq. 5.7 as

Ks = argmin
A

∥X̄ −AX∥F (6.8)

Kf = argmin
A

∥Ȳ −AY ∥F , (6.9)

where ∥·∥F denotes the Frobenius norm. The operators resulting from this optimization map the data

snapshots forward in time with minimal error in a least-squares sense, for instance: Sn+1 ≈ KsSn

and Fi+n ≈ KfFn. If m − 1 ≤ kf , in other words, the data matrices have at least as many rows

as they have columns (as is the case here), then the forward prediction has only roundoff error.

Our objective is to calculate the eigenvalues and eigenvectors of the K matrices. However, K can

be large, and calculating the eigendecomposition of a large matrix is computationally challenging.

For instance, the free oscillation case has 32,434 mesh vertices, each with three states, so Kf has

k2f = 9.47×109 parameters, which is a challenge to store in random-access memory on most modern

computers, and even more challenging to perform computations on. On the fluid field data, this

challenge is avoided by first calculating the singular value decomposition (SVD),

Y = UΣV T , (6.10)

where T denotes the transpose, U ∈ Rkf×kf and V ∈ R(m−1)×(m−1) are unitary matrices and

Σ ∈ Rkf×(m−1) is a diagonal matrix containing singular values, by convention sorted in descending

108

order from the top left. These matrices can be truncated to improve the computational efficiency of

the following steps. Truncating the matrices such that only the r largest singular values are retained

can dramatically reduce the scale of the eigendecomposition with minimal loss of accuracy. Assuming

r ≤ max(k,m − 1), the truncated matrices are denoted Σ̃ ∈ Rr×r, Ũ ∈ Rkf×r and Ṽ ∈ R(m−1)×r.

Using the truncated SVD, matrix Kf can then be approximated as K̃f ∈ Rr×r as

K̃f = ŨT Ȳ Ṽ Σ̃−1, (6.11)

and its eigenvalues and eigenvectors can be computed as

K̃fΨl = ΛfΨl, (6.12)

where Λf ∈ Cr×r is a diagonal matrix containing the complex eigenvalues

diag(Λf) =

[
λf,1 λf,2 · · · λf,r

]
∈ Cr (6.13)

and the columns of Ψl ∈ Cr×r contain the eigenvectors in the reduced space, which have little

physical meaning at this stage. These eigenvectors can be projected back to the full space using the

left singular matrix,

Ψ = ŨΨl, (6.14)

where the columns of Ψ ∈ Ckf×r physically correspond to modes of the fluid field

Ψ =

[
ψ1 ψ2 · · · ψp

]
. (6.15)

Using these modes, it is possible to reconstruct and extrapolate the input data as

Fb+q = ΨΛq
fαf , (6.16)

where q ∈ Z and αf = Ψ−1Fb ∈ Cr is a vector of complex numbers

αf =

[
αf,1 αf,2 · · · αf,r

]
∈ Cr, (6.17)

109

where αf,j contains the magnitude of mode ψj at the initial flow snapshot Fb, and its phase encodes

the phase of the mode at the same snapshot. For this reason, we refer to |αf,j | (where | · | denotes

the complex magnitude) as the magnitude of mode j, and to ∠αf,j (where ∠· denotes the complex

phase) as the phase of mode j. We will later show that the steady-state flow is often dominated by

a small number of high-magnitude modes, which we can exploit to simplify the flow field estimation.

The number of simulated pressure sensors on the surface is much less than the total number

of simulation nodes in the fluid, and only one state (pressure) is measured at each of those surface

points (as opposed to both pressure and velocity in the field), which results in ks << kf . As a

result, there is no need to compute the eigendecomposition in a reduced space, and Ks can be

directly calculated without truncation as

Ks = X̄X+, (6.18)

where + represents the Moore-Penrose Pseudoinverse. This variation of DMD is known as ‘Exact

DMD’ [211], and is equivalent to the SVD-based method without truncation. The eigendecomposi-

tion

KsΦ = ΛsΦ, (6.19)

reveals the fluid eigenvectors Φ ∈ Cks×ks and the eigenvector matrix Λs ∈ Cks×ks , which are

composed of individual modes and eigenvectors as

Φ =

[
ϕ1 ϕ2 · · · ϕks

]
(6.20)

diag(Λs) =

[
λs,1 λs,2 · · · λs,ks

]
. (6.21)

Much like the broader flow field, the surface pressure field can be reconstructed by a superposition

of modes as

Sb+q = ΦΛq
sαs, (6.22)

where αs = Φ−1Sb ∈ Cks defines the magnitude and phase of the DMD modes of the pressure in

the initial time snapshot on the body in a similar manner to how αf defines them for the general

flow.

This work aims to construct the global flow field F given the local pressure field S. However,

110

mapping directly between these matrices is challenging because of the number of parameters in F .

We exploit the simplicity of the underlying dynamics of the flow to simplify the problem by instead

mapping the most dominant modes in Φ, selected by the magnitude of the corresponding element of

αs, to the most dominant modes of Ψ, determined by the magnitude of the corresponding elements

of αf . This allows reconstruction of the flow to a reasonable degree of accuracy using only 3 to 4

modes.

6.4 Flow Reconstruction

6.4.1 Mode Selection

For both the free and forced oscillation cases, a strategy must be developed to determine

how many modes are necessary to reconstruct the flow and which modes should be used. Let the

dominant flow modes which are used in the reconstruction be labeled [ψ̃1 ψ̃2 · · · ψ̃a], and the most

dominant surface modes in the reconstruction be labeled [ϕ̃1 ϕ̃2 · · · ϕ̃a], where a ∈ N is the number

of modes selected. Similarly, let the flow field eigenvalue λ̃f,i and magnitude α̃f,i correspond to the

mode ψ̃i, and the surface eigenvalue λ̃s,i and magnitude α̃s,i correspond to ϕ̃i. One key challenge

is to make the mapping from surface modes to flow modes consistent for different simulations and

different time snapshots within the same simulation. More specifically, for two different windows

c1 and c2 in C for the same case w (either free oscillation or forced oscillation), the inner product

< ϕ̃i(c1), ϕ̃i(c2) > and < ψ̃i(c1), ψ̃i(c2) > should have magnitude near one and λ̃i(c1) ≈ λ̃i(c2),

implying that the modes are physically similar and correspond to the same physical phenomenon.

This is necessary for the neural networks to work well, as the mapping is much simpler when the

changes in the modes are small and consistent. By simply ordering the modes based on their relative

dominance, this criterion may not necessarily be met: as one mode overtakes another with a change

in simulation parameters U∗ or A, the order of the two modes would flip. To counteract this, a

strategy to enforce consistency is necessary, which we tailor for each of the two cases to capture the

most important modes throughout the considered ranges of U∗ and A.

6.4.1.1 Free oscillations in the wake of a stationary obstacle

The relative magnitudes α and eigenvalues Λ of the free oscillation simulations with U∗ = 8

after the transient period (b = 300) are shown in Figure 6.6. Three dominant modes can be clearly

111

0 2

0

0.2

0.4

0.6

|
|

(a)

-1 0 1
(s)

-1

0

1

(
s)

(b)

-1 0 1
(f)

-1

0

1

(
f)

(c)

Figure 6.6: (a) The normalized magnitude (
∑

c∈C |α̃(c)| = 1) of the DMD modes for the surface
pressure measurements (circles) and the flow field state measurements (triangles) for U∗ = 8 and
b = 300. In both cases, three dominant modes (red) can be clearly seen, with the dominant modes
of the field and surface having the same frequency. The eigenvalues for (b) the surface data and
(c) the flow field data show that the dominant modes have an eigenvalue magnitude of roughly 1
(meaning that they do not grow or decay with time), and multiple further harmonics can be seen on
the unit circle. Decaying modes within the circle are also present but have a low magnitude. The
dominant eigenvalues of the flow and surface are clearly similar.

seen in Figure 6.6(a) for both the surface and flow field and are marked in red and appear to

contain roughly 3/4 of the total magnitude of all of the modes. The eigenvalues corresponding to

the dominant modes of the surface data and those corresponding to the dominant modes of the flow

field data have very similar complex phases, indicating that they correspond to phenomena with the

same frequency and likely represent the same physical phenomena. These eigenvalues are shown on

the unit circle in the complex plane in Figure 6.6(b,c) with the dominant modes shown in red. Many

eigenvalues are in the unit circle, corresponding to modes that decay rapidly after the initial transient

period. The dominant modes all have complex magnitudes close to 1 and are on the unit circle. The

phases of the eigenvalues of the two dominant modes with non-zero imaginary components can be

seen to differ by almost exactly a factor of two, indicating that they are harmonics, with the higher-

frequency harmonic having lower magnitude. This pattern of three dominant harmonic modes, one

with zero phase and two that are harmonics, is consistent across values of U∗ and across both the

surface data and the flow field data. As a result, a = 3 modes are used for the flow reconstruction

for this case. However, certain edge cases can make the mode labeling more challenging for certain

windows of data.

The first labeled mode ψ̃1 is always the mode corresponding to the eigenvalue with zero

112

phase, which always has the highest magnitude of αf . Its index can be found as

i1 = argmax
i

(|αf,i|). (6.23)

The second mode, corresponding to the first harmonic, is more challenging to identify because it is

not always the mode with the second-highest magnitude. Rarely, a mode with very low frequency

(−0.001 < ∠λf,i < 0.001) can be found, which can have high magnitude because of overlap with

the zero-frequency mode. This low-frequency behavior is not observed in most time windows nor

in simulation, so it is considered a numerical artifact and ignored. Accounting for this, the second

mode can be identified as

i2 = argmax
i ̸=i1

(|αf,i|) s.t. 0.001 < ∠λf,i, (6.24)

which also consistently only finds the positive complex conjugate. To consistently identify the third

mode (second harmonic), an additional edge case must be considered: an additional high magnitude

mode rarely appears with an eigenvalue phase very near to the phase of the eigenvalue corresponding

to ψ̃2, which is also considered a numerical error and neglected. The third mode index is then

identified as

i3 = argmax
i/∈{i1,i2}

(|αf,i|) s.t. 1.1∠λf,i2 < ∠λf,i, (6.25)

which eliminates the risk of identifying lower frequency mode as the second harmonic by considering

only modes with corresponding frequency at least 1.1 times greater than the first harmonic. Knowing

the indices of the modes, the modes themselves, as well as their eigenvalues and magnitudes, can be

defined as ψ̃j = ψij , λ̃f,j = λf,ij , and α̃f,j = αf,ij for all j ∈ {1, 2, 3}. The exact same procedure is

applied to the surface modes to identify ϕ̃j , λ̃s,j , and α̃s,j .

6.4.1.2 Forced oscillations of tandem cylinders

Identifying the modes in the forced oscillation case is more challenging because the dominant

modes change as A varies. For instance, the mode magnitude for A = 0.1 and A = 0.8 is shown in

Figure 6.7(a) and (b), respectively. At A = 0.1, three conjugate pairs of modes have high magnitudes

in both the field and on the surface. Similar to the previous case, one has an associated phase of 0

113

0 2

0

0.2

0.4

0.6
|

|

(a)

0 2

0

0.1

0.2

|
|

(b)

Figure 6.7: The relative magnitude of the modes for (a) A = 0.1 and (b) A = 0.8 for the surface data
(circles) and for the flow field data (triangles). The magnitude is concentrated in fewer modes for
the A = 0.1 case, where three modes can reconstruct the flow with a low degree of lost information.
The position of the three most dominant modes (red) changes as a function of A, and the magnitude
is generally distributed through more modes for higher values of A.

and is the ‘mean mode’ roughly corresponding to the average value of the measurements. The other

two modes have ∠λf,i of 0.41 and 1.04. The phase of an eigenvalue can be converted to an angular

frequency ω using the formula

ωi = ∠λf,i∆t, (6.26)

where the time between measurements ∆t is 1 for this case. The mode with phase 1.04 rad/s

must correspond to a physical phenomenon with frequency ω = 1.04 rad/s, the prescribed forcing

frequency. This mode, labeled mode 2, corresponds with the periodic fluid behavior driven by these

oscillations. The other dominant mode, which we label mode 3, has a frequency ω = 0.41, which

does not correspond to an integer multiple of the forcing and likely corresponds to the frequency of

vortex shedding for the unforced system.

A larger number of modes with significant amplitude can be seen at the higher forcing

amplitude of A = 0.8, shown in 6.7(b). The three highest magnitude modes exist in descending

order of magnitude at ∠λf of 0, 1.04, and 2.08. The former two modes can be identified by their

frequencies as modes 1 and 2, respectively, which were identified for the lower forcing amplitude.

The mode with ∠λf = 2.08 had negligible amplitude at the lower forcing amplitude, and based on

its frequency, it is the second harmonic of the prescribed forcing. We label this mode as mode 4.

Though its magnitude relative to the forcing modes has decreased, mode 3 can also be observed here

114

with a phase of 0.41.

To estimate these modes, a strategy must again be developed that can identify physically

consistent modes of the operators, irrespective of the parameter A. A reasonable strategy is to

identify them by the phases of their associated eigenvalues as

i1 = argmax
i

(|αf,i|) s.t. ∠λf,i = 0 (6.27)

i2 = argmax
i

(|αf,i|) s.t. 1.00 < ∠λf,i < 1.08 (6.28)

i3 = argmax
i

(|αf,i|) s.t. 0.33 < ∠λf,i < 0.43 (6.29)

i4 = argmax
i

(|αf,i|) s.t. 2.00 < ∠λf,i < 2.16. (6.30)

Because of the possibility of numerical error causing the frequencies of modes 2 and 4 to vary from

the known forcing frequency, those modes are identified from a small range centered on the known

forcing frequency. The frequency of the vortex shedding that mode 3 corresponds to can vary as a

function of A, so the range in which to search for mode 3 is determined by identifying the phase of

mode 3 for a range of A values. The range of identified values is 0.35 ≤ λf,i3 ≤ 0.41, so the range

where mode 3 is searched for is the same plus a margin of 0.02.

Based on these indices, the modes themselves, as well as their eigenvalues and magnitudes,

can be defined in the same manner as for the free oscillation case: ψ̃j = ψij , λ̃f,j = λf,ij , and

α̃f,j = αf,ij . The exact same procedure is again applied to the surface modes to identify ϕ̃j , λ̃s,j ,

and α̃s,j . The key difference is that here, j ∈ {1, 2, 3, 4}.

6.4.2 Data Normalization

To reconstruct the full flow field based on surface measurements, we need to estimate the

values of ψ̃i, λ̃f,i, and α̃f,i given ϕ̃i, λ̃s,i, and α̃s,i. However, performing this mapping directly using

a neural network is challenging, as the input to a traditional neural network must be a vector of

real-valued features, and the values to be mapped are complex-valued. Additionally, because modes

are eigenvectors, they can be multiplied by any non-zero complex number and remain a valid mode:

the result of vψ̃i for v ∈ C where v ̸= 0 is another valid representation of mode i. During the

eigendecomposition, one of these valid representations is calculated for λf,i, but it is not necessarily

done in a consistent manner, so two similar modes ψi(c1) and ψi(c2) for similar data windows

115

c1, c2 ∈ C could appear quite different only due to having different arbitrary constants. The effect

of the complex constant can be decomposed into two parts: its magnitude scales the magnitude of

the mode vector ψi, and its phase rotates the phase of every element of ψi in the complex plane.

As a result of this rotation, the absolute phase of the elements of ψi holds no meaning; however,

the relative phases of its elements do hold useful information about the relative timing of state

oscillations at different points in the flow field.

The process of normalizing the phase of a complex-valued vector is less standardized than

other forms of normalization. However, the prevalent approach involves phase rotation such that

a designated reference element, often the first element in the vector, aligns with the real axis.

This rotation preserves the relative phases between the points, thereby facilitating any subsequent

analyses that may use that information. Letting ψ̃i,1 denote the first element of ψ̃i, the phase

normalized vector ψ̂i can be defined as

ψ̂i =
ψ̃′
i,1

|ψ̃i,1|
ψ̃i, (6.31)

where ′ denotes the complex conjugate. Because the values of α̃f,i were constructed using the

pre-normalization modes, their complex phases must be updated (in the opposite direction) as

α̂f,i =
ψ̃i,1

|ψ̃i,1|
α̃f,i. (6.32)

This normalization procedure is also applied to the surface measurements to calculate ϕ̂i and α̂f,i.

6.4.3 Map Definition

In order to reconstruct the flow field, we require a map

fc : (ϕ̂i, λ̃s,i, α̂s,i) → (ψ̂i, λ̃f,i, α̂f,i). (6.33)

However, the mapping is performed by a dense neural network, which maps a real-valued vector

to another real-valued vector. These modes must then be concatenated into a real-valued vector in

order to be mapped by the neural network, which is achieved by concatenating its real and imaginary

116

components, as well as the real and imaginary components of its corresponding magnitude,

xi =

[
ℜ(ϕ̂i) ℜ(α̂s,i)

]
i = 1[

ℜ(ϕ̂i) ℑ(ϕ̂i) ℜ(α̂s,i) ℑ(α̂s,i)

]
i ̸= 1

(6.34)

yi =

[
ℜ(ψ̂i) ℜ(α̂f,i)

]
i = 1[

ℜ(ψ̂i) ℑ(ψ̂i) ℜ(α̂f,i) ℑ(α̂f,i)

]
i ̸= 1.

(6.35)

When i = 1, both the mode and magnitude are real, so there is no need to store the imaginary

components. The eigenvalues are conspicuously missing from these vectors; that is because their

magnitudes are roughly equal because they must be near 1 in the steady state (|λ̃f,i| ≈ |λ̃s,i| ≈

1), and their phases are always very similar because they describe the same physical phenomena

(∠λ̃f,i ≈ ∠λ̃s,i), so the eigenvalues are mapped separately by

fI : λ̃s,i → λ̃f,i, (6.36)

where fI is the identity map. By mapping the eigenvalues separately from the other flow information

in this way, the number of parameters in the neural network can be slightly reduced. The vectors

are further concatenated into a longer vectors X ∈ R(2a−1)(ks+1) and Y ∈ R(2a−1)(kf+1) that contain

information about all of the modes as

X =

[
x1 x2 · · · xa

]
(6.37)

Y =

[
y1 y2 · · · ya

]
. (6.38)

The number of parameters in X and Y is much less than that of X and Y for large m, which makes

constructing a mapping between them easier. The mapping is performed by a fully-connected dense

neural network N as Ỹ = N (X), where Ỹ is the predicted value of Y.

The network architecture contains three hidden layers of 500, 1000, and 1500 nodes (in

order from input to output), with hyperbolic tangent rectification on the hidden layers and a linear

117

activation function on the output. More specifically, the mapping takes the form

N (x) =W4 tanh(W3 tanh(W2 tanh(W1x+ b1) + b2) + b3) + b4, (6.39)

where the weightsW1 ∈ R500×(2a−1)(ks+1),W2 ∈ R1000×500,W3 ∈ R1500×1000,W4 ∈ R(2a−1)(kf+1)×1500,

b1 ∈ R500, b2 ∈ R1000, b3 ∈ R1500, and b4 ∈ R(2a−1)(kf+1). Collectively, we refer to the list containing

all of these weights as σ. Each of the two simulation cases requires its own weights, so the weights

corresponding to the free oscillations are labeled σ1, and the weights corresponding to the prescribed

oscillations are labeled σ2. The weights σj are trained to minimize the loss

σj = argmin
σ

∑
c∈Cj

∥Nσ(X(c))− Y(c)∥2, (6.40)

where Cj denotes the set of possible time windows over all simulations for case j. This minimizes

the error between the expected field mode vector and the true one in a least-squares sense.

6.4.4 Map Implementation

Computational limitations make it challenging to perform this optimization over the entire

set Cj , and doing so would leave no new data on which to test the effectiveness of the network. To

solve both of these problems, we split Cj into three different sets: a training set Cj,t, a validation

set Cj,v, and a testing set Cj,e. The training set contains either points from the free oscillation

case where U∗ ∈ {1, 2, . . . , 14} and b = {210, 211, . . . , 310}, or points from the forced oscillation

case where A ∈ {0.1, 0.2, . . . , 1.0} where A ̸= 5, with b = {50, 51, . . . , 90}. The validation set

includes the same ranges of U∗ or A, but has b = {330, 331, . . . , 340} for the free oscillation case

or b = {140, 141, . . . , 149} for the forced oscillation case. This choice of initial times allows the

network to be validated with little data overlap. The test data is from simulations not seen in the

other datasets: in the free oscillation case, U∗ = 15 is used to demonstrate that this procedure

can extrapolate beyond the training parameter range, and in the forced oscillation case, A = 0.5 to

demonstrate interpolation within the training parameter range. The entire steady state time window

is used, b = {210, 211, . . . , 340} for the free oscillation case and t0 = {50, 51, . . . , 149} for the forced

oscillation case. In the free oscillation case m = 100, and in the forced oscillation case m = 50.

At the beginning of training, 20 snapshots from each simulation in Cj,t are randomly selected

118

to form a list cj,t ⊆ Cj,t, and a list of training matrices X̄t = [X(cj,t,1),X(cj,t,2), . . . ,X(cj,t,20)] and

Ȳt = [Y(cj,t,1),Y(cj,t,2), . . . ,Y(cj,t,20)]. Validation data X̄v and Ȳv are also constructed by the same

procedure, however, using only 5 snapshots per simulation. This data is iteratively used to improve

Nσ by minimizing its mean-squared training loss, given by a slightly modified version of eq. 6.40:

Lt,j =
∑

c∈cj,t

∥Nσ|(X(c))− Y(c)∥2, (6.41)

where validation loss Lv,j is calculated by the same procedure over the validation data. Because all

of the losses and weights depend on the case j, we drop it from the subscripts beyond this point

for clarity. This loss is then iteratively minimized using the adam algorithm, which is a stochastic

gradient descent algorithm with momentum. The gradient of Lt with respect to σ is calculated on

a subset (batch) of the training data Ct, and the weights are updated in the direction of decreasing

loss with an additional ‘momentum’ term based on the gradients of previous batches. The batches

are iterated until all of the data has been used, known as an epoch.

(a) Actual ℜ(ψ̃1) (b) Estimated ℜ(ψ̃1)

(c) Actual ℜ(ψ̃2) (d) Estimated ℜ(ψ̃2)

(e) Actual ℜ(ψ̃3) (f) Estimated ℜ(ψ̃3)

Figure 6.8: The real component of the actual vs. estimated modes of the pressure field for free
oscillations at U∗ = 15. The estimated modes are qualitatively similar to the actual modes, though
the estimation mapping does introduce noise especially close to the leading body.

We use an early stopping algorithm from [149] to know when to terminate the training before

overtraining can occur. After every 10th epoch, the loss Lv on the validation data is calculated. If

119

(a) Actual pressure field at t0 (b) Reconstructed pressure field at t0

(c) Actual pressure field at t0 + 10 (d) Reconstructed pressure field at t0 + 10

(e) Actual pressure field at t0 + 20 (f) Reconstructed pressure field at t0 + 20

Figure 6.9: The actual vs. reconstructed pressure field for the case of the wake induced free oscillation
of the cylinder at U∗ = 15 at times t0 (a,b) , t0 + 10 (c,d), and t0 + 20 (e,f).

Lv < Lmin, where Lmin is the lowest validation error yet recorded, then Lmin := Lv and σopt := σ,

where σopt are the weighs corresponding to Lmin. However, if Lv > 1.2Lmin, and at least 100 epochs

have passed, then it is assessed that the network is overtrained and the training is terminated. The

weights σopt are then used to reconstruct the flow for case j.

From the mapping, the value of Ỹc is known, which allows extracting the estimated values of

ψ̂i,e and α̂f,i,e (combining the estimates of the real and imaginary components), and the estimated

flow field eigenvalues λ̂f,i,e are known because it is assumed that λ̃f,i,e = λ̃s,i. Using these values, it

is possible to reconstruct an approximation of Y using a similar reconstruction to that in 6.16:

F̃b+q =

a∑
i=1

ψ̂i,eλ̃
q
f,i,eα̂f,i,e, (6.42)

where F̃ is the predicted flow field.

6.5 Results

The modal characteristics of pressure fields obtained from the surface modes for the free

oscillation problem are illustrated in Figure 6.8. Overall, the reconstructed pressure field provides

120

(a) Actual ux at t0 (b) Reconstructed ux at t0

(c) Actual ux at t0 + 10 (d) Reconstructed ux at t0 + 10

(e) Actual ux at t0 + 20 (f) Reconstructed ux at t0 + 20

Figure 6.10: The actual vs. reconstructed horizontal velocity (ux), field for the case of the wake
induced free oscillation of the cylinder at U∗ = 15 at times t0 (a,b) , t0 +10 (c,d), and t0 +20 (e,f).

a high-fidelity representation of the essential characteristics of each mode, with only a moderate

degree of error. Notably, the pressure oscillations observed downstream of the cylinder, indicative

of vortex wake advection, are accurately captured in the reconstruction. This suggests that these

modes may possess sufficient accuracy to properly reconstruct the entire flow field.

The reconstructed pressure and velocity fields are delineated in Figures 6.9 and 6.10, re-

spectively. The pressure field reconstruction generally exhibits a high level of accuracy, although the

mapping fuses the discrete low-pressure zones induced by individual vortices into a single, heteroge-

neous low-pressure region. Importantly, the fidelity of the reconstruction appears to be temporally

invariant within the evaluated 20-second time frame. This is despite this duration being ample for

the advection of approximately three vortex pairs downstream. Notably, the predominant source of

error emanates from the initial modal estimates rather than the time-projection of these modes. A

consistent vortex wake smoothing effect is observed in the velocity field. The reconstruction demon-

strates heightened accuracy in the regions proximate to the cylinder, which is congruent with the

methodology that employs surface data from the cylinder for the reconstruction process.

Reconstructing the forced oscillation case, where information about the flow is distributed

across multiple modes, presents increased computational challenges. As depicted in Figures 6.11

121

and 6.12, the reconstructed pressure and velocity fields exhibit certain idiosyncrasies. Notably,

numerical noise is discernible in the rectangular region characterized by high mesh density adjacent

to the bodies. The low-pressure oscillations localized on and between the cylinders are reconstructed

with the highest fidelity, which is consistent with the data collection region serving as the basis for

the flow field reconstruction. Comparative analysis suggests that the velocity field is reconstructed

with greater accuracy than the pressure field. However, it should be highlighted that features located

at a greater distance from the cylinders are generally subject to lower reconstruction accuracy than

those in closer proximity.

(a) Actual pressure field at t0 (b) Reconstructed pressure field at t0

(c) Actual pressure field at t0 + 10 (d) Reconstructed pressure field at t0 + 10

(e) Actual pressure field at t0 + 10 (f) Reconstructed pressure field at t0 + 20

Figure 6.11: The actual vs. reconstructed pressure field is depicted for the case of forced oscillations
of two tandem cylinders, with an oscillation amplitude of A = 0.5 and a frequency of ω = 1.04 rad/s,
at times t0 (a,b), t0 + 10 (c,d), and t0 + 20 (e,f).

6.6 Conclusion

In this study, we have established that Dynamic Mode Decomposition (DMD) can be effec-

tively utilized to estimate the modes of a flow field using data gathered exclusively from the surface

of an immersed body. Moreover, by mapping both the magnitude and phase of these modes, we

have successfully reconstructed the corresponding velocity and pressure fields. Our methodology has

been demonstrated on two distinct fluid-body interaction scenarios: one involving free oscillations

122

(a) Actual ux at t0 (b) Reconstructed ux at t0

(c) Actual ux at t0 + 10 (d) Reconstructed ux at t0 + 10

(e) Actual ux at t0 + 20 (f) Reconstructed ux at t0 + 20

Figure 6.12: The actual vs. reconstructed horizontal velocity (ux) field is depicted for the case of
forced oscillations of two tandem cylinders, with an oscillation amplitude of A = 0.5 and a frequency
of ω = 1.04 rad/s, at times t0 (a,b), t0 + 10 (c,d), and t0 + 20 (e,f).

in the wake of a cylinder and the other encompassing forced oscillations. The approach has been

demonstrated to be versatile, exhibiting applicability across both categories of fluid dynamics prob-

lems. These findings carry significant implications for underwater robotics, offering the potential

to facilitate advanced features such as obstacle avoidance and optimal motion planning through an

enhanced understanding of the surrounding fluid environment.

123

Chapter 7

Conclusions

In this research, we have developed a range of techniques to utilize the dynamics of un-

derwater robots to improve their sensing and control capability, with the goal of improving their

autonomy to better utilize the aquatic environments that cover 90% of the planet. While this work

has already demonstrated that our proposed frameworks can solve new problems and meet or exceed

the performance state-of-the-art approaches, there are opportunities to extend this work further.

Our work on controls for underwater robots has shown that extremely simplified models

that capture the key physics can be a useful step in a curriculum to train an RL agent on a complex

system. Though we only show this with the Chaplygin sleigh as a simplified model of a swimmer,

many fields have comparable simplified models that could extend this framework to many different

problems. Further work on this framework may consider the case where the number of inputs to

the RL must increase throughout the curriculum. It is also worth proving that this curriculum can

be applied in experiment, perhaps changing the common sim-to-real strategy to a reduced model-

to-sim-to-real framework.

Our work on sensing using body kinematics has shown that often-discarded body kinematic

data can be a useful part of a robot’s sensory suite, and further that increasing the complexity of the

robot’s internal dynamics can result in better sensing. This was tested in a body of two rigid links,

but it is unclear what the diminishing returns of increased complexity are. Testing this concept in

a flexible body (similar to a real fish) and perhaps with flexible fins, may reveal that proprioceptive

sensing can continue to scale well with complexity. Also of interest is the potential interference

between actuation and sensing: If the body were actuated, would it still be able to capture the

124

motion induced by the fluid flow over the motion resulting from its actuation, and how could the

forcing be designed to minimize interference, or perhaps even improve the sensing capabilities?

Using the Koopman operator for sensing, both for localization of an obstacle and sensing the

general fluid flow, using dynamic pressure sensor measurements has been shown to be an effective

strategy in simulation. Further, it was found that the Koopman modes can achieve parity with a

state-of-the-art CNN for the purpose of feature extraction. Of course, much more research has gone

into parametric approaches to time series classification compared to the Koopman operator for time

series classification, should more research effort be directed to the latter it entirely possible that

it could overtake purely parametric approaches for high-dimensional time series with underlying

dynamics. It is important to note that, while this framework was developed and tested on an

underwater robot, the framework can in principle be generalized to any high-dimensional time series

which is generated by a dynamic system, which includes many problems of broad interest such as

fault detection or prediction of financial markets. Further work may also investigate generating the

Koopman operator from multiple data sources, for instance simultaneously using the lateral line

data and kinematic data.

125

Appendices

126

Appendix A Two-link Sleigh Equations

This section provides further details for the derivation in chapter 3. The mass matrix used

in the Lagrangian and the equation of motion (3.3) is

M =

m 0 −m2 ϵ l sin θ1 −m2 (1− ϵ) l sin θ2

0 m m2 ϵ l cos θ1 m2 (1− ϵ) l cos θ2

−m2 ϵ l sin θ1 m2 ϵ l cos θ1 m2 ϵ
2 l2 + I1 m2 ϵ (1− ϵ) l cos (θ2 − θ1)

−m2 (1− ϵ) l sin θ2 m2 (1− ϵ) l cos θ2 m2 ϵ (1− ϵ) l2 cos (θ2 − θ1) m2 (1− ϵ)2 l + I2

.

(1)

Note that the mass matrix is used in the derivation before the rescaling, so the parameters here have

not been rescaled. In the dynamical system (3.5) N ξ̇ = g(ξ) + f(t), the inertia-like tensor

N =

1 − sin δ (ϵ− 1)
2 − sin δ (ϵ− 1)

2
0

− sin δ (ϵ− 1)
2 N 2,2 N 2,3 0

− sin δ (ϵ− 1)
2 N 2,3 N 3,3 0

0 0 0 1

(2)

where

N 2,2 = 4 ϵ (ϵ− 1)2 cos(δ)− 4 ϵ3 + (48 γ + 7)ϵ2 + (−48 γ − 3)ϵ+ 16 γ + 1 (3)

N 2,3 = −(ϵ− 1)(16 ϵ2γ − 2 ϵ2 cos(δ)− 32 ϵ γ + 2 ϵ cos(δ) + ϵ2 + γ r2 + 16 γ − 2 ϵ+ 1 (4)

N 3,3 = − (ϵ− 1)
(
16 ϵ2γ + ϵ2 − 32 ϵ γ − 2 ϵ+ γ r2 + 16 γ + 1

)
. (5)

For the special case where c = 0, A = 0, fixed points can be defined for this system by solving

N−1 g = 0. For nonsingular F , this simplifies to g = 0.

At a fixed point ξ̇ = 0 and δ̇ = ω2 = 0, requiring that any solution to 3.5 must result in

g = 0. Both g1 = 0 and g2 = 0 can be solved by setting

δ∗ = cos−1

(
ϵ (ϵ− 2)

ϵ2 − 2 ϵ+ 1

)
, (6)

127

which gives a turning gait, or

ω∗
1 = 0, (7)

which results in straight line motion. The equation g4 = 0 is satisfied if ω2 = 0. The remaining

equation g3 = 0 can be satisfied for infinitely many adjacent (u, ω) pairs, resulting in non-isolated

fixed points extending away from the constant energy manifold. Evaluating the dynamics reduced

to the energy manifold results in isolated fixed points which can then be analyzed for stability. This

reduction is performed by defining the system energy

E = T (q, q̇) + V(q) (8)

which, rewritten in ξ coordinates, is

E′ =
E

m l2
=

1

2

(
u2x + b ux + c

)
(9)

for

b = m′
2(ϵ− 1)(ω1 + ω2) sin δ (10)

(11)

and

c =

(
(I ′1 +

m′
1ϵ

2

4
+m′

2ϵ
2)ω2

1 +

(
I ′2 +

m′
2(ϵ− 1)2

4

)
(ω1 + δ̇)2 −m′

2(ϵ− 1)(ω1 + ω2)(ω1ϵ cos δ)

)
.

(12)

With energy rescaled, we now once again drop the ′ superscripts and work only with the rescaled

variables. The longitudinal velocity can be written as a function of (ω1, ω2, δ) and the energy.

The reduced dynamical system is then obtained from the last three equations of (3.5) where ux

is substituted by a function of the other three state variables, ux(ω1, ω2, δ;E). Suppose H(ξ) =

N−1h(ξ) ∈ R4. Setting Hr(ξ;E) = [H2(ξ),H3(ξ),H4(ξ)]
T , which excludes the first component of

H(ξ), the reduced dynamical system is

ξ̇r = Hr(ξr;E) (13)

128

where ξr = (ω1, ω2, δ). We then define the fixed points as a function of energy by substituting

ux(ω1, ω2, δ, E) into g3 = 0, which gives an expression which can be solved for ω∗
1 as

ω∗
1 = ±

√
2

2m2

√
A
(
B ±

√
C
)

(14)

for

A =
((
ϵ2 − ϵ

2
+

1

4

)
m2 −

3 ϵ2

4
+ I1 + I2

)
((cos(δ))2 −m2 ϵ (−1 + ϵ) cos(δ) + ϵ2)−1(−1 + ϵ)−2

B = ((−δ2α2 + 2E)ϵ2 + (2 δ2α2 − 4E)ϵ− δ2α2 + 2E)m2
2(cos(δ))2

+ (−2α2δ ϵ2 + 4α2δ ϵ− 2α2δ)m2
2 sin(δ) cos(δ) + (4α2δ ϵ2 − 4α2δ ϵ)m2 sin(δ)

C = (m2
2(−1 + ϵ)2

((
− δ2

2
+ δ
)
α2 + E

)((
− δ2

2
− δ
)
α2 + E

)
(cos(δ))2

− 2α2(m2 (−1 + ϵ)(−1/2 δ2α2 + E) sin(δ)− 2α2δ ϵ)m2 (−1 + ϵ)δ cos(δ)

+ 4α2δ (m2 (−1 + ϵ)(−1/2 δ2α2 + E)ϵ sin(δ)− α2δ (−1/4m2
2(−1 + ϵ)2

+ (ϵ2 − ϵ/2 + 1/4)m2 + 1/4 ϵ2 + I1 + I2)))(cos(δ))
2m2

2(−1 + ϵ)2.

Through straightforward manipulation of equation 9 we can find

ux =
1

2

(
−b±

√
b2 − 4 (c− 2E)

)
. (15)

Substituting b = b(ω1 = ω∗
1) and c = c(ω1 = ω∗

1) into 15 then yields u∗x.

129

Appendix B Kinematic Classification Confusion Matrices

Below are the confusion matrices for classification fo the Strouhal number using the body

kinematics, corresponding to the work in chapter 4.

0.1
4

0.1
7

0.1
8

0.2
1

0.2
2

0.2
2

0.2
4

0.2
5

0.2
6

0.2
7

0.2
7

0.2
9

0.3
1

0.3
1

0.3
2

0.3
4

0.3
5

0.3
6

0.3
9 0.4 0.4 0.4

2
0.4
5

0.5
1

0.5
2

0.5
4

0.6
7

0.14

0.17

0.18

0.21

0.22

0.22

0.24

0.25

0.26

0.27

0.27

0.29

0.31

0.31

0.32

0.34

0.35

0.36

0.39

0.4

0.4

0.42

0.45

0.51

0.52

0.54

0.67

1.00 0.00

0.00 1.00 0.00

0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

0.00 0.00 0.00 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.03 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.83 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.01 0.04 0.00 0.00 0.06 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.01 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00

0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.02 0.00 0.00 0.05 0.80 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.83 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.01 0.02

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.94 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.02 0.04 0.00 0.00 0.00 0.00 0.00 0.83 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.81 0.01 0.00 0.01 0.04 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.00 0.00 0.08 0.60 0.00 0.00 0.00 0.00

0.00 0.99 0.00 0.01 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.00 0.06

0.00 0.01 0.00 0.00 0.05 0.93 0.00

0.00 0.09 0.00 0.90

Figure 1: Confusion matrix for the classification of the Strouhal number using the coupled head
kinematics. A clear diagonal can be seen that remains roughly consistent for the entire range of St.

130

0.1
4

0.1
7

0.1
8

0.2
1

0.2
2

0.2
2

0.2
4

0.2
5

0.2
6

0.2
7

0.2
7

0.2
9

0.3
1

0.3
1

0.3
2

0.3
4

0.3
5

0.3
6

0.3
9 0.4 0.4 0.4

2
0.4
5

0.5
1

0.5
2

0.5
4

0.6
7

0.14

0.17

0.18

0.21

0.22

0.22

0.24

0.25

0.26

0.27

0.27

0.29

0.31

0.31

0.32

0.34

0.35

0.36

0.39

0.4

0.4

0.42

0.45

0.51

0.52

0.54

0.67

0.95 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.88 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.82 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.89 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.87 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.02 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.89 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.03 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.87 0.00 0.00 0.01 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.03 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00

0.09 0.03 0.00 0.00 0.03 0.00 0.00 0.06 0.00 0.00 0.05 0.00 0.00 0.00 0.74 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.01 0.00 0.03 0.00 0.00 0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.81 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.87 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.06

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.00 0.00 0.00 0.03 0.00 0.00 0.00

0.00 0.00 0.00 0.10 0.00 0.01 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.08 0.03 0.00 0.00 0.00 0.00 0.00 0.70 0.00 0.00 0.04 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.71 0.04 0.00 0.00 0.10 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.00 0.00 0.00 0.00 0.06 0.63 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.84 0.05 0.03

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.04 0.02 0.01 0.06 0.83 0.02

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.01 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.77

Figure 2: Confusion matrix for the classification of the Strouhal number using the coupled tail
kinematics.

131

0.1
4

0.1
7

0.1
8

0.2
1

0.2
2

0.2
2

0.2
4

0.2
5

0.2
6

0.2
7

0.2
7

0.2
9

0.3
1

0.3
1

0.3
2

0.3
4

0.3
5

0.3
6

0.3
9 0.4 0.4 0.4

2
0.4
5

0.5
1

0.5
2

0.5
4

0.6
7

0.14

0.17

0.18

0.21

0.22

0.22

0.24

0.25

0.26

0.27

0.27

0.29

0.31

0.31

0.32

0.34

0.35

0.36

0.39

0.4

0.4

0.42

0.45

0.51

0.52

0.54

0.67

1.00 0.00

0.00 1.00 0.00

0.00 0.00 0.94 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00

0.08 0.02 0.00 0.02 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.02 0.79 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.01

0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.02 0.00 0.00 0.03 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.01 0.78 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.00 0.00 0.00 0.94 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.95 0.00 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.02 0.93 0.00

0.00 0.26 0.00 0.74

Figure 3: Confusion matrix for the classification of the Strouhal number using combined coupled
head and coupled tail kinematics. The additional data allows better classification accuracy than
using either set of kinematic data alone.

132

0.1
4

0.1
7

0.1
8

0.2
1

0.2
2

0.2
2

0.2
4

0.2
5

0.2
6

0.2
7

0.2
7

0.2
9

0.3
1

0.3
1

0.3
2

0.3
4

0.3
5

0.3
6

0.3
9 0.4 0.4 0.4

2
0.4
5

0.5
1

0.5
2

0.5
4

0.6
7

0.14

0.17

0.18

0.21

0.22

0.22

0.24

0.25

0.26

0.27

0.27

0.29

0.31

0.31

0.32

0.34

0.35

0.36

0.39

0.4

0.4

0.42

0.45

0.51

0.52

0.54

0.67

0.92 0.01 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00

0.08 0.85 0.00 0.03 0.00 0.04 0.00

0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.88 0.00 0.01 0.00 0.01 0.00 0.00 0.05 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.02 0.00 0.00 0.00 0.00 0.92 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.00 0.00 0.00 0.07 0.00 0.00 0.05 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.79 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

0.00 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.74 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.82 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.85 0.00 0.00 0.02 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.70 0.01 0.00 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00

0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.62 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.84 0.00 0.00 0.01 0.06 0.00 0.00 0.00 0.05 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.85 0.00 0.00 0.00 0.00 0.01 0.12 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.00 0.00 0.00 0.01 0.00 0.00 0.15 0.03 0.10

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.02 0.88 0.00 0.00 0.00 0.01 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.16 0.04 0.00 0.00 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.58 0.01 0.00 0.00 0.02 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.04 0.77 0.00 0.00 0.00 0.02

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.05 0.06 0.00 0.00 0.00 0.87 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.00 0.00 0.00 0.02 0.01 0.00 0.82 0.04 0.06

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.04 0.02 0.00 0.13 0.69 0.10

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.06 0.00 0.00 0.02 0.04 0.83

Figure 4: Confusion matrix for the classification of the Strouhal number using the kinematics of the
fixed assembly.

133

0.1
4

0.1
7

0.1
8

0.2
1

0.2
2

0.2
2

0.2
4

0.2
5

0.2
6

0.2
7

0.2
7

0.2
9

0.3
1

0.3
1

0.3
2

0.3
4

0.3
5

0.3
6

0.3
9 0.4 0.4 0.4

2
0.4
5

0.5
1

0.5
2

0.5
4

0.6
7

0.14

0.17

0.18

0.21

0.22

0.22

0.24

0.25

0.26

0.27

0.27

0.29

0.31

0.31

0.32

0.34

0.35

0.36

0.39

0.4

0.4

0.42

0.45

0.51

0.52

0.54

0.67

0.99 0.00 0.00 0.01 0.00

0.00 0.99 0.00

0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.83 0.00 0.00 0.00 0.05 0.00 0.00 0.03 0.00 0.00 0.00 0.05 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.02 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.04 0.01

0.00 0.01 0.00 0.06 0.00 0.00 0.00 0.63 0.00 0.00 0.05 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.01 0.00 0.00 0.83 0.00 0.00 0.00 0.05 0.01 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.04 0.00 0.00 0.04 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.77 0.00 0.00 0.01 0.00 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.02 0.00 0.06 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.78 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.01 0.00 0.13 0.00 0.00 0.00 0.05 0.00 0.00 0.10 0.00 0.00 0.00 0.68 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.84 0.00 0.00 0.00 0.00 0.02 0.09 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.02

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.82 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.22 0.00 0.00 0.08 0.00 0.00 0.00 0.68 0.00 0.00 0.00 0.01 0.00 0.00 0.00

0.00 0.00 0.00 0.04 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.11 0.02 0.00 0.00 0.00 0.00 0.00 0.79 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.82 0.01 0.00 0.00 0.07 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.25 0.00 0.00 0.00 0.00 0.03 0.69 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.03 0.04 0.00 0.00 0.00 0.87 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.02 0.00 0.00 0.74 0.07 0.07

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.05 0.00 0.00 0.11 0.70 0.09

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.03 0.81

Figure 5: Confusion matrix for the classification of the Strouhal number using the kinematics of the
uncoupled head.

134

0.1
4

0.1
7

0.1
8

0.2
1

0.2
2

0.2
2

0.2
4

0.2
5

0.2
6

0.2
7

0.2
7

0.2
9

0.3
1

0.3
1

0.3
2

0.3
4

0.3
5

0.3
6

0.3
9 0.4 0.4 0.4

2
0.4
5

0.5
1

0.5
2

0.5
4

0.6
7

0.14

0.17

0.18

0.21

0.22

0.22

0.24

0.25

0.26

0.27

0.27

0.29

0.31

0.31

0.32

0.34

0.35

0.36

0.39

0.4

0.4

0.42

0.45

0.51

0.52

0.54

0.67

0.80 0.08 0.00 0.02 0.00 0.00 0.00 0.03 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00

0.07 0.87 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.94 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.60 0.00 0.00 0.00 0.02 0.00 0.00 0.20 0.00 0.00 0.00 0.16 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.07 0.00 0.88 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00

0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.87 0.00 0.00 0.01 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.07 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.03 0.00 0.00 0.74 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.05 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.84 0.00 0.00 0.02 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.01 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.05 0.00 0.00 0.18 0.00 0.00 0.00 0.75 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.08 0.00 0.00 0.77 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.61 0.00 0.00 0.00 0.00 0.10 0.10 0.00 0.02 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.03

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.04 0.00 0.00 0.00 0.89 0.00 0.00 0.00 0.04 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.03 0.09 0.00 0.00 0.00 0.00 0.00 0.85 0.00 0.00 0.00 0.02 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.87 0.00 0.00 0.00 0.06 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.01 0.76 0.00 0.00 0.03 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.01 0.00 0.00 0.00 0.94 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.01 0.00 0.00 0.84 0.00 0.05

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.09 0.01 0.00 0.00 0.80 0.02

0.00 0.07 0.00 0.00 0.10 0.02 0.81

Figure 6: Confusion matrix for the classification of the Strouhal number using the kinematics of the
uncoupled tail.

135

Bibliography

[1] G. V. Lauder, “Fish locomotion: recent advances and new directions,” Annual review of marine
science, vol. 7, pp. 521–545, 2015.

[2] M. S. Triantafyllou, G. D. Weymouth, and J. Miao, “Biomimetic survival hydrodynamics and
flow sensing,” Annual Review of Fluid Mechanics, vol. 48, no. 1, 2016.

[3] G. V. Lauder, P. G. A. Madden, J. L. Tangorra, E. Anderson, and T. V. Baker, “Bioinspiration
from fish for smart material design and function,” Smart Material Structures, vol. 20, Sept.
2011.

[4] M. S. Triantafyllou, G. S. Triantafyllou, and D. K. P. Yue, “Hydrodynamics of fishlike swim-
ming.,” Annual Reviews of Fluid Mechanics, vol. 32, pp. 33–53, 2000.

[5] M. S. Triantafyllou and G. Triantafyllou, “An efficient swimming machine.,” Scientific Amer-
ican, vol. 272, no. 3, p. 64, 1995.

[6] J. Zhu, C. White, D. K. Wainwright, V. Di Santo, G. V. Lauder, and H. Bart-Smith, “Tuna
robotics: A high-frequency experimental platform exploring the performance space of swim-
ming fishes,” Science Robotics, vol. 4, no. 34, p. eaax4615, 2019.

[7] C. H. White, G. V. Lauder, and H. Bart-Smith, “Tunabot flex: a tuna-inspired robot with
body flexibility improves high-performance swimming,” Bioinspiration & Biomimetics, vol. 16,
no. 2, p. 026019, 2021.

[8] E. Kelasidi, P. Liljeback, K. Y. Pettersen, and J. T. Gravdahl, “Innovation in underwater
robots: Biologically inspired swimming snake robots,” IEEE Robotics & Automation Magazine,
vol. 23, no. 1, pp. 44–62, 2016.

[9] F. Boyer, M. Porez, A. Leroyer, and M. Visonneau, “Fast dynamics of an eel-like
robot—comparisons with navier–stokes simulations,” IEEE Transactions on Robotics, vol. 24,
no. 6, pp. 1274–1288, 2008.

[10] Z. Chen, S. Shatara, and X. Tan, “Modeling of biomimetic robotic fish propelled by an ionic
polymer-metal composite caudal fin,” IEEE/ASME Transactions on Mechatronics, vol. 15,
no. 3, pp. 448–459, 2010.

[11] Z. Chen, T. I. Um, and H. Bart-Smith, “Bio-inspired robotic manta ray powered by ionic poly-
mer–metal composite artificial muscles,” International Journal of Smart and Nano Materials,
vol. 3, no. 4, pp. 296–308, 2012.

[12] J. Shintake, V. Cacucciolo, H. Shea, and D. Floreano, “Soft biomimetic sh robot made of
dielectric elastomer actuators,” Soft Robotics, vol. 5, no. 4, pp. 466–474, 2018.

[13] A. D. Marchese, C. D. Onal, and D. Rus, “Autonomous soft robotic sh capable of escape
maneuvers using fluidic elastomer actuators,” Soft Robotics, vol. 1, no. 1, pp. 75–87, 2014.

136

[14] T. Chen, O. R. Bilal, K. Shea, and C. Daraio, “Harnessing bistability for directional propulsion
of soft, untethered robots,” Proceedings of the National Academy of Sciences, vol. 115, no. 22,
pp. 5698–5702, 2018.

[15] B. Pollard and P. Tallapragada, “An aquatic robot propelled by an internal rotor,”
IEEE/ASME Transaction on Mechatronics, vol. 22, no. 2, pp. 931–939, 2017.

[16] B. A. Free, J. Lee, and D. A. Paley, “Bioinspired pursuit with a swimming robot using feedback
control of an internal rotor,” Bioinspiration and Biomimetics, vol. 15, no. 3, p. 035005, 2020.

[17] W.-K. Yen, C.-F. Huang, H.-R. Chang, and J. Guo, “Localization of a leading robotic fish
using a pressure sensor array on its following vehicle,” Bioinspiration & Biomimetics, vol. 16,
no. 1, p. 016007, 2020.

[18] A. T. Abdulsadda and X. Tan, “Underwater tracking of a moving dipole source using an arti-
ficial lateral line: algorithm and experimental validation with ionic polymer–metal composite
flow sensors,” Smart Materials and Structures, vol. 22, no. 4, p. 045010, 2013.

[19] B. J. Wolf, J. van de Wolfshaar, and S. M. van Netten, “Three-dimensional multi-source
localization of underwater objects using convolutional neural networks for artificial lateral
lines,” Journal of the Royal Society Interface, vol. 17, no. 162, p. 20190616, 2020.

[20] B. Colvert, M. Alsalman, and E. Kanso, “Classifying vortex wakes using neural networks,”
Bioinspiration & biomimetics, vol. 13, no. 2, p. 025003, 2018.

[21] B. L. R. Ribeiro and J. Franck, “A machine learning approach to classify kinematics and vortex
wake modes of oscillating foils,” AIAA AVIATION 2021 FORUM, 2021.

[22] R. Sutton, “The bitter lesson,” Incomplete Ideas (blog), vol. 13, no. 1, 2019.

[23] A. S. Polydoros and L. Nalpantidis, “Survey of model-based reinforcement learning: Appli-
cations on robotics,” Journal of Intelligent & Robotic Systems, vol. 86, no. 2, pp. 153–173,
2017.

[24] C. Rodwell, The Frequency-Amplitude Response of a Class of Nonholonomic Systems. PhD
thesis, Clemson University, 2020.

[25] B. O. Koopman, “Hamiltonian systems and transformation in hilbert space,” Proceedings of
the National Academy of Sciences, vol. 17, no. 5, pp. 315–318, 1931.

[26] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,” The
International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–1274, 2013.

[27] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,
M. Kalakrishnan, V. Vanhoucke, et al., “Scalable deep reinforcement learning for vision-based
robotic manipulation,” in Conference on Robot Learning, pp. 651–673, PMLR, 2018.

[28] M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz, B. McGrew, J. Pachocki, A. Petron,
M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng, and
W. Zaremba, “Learning dexterous in-hand manipulation,” International Journal of Robotics
Research, vol. 39, no. 1, pp. 3–20, 2019.

[29] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and D. Fox, “Closing
the sim-to-real loop: Adapting simulation randomization with real world experience,” in 2019
International Conference on Robotics and Automation (ICRA), pp. 8973–8979, 2019.

137

[30] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and V. Vanhoucke,
“Sim-to-real: Learning agile locomotion for quadruped robots,” 2018 International Conference
on Robotics and Automation (ICRA), 2018.

[31] H. S. Choi and et.al., “On the use of simulation in robotics: Opportunities, challenges, and
suggestions for moving forward,” Proceedings of the National Academy of Sciences, vol. 118,
no. 1, 2020.

[32] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for robotic ma-
nipulation with asynchronous off-policy updates,” in Proceedings of the IEEE International
Conference on Robotics and Automation, 2017.

[33] H. Tang, J. Rabault, A. Kuhnle, Y. Wang, and T. Wang, “Robust active flow control over a
range of reynolds numbers using an artificial neural network trained through deep reinforce-
ment learning,” Physics of Fluids, vol. 32, no. 5, p. 053605, 2020.

[34] P. Garnier, J. Viquerat, J. Rabault, A. Larcher, A. Kuhnle, and E. Hachem, “A review on deep
reinforcement learning for fluid mechanics,” Computers & Fluids, vol. 225, p. 104973, 2021.

[35] S. Verma, G. Novati, and P. Koumoutsakos, “Efficient collective swimming by harnessing vor-
tices through deep reinforcement learning,” Proceedings of the National Academy of Sciences,
vol. 115, no. 23, pp. 5849–5854, 2018.

[36] H. Yu, B. Liu, C. Wang, X. Liu, X.-Y. Lu, and H. Huang, “Deep-reinforcement-learning-based
self-organization of freely undulatory swimmers,” Physical Review E, vol. 105, no. 4, p. 045105,
2022.

[37] Q. Wang, Z. Hong, and Y. Zhong, “Learn to swim: Online motion control of an underactuated
robotic eel based on deep reinforcement learning,” Biomimetic Intelligence and Robotics, vol. 2,
no. 4, p. 100066, 2022.

[38] I. Mandralis, P. Weber, G. Novati, and P. Koumoutsakos, “Learning swimming escape patterns
for larval fish under energy constraints,” Physical Review Fluids, vol. 6, no. 9, p. 093101, 2021.

[39] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in 26th Inter-
national Conference on Machine Learning, 2009.

[40] P. Soviany, R. T. Ionescu, P. Rota, and N. Sebe, “Curriculum learning: A survey,”
arXiv:2101.10382, 2021.

[41] D. Weinshall, G. Cohen, and D. Amir, “Curriculum learning by transfer learning: Theory and
experiments with deep networks,” arXiv:1802.03796, 2018.

[42] F. Ren, J. Rabault, and H. Tang, “Applying deep reinforcement learning to active flow control
in weakly turbulent conditions,” Physics of Fluids, vol. 33, no. 3, p. 037121, 2021.

[43] S. Childress, Mechanics of swimming and flying. Cambridge University Press, 1981.

[44] P. Tallapragada, “A swimming robot with an internal rotor as a nonholonomic system,” Pro-
ceedings of the American Control Conference, 2015, 2015.

[45] P. Tallapragada and S. D. Kelly, “Integrability of velocity constraints modeling vortex shedding
in ideal fluids,” Journal of Computational and Nonlinear Dynamics, vol. 12, no. 2, p. 021008,
2016.

[46] B. Pollard, V. Fedonyuk, and P. Tallapragada, “Swimming on limit cycles with nonholonomic
constraints,” Nonlinear Dynamics, vol. 97, no. 4, p. 2453 – 2468, 2019.

138

[47] V. Fedonyuk and P. Tallapragada, “Path tracking for the dissipative chaplygin sleigh,” in 2020
American Control Conference (ACC), 2020.

[48] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, M. Riedmiller, R. Collobert, and J. We-
ston, “Deterministic policy gradient algorithms,” in 31st International Conference on Machine
Learning, 2014.

[49] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wier-
stra, “Continuous control with deep reinforcement learning,” in International Conference on
Learning Representations, 2016.

[50] J. M. Osborne and D. V. Zenkov, “Steering the chaplygin sleigh by a moving mass,” in Pro-
ceedings of the American Control Conference, 2005.

[51] L. M. Milne-Thomson, Theoretical Hydrodynamics. Dover, 1996.

[52] V. Fedonyuk and P. Tallapragada, “Sinusoidal control and limit cycle analysis of the dissipative
chaplygin sleigh,” Nonlinear Dynamics, 2018.

[53] J. Katz and A. Plotkin, Low-Speed Aerodynamics. Cambridge University Press, 2001.

[54] L. L. Erickson, “Panel Methods - An Introduction,” NASA Technical Paper, 1990.

[55] P. Watts and F. Fish, “The influence of passive, leading edge tubercles on wing performance,”
in Proc. Twelfth Intl. Symp. Unmanned Untethered Submers. Technol, Auton. Undersea Syst.
Inst. Durham New Hampshire, 2001.

[56] J. M. Anderson, K. Streitlien, D. Barrett, and M. S. Triantafyllou, “Oscillating foils of high
propulsive efficiency,” Journal of Fluid mechanics, vol. 360, pp. 41–72, 1998.

[57] M. Wolfgang, J. Anderson, M. Grosenbaugh, D. Yue, and M. Triantafyllou, “Near-body flow
dynamics in swimming fish,” Journal of Experimental Biology, vol. 202, no. 17, pp. 2303–2327,
1999.

[58] K. W. Moored, “Unsteady three-dimensional boundary element method for self-propelled bio-
inspired locomotion,” Computers & Fluids, vol. 167, pp. 324–340, 2018.

[59] S. Chakravarty and D. Samanta, “Numerical simulation of a one-dimensional flexible filament
mimicking anguilliform mode of swimming using discrete vortex method,” Physical Review
Fluids, vol. 6, no. 3, p. 033102, 2021.

[60] F. Ayancik, K. Moored, and F. E. Fish, “Disentangling the relation between the planform shape
and swimming gait in cetacean propulsion,” in 2018 Fluid Dynamics Conference, p. 2914, 2018.

[61] B. Pollard, Improving Swimming Performance and Flow Sensing by Incorporating Passive
Mechanisms. PhD thesis, Clemson University, 2020.

[62] A. J. Ijspeert, “Central pattern generators for locomotion control in animals and robots: a
review,” Neural networks, vol. 21, no. 4, pp. 642–653, 2008.

[63] W. Wang and G. Xie, “Cpg-based locomotion controller design for a boxfish-like robot,” In-
ternational Journal of Advanced Robotic Systems, vol. 11, no. 6, p. 87, 2014.

[64] J. Yu, Z. Wu, M. Wang, and M. Tan, “Cpg network optimization for a biomimetic robotic
fish via pso,” IEEE transactions on neural networks and learning systems, vol. 27, no. 9,
pp. 1962–1968, 2015.

139

[65] J. M. Snider et al., “Automatic steering methods for autonomous automobile path tracking,”
Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RITR-09-08, 2009.

[66] R. C. Coulter, “Implementation of the pure pursuit path tracking algorithm,” tech. rep.,
Carnegie-Mellon UNIV Pittsburgh PA Robotics INST, 1992.

[67] J. Lee, B. Free, S. Santana, and D. A. Paley, “State-feedback control of an internal rotor
for propelling and steering a flexible fish-inspired underwater vehicle,” in Proceedings of the
American Control Conference, pp. 2011–2016, IEEE, 2019.

[68] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods for reinforce-
ment learning with function approximation,” in Advances in Neural Information Processing
Systems, vol. 12, 1999.

[69] J. Peters and S. Schaal, “Policy gradient methods for robotics,” in 2006 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 2219–2225, IEEE, 2006.

[70] D. Silver, A. Huang, C. Maddison, and et.al., “Mastering the game of go with deep neural
networks and tree search,” Nature, vol. 529, p. 484–489, 2016.

[71] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal
approximators,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.

[72] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” in Proceedings of
the International Conference on Learning Representations, 2015.

[73] J. J. Videler and D. Weihs, “Energetic advantages of burst-and-coast swimming of fish at high
speeds,” Journal of Experimental Biology, vol. 97, no. 1, pp. 169–178, 1982.

[74] Q. Zhong, J. Zhu, F. E. Fish, S. J. Kerr, A. M. Downs, H. Bart-Smith, and D. B. Quinn,
“Tunable stiffness enables fast and efficient swimming in fish-like robots,” Science Robotics,
vol. 6, no. 57, 2021.

[75] C. Rodwell and P. Tallapragada, “Induced and tunable multistability due to nonholonomic
constraints,” Nonlinear Dynamics, vol. 108, no. 3, pp. 2115–2126, 2022.

[76] V. Fedonyuk and P. Tallapragada, “The dynamics of a chaplygin sleigh with an elastic internal
rotor,” Regular and Chaotic Dynamics, vol. 24, no. 1, pp. 114–126, 2019.

[77] L. Meng, R. Kang, D. Gan, G. Chen, L. Chen, D. T. Branson, and J. S. Dai, “A mechanically
intelligent crawling robot driven by shape memory alloy and compliant bistable mechanism,”
Journal of Mechanisms and Robotics, vol. 12, no. 6, 2020.

[78] Y. Tang, Y. Chi, J. Sun, T. Z. Huang, O. H. Maghsoudi, A. Spence, J. Zhao, H. Su, and
J. Yin, “Leveraging elastic instabilities for amplified performance: Spine-inspired high-speed
and high-force soft robots,” Science Advances, vol. 6, no. 19, 2020.

[79] H. Zhang, J. Sun, and J. Zhao, “Compliant bistable gripper for aerial perching and grasping,”
in 2019 International Conference on Robotics and Automation (ICRA), pp. 1248–1253, IEEE,
2019.

[80] G. Wan, Y. Liu, Z. Xu, C. Jin, L. Dong, X. Han, J. X. J. Zhang, and Z. Chen, “Tunable
bistability of a clamped elastic beam,” Extreme Mechanics Letters, vol. 34, p. 100603, 2020.

[81] A. Cazzolli, D. Misseroni, and F. D. Corso, “Elastica catastrophe machine: theory, design and
experiments,” 2020.

140

[82] Z. Meng, W. Chen, T. Mei, Y. Lai, Y. Li, and C. Q. Chen, “Bistability-based foldable origami
mechanical logic gates,” Extreme Mechanics Letters, vol. 43, p. 101180, 2021.

[83] L. L. Howell, Compliant Mechanisms. Wiley, New York, 2001.

[84] T. Greigarn and M. Cavusoglu, “Pseudo-rigid-body model and kinematic analysis of mri-
actuated catheters,” in 2015 IEEE International Conference on Robotics and Automation,
2015.

[85] V. K. Venkiteswaran and H. J. Su, “A three-spring pseudorigid-body model for soft joints with
significant elongation effects,” Journal of Mechanisms and Robotics, vol. 8, no. 6, 2016.

[86] R. K. Katzschmann, C. D. Santina, Y. Toshimitsu, A. Bicchi, and D. Rus, “Dynamic mo-
tion control of multi-segment soft robots using piecewise constant curvature matched with an
augmented rigid body model,” in 2019 2nd IEEE International Conference on Soft Robotics
(RoboSoft), pp. 454–461, IEEE, 2019.

[87] H. Zhang, B. Zhu, and X. Zhang, “Origami kaleidocycle-inspired symmetric multistable com-
pliant mechanisms,” Journal of Mechanisms and Robotics, vol. 1, no. 11, p. 011009, 2019.

[88] B. Zhu, X. Zhang, H. Zhang, J. Liang, H. Zang, H. Li, and R. Wang, “Design of compli-
ant mechanisms using continuum topology optimization: a review,” Mechanism and Machine
Theory, vol. 143, p. 103622, 2020.

[89] A. Cazzolli, F. D. Corso, and D. Bigoni, “Flutter instability and ziegler destabilization paradox
for elastic rods subject to non-holonomic constraints,” vol. 88, no. 3, p. 031003, 2021.

[90] S. A. Chaplygin, “On the theory of the motion of nonholonomic systems : The reducing
multiplier theorem.,” Translated version in Regular and Chaotic Dynamics, 2008.

[91] A. V. Borisov and I. S. Mamaev, “On the history of the development of the nonholonomic
dynamics,” Regular and Chaotic Dynamics, vol. 7, no. 1, pp. 43–47, 2002.

[92] A. M. Bloch, Nonholonomic Mechanics and Control. Springer Verlag, 2003.

[93] S. D. Kelly, M. J. Fairchild, P. M. Hassing, and P. Tallapragada, “Proportional heading control
for planar navigation: The chaplygin beanie and fishlike robotic swimming,” in Proceedings of
the American Control Conference, 2012.

[94] V. Fedonyuk and P. Tallapragada, “Sinusoidal control and limit cycle analysis of the dissipative
chaplygin sleigh,” Nonlinear Dynamics, pp. 1–12, 2018.

[95] C. dynamics of the Chaplygin sleigh with a passive internal rotor, “V. fedonyuk and p. tal-
lapragada,” Nonlinear Dynamics, 2018.

[96] J. Náprstek and C. Fischer, “Appell-gibbs approach in dynamics of non-holonomic systems,”
in Nonlinear Systems (M. Reyhanoglu, ed.), ch. 1, Rijeka: IntechOpen, 2018.

[97] J. Náprstek and C. Fischer, Non-holonomic Systems in View of Hamiltonian Principle, pp. 3–
25. 01 2021.

[98] P. Tallapragada and S. D. Kelly, “Integrability of velocity constraints modeling vortex shedding
in ideal fluids,” Journal of Computational and Nonlinear Dynamics, 2016.

[99] B. Pollard, V. Fedonyuk, and P. Tallapragada, “Swimming on limit cycles with nonholonomic
constraints,” Nonlinear Dynamics, 2019.

141

[100] J. Lee, B. Free, S. Santana, and D. A. Paley, “State-feedback control of an internal rotor for
propelling and steering a flexible fish-inspired underwater vehicle,” in 2019 American Control
Conference (ACC), pp. 2011–2016, IEEE, 2019.

[101] L. A. Pars, A Treatise on Analytical Dynamics. Ox Bow Press, 1965.

[102] A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden, and R. M. Murray, “Nonholonomic Me-
chanical Systems with Symmetry,” Archive for Rational Mechanics and Analysis, vol. 136,
pp. 21–99, 1996.

[103] A. Bloch, M. Reyhanoglu, and N. McClamroch, “Control and stabilization of nonholonomic
dynamic systems,” IEEE Transactions on Automatic Control, vol. 37, no. 11, pp. 1746–1757,
1992.

[104] S. K. Soltakhanov, M. P. Yushkov, and S. A. Zegzhda, Mechanics of non-holonomic systems.
Springer, Berlin Heidelberg, 2009.

[105] I. A. Bizyaev, A. V. . Borisov, and S. P. Kuznetsov, “The chaplygin sleigh with friction moving
due to periodic oscillations of an internal mass,” Nonlinear Dynamics, pp. 1–16, 2019.

[106] S. Portugal, T. Hubel, J. Fritz, S. Heese, D. Trobe, , B. Voelkl, S. Hailes, A. M. Wislon,
and J. R. Usherwood, “Upwash exploitation and downwash avoidance by flap phasing in ibis
formation flight.,” Journal of Fluid Mechanics, vol. 505, p. 399–402, 2014.

[107] D. Beal, F. Hover, M. Triantafyllou, J. Liao, and G. Lauder, “Passive propulsion in vortex
wakes,” Journal of Fluid Mechanics, vol. 549, pp. 385–402, 2006.

[108] F. Fish and G. Lauder, “Passive and active flow control by swimming fishes and mammals,”
Annu. Rev. Fluid Mech., vol. 38, pp. 193–224, 2006.

[109] E. D. Tytell and G. V. Lauder, “The hydrodynamics of eel swimming: I. wake structure,”
Journal of Experimental Biology, vol. 207, no. 11, pp. 1825–1841, 2004.

[110] I. K. Bartol, M. Gharib, P. W. Webb, D. Weihs, and M. S. Gordon, “Body-induced vortical
flows: a common mechanism for self-corrective trimming control in boxfishes,” Journal of
Experimental Biology, vol. 208, no. 2, pp. 327–344, 2005.

[111] F. Fish and G. Lauder, “Not just going with the flow,” American Scientist, vol. 101, no. 2,
pp. 114–123, 2013.

[112] M. Gazzola, M. Argentina, and L. Mahadevan, “Gait and speed selection in slender inertial
swimmers,” Proceedings of the National Academy of Sciences of the United States of America,
vol. 112, no. 13, pp. 3874–3879, 2015.

[113] M. F. Platzer, K. D. Jones, J. Young, and J. C. S. Lai, “Flapping wing aerodynamics: progress
and challenges,” AIAA journal, vol. 46, no. 9, pp. 2136–2149, 2008.

[114] K. Pohlmann, F. W. Grasso, and T. Breithaupt, “Tracking wakes: The nocturnal predatory
strategy of piscivorous catfish,” Proceedings of the National Academy of Sciences, vol. 98,
no. 13, pp. 7371–7374, 2001.

[115] K. Pohlmann, J. Atema, and T. Breithaupt, “The importance of the lateral line in nocturnal
predation of piscivorous catfish,” Journal of Experimental Biology, vol. 207, no. 17, pp. 2971–
2978, 2004.

[116] T. J. Pitcher, B. L. Partridge, and C. S. Wardle, “A blind fish can school,” Science, vol. 194,
no. 4268, pp. 963–965, 1976.

142

[117] J. Liao, D. Beal, G. Lauder, and M. Triantafyllou, “The kármán gait: novel body kinematics
of rainbow trout swimming in a vortex street,” Journal of experimental biology, vol. 206, no. 6,
pp. 1059–1073, 2003.

[118] J. C. Liao, “A review of fish swimming mechanics and behaviour in altered flows,” Philosophical
Transactions of the Royal Society B: Biological Sciences, vol. 362, no. 1487, pp. 1973–1993,
2007.

[119] J. C. Liao, “The role of the lateral line and vision on body kinematics and hydrodynamic
preference of rainbow trout in turbulent flow,” Journal of Experimental Biology, vol. 209,
no. 20, pp. 4077–4090, 2006.

[120] S. P. Windsor, S. E. Norris, S. M. Cameron, G. D. Mallinson, and J. C. Montgomery, “The
flow fields involved in hydrodynamic imaging by blind mexican cave fish (astyanax fasciatus).
part i: open water and heading towards a wall,” Journal of Experimental Biology, vol. 213,
no. 22, pp. 3819–3831, 2010.

[121] B. Free and D. A. Paley, “Model-based observer and feedback control design for a rigid
joukowski foil in a karman vortex street,” Bioinspiration & biomimetics, 2017.

[122] R. Venturelli, O. Akanyeti, F. Visentin, J. Ježov, L. D. Chambers, G. Toming, J. Brown,
M. Kruusmaa, W. M. Megill, and P. Fiorini, “Hydrodynamic pressure sensing with an arti-
ficial lateral line in steady and unsteady flows,” Bioinspiration & biomimetics, vol. 7, no. 3,
p. 036004, 2012.

[123] T. Salumäe and M. Kruusmaa, “Flow-relative control of an underwater robot,” Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 469, no. 2153,
p. 20120671, 2013.

[124] F. D. Lagor, L. D. DeVries, K. Waychoff, and D. A. Paley, “Bio-inspired flow sensing and con-
trol: Autonomous rheotaxis using distributed pressure measurements,” Journal of Unmanned
System Technology, vol. 1, no. 3, pp. 78–88, 2013.

[125] D. F. Gomez, F. Lagor, P. B. Kirk, A. Lind, A. R. Jones, and D. A. Paley, “Unsteady dmd-
based flow field estimation from embedded pressure sensors in an actuated airfoil,” in AIAA
Scitech 2019 Forum, p. 0346, 2019.

[126] A. Abdulsadda and X. Tan, “Nonlinear estimation-based dipole source localization for artificial
lateral line systems,” Bioinspiration & biomimetics, vol. 8, no. 2, p. 026005, 2013.

[127] A. T. Abdulsadda and X. Tan, “An artificial lateral line system using ipmc sensor arrays,”
International Journal of Smart and Nano Materials, vol. 3, no. 3, pp. 226–242, 2012.

[128] A. Qualtieri, F. Rizzi, G. Epifani, A. Ernits, M. Kruusmaa, and M. De Vittorio, “Parylene-
coated bioinspired artificial hair cell for liquid flow sensing,” Microelectronic Engineering,
vol. 98, pp. 516–519, 2012.

[129] Y. Yang, J. Chen, J. Engel, S. Pandya, N. Chen, C. Tucker, S. Coombs, D. L. Jones, and
C. Liu, “Distant touch hydrodynamic imaging with an artificial lateral line,” Proceedings of
the National Academy of Sciences, vol. 103, no. 50, pp. 18891–18895, 2006.

[130] X. Zheng, W. Wang, M. Xiong, and G. Xie, “Online state estimation of a fin-actuated under-
water robot using artificial lateral line system,” IEEE Transactions on robotics, vol. 36, no. 2,
pp. 472–487, 2020.

143

[131] G. Dehnhardt, B. Mauck, and H. Bleckmann, “Seal whiskers detect water movements,” Nature,
vol. 394, no. 6690, pp. 235–236, 1998.

[132] A. R. Hardy, B. M. Steinworth, and M. E. Hale, “Touch sensation by pectoral fins of the
catfish,” Proceedings of the Royal Society B, 2016.

[133] R. Williams, N. Neubarth, and M. E. Hale, “The function of fin rays as proprioceptive sensors
in fish,” Nature Communications, vol. 4, p. 1729, 2013.

[134] B. R. Aiello, M. W. Westneat, and M. E. Hale, “Mechanosensation is evolutionarily tuned to
locomotor mechanics,” Proceedings of the National Academy of Sciences, vol. 114, p. 4459–4464,
2017.

[135] B. R. Aiello, A. R. Hardy, M. W. Westneat, and M. E. Hale, “Fins as mechanosensors for
movement and touch-related behaviors,” Integrative and Comparative Biology, vol. 58, no. 5,
p. 844–859, 2018.

[136] L. Li, D. Liu, J. Deng, M. J. Lutz, and G. Xie, “Fish can save energy via proprioceptive
sensing,” Bioinspiration & Biomimetics, vol. 16, p. 056013, aug 2021.

[137] B. Pollard and P. Tallapragada, “Passive appendages improve the maneuverability of fish-like
robots,” IEEE/ASME Transactions on Mechatronics, vol. 24, no. 4, pp. 1586–1596, 2019.

[138] B. Colvert, M. Alsalman, and E. Kanso, “Classifying vortex wakes using neural networks,”
Bioinspiration & biomimetics, vol. 13, no. 2, p. 025003, 2018.

[139] M. Alsalman, B. Colvert, and E. Kanso, “Training bioinspired sensors to classify flows,” Bioin-
spiration & biomimetics, vol. 14, no. 1, p. 016009, 2018.

[140] M. Wang and M. S. Hemati, “Detecting exotic wakes with hydrodynamic sensors,” Theoretical
and Computational Fluid Dynamics, vol. 33, pp. 235–254, 2019.

[141] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa, S. Takeda, H. Numata,
D. Nakano, and A. Hirose, “Recent advances in physical reservoir computing: A review,”
Neural Networks, vol. 115, pp. 100–123, 2019.

[142] D. J. Gauthier, E. Bollt, A. Griffith, and W. A. S. Barbosa, “Next generation reservoir com-
puting,” Nature Communications, vol. 12, p. 5564, 2021.

[143] B. Pollard and P. Tallapragada, “Learning hydrodynamic signatures through proprioceptive
sensing by bioinspired swimmers,” Bioinspiration & Biomimetics, vol. 16, no. 2, p. 026014,
2021.

[144] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Deep learning
for time series classification: a review,” Data mining and knowledge discovery, vol. 33, no. 4,
pp. 917–963, 2019.

[145] R. O. Duda and P. E. Hart, “Use of the hough transformation to detect lines and curves in
pictures,” Communications of the ACM, vol. 15, no. 1, pp. 11–15, 1972.

[146] G. K. Taylor, R. L. Nudds, and A. L. R. Thomas, “Flying and swimming animals cruise at a
strouhal number tuned for high power efficiency,” Nature, vol. 425, pp. 707–711, 2003.

[147] K. Fukushima and S. Miyake, “Neocognitron: A self-organizing neural network model for
a mechanism of visual pattern recognition,” in Competition and cooperation in neural nets,
pp. 267–285, Springer, 1982.

144

[148] B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu, “Convolutional neural networks for time series
classification,” Journal of Systems Engineering and Electronics, vol. 28, no. 1, pp. 162–169,
2017.

[149] L. Prechelt, “Early stopping-but when?,” in Neural Networks: Tricks of the trade, pp. 55–69,
Springer, 1998.

[150] C. Rodwell and P. Tallapragada, “Embodied hydrodynamic sensing and estimation using koop-
man modes in an underwater environment,” in 2022 American Control Conference (ACC),
pp. 1632–1637, IEEE, 2022.

[151] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should I trust you?’: Explaining the predictions
of any classifier,” in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1135–44, Association for Computing Machinery,
2016.

[152] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek, “On pixel-wise
explanations for non-linear classifier decisions by layer-wise relevance propagation,” PLOS
ONE, vol. 10, pp. 1–46, 07 2015.

[153] T. J. Pitcher, B. Partridge, and C. S. Wardle, “A blind fish can school,” Science, vol. 194,
no. 4268, pp. 963–965, 1976.

[154] H. Bleckmann and R. Zelick, “Lateral line system of fish,” Integrative zoology, vol. 4, no. 1,
pp. 13–25, 2009.

[155] L. Sirovich, “Turbulence and the dynamics of coherent structures. part 1: Coherent structures,”
Quart. Appl. Math, vol. 45, no. 3, pp. 561–571, 1987.

[156] P. J. H. G. Berkooz and J. L. Lumley, “The proper orthogonal decomposition in the analysis
of turbulent flows,” Annual Review of Fluid Mechanics, vol. 25, no. 1, pp. 539–575, 2003.

[157] R. Everson and L. Sirovich, “Karhunen–loève procedure for gappy data,” J. Opt. Soc. Am. A,
vol. 12, no. 8, pp. 1657–1664, 1995.

[158] M. D. T. Bui-Thanh and K. E. Willcox, “Aerodynamic data reconstruction and inverse design
using proper orthogonal decomposition.,” AIAA Journal, vol. 42, no. 8, p. 1505–1516, 2004.

[159] K. E. Willcox, “Unsteady flow sensing and estimation via the gappy proper orthogonal decom-
position.,” Computers & Fluids, vol. 35, no. 2, pp. 208–226, 2006.

[160] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. S. Henningson, “Spectral analysis of
nonlinear flows,” Journal of fluid mechanics, vol. 641, pp. 115–127, 2009.

[161] P. J. Schmid, “Dynamic mode decomposition of numerical and experimental data,” Journal of
fluid mechanics, vol. 656, pp. 5–28, 2010.

[162] E. M. B. Q. Li, F. Deitrich and I. G. Kevrekidis, “Extended dynamic mode decomposition with
dictionary learning: A data-driven adaptive spectral decomposition of the koopman operator,”
CHAOS, vol. 27, p. 103111, 2017.

[163] S. Otto and C. Rowley, “Linearly recurrent autoencoder networks for learning dynamics,”
SIAM Journal on Applied Dynamical Systems, vol. 18, no. 1, p. 558–593, 2019.

[164] J. N. K. K. Champion, B. Lusch and S. L. Brunton, “Data-driven discovery of coordinates and
governing equations,” PNAS, vol. 116, no. 45, p. 22445–22451, 2019.

145

[165] A. Y. M. Raissi and G. Karniadakis, “Hidden fluid mechanics: Learning velocity and pressure
fields from flow visualizations,” Science, vol. 367, no. 6481, pp. 1026–1030, 2020.

[166] S. L. Brunton, B. R. Noack, and P. Koumoutsakos, “Machine learning for fluid mechanics,”
Annual Review of Fluid Mechanics, vol. 52, p. 2020, 2019.

[167] K. M. J. L. Callaham and S. L. Brunton, “Robust flow reconstruction from limited measure-
ments via sparse representation,” Physical Review Fluids, vol. 4, no. 2, p. 103907, 2019.

[168] B. R. N. S. Brunton and P. Koumoutsakos, “Machine learning for fluid mechanics,” Annual
Review of Fluid Mechanics, vol. 52, no. 1, pp. 477–508, 2020.

[169] M. Alsalman, B. Colvert, and E. Kanso, “Training bioinspired sensors to classify flows,” Bioin-
spiration & biomimetics, vol. 14, no. 1, p. 016009, 2018.

[170] B. Colvert, M. Alsalman, and E. Kanso, “Classifying vortex wakes using neural networks,”
Bioinspiration & biomimetics, vol. 13, no. 2, p. 025003, 2018.

[171] B. Pollard and P. Tallapragada, “Sensing and classification of ambient vortex wake from the
kinematics of a bioinspired swimming robot using neural networks,” in Proceedings of the
Dynamic Systems Conference, 2020.

[172] I. Bright, G. Lin, and J. N. Kutz, “Compressive sensing based machine learning strategy for
characterizing the flow around a cylinder with limited pressure measurements,” Physics of
Fluids, vol. 25, no. 12, p. 127102, 2013.

[173] J. M. Lidard, D. Goswami, D. Snyder, G. Sedky, A. R. Jones, and D. A. Paley, “Data-driven
estimation of the unsteady flowfield near an actuated airfoil,” Journal of Guidance, Control,
and Dynamics, vol. 42, no. 10, pp. 2279–2287, 2019.

[174] J. M. Lidard, D. Goswami, D. Snyder, G. Sedky, A. R. Jones, and D. A. Paley, “Output
feedback control for lift maximization of a pitching airfoil,” Journal of Guidance, Control, and
Dynamics, vol. 44, no. 3, pp. 587–594, 2021.

[175] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A data–driven approximation of the
Koopman operator: Extending dynamic mode decomposition,” Journal of Nonlinear Science,
vol. 25, no. 6, pp. 1307–1346, 2015.

[176] B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal linear embeddings of
nonlinear dynamics,” Nature communications, vol. 9, no. 1, p. 4950, 2018.

[177] L. Li, M. Nagy, J. M. Graving, J. Bak-Coleman, G. Xie, and I. D. Couzin, “Vortex phase
matching as a strategy for schooling in robots and in fish,” Nature Communications, vol. 11,
no. 1, p. 5408, 2020.

[178] S. J. Cooke, J. N. Bergman, W. M. Twardek, M. L. Piczak, G. A. Casselberry, K. Lutek, L. S.
Dahlmo, K. Birnie-Gauvin, L. P. Griffin, J. W. Brownscombe, et al., “The movement ecology
of fishes,” Journal of Fish Biology, vol. 101, no. 4, pp. 756–779, 2022.

[179] G. Liu, A. Wang, X. Wang, P. Liu, et al., “A review of artificial lateral line in sensor fabrication
and bionic applications for robot fish,” Applied Bionics and Biomechanics, vol. 2016, 2016.

[180] P. Dubois, T. Gomez, L. Planckaert, and L. Perret, “Machine learning for fluid flow recon-
struction from limited measurements,” Journal of Computational Physics, vol. 448, p. 110733,
2022.

146

[181] N. B. Erichson, L. Mathelin, Z. Yao, S. L. Brunton, M. W. Mahoney, and J. N. Kutz, “Shallow
neural networks for fluid flow reconstruction with limited sensors,” Proceedings of the Royal
Society A, vol. 476, no. 2238, 2020.

[182] C. Rodwell, B. Pollard, and P. Tallapragada, “Proprioceptive wake classification by a body
with a passive tail,” Bioinspiration & Biomimetics, vol. 18, no. 4, p. 046001, 2023.

[183] M. Raissi, Z. Wang, M. S. Triantafyllou, and G. E. Karniadakis, “Deep learning of vortex-
induced vibrations,” Journal of Fluid Mechanics, vol. 861, pp. 119–137, 2019.

[184] P. J. Schmid, “Dynamic mode decomposition of numerical and experimental data,” Journal of
Fluid Mechanics, vol. 656, pp. 5–28, 2010.

[185] P. J. Schmid, L. Li, M. P. Juniper, and O. Pust, “Applications of the dynamic mode decom-
position,” Theoretical and Computational Fluid Dynamics, vol. 25, pp. 249–259, 2011.

[186] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. S. Henningson, “Spectral analysis of
nonlinear flows,” Journal of Fluid Mechanics, vol. 641, pp. 115–127, 2009.

[187] H. Eivazi, H. Veisi, M. H. Naderi, and V. Esfahanian, “Deep neural networks for nonlinear
model order reduction of unsteady flows,” Physics of Fluids, vol. 32, no. 10, 2020.

[188] B. Zhang, “Nonlinear mode decomposition via physics-assimilated convolutional autoencoder
for unsteady flows over an airfoil,” Physics of Fluids, vol. 35, no. 9, 2023.

[189] C. H. Williamson and R. Govardhan, “Vortex-induced vibrations,” Annual Review of Fluid
Mechanics, vol. 36, pp. 413–455, 2004.

[190] M. Zdravkovich, “Flow induced oscillations of two interfering circular cylinders,” Journal of
Sound and Vibration, vol. 101, no. 4, pp. 511–521, 1985.

[191] N. Mahir and D. Rockwell, “Vortex formation from a forced system of two cylinders. part i:
Tandem arrangement,” Journal of Fluids and Structures, vol. 10, no. 5, pp. 473–489, 1996.

[192] J. R. Meneghini, F. Saltara, C. d. L. R. Siqueira, and J. Ferrari Jr, “Numerical simulation
of flow interference between two circular cylinders in tandem and side-by-side arrangements,”
Journal of Fluids and Structures, vol. 15, no. 2, pp. 327–350, 2001.

[193] S. Mittal and V. Kumar, “Flow-induced oscillations of two cylinders in tandem and staggered
arrangements,” Journal of Fluids and Structures, vol. 15, no. 5, pp. 717–736, 2001.

[194] H. Jing, X. Min, X. He, and Y. Yang, “Wake-induced interactive vibrations of two tandem
cables with a center-to-center distance of 2d,” Ocean Engineering, vol. 266, p. 113259, 2022.

[195] Z.-S. Chen, S. Wang, and X. Jiang, “Effect of wake interference on vibration response of dual
tandem flexible pipe,” Ocean Engineering, vol. 269, p. 113497, 2023.

[196] M. O. Awadallah, C. Jiang, and O. el Moctar, “Numerical study into the impact of fixed up-
stream cylinder diameter ratios on vibration of leeward tandem cylinders,” Ocean Engineering,
vol. 285, p. 115367, 2023.

[197] G. R. d. S. Assi, P. W. Bearman, N. Kitney, and M. Tognarelli, “Suppression of wake-induced
vibration of tandem cylinders with free-to-rotate control plates,” Journal of Fluids and Struc-
tures, vol. 26, no. 7-8, pp. 1045–1057, 2010.

[198] P. Li, L. Liu, Z. Dong, F. Wang, and H. Guo, “Investigation on the spoiler vibration suppression
mechanism of discrete helical strakes of deep-sea riser undergoing vortex-induced vibration,”
International Journal of Mechanical Sciences, vol. 172, p. 105410, 2020.

147

[199] M. Zdravkovich and D. Pridden, “Interference between two circular cylinders; series of un-
expected discontinuities,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 2,
no. 3, pp. 255–270, 1977.

[200] G. Papaioannou, D. Yue, M. Triantafyllou, and G. Karniadakis, “On the effect of spacing
on the vortex-induced vibrations of two tandem cylinders,” Journal of Fluids and Structures,
vol. 24, no. 6, pp. 833–854, 2008.

[201] D. Kumar, K. Sourav, and S. Sen, “Steady separated flow around a pair of identical square
cylinders in tandem array at low reynolds numbers,” Computers & Fluids, vol. 191, p. 104244,
2019.

[202] W. Yang and M. A. Stremler, “Critical spacing of stationary tandem circular cylinders at
re=100,” Journal of Fluids and Structures, vol. 89, pp. 49–60, 2019.

[203] K. Sourav and S. Sen, “Transition of viv-only motion of a square cylinder to combined viv and
galloping at low reynolds numbers,” Ocean Engineering, vol. 187, p. 106208, 2019.

[204] H. Zhu, C. Zhang, and W. Liu, “Wake-induced vibration of a circular cylinder at a low reynolds
number of 100,” Physics of Fluids, vol. 31, no. 7, 2019.

[205] H. Zhu, H. Ping, R. Wang, Y. Bao, D. Zhou, and Z. Han, “Flow-induced vibration of a flexible
triangular cable at low reynolds numbers,” Physics of Fluids, vol. 31, no. 5, 2019.

[206] H. Zhang, L. Zhou, P. Deng, and T. K. Tse, “Fluid–structure-coupled koopman mode analysis
of free oscillating twin-cylinders,” Physics of Fluids, vol. 34, no. 9, 2022.

[207] K. Sourav, P. K. Yadav, P. Tallapragada, and D. Kumar, “Simultaneous streamwise and cross-
stream oscillations of a diamond oscillator at low reynolds numbers,” Physics of Fluids, vol. 34,
no. 6, 2022.

[208] D. Kumar and K. Sourav, “Vortex-induced vibrations of tandem diamond cylinders: A novel
lock-in behavior,” International Journal of Mechanical Sciences, vol. 255, p. 108463, 2023.

[209] S. Sen and S. Mittal, “Free vibration of a square cylinder at low reynolds numbers,” Journal
of Fluids and Structures, vol. 27, no. 5-6, pp. 875–884, 2011.

[210] K. Sourav, D. Kumar, and S. Sen, “Vortex-induced vibrations of an elliptic cylinder of low
mass ratio: Identification of new response branches,” Physics of Fluids, vol. 32, no. 2, 2020.

[211] K. Taira, S. L. Brunton, S. T. Dawson, C. W. Rowley, T. Colonius, B. J. McKeon, O. T.
Schmidt, S. Gordeyev, V. Theofilis, and L. S. Ukeiley, “Modal analysis of fluid flows: An
overview,” Aiaa Journal, vol. 55, no. 12, pp. 4013–4041, 2017.

148

	Physics-based Machine Learning Methods for Control and Sensing in Fish-like Robots
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Summary of Chapters

	Curriculum Reinforcement Learning for Path Tracking
	Introduction
	Nonholonomic Constraints - Chaplygin Sleigh and the Joukowski Foil in an Inviscid Fluid
	Periodic Forcing and Limit Cycles in Reduced Velocity Space
	Parameter Estimation for the Surrogate Model
	Reinforcement Learning
	Results - Velocity and Path Tracking
	Conclusion

	Nonholonomic constraint-induced bistability
	Introduction
	Mechanical model and governing equations
	Tunable limit cycles and configuration changes
	Conclusion

	Sensing with passive appendages
	Introduction
	Experiments
	Wake Classification and Neural Network Architecture
	Wake Classification Results
	Discussion and Conclusion

	Obstacle Localization using spectral properties of the Koopman operator
	 Introduction
	 Problem Definition
	 Dynamic Mode Decomposition
	 Estimation Approaches
	 Results
	Conclusion

	Flow Field Reconstruction from Surface Measurements in Fluid-Structure Interaction
	Introduction
	Numerical Simulation of Fluid-Structure Interaction
	Dynamic Mode Decomposition
	Flow Reconstruction
	Results
	Conclusion

	Conclusions
	Appendices
	Two-link Sleigh Equations
	Kinematic Classification Confusion Matrices

