3,459 research outputs found

    Solving Geometric Knapsack Problems using Tabu Search Heuristics

    Get PDF
    An instance of the geometric knapsack problem occurs in air lift loading where a set of cargo must be chosen to pack in a given fleet of aircraft. This paper demonstrates a new heuristic to solve this problem in a reasonable amount of time with a higher quality solution then previously reported in literature. We also report a new tabu search heuristic to solve geometric knapsack problems

    Approximating Geometric Knapsack via L-packings

    Full text link
    We study the two-dimensional geometric knapsack problem (2DK) in which we are given a set of n axis-aligned rectangular items, each one with an associated profit, and an axis-aligned square knapsack. The goal is to find a (non-overlapping) packing of a maximum profit subset of items inside the knapsack (without rotating items). The best-known polynomial-time approximation factor for this problem (even just in the cardinality case) is (2 + \epsilon) [Jansen and Zhang, SODA 2004]. In this paper, we break the 2 approximation barrier, achieving a polynomial-time (17/9 + \epsilon) < 1.89 approximation, which improves to (558/325 + \epsilon) < 1.72 in the cardinality case. Essentially all prior work on 2DK approximation packs items inside a constant number of rectangular containers, where items inside each container are packed using a simple greedy strategy. We deviate for the first time from this setting: we show that there exists a large profit solution where items are packed inside a constant number of containers plus one L-shaped region at the boundary of the knapsack which contains items that are high and narrow and items that are wide and thin. As a second major and the main algorithmic contribution of this paper, we present a PTAS for this case. We believe that this will turn out to be useful in future work in geometric packing problems. We also consider the variant of the problem with rotations (2DKR), where items can be rotated by 90 degrees. Also, in this case, the best-known polynomial-time approximation factor (even for the cardinality case) is (2 + \epsilon) [Jansen and Zhang, SODA 2004]. Exploiting part of the machinery developed for 2DK plus a few additional ideas, we obtain a polynomial-time (3/2 + \epsilon)-approximation for 2DKR, which improves to (4/3 + \epsilon) in the cardinality case.Comment: 64pages, full version of FOCS 2017 pape

    Hybrid Rounding Techniques for Knapsack Problems

    Get PDF
    We address the classical knapsack problem and a variant in which an upper bound is imposed on the number of items that can be selected. We show that appropriate combinations of rounding techniques yield novel and powerful ways of rounding. As an application of these techniques, we present a linear-storage Polynomial Time Approximation Scheme (PTAS) and a Fully Polynomial Time Approximation Scheme (FPTAS) that compute an approximate solution, of any fixed accuracy, in linear time. This linear complexity bound gives a substantial improvement of the best previously known polynomial bounds.Comment: 19 LaTeX page

    Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack

    Get PDF
    The area of parameterized approximation seeks to combine approximation and parameterized algorithms to obtain, e.g., (1+epsilon)-approximations in f(k,epsilon)n^O(1) time where k is some parameter of the input. The goal is to overcome lower bounds from either of the areas. We obtain the following results on parameterized approximability: - In the maximum independent set of rectangles problem (MISR) we are given a collection of n axis parallel rectangles in the plane. Our goal is to select a maximum-cardinality subset of pairwise non-overlapping rectangles. This problem is NP-hard and also W[1]-hard [Marx, ESA\u2705]. The best-known polynomial-time approximation factor is O(log log n) [Chalermsook and Chuzhoy, SODA\u2709] and it admits a QPTAS [Adamaszek and Wiese, FOCS\u2713; Chuzhoy and Ene, FOCS\u2716]. Here we present a parameterized approximation scheme (PAS) for MISR, i.e. an algorithm that, for any given constant epsilon>0 and integer k>0, in time f(k,epsilon)n^g(epsilon), either outputs a solution of size at least k/(1+epsilon), or declares that the optimum solution has size less than k. - In the (2-dimensional) geometric knapsack problem (2DK) we are given an axis-aligned square knapsack and a collection of axis-aligned rectangles in the plane (items). Our goal is to translate a maximum cardinality subset of items into the knapsack so that the selected items do not overlap. In the version of 2DK with rotations (2DKR), we are allowed to rotate items by 90 degrees. Both variants are NP-hard, and the best-known polynomial-time approximation factor is 2+epsilon [Jansen and Zhang, SODA\u2704]. These problems admit a QPTAS for polynomially bounded item sizes [Adamaszek and Wiese, SODA\u2715]. We show that both variants are W[1]-hard. Furthermore, we present a PAS for 2DKR. For all considered problems, getting time f(k,epsilon)n^O(1), rather than f(k,epsilon)n^g(epsilon), would give FPT time f\u27(k)n^O(1) exact algorithms by setting epsilon=1/(k+1), contradicting W[1]-hardness. Instead, for each fixed epsilon>0, our PASs give (1+epsilon)-approximate solutions in FPT time. For both MISR and 2DKR our techniques also give rise to preprocessing algorithms that take n^g(epsilon) time and return a subset of at most k^g(epsilon) rectangles/items that contains a solution of size at least k/(1+epsilon) if a solution of size k exists. This is a special case of the recently introduced notion of a polynomial-size approximate kernelization scheme [Lokshtanov et al., STOC\u2717]

    The Geometry of Scheduling

    Full text link
    We consider the following general scheduling problem: The input consists of n jobs, each with an arbitrary release time, size, and a monotone function specifying the cost incurred when the job is completed at a particular time. The objective is to find a preemptive schedule of minimum aggregate cost. This problem formulation is general enough to include many natural scheduling objectives, such as weighted flow, weighted tardiness, and sum of flow squared. Our main result is a randomized polynomial-time algorithm with an approximation ratio O(log log nP), where P is the maximum job size. We also give an O(1) approximation in the special case when all jobs have identical release times. The main idea is to reduce this scheduling problem to a particular geometric set-cover problem which is then solved using the local ratio technique and Varadarajan's quasi-uniform sampling technique. This general algorithmic approach improves the best known approximation ratios by at least an exponential factor (and much more in some cases) for essentially all of the nontrivial common special cases of this problem. Our geometric interpretation of scheduling may be of independent interest.Comment: Conference version in FOCS 201

    Lower Bounds for the Average and Smoothed Number of Pareto Optima

    Get PDF
    Smoothed analysis of multiobjective 0-1 linear optimization has drawn considerable attention recently. The number of Pareto-optimal solutions (i.e., solutions with the property that no other solution is at least as good in all the coordinates and better in at least one) for multiobjective optimization problems is the central object of study. In this paper, we prove several lower bounds for the expected number of Pareto optima. Our basic result is a lower bound of \Omega_d(n^(d-1)) for optimization problems with d objectives and n variables under fairly general conditions on the distributions of the linear objectives. Our proof relates the problem of lower bounding the number of Pareto optima to results in geometry connected to arrangements of hyperplanes. We use our basic result to derive (1) To our knowledge, the first lower bound for natural multiobjective optimization problems. We illustrate this for the maximum spanning tree problem with randomly chosen edge weights. Our technique is sufficiently flexible to yield such lower bounds for other standard objective functions studied in this setting (such as, multiobjective shortest path, TSP tour, matching). (2) Smoothed lower bound of min {\Omega_d(n^(d-1.5) \phi^{(d-log d) (1-\Theta(1/\phi))}), 2^{\Theta(n)}}$ for the 0-1 knapsack problem with d profits for phi-semirandom distributions for a version of the knapsack problem. This improves the recent lower bound of Brunsch and Roeglin

    Recent Advances in Multi-dimensional Packing Problems

    Get PDF
    • 

    corecore