We study the two-dimensional geometric knapsack problem (2DK) in which we are
given a set of n axis-aligned rectangular items, each one with an associated
profit, and an axis-aligned square knapsack. The goal is to find a
(non-overlapping) packing of a maximum profit subset of items inside the
knapsack (without rotating items). The best-known polynomial-time approximation
factor for this problem (even just in the cardinality case) is (2 + \epsilon)
[Jansen and Zhang, SODA 2004].
In this paper, we break the 2 approximation barrier, achieving a
polynomial-time (17/9 + \epsilon) < 1.89 approximation, which improves to
(558/325 + \epsilon) < 1.72 in the cardinality case. Essentially all prior work
on 2DK approximation packs items inside a constant number of rectangular
containers, where items inside each container are packed using a simple greedy
strategy. We deviate for the first time from this setting: we show that there
exists a large profit solution where items are packed inside a constant number
of containers plus one L-shaped region at the boundary of the knapsack which
contains items that are high and narrow and items that are wide and thin. As a
second major and the main algorithmic contribution of this paper, we present a
PTAS for this case. We believe that this will turn out to be useful in future
work in geometric packing problems.
We also consider the variant of the problem with rotations (2DKR), where
items can be rotated by 90 degrees. Also, in this case, the best-known
polynomial-time approximation factor (even for the cardinality case) is (2 +
\epsilon) [Jansen and Zhang, SODA 2004]. Exploiting part of the machinery
developed for 2DK plus a few additional ideas, we obtain a polynomial-time (3/2
+ \epsilon)-approximation for 2DKR, which improves to (4/3 + \epsilon) in the
cardinality case.Comment: 64pages, full version of FOCS 2017 pape