201 research outputs found

    Development of a geovisual analytics environment using parallel coordinates with applications to tropical cyclone trend analysis

    Get PDF
    A global transformation is being fueled by unprecedented growth in the quality, quantity, and number of different parameters in environmental data through the convergence of several technological advances in data collection and modeling. Although these data hold great potential for helping us understand many complex and, in some cases, life-threatening environmental processes, our ability to generate such data is far outpacing our ability to analyze it. In particular, conventional environmental data analysis tools are inadequate for coping with the size and complexity of these data. As a result, users are forced to reduce the problem in order to adapt to the capabilities of the tools. To overcome these limitations, we must complement the power of computational methods with human knowledge, flexible thinking, imagination, and our capacity for insight by developing visual analysis tools that distill information into the actionable criteria needed for enhanced decision support. In light of said challenges, we have integrated automated statistical analysis capabilities with a highly interactive, multivariate visualization interface to produce a promising approach for visual environmental data analysis. By combining advanced interaction techniques such as dynamic axis scaling, conjunctive parallel coordinates, statistical indicators, and aerial perspective shading, we provide an enhanced variant of the classical parallel coordinates plot. Furthermore, the system facilitates statistical processes such as stepwise linear regression and correlation analysis to assist in the identification and quantification of the most significant predictors for a particular dependent variable. These capabilities are combined into a unique geovisual analytics system that is demonstrated via a pedagogical case study and three North Atlantic tropical cyclone climate studies using a systematic workflow. In addition to revealing several significant associations between environmental observations and tropical cyclone activity, this research corroborates the notion that enhanced parallel coordinates coupled with statistical analysis can be used for more effective knowledge discovery and confirmation in complex, real-world data sets

    Development of a geovisual analytics environment using parallel coordinates with applications to tropical cyclone trend analysis

    Get PDF
    A global transformation is being fueled by unprecedented growth in the quality, quantity, and number of different parameters in environmental data through the convergence of several technological advances in data collection and modeling. Although these data hold great potential for helping us understand many complex and, in some cases, life-threatening environmental processes, our ability to generate such data is far outpacing our ability to analyze it. In particular, conventional environmental data analysis tools are inadequate for coping with the size and complexity of these data. As a result, users are forced to reduce the problem in order to adapt to the capabilities of the tools. To overcome these limitations, we must complement the power of computational methods with human knowledge, flexible thinking, imagination, and our capacity for insight by developing visual analysis tools that distill information into the actionable criteria needed for enhanced decision support. In light of said challenges, we have integrated automated statistical analysis capabilities with a highly interactive, multivariate visualization interface to produce a promising approach for visual environmental data analysis. By combining advanced interaction techniques such as dynamic axis scaling, conjunctive parallel coordinates, statistical indicators, and aerial perspective shading, we provide an enhanced variant of the classical parallel coordinates plot. Furthermore, the system facilitates statistical processes such as stepwise linear regression and correlation analysis to assist in the identification and quantification of the most significant predictors for a particular dependent variable. These capabilities are combined into a unique geovisual analytics system that is demonstrated via a pedagogical case study and three North Atlantic tropical cyclone climate studies using a systematic workflow. In addition to revealing several significant associations between environmental observations and tropical cyclone activity, this research corroborates the notion that enhanced parallel coordinates coupled with statistical analysis can be used for more effective knowledge discovery and confirmation in complex, real-world data sets

    GeoCAM: A geovisual analytics workspace to contextualize and interpret statements about movement

    Get PDF
    This article focuses on integrating computational and visual methods in a system that supports analysts to identify extract map and relate linguistic accounts of movement. We address two objectives: (1) build the conceptual theoretical and empirical framework needed to represent and interpret human-generated directions; and (2) design and implement a geovisual analytics workspace for direction document analysis. We have built a set of geo-enabled computational methods to identify documents containing movement statements and a visual analytics environment that uses natural language processing methods iteratively with geographic database support to extract interpret and map geographic movement references in context. Additionally analysts can provide feedback to improve computational results. To demonstrate the value of this integrative approach we have realized a proof-of-concept implementation focusing on identifying and processing documents that contain human-generated route directions. Using our visual analytic interface an analyst can explore the results provide feedback to improve those results pose queries against a database of route directions and interactively represent the route on a map

    Geovisual analytics for spatial decision support: Setting the research agenda

    Get PDF
    This article summarizes the results of the workshop on Visualization, Analytics & Spatial Decision Support, which took place at the GIScience conference in September 2006. The discussions at the workshop and analysis of the state of the art have revealed a need in concerted cross‐disciplinary efforts to achieve substantial progress in supporting space‐related decision making. The size and complexity of real‐life problems together with their ill‐defined nature call for a true synergy between the power of computational techniques and the human capabilities to analyze, envision, reason, and deliberate. Existing methods and tools are yet far from enabling this synergy. Appropriate methods can only appear as a result of a focused research based on the achievements in the fields of geovisualization and information visualization, human‐computer interaction, geographic information science, operations research, data mining and machine learning, decision science, cognitive science, and other disciplines. The name ‘Geovisual Analytics for Spatial Decision Support’ suggested for this new research direction emphasizes the importance of visualization and interactive visual interfaces and the link with the emerging research discipline of Visual Analytics. This article, as well as the whole special issue, is meant to attract the attention of scientists with relevant expertise and interests to the major challenges requiring multidisciplinary efforts and to promote the establishment of a dedicated research community where an appropriate range of competences is combined with an appropriate breadth of thinking

    HEALTH GeoJunction: place-time-concept browsing of health publications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The volume of health science publications is escalating rapidly. Thus, keeping up with developments is becoming harder as is the task of finding important cross-domain connections. When geographic location is a relevant component of research reported in publications, these tasks are more difficult because standard search and indexing facilities have limited or no ability to identify geographic foci in documents. This paper introduces <it><smcaps>HEALTH</smcaps> GeoJunction</it>, a web application that supports researchers in the task of quickly finding scientific publications that are relevant geographically and temporally as well as thematically.</p> <p>Results</p> <p><it><smcaps>HEALTH</smcaps> GeoJunction </it>is a geovisual analytics-enabled web application providing: (a) web services using computational reasoning methods to extract place-time-concept information from bibliographic data for documents and (b) visually-enabled place-time-concept query, filtering, and contextualizing tools that apply to both the documents and their extracted content. This paper focuses specifically on strategies for visually-enabled, iterative, facet-like, place-time-concept filtering that allows analysts to quickly drill down to scientific findings of interest in PubMed abstracts and to explore relations among abstracts and extracted concepts in place and time. The approach enables analysts to: find publications without knowing all relevant query parameters, recognize unanticipated geographic relations within and among documents in multiple health domains, identify the thematic emphasis of research targeting particular places, notice changes in concepts over time, and notice changes in places where concepts are emphasized.</p> <p>Conclusions</p> <p>PubMed is a database of over 19 million biomedical abstracts and citations maintained by the National Center for Biotechnology Information; achieving quick filtering is an important contribution due to the database size. Including geography in filters is important due to rapidly escalating attention to geographic factors in public health. The implementation of mechanisms for iterative place-time-concept filtering makes it possible to narrow searches efficiently and quickly from thousands of documents to a small subset that meet place-time-concept constraints. Support for a <it>more-like-this </it>query creates the potential to identify unexpected connections across diverse areas of research. Multi-view visualization methods support understanding of the place, time, and concept components of document collections and enable comparison of filtered query results to the full set of publications.</p

    From GeoVisualization to visual-analytics: methodologies and techniques for human-information discourse

    Get PDF
    2010 - 2011The objective of our research is to give support to decision makers when facing problems which require rapid solutions in spite of the complexity of scenarios under investigation. In order to achieve this goal our studies have been focused on GeoVisualization and GeoVisual Analytics research field, which play a relevant role in this scope, because they exploit results from several disciplines, such as exploratory data analysis and GIScience, to provide expert users with highly interactive tools by which they can both visually synthesize information from large datasets and perform complex analytical tasks. The research we are carrying out along this line is meant to develop software applications capable both to build an immediate overview of a scenario and to explore elements featuring it. To this aim, we are defining methodologies and techniques which embed key aspects from different disciplines, such as augmented reality and location-based services. Their integration is targeted to realize advanced tools where the geographic component role is primary and is meant to contribute to a human-information discourse... [edited by author]X n.s

    A semi-supervised learning framework based on spatio-temporal semantic events for maritime anomaly detection and behavior analysis

    No full text
    International audienceDetection of abnormal movements of mobile objects has recently received a lot of attention due to the increasing availability of movement data and their potential for ensuring security in many different contexts. As timely detection of these events is often important, most current approaches use automated data-driven approaches. While these approaches have proved to be effective in specific contexts, they are not easily accepted by operators in charge of surveillance due, among other reasons, to the lack of user involvement during the detection process. To improve the detection and analysis of maritime anomalies this paper explores the potential of spatial ontologies for modeling maritime operator knowledge. The goal of this research is to facilitate the integration of human knowledge by modeling it in the form of semantic rules to improve confidence and trust in the anomaly detection system

    Integrating Spatial Data Linkage and Analysis Services in a Geoportal for China Urban Research

    Full text link
    Many geoportals are now evolving into online analytical environments, where large amounts of data and various analysis methods are integrated. These spatiotemporal data are often distributed in different databases and exist in heterogeneous forms, even when they refer to the same geospatial entities. Besides, existing open standards lack sufficient expression of the attribute semantics. Client applications or other services thus have to deal with unrelated preprocessing tasks, such as data transformation and attribute annotation, leading to potential inconsistencies. Furthermore, to build informative interfaces that guide users to quickly understand the analysis methods, an analysis service needs to explicitly model the method parameters, which are often interrelated and have rich auxiliary information. This work presents the design of the spatial data linkage and analysis services in a geoportal for China urban research. The spatial data linkage service aggregates multisource heterogeneous data into linked layers with flexible attribute mapping, providing client applications and services with a unified access as if querying a big table. The spatial analysis service incorporates parameter hierarchy and grouping by extending the standard WPS service, and data‐dependent validation in computation components. This platform can help researchers efficiently explore and analyze spatiotemporal data online.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110740/1/tgis12084.pd

    From SpaceStat to CyberGIS: Twenty Years of Spatial Data Analysis Software

    Get PDF
    This essay assesses the evolution of the way in which spatial data analytical methods have been incorporated into software tools over the past two decades. It is part retrospective and prospective, going beyond a historical review to outline some ideas about important factors that drove the software development, such as methodological advances, the open source movement and the advent of the internet and cyberinfrastructure. The review highlights activities carried out by the author and his collaborators and uses SpaceStat, GeoDa, PySAL and recent spatial analytical web services developed at the ASU GeoDa Center as illustrative examples. It outlines a vision for a spatial econometrics workbench as an example of the incorporation of spatial analytical functionality in a cyberGIS.
    corecore