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Abstract: This article focuses on integrating computational and visual methods in a system
that supports analysts to identify, extract, map, and relate linguistic accounts of movement.
We address two objectives: (1) build the conceptual, theoretical, and empirical framework
needed to represent and interpret human-generated directions; and (2) design and imple-
ment a geovisual analytics workspace for direction document analysis. We have built a
set of geo-enabled, computational methods to identify documents containing movement
statements, and a visual analytics environment that uses natural language processingmeth-
ods iteratively with geographic database support to extract, interpret, and map geographic
movement references in context. Additionally, analysts can provide feedback to improve
computational results. To demonstrate the value of this integrative approach, we have
realized a proof-of-concept implementation focusing on identifying and processing docu-
ments that contain human-generated route directions. Using our visual analytic interface,
an analyst can explore the results, provide feedback to improve those results, pose queries
against a database of route directions, and interactively represent the route on a map.
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1 Introduction

Research in geographic information retrieval (GIR) has been quite successful in developing
computational methods to identify, extract, and geocode place names found in text docu-
ments [31, 33, 40]. While place name disambiguation is an important and sometimes hard
task (e.g., there were 1530 instances of the name “Columbia” in the geographic names infor-
mation system, GNIS [47], when retrieved on September 12th, 2011), place name extraction
is just a small part of the challenge of making effective use of geographic information en-
coded in documents. We present a geovisual analytics approach to identifying, extracting,
mapping, and querying human-generated route directions. Our results have potential di-
rect applicabilitywithin wayfinding systems that can generatemaps from verbal directions.
The approach is also relevant as a method to build a large corpus of human-generated route
directions, which can serve as input to research on human conceptualization of movement
in space [49]. The approach developed is generalizable to a wider range of movement
statements beyond directions, e.g., topological-cognitive assessments of geographic scale
movement patterns [23], conceptualization of turn directions in travel documents [25], and
so forth.

Extracting and mapping human-generated route directions computationally is a hard
problem because these directions can include many ambiguous terms, inconsistent abbre-
viations, and imprecise references to places (e.g., “from the north”). Further, the typical
geocoding challenge of locating named entities is harder for streets than named places
since they can be even less unique (e.g., “Main Street”). Human analysts are often able to
interpret even vague and imprecise geographic references by inferring the correct context
and drawing upon external information such as maps and images. To achieve success-
ful interpretation and mapping of human-generated route directions computationally, the
challenges to be met can be grouped broadly into the following classes (illustrated in Figure
1):

1. Document classification. A first step here is the automatic classification of documents
into those that contain directions and those that do not. A related problem is the
automatic classification of documents based on the mode of transportation used and
the type of spatial movement pattern described by the directions (for example, re-
gional/local movement patterns).

2. Movement entities. Given documents with directions, the components of movement
(origins, destinations, and the route actions, i.e., the movement patterns required to
be taken to go from the origins to the destinations) must be identified, extracted,
and associated. Since documents potentially contain multiple start/end points and
corresponding actions, the association of the respective start point to actions and to
end points is necessary in order to extract consistent movement patterns.

3. Entity georeferencing. To map extracted route components (or other statements about
movement), the key entities making up the route must be extracted and georefer-
enced. To this end, individual place names and other entities (e.g., buildings, streets,
city names) must be extracted, disambiguated, and their spatial coordinates derived.

4. Query support. Given a large volume of directions (or other movement statements),
methods are needed to enable the end-user to search for relevant documents and
visualize the directions extracted from these documents on maps.
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Figure 1: Set of sequential challenges (shown in dotted boxes) that must be solved to build
a geographic information retrieval and decision-making system to contextualize and inter-
pret geographic movement references. This figure also illustrates the architecture of the
GeoCAM system.

A visual analytics approach to address such challenges is to utilize computational data
processing methods along with effective visual interfaces that are designed to support hu-
man reasoning and decision making [24]. We adopt this general approach here. We de-
veloped an iterative, human-in-the-loop system that does the bulk of the work computa-
tionally and relies on the analyst to assist the system in case of errors. We addressed each
sub-challenge while developing a geovisual analytics environment for identification and
examination of documents containing directions.

In the research presented here, we focus narrowly on human-generated written direc-
tions as our target category of statements about movements. However, the specific prob-
lem addressed here is a subset of the larger challenge to leverage the wealth of geographic
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Figure 2: Example route sketcher depiction of directions. The interface displays the destina-
tion, origin, and directions extracted from a document submitted by the user and highlights
key entities using color coding.

information that is currently inaccessible because it appears within unstructured or semi-
structured documents rather than in neat tables or geographic databases. Examples of
untapped sources of geographic information range from news stories are about events that
are tied to locations, through crisis situation reports that address location-based events and
actions, to scientific documents in fields such as ecology or urban planning that focus on
characteristics of, or processes involving specific locations. Key parts of the approach pre-
sented can be generalized to the kinds of movement statements that will be found in such
sources.

1.1 Geovisual analytics workspace

This article describes the GeoCAM (GEOvisual analytics workspace to Contextualize and
interpret statements About Movement) system that demonstrates the effectiveness of uti-
lizing a geovisual analytics approach for extracting descriptions of directions from text
and displaying them on a map. Visual analytics tools integrated with computational algo-
rithms provide an efficient framework for analyzing large document collections containing
statements about movement. The workspace presented in this paper includes capabili-
ties to iteratively run the computational algorithms discussed below; an integrated spatial
database; a Lucene-based document index; a server to handle database-client communi-
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cation; and a user interface module, route sketcher1, that currently accepts geocoded places
(such as origins, destinations, and route segments) from the route parsing and geocoding
software and displays them on a web map. Once an individual route is loaded and dis-
played in the route sketcher user interface (UI), the user can mouse-over on routes, location
names, and other landmarks found in directions (such as, schools, towns, or hotels) in one
panel. The corresponding geocoded route features on the map are then highlighted in the
adjacent panel (Figure 2). If a user is interested in a more detailed view of an area on the
map, Google Street View is available through a click on a map feature. Using the ability
to highlight listed directions and visually inspect the cartographic display of the features,
users can see the directions unfold on the map.

The analyst can use route sketcher to assess the computational output and provide feed-
back to the system about it (e.g., the ability to allow the analyst to tell the system to restrict
its solution to a particular US state, after identifying that there is confusion between places
in different states in the initial output). In addition to processing and display of single
directions, route sketcher supports querying of direction repositories. Consider the scenario
where an analyst has a large set of direction documents available to her. She wants to
search the documents for all directions that include mention of schools, to support research
on how landmarks are used in direction statements. She can do a query on “school” to gen-
erate a map of all directions in the database that mention a school and then drill down to
any particular directions. Or, she could query for a specific named school if she was trying
to determinewhat business destinationsmight be inconvenienced by a school homecoming
parade that closes particular streets.

While the GeoCAM system as presented focuses only on direction documents, the de-
sign is general in nature and we believe it is extensible to other types of documents con-
taining more general descriptions of movement. Here, we focus on direction documents
because they have rich spatial content, while having enough commonalities to make pro-
duction of an end-to-end system more feasible.

1.2 Overview and contributions

In developing the GeoCAM system, numerous complex challenges were encountered that
have been (partially) addressed. Specifically:

1. We show that supervised machine learning-based classifiers can identify and cate-
gorize documents as mentioned above with reasonably high accuracy. The results
demonstrate that documents can be reliably classified based on mode of transporta-
tion when documents use a single mode of transportation throughout. The reliability
of classifying documents based on the mode of transportation decreases when multi-
ple modes of transportation have been used in the same document.

2. We have developed tools and algorithms to identify origins and route actions with
high accuracy. The identification of destinations remains a challenging problem
where we have achieved some success. Detailed experimental results are provided in
Section 4.

3. We have developed tools and algorithms to georeference the extracted spatial move-
ment patterns. Specifically, named-entity extraction and regular expressions were

1A video detailing the various functionality of the route sketcher interface can be found on YouTube, at
http://youtu.be/lih raIph6w.
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used to generate a list of locations and landmarks (i.e., place names) from the ex-
tractedmovement patterns. A novel spatial georeferencing algorithm was developed
that utilizes multiple, distinct place names and spatial reasoning techniques to dis-
ambiguate and generate the most likely spatial pattern (i.e., movement pattern on a
digital map).

In addition, the work provides two contributions related to the geovisual analytics in-
terface:

4. GeoCAM provides an analyst with an interface to process and map new direction
documents and/or search for and map existing direction documents. Specifically, a
web-interface was designed and developed that allows an end-user to input a doc-
ument of interest to the system and see the route interpreted by the system on the
map.

5. GeoCAM enables an analyst to identify errors in the automatic direction processing
and provide feedback to constrain the system to generate improved results.

We believe our system is the first to integrate the use of machine learning-based direc-
tion document classification; extraction of direction-related named entities; and the novel
visual analytic front-end that allows the end-user to interact with human-generated de-
scriptions of motion and examine the movement on a map. Our visual analytics contribu-
tion lies in the integration of computational methods with a visual interface, which allows
the analyst to interpret results of the computational methods and to help us as developers
of the computational tools refine the tools. While Drymonas et al. [12] present a technique
for extracting and visualizing routes from travel documents, their technique focuses on
using named-entity recognition to extract place names from text, geocode place names us-
ing Google API, and generate a valid path between two disconnected place names using
a shortest path algorithm and Google street network data. Their method, thus, does not
process movement statements; it estimates possible movement based on a sequence of dis-
crete points. It also relies on input from a well-structured travel guide. It can be argued
that such documents (documents describing walking tours in a city, e.g., Amsterdam, from
a travel guide) contain landmarks that are comparatively easier to geocode than landmarks
in route directions. Lastly, while they generate result maps, the approach does not include
an interactive visual interface that supports human-in-the-loop refinement of results.

1.3 Organization

The rest of the paper is organized as follows. Section 2 discusses related work. The sys-
tem architecture and a broad overview of the GeoCAM system is presented in Section 3.
Sections 3.1–3.4 discuss the spatial document classifier, the route component recognition
and association, place name extraction and georeferencing, and the route sketcher compo-
nents of the system in detail, respectively. Section 4 outlines some results of our empirical
evaluation. Future work is discussed in Section 5. Lastly, we conclude in Section 6.

2 Related work

Our work is informed by an array of recent developments in visual analytics. In partic-
ular, we draw from a fairly long history of text visualization and analyses. For a recent
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overview, see [43]. Our work relates to recent work by Koch et al. [26] on patent search
and by Keim and Oelke [22] on document analysis. However, the focus in the first phase of
this research has been primarily on the challenge of extracting directions statements from
documents [19, 41], providing visual access to the results; and improving the accuracy of
the geo-location with the help of a human analyst. Input to interface design and interac-
tion capabilities in the current route sketcher leverages recent work by Tomaszewski [45],
and our own past work on complementary systems [32]. Health GeoJunction [32] is a geo-
visual analytics-enabled web-based system that allows researchers to quickly locate scien-
tific documents using geography, time, and themes. Similarly, HealthMap [7] is a real-time
web application that collects disease outbreak data and allows users to visualize such data
using geography, time, and infectious disease agent. Lastly, VisGets [11] are interactive
visualizations that allow users to quickly formulate complex queries that combine spatial,
temporal, and topical filters.

Substantial research has been performed on georeferencing named spatial entities from
text (for an evaluation see [44]). Georeferencing road names and landmarks from descrip-
tions of motion is a somewhat different problem because there are typically more database
entries to chose among as a match for any particular road or street name (e.g., “1st. Ave,”
“Main Street,” “Smith Road”). Directions have an abundance of road names in sequence
and the sequential information can be used to improve the location name disambiguation.
We discuss our method for georeferencing extracted location names in Section 3.3. Jones et
al. [21] discuss the various challenges in geographic text retrieval. TEGUS [4] is a system
for mining geospatial paths from natural language descriptions using language processing,
GIS databases, and graph-based path finding algorithm. Kornai [27] evaluates geographic
information retrieval using the Geo-CLEF 2005 task. Hollenstein et al. [18] explore georef-
erencing vague landmark descriptions such as “Downtown” by harvesting user-generated
geocode and tag metadata over a large collection of Flickr images.

Unlike traditional classification models that make independence assumptions, such as
naı̈ve Bayes [30] andmaximum entropy [39], sequence labeling methods exploit the depen-
dence among the objects. These models assume that the instances to be labeled have se-
quential dependencies. Such methods include hidden Markov models (HMMs) [13], max-
imum entropy Markov models (MEMMs) [34], and conditional random fields (CRFs) [29].
HMMsmodel the joint probability distribution P (y, x)where x represents the observed fea-
tures of the objects and y represents the classes or labels of x we wish to predict. MEMMs
combine the idea of HMMs and maximum entropy (MaxEnt). CRFs directly model the
conditional distribution P (y|x).

3 System architecture

The set of advances and capabilities outlined earlier have been integrated into a working
prototype. The components of the prototype system and their interrelations are detailed
in Figure 1. The overall system can be broadly decomposed into four modules namely,
spatial document classification, route component recognition and association, geographic entity ex-
traction and georeferencing, and the route sketcher workspace interface which are described in
the following sections.
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3.1 Spatial document classification

This module consists of several machine learning-based supervised classification algo-
rithms to identify documents that have descriptions of motion in them. A cascade of classi-
fiers built on binary classifiers for the first-level in the taxonomy (Figure 3) has been used.
For documents containing route directions, the cascade identifies the mode of transporta-
tion. Once a document is determined to contain spatial information, the URL and the actual
contents of the web page are then placed in a database for future reference.

Documents
(Classifier 1)

Non-directions
documents

Direction-containing
documents
(Classifier 2)

Multi-mode
direction

(Classifier 3)

Single-mode
direction

(Classifier 4)

Mixed
directions

Mass transit
directions

Automobile
directions

Hiking
directions

Figure 3: The spatial taxonomy describing the classes of relevant spatial information con-
tained in digital documents.

3.1.1 Document classes

We observed that the Web typically exhibits direction-containing documents that can be
classified into the following classes based on the mode of transportation:

1. automobile (or driving) directions,

2. mass-transit (such as subway, airline and bus) directions,

3. hiking/walking directions, and

4. mixed directions (multiple types of mode of transport in a single document)2.

2Note that mass-transit documents typically also contain subway and bus directions within the same docu-
ment.
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Note that mixed directions documents are those documents that contain at least two of the
other three types of directions (i.e., automobile, mass-transit, and hiking/walking) doc-
uments. In addition to these four classes, our taxonomy contains four other classes, as
illustrated in Figure 3, namely:

1. Documents (whether they contain directions or not);

2. Direction-containing documents: All documents containing directions whether “auto-
mobile,” “mass-transit,” “hiking,” or “mixed” direction documents are instances of
this class.

3. Multi-mode direction documents: This class represents the set of documents that contain
descriptions of motion using multiple modes of transportation. “Mixed” and “mass-
transit” direction documents are instances of this class. Specifically, mass-transit doc-
uments were placed in this class since it was observed that they always contain at
least two or more types of mass-transit modes of transport.

4. Single-mode direction documents: This class represents the set of documents that contain
descriptions of motion using only a single mode of transportation. “Automobile” or
“hiking” direction documents are instances of this class.

The relationships between classes, illustrated in Figure 3, were utilized to build multi-stage
binary classifiers. All leaf nodes represent a document type while the edges represent the
relationship “subClassOf.” The features of Figure 3 also illustrate the multi-class spatial
document classifier that is built using four binary classifiers.

3.1.2 Basic models and feature sets

To performdocument classification, textmust be extracted fromdocuments before any pro-
cessing can take place. Thus, in the first step, text was extracted from the HTML document.
Then, term appearance (i.e., appearance of words) in each document was used as the set of
features. Maximum entropy [20, 39], naı̈ve Bayes [10, 30], and decision tree [3, 6] classifiers
were utilized to categorize documents based on the taxonomy illustrated in Figure 3.

It was expected that the frequency of some words in direction documents would be
somewhat different from their frequency in non-route direction documents. Within route
direction documents there are differences based on, say, the type of transportation used.
For example, mass-transit directions may contain information describing subway stations
or bus terminals and the associated train/bus routes that must be taken in order for a
user to arrive at a destination from a specific origin. Such documents will not contain
phrases associated with road directions such as “take a left” or “continue on Interstate.”
Thus, documents containing different route direction information should contain a number
of different words in addition to common words. Together, these phrases can be used
to tag these documents to a spatial ontology using current machine learning algorithms.
Furthermore, traditional stop words play an important role in spatial information content.
For example, “take,” “onto,” and “at” are essential in automobile driving instructions. The
presence or absence of these word features was utilized in all machine learning techniques
that follow.
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3.1.3 Multi-stage binary classifier

A four-stage binary classification scheme was implemented as shown in Figure 3. The four-
stage binary classification scheme can take as input any document and classify it as “non-
direction containing,” “mixed,” “automobile,” “mass-transit,” or “hiking.” Experimental
evaluation of the classification scheme is summarized in Section 4.3.

3.2 Route component recognition and association

This module consists of supervised machine learning algorithms that automatically tag
route components, namely origins, destinations, and route actions, at a sentence or phrase
level. Our preliminary research on detecting origins, destinations, and route actions has
been published [50–52]. In Sections 3.2.1 and 3.2.2, we briefly summarize our previous
work. In addition, once a document has been tagged at the sentence-level, the route-
component-association module segments the document; uses regular expressions to re-
label incorrectly tagged sentences; identifies parts of the document that are associated with
each description of motion; and generates a description of motion using associated origins,
destination, and route actions. Each associated origin, destination, and set of route actions
from directions is stored as a description of motion within the same XML file and added
to our database to allow later programs to return to this stage without having to repeat the
classification. Section 3.2.3 gives the details.

Direction documents contain the following route components [1, 14, 28, 46]: destination,
which is the place a person travels to, usually expressed as an address or the name of the
place; origin, which is the place or area a person comes from, usually a city, an orientation
(e.g., “From the North”), or a highway name; and route actions, which are a set of actions a
person should follow in order to reach the destination from the origin. For example, in one
document, the destination is the “Delaware Court Healthcare Center.” The origin of one
of the routes is “from Cleveland.” The first few route action sentences given for this origin
are “Take I-71 S toward COLUMBUS (117.2 miles),” and “Take the US-36/OH-37 exit.” In
addition, direction documents also contain information irrelevant to route directions, such
as other textual information or advertisements. Such irrelevant textual information con-
tained in a document is assigned to the class called other throughout the rest of this paper.
A typical direction document usually contains one or a small number of destinations. Each
destination is associated with several origins to suit travelers starting from different loca-
tions. For each origin-destination pair, a set of route actions are given to instruct travelers
to reach the destination from the origin.

Route actions and other information are typically expressed in the form of a complete
sentence or a stand-alone phrase. Both complete sentences and stand-alone phrases are
referred to as “sentences” throughout this paper. Given the list of all sentences extracted
from a document containing driving directions, our system seeks to classify the sentences
into one of the four categories: destination, origin, route actions, or other, i.e., to recognize
each route component at the sentence level. (For more details, see Section 3.2.1.) Further-
more, two additional techniques were developed for recognition of destinations at phrase
level. The first approach attempts to recognize all mentions of the destination names, where
candidate destination names are extracted using named-entity recognition. A binary clas-
sification scheme can then be used to classify the extracted named entities to be either
“destination name” or “not destination name.” (For more details, see Section 3.2.2.) The
second approach developed extracts destination names by utilizing predefined language
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patterns, e.g., “... is located on your right.” Such language patterns are frequently used to
represent destination addresses or landmarks. The landmarks, once extracted, are marked
with confidence levels “high,” “medium,” and “low” based on the type of predefined lan-
guage pattern used for extraction. (For more detail, please see Section 3.2.3.) Our system
combines both approaches in tagging destination sentences.

3.2.1 Sentence-level route component classification

A list of sentences is first extracted from a document. These sentences are then ordered
based on their position of appearance [52]. The machine learning features that were de-
veloped are applied to label these sentences as belonging to one of the following classes:
destination, origin, route actions, and other (irrelevant) information. Six features were de-
veloped as follows:

1. Bag-of-words features: Each word/term in the entire set of documents is used as a
feature. The presence/absence of a term in a sentence will assign the value 1/0 to the
feature of this particular sentence.

2. Surficial features: Surficial features capture the “shape” of a sentence, namely: length
of a sentence, capitalization of terms, containing digits, etc.

3. HTML features: HTML features check if a sentence is in the title, heading, or link of a
document.

4. Language pattern features: Regular expressions are used to match the sentences against
predefined phrases or patterns, such as “directions to ...”

5. Type noun dictionary feature: Type noun dictionary features check if a sentence con-
tains a term appearing in our predefined dictionary of type nouns, such as “hotel,”
“restaurant,” etc.

6. Window features: Window features capture the characteristics of the surrounding sen-
tences of one particular sentence.

After feature extraction, machine learning models were used to assign to each sentence
a class label, such as destination or origin. Furthermore, sentences within a document
are observed to have interdependencies. For instance, a destination is often followed by an
origin, and an origin is often followed by a set of route actions. Twomodels that utilize such
interdependencies (namely conditional random fields, CRFs [29], and maximum entropy
Markov models, MEMMs [34]) were therefore evaluated and compared with two models
that do not (naı̈ve Bayes [30] and maximum entropy, MaxEnt [5, 39]). Experimental results
show that CRFs and MEMMs outperform the other two. For more details see [50, 52].

3.2.2 Phrase-level destination name extraction and filtering

In addition to extracting route components at a sentence level, the problem of identifying
the destination names at a phrase level was further studied (i.e., the names of the desti-
nation organizations, companies, and institutes). For example, in the following two sen-
tences, “Levy and Droney is located in the building on the right” and “Driving Directions
to Atlantic Country Club,” the destination names are “Levy and Droney” and “Atlantic
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Country Club,” respectively. Such names, if extracted successfully, can be used to obtain
the position of the destination by querying geographic databases, and further improve the
geocoding quality. The goal is to recognize all mentions of the destination, and differ-
ent names referring to the same destination, including variations and abbreviations. This
problem was solved in two steps: destination name candidates extraction, and destination
name filtering. A short-paper on this topic has been published at ACM SIGSPATIAL [51].
We summarize the paper below.
First, OpenCalais and a rule-based extraction method that relies on part-of-speech tag-

gers were used to extract the destination name candidates. Then, a binary classifier was
built to classify these entity names to be either “destination” or “non-destination.” Various
features were explored for the named entity classification task. The 8 feature sets that were
explored are defined as follows:

1. Word shape features: Shape features were used to capture whether all letters in a word
are capitalized or whether the word contains numbers or not.

2. Language patterns: The sentence containing the destination candidate is matched
against predefined regular expressions, such as “directions to ...”

3. HTML tag features: Tag features capture relevance of a destination name candidate by
checking whether the destination name is in the page title, heading, or link.

4. Normalized name frequency feature: The total number of name appearances is normal-
ized by the length of a document. When this frequency exceeded a predefined thresh-
old, a value of 1 was assigned for this feature; 0 otherwise.

5. Type nouns features: A dictionary of 127 type nouns most frequently used in describing
destinations was built. If the destination name candidate contained a type noun from
this list then a value of 1 was assigned to this feature, 0 otherwise.

In addition to the above features, it was observed that the destination is very often the
primary subject of the hosting website. This observation lead to the following important
features:

6. URL registrant matching: The Whois database [48] is queried to find the domain reg-
istrants of the URLs of each document. If the domain registrant name matches the
destination name, a value of 1 was assigned to this feature, 0 otherwise.

7. Phone book search: When a phone number is detected in the direction document, an
online phone book search [36] service is queried to find the registrant names of the
phone numbers and is matched against the destination name candidate. A value of 1
was assigned to the feature if the destination name is matched, 0 otherwise.

8. Normalized frequency in web page titles: Other web pages on the same site as the direc-
tion document were crawled. The number of page titles containing the destination
candidate was then computed. This number is then normalized by the total number
of pages on the site. If the frequency of matches exceeded a threshold, a value of 1
was assigned to the feature, 0 otherwise.

Three classifiers, naı̈ve Bayes, maximum entropy, and C4.5 decision tree [42], were
trained and evaluated for the classification task. The detailed results are shown in Section
4.5.
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Figure 4: Workflow for destination taggermodule.

3.2.3 Destination tagging

Experimental evaluation (see Section 4.4) showed that the machine learning-based meth-
ods discussed above have difficulty in identifying candidate destination sentences. As dis-
cussed previously, incorrect or incomplete destination detection is a significant drawback
since when destinations are extracted correctly theywork best as anchor points to pin down
the spatial range of the route direction. Thus, to improve the precision of the destination
detection a specialized regular-expression based component, destination tagger, was devel-
oped that matches, disambiguates, and ranks potential text references as destinations. A
schematic of the destination taggermodule workflow is shown in Figure 4.

The destination taggermodule consists of two components namely address matching and
pattern matching for effective extraction of destinations using regular expression-based ex-
traction. Address matching aims to use a list of regular expressions tailored to capture
exact addresses written in similar format to the postal address, e.g., “23585NE Sandy blvd,
Portland, OR 97060.” A near-comprehensive list of regular expressions was written to cap-
ture the postal addresses that are written in various ways. For example, street names may
include prefixes like “South,” “S,” or “S.”; suffixes like “street,” “st,” “st.”; the whole ad-
dress may end with “US,” “U.S.A.,” five or 9 digit zip codes; or with state abbreviation or
full name. A selection of the address matching regular expressions is shown in Table 1.

There are also cases where destinations are not expressed in the form of postal ad-
dresses. For example, a pattern such as “... is on your right” in the last sentence of a
document signifies the presence of a destination landmark (e.g., “Empire state building”)
preceding this pattern and should therefore be considered as a candidate destination. It
is common usage to include destination information in route-actions to represent arrival
information. Parallel to address matching, the pattern matching component was used to
handle potential destinations written in particular linguistic patterns. We examined our
route-direction corpus and summarized these linguistic patterns (Table 2). However, such
language patterns have higher language flexibility (compared to precisely crafted address
patterns), and a lower confidence level since some sentences that match these patterns may
not be destination landmarks that can be georeferenced (e.g.,“The destination is on the
right”; here the phrase “destination” can not be georeferenced as is).
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Regular expressions for address
matching

Explanation Sample matches

\d{1,5}((\s—\r—\b)([A-Z] {0,10} [a- z] {0,
15 })) + (\s—\r—\b)?, ?\s +((\s—\r—\b)
([A-Z] [a-z] {1,15})) +(\s—\r—\b)?,?\s
+(?i: US STATE)(\s—\r—,)?\d{5}(-
\d{4})?(\s—\r—\b)?(,)?(\s —\n
—\r)?(?i:Country Name)?

Matches address
starting with house
number. It can take
multiple street
names, five or 9
digit zipcodes,
either followed by
country name or
not.

20 S Genesee st, Fillmore, NY
14735, US
23585 NE Sandy blvd,
Portland, OR 97060
2695 East Henrietta road,
Henrietta, NY 14467
256 Cheyenne cir, Round Hill,
NV 89448, US
8344 3rd street North, Oakdale,
MN

\d{1,5} (\s— \r—\b)?, ?(?i:
ORDINAL GROUP) * ((\s— \r— \b)(
[A-Z] {0,10}[a-z] {0,15 }) )+(\s— \r— \b)?,
?\s +((\s— \r— \b)([A-Z] [a-z] {1, 15}
))+(\s— \r— \b)?, ?\s +(?i: US STATE)(
\s— \r—,— \.)? \d{5} (- \d{4}) ?( \s—
\r— \b)?(,— \.)?(\s—\n— \r)?
(?i:Country Name)?

Matches ordinal
number.

545 Biddle rd. Montoursville,
PA 17754
100 E. Brinton avenue Trafford,
PA 15085

\d{1,5}((\s—\r)([A-Z]{0,10}[a-z]{0,
15})(\.)?)*(\s—\r—\b)*,?\s*+(?i:
APT—BLDG—DEPT—FL—HNGR—LOT—
PIER—RM—S(LIP—PC—T(E—OP))—TRLR
—UNIT—SUITE)((\s—\t—\.)*)(#?)
(\s—\b—\r)?(
[A-Z]—\d{1,5})(\s—\r—\b—,
)*([A-Z][a-z]{1,15})*(\s—\r—\b)*([A-Z][a-
z]{1,15})*(\s—\r— \b)?,?(\s—\r—\b)?
(?i:US STATE),?(\s—\r—,—\.) \d{5 }(-\d{
4})?(\s— \r— \b)?(,—\.)?( \s— \n— \r)?
(?i:Country Name)?

Match apartment
addresses

123 Main st., apt 420
Anywhere, PA 12345, US
John Doe 555 Blank ave. Apt.
555 Dodge City, PA, 55555
123 Elm St., #123, Dodge city,
PA, 55555
236-4565 High Park ave
Toronto, ON Canada

Table 1: A selection of regular expressions for address matching in destination tagger, with
explanation and sample matches.

In order to improve the readability of regular expressions, the destination tagger compo-
nent reads a set of predefined regular expression sets, such as “NUMBER GROUP” which
is defined as the following: (a) harf\sa; (b) half\sa; (c) \d+; (d) \d+\/\d+; (e) one; (f)
two; (g) three; (h) (one—a)\sthird; (i); (one—a)\squarter; (j) (one—a)\shalf; etc. Then the
regular expression will be constructed when being called. For example, a new regular
expression “approximately\s[NUMBER GROUP]\smiles” can be written with a high in-
clusive matching pattern and a much better readability. This coding schema allows for
creating complex regular expressions on the fly without sacrificing readability of the code.
Country Name, US STATE,Ordinal Number, Link Verb are a few of the predefined regular
expression groups that are used in destination tagger (see Tables 1 and 2).
Together, the detailed address extracted from the address matching process and candi-

date destination from the patternmatching process can produce reinforcing and conflicting
results. To solve conflicts, a ranking schema was applied that assigns a confidence level
to every pattern and its matched text. Our system assigns different confidence levels of
high, medium, and low to candidate destinations extracted. These confidence levels are
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Regular Expression Confidence
Level

a) You\swill\ssee\s.*?\son\s(the)?\sDIRECTION TERM Medium
b) Directions\sto\s
c) Arrive\sat\s
d) is\slocated\sat\s
e) \sLINK VERB\slocated\sat\sthe\sintersection\sof
f) \sLINK VERB\sDISTANCE PHRASE\sDIRECTION TERM\sof\s
(that—the—this)\sintersection
g) \sLINK VERB\slocated\sDISTANCE PHRASE\ sDIRECTION TERM\sof
h) \sis\sthe\sbuilding\sin\sfront\sof\syou
a) End\sat\s LOW
b) \sLINK VERB\son\sthe\sDIRECTION TERM\sedge\sof\s
c) \sLINK VERB\sright\soff\sof\s
d) \sLINK VERB\sjust\sDIRECTION TERM\sof

Table 2: Selected regular expressions for pattern matching in destination tagger, with differ-
ent confidence level.

based on the type of regular expression that extracts the candidate destination (e.g., high
confidence is assigned to results extracted from address matching and low and medium
confidence to results from pattern matching). Candidate destinations from the address
matching and pattern matching extractors are then combined. During this step duplicate
candidate destinations are eliminated using exact string matching. Furthermore, approxi-
mate string matching [38] is applied to the candidate destinations to detect duplicates. A
ranked destination list is finally generated where the confidence level of extraction for a
candidate destination is used as the ranking score.

3.3 Geographic entity name extraction and georeferencing

This module consists of algorithms to extract geographic entity names (geo-entity names)
mentioned in the descriptions of motion, and to georeference the extracted geo-entity
names. The overall architecture of this module is illustrated in Figure 5. It consists of
two sub-modules, namely the geographic entity name extractor (Section 3.3.1) and the geo-
referencer (Section 3.3.2).

3.3.1 Geographic entity name extractor

This sub-module extracts a candidate set of geo-entity names from the text. Geo-entity names
are textual references to landmark and/or location names (e.g., building names, roads,
cities). These may have geographic coordinates that need to be inferred during the georef-
erencing step. Note that the geo-entity name extractor only extracts candidate text refer-
ences. To achieve this goal, the XML file generated by the route component recognition and
association module is first ingested by this module to generate a list of probable geo-entity
names (locations, like city, town names, and/or landmarks, like street names, building
names). Geo-entity names can typically be divided into either regional-level or local-level
objects. While named-entity recognition strategies can be applied effectively to extract re-
gional geo-entity names, such as city, state, or country names, these strategies are not as
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Figure 5: Geographic entity name extraction and georeferencing module architecture.

effective in extracting local-level geo-entity names, such as street names. Furthermore, reg-
ular expression-based extraction strategies can be applied for effective extraction of local-
level geo-entity names since such objects are typically expressed with a finite number of
consistent suffixes (e.g., “street,” “st.,” “ave.,” “blvd.”). Since effective georeferencing of
the possible movement pattern requires extraction of both local-level and regional-level
geo-entity names with high accuracy, the geographic entity name extractor consists of two
extraction strategies, as illustrated in Figure 5:

Regular expressions Example sentences Extracted
geo-entity

.* turn\s+(?:left|right)?\s(?:onto|to|on turn left onto Main st. Main st
|at)\s+((?:\w*\s)*\s(?i:st|str|street| turn right on Madison ave Madison ave
rd |road|ave|avenue).* turn onto Wisconsin ave Wisconsin ave
.*(?:proceed|continue)\s+(?:along|into| proceed along College College avenue
past|on)\s+((?:\w*\s)*\s(?i:st|str| avenue
street|rd|road|ave|avenue).*
.*exit\s+(left|right)?\s*(at|onto|to)\s+ exit right onto KING rd
((?:\w*\s)*\s(?i:st|str|street|rd| KING rd
road |ave|avenue).*

Table 3: A subset of regular expressions used for extraction of local-level geo-entity names.
The capturing groups in bold in RegEx are the candidate geo-entity names extracted.

1. Named-entity extractor: ANNIE, the named-entity recognition toolkit in GATE [8],
modified with custom-developed rule sets was used to extract regional-level geo-
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entity names. This extractor uses part-of-speech tagging and gazetteer-based tagging.
The tool is effective in extracting regional-level geo-entity names such as city, state,
and country names. In addition, each extracted entity is assigned one of four types:
city, state/province, country, or location. The location type is typically assigned to a
geo-entity name if the tagging determines that:

(a) The named-entity is a location but the extractor unable to decide whether this
entity is a city, state/province, or country; or

(b) The named-entity is a location but is not a city, state, or country name, e.g., “Lake
Michigan.”

2. Regular expression (regex) extractor: A regular-expression-based extractor was also de-
veloped that utilizes a customized set of regular expressions developed using lan-
guage analysis of documents with spatial entities. A subset of regular expression
patterns that were utilized to extract local-level geo-entity names from text is shown
in Table 3.

S. No. Type of geo- Example Geo-entity name Strategy
entity name type assigned used

1 Regional-level Pittsburgh City NER
2 Regional-level Pennsylvania State/Province NER
3 Regional-level India, US Country NER
4 Regional-level Lake Michigan, Location NER

Appalachian mountains
5 Local-level Main st, Main street Street Regex
6 Local-level 1st avenue, Side ave Avenue Regex
7 Local-level Empire state building, Location Regex

Harvard university

Table 4: Some examples and types of geo-entity names extracted using a combination of
named entity recognition (NER) and regular expression extraction (regex).

The geo-entity name extractor also captures the position information of each geo-entity
name in text. Geo-entity names extracted using both named-entity and regular expression
extraction strategies are then accumulated into a list and ordered using this position infor-
mation. Following this, each geo-entity name extracted using regular expressions is then
classified using a type of landmark by using suffix matching. For example, “Main st” or
“Main street” are assigned type “street.” Table 4 illustrates some examples of extracted en-
tities, the location type assigned, and the type of extraction strategy used. Table 5 illustrates
a set of geo-entity names extracted from a document being processed.

3.3.2 Georeferencer

This sub-module utilizes a candidate set of extracted geo-entity names (output of the geo-
entity name extractor module) and a spatial database to contextualize and georeference the
directions. Our spatial reasoning-based georeferencing algorithm utilizes geographic data
from Open Street Map [15] for georeferencing. The Open Street Map database consists of
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Processing order Geo-entity name Type Geocounts Order in text
1 Pittsburgh city 1 1
2 31 street street 7 3
3 Allegheny street street 64 10
4 Bull creek road road 83 6
5 E Ohio street street 84 4
6 E 1st ave avenue 136 9
7 Allegheny valley expressway Expy 149 5
8 31st street street 445 2
9 Ross st street 710 7
10 1st ave avenue 3104 8

Table 5: Set of geo-entity names, types, geocounts, and order extracted from a sample doc-
ument. The second row is an incorrect geo-entity name that was present in the document
(31 street instead of 31st street) most likely due to the author’s error. Zero count geo-entity
names have been dropped.

Table Type of geographic Examples Num. of
name features represented records
Point Point data representing various

objects such as airports, build-
ings, cities, and unnamed points
etc.

Mys Shmidta airport, Matei police
post, Pittsburgh

14.5M

Line Roads, boundaries of various
objects, census areas

US exclusive economic zone,
Alaska, Boce Bay road, Main street,
Chatham island

38.4M

Road Roads, boundaries of various
objects, census areas

North slope borough, Nome Census
Area, Alaska, Middle road north

3.76M

Polygon Boundaries of various objects
such as countries, resorts, air-
ports, islands, reefs, rivers etc.

Te Awanui island, Lake Marakapia,
Honolulu, United States of Amer-
ica, Yukon River

26.8M

Table 6: Open Street Map database tables.

four main tables, which are described in Table 6. Algorithm 1 provides the pseudo code for
the spatial reasoning-based georeferencing algorithm.
The ordered list of candidate geo-entity names from text (e.g., “Main street”) is the input

to the georeferencingmodule. Note that order in text represents the relative order in which
the geo-entity name appears in a particular verbal description. Since each candidate geo-
entity name may refer to numerous unique geographic coordinates, a robust strategy for

Feature Name Number of Unique Segments
Main st/street 17632
1st ave 3104
Interstate 80/I80/I-80 2908

Table 7: Unique geographic references for some common geo-entity names from the Open
Street Map database.
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Algorithm 1 Georeferencer

1: Input: L: a list of geo-entity names, T: a list of spatial types
DB: Open Street Map database
Distance: side of bounding box used for context generation

2: Output: = G: a list of georeferenced geo-entity names
3: G← 0, List bbox← null, Geocounts← 0, i← 1, L’← 0, T’← 0
4: for geo-entity name l ∈ Lwith type t ∈ T do
5: Geocounts(i)← computeGeocounts(l, t,DB); i← i+ 1;
6: end for
7: L′ ← sortP laceNameList(L,Geocounts);{Sort geo-entity names based on geocounts}
8: T ′ ← sortP laceNameList(T,Geocounts); {Ensure the types match sorted list}
9: for i in 1 to size(L′)− 2 do
10: for j in 1 to size(L′)− 1 do
11: for k in 1 to size(L′) do
12: bbox←getListOfBndingBoxes(L′(i), L′(j), L′(k), T ′(i), T ′(j), T ′(k),Distance);
13: if size(bbox) > 1 then
14: if doAllBoundingBoxesTouch(bbox) then
15: bbox← bbox(1); break;
16: end if
17: else if size(bbox) = 1 then
18: break;
19: end if
20: end for
21: end for
22: end for
23: if bbox not null then
24: for i ∈ 1 to size(L′) do
25: G← addSpatialUnitsWithinBoundingBox(bbox, L′(i), T ′(i), DB);
26: bbox← expandBoundingBox(G, bbox,DB);
27: end for
28: else
29: G← null;
30: end if

georeferencing the movement pattern must be developed. For example, there is only one
composite reference to Interstate 80 in the real-world and in Open Street Map. However,
Interstate 80 is represented by 2908 unique segments in the Open Street Map database to
ensure that the coordinates for Interstate 80 are represented with high precision. We refer
to geocounts or unique segments as the number of times a geo-entity name appears in a
geographic database being searched. For instance, the geocounts for “Interstate 80” is 2908.
Each of these unique segments gives the geographic coordinates for a small unique portion
of Interstate 80. These 2908 unique segments taken together represent the complete geo-
graphic information for Interstate 80, which spans from New York city to San Francisco.
Similarly, there are 17632 unique segments that represent “Main st” or “Main street,” ap-
proximately 6000 unique “Main streets.” Table 7 shows geographic references for some
common geo-entity names obtained from the Open Street Map database.
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First, the georeferencer obtains the unique geographic references in the geographic
database for each geo-entity name. The Open Street Map database is thus first queried
to establish the number of occurrences in the real-world (or sub-region specified by the
user) matching each of these extracted geo-entity names (entities). Some entities may re-
turn a zero count and are dropped from further processing. This may happen due to two
reasons: the regular expressions may incorrectly extract entity names resulting in an entity
name that is non-existent; or a correctly extracted entity may not appear in the geographic
database as it has not been tagged by the Open Street Map community yet (or may not
occur within the region specified).
At this point, the system has identified landmark/location names (geo-entity names

from text, i.e., output of the geo-entity name extractor) and a corresponding count of the
number of geo-entity names in the real-world that match these names. There are several
strategies to disambiguate geo-entity names and georeference the movement pattern. The
first strategy is to use only the geo-entity names having a unique geographic reference (such
as a specific destination, city name etc.) to construct a bounding box (geographic/spatial
context). Other non-unique entities can be then disambiguated contingent on falling within
this bounding box. However, this strategy, while easy to implement, has inherent disad-
vantages. First, documents containing geo-entity names that correspond to unique geo-
graphic references are infrequent. It was found that only three out of 20 documents con-
tained geo-entity names that had a unique geographic reference. Second, directions typi-
cally use the most common road names to represent movement patterns. Such road names
typically have a high number of geographic references in geographic databases. For ex-
ample, approximately 25% of streets and avenues in Open Street Map have at least five
or more geographic references. Last, such a strategy ties the system’s accuracy of finding
the correct spatial context to that of the unique geo-entity name being used to generate the
bounding box. In these cases, an incorrectly extracted geo-entity name can generate an
incorrect bounding box, which in turn results in an incorrect map or failure to find any so-
lution. For such a strategy to be effective, all geo-entity names must be correctly extracted
(100% precision and recall) and be present in that form in the geographic database, which
is unreasonable to assume.

Spatial Number of Number of names Number of names with
object type unique names with unique non-unique (5 or greater)

geographic reference geographic references
Street 11817 4758 7059 (2991)
Road 193515 102376 91139 (31875)
Avenue 8318 3316 5002 (2247)

Table 8: Descriptive table statistics from Open Street Map database showing the number
of unique records based on exact string matching and number of unique and non-unique
geographic references. Values in brackets represents the number of geo-entity names that
have five or more geographic references.

As illustrated in Algorithm 1, the georeferencing module uses three distinct geo-entity
names and their geo-counts to locate the smallest bounding box that encompasses these
entities. Specifically, three distinct entities with the lowest geo-counts are first selected.
The georeferencer then attempts to find a list of bounding boxes (of side 5km) that contains
at least one geographic reference to each of these entities. Table 5 illustrates the processing
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E Ohio street Allegheny valley
expressway

Figure 6: Spatial context (bounding box) generated by the geo-entity name extractor and
georeferencing module for example geo-entity names given in Table 5. The spatial context
was generated by the three units “Pittsburgh” (blue dot), “E Ohio street” (blue street seg-
ments) and “Allegheny valley expressway” (blue street segment). For perspective, the ge-
ographic coordinates of the enclosing bounding box containing the three geo-entity names
are also shown. The initial enclosing bounding box is generated using the geo-entity name
that has the lowest geocount of the three geo-entity names, i.e., “Pittsburgh” in this case.

order for a document being processed by the georeferencer. For example, the algorithm
first chooses “Pittsburgh,” “31 street,” and “Allegheny street” and tries to find a square
bounding box of side 5km from the geographic database that includes at least one instance
of these three objects. If only one bounding box is found, the spatial context is resolved and
the georeferencer utilizes this context for resolving other geo-entity names and generating
the movement pattern. If multiple bounding boxes are found (most likely for large cities
where there may be similar road names in different boroughs) and they all intersect, the
first is selected to represent a starting context. If bounding boxes do not intersect, that iter-
ation is rejected. If no bounding box is found or the iteration is rejected, the georeferencer
keeps trying sets of three entities until an acceptable bounding box is found.

Therefore, a second strategy was implemented to generate the geographic context.
Rather than using just a single unique geo-entity name and its geographic reference, the
strategy utilizes spatial reasoning across multiple entities and their geographic references.
In addition, this strategy also minimizes the computational complexity of geographic con-
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text generation by utilizing the uncommon geo-entity name. Specifically, those geo-entity
names that have low geographic counts are used first in geographic context computation.
The spatial-reasoning based georeferencing algorithm utilizes triangulation of three dis-
tinct spatial entities in deciding the spatial context. Proximate locations of multiple (three)
uncommon geo-entity names are unlikely to occur in multiple locations. The algorithm
utilizes three distinct geo-entity names (regional/local-level) and attempts to find a square
bounding box of side 5km that contains all these three geo-entity names. The square bound-
ing box of side 5km was specifically chosen as it provided the best trade-off between com-
putational time complexity and the possibility of matching three distinct records. A larger
bounding box contains a greater number of records that need to be checked. However,
these algorithms can be easily modified to use a larger bounding box for rural move-
ment patterns and a smaller bounding box for urban movement patterns. Furthermore,
the classification techniques described in Section 3.1 can be used to determine the class of
movement pattern and thus dynamically determine the bounding box size depending on
document classification.
This strategy has two advantages over starting with a single, unique geo-entity name.

First, an incorrect geo-entity name will result in a failed iteration in determining the spatial
context. Thus, this strategy inherently treats even low geo-count entities with some amount
of uncertainty. Second, such a strategy is more efficient in finding spatial context since the
absence of some entities in a geographic database does not affect georeferencing as there are
multiple combinations of entities that will result in the same spatial context (bounding box).
Figure 6 illustrates an example spatial context generated by the georeferencing module.
Input to the georeferencing module consists of geo-entity names illustrated in Table 5.
Once the spatial context is generated, other location name entities are then found in this

context and added to the movement pattern. The spatial context is slowly expanded based
on addition of each geographic reference to the movement pattern. For example, once the
unique bounding box is found, only entities with geographic references that are within a
small distance (i.e., 5km) from the spatial context are found and considered for addition to
the movement pattern. Each geographic reference for an entity that is found and added to
the movement pattern may also affect the spatial context. For example, adding a very long
road (such as a segment of an Interstate of say 10km in length) should affect the spatial
context (as the initial spatial context is a box of side 5km). In addition to the geographic
reference for a found entity that is added to the movement pattern, the feature ID, primary,
and secondary names of the entity are also stored in the movement pattern. The feature ID
is the record ID assigned by Open Street Map to a geographic reference in the Open Street
Map database. Thus, the spatial context is recomputed after addition of every entity to the
movement pattern, allowing it to slowly expand to reflect the growing movement pattern.
Once all entities are georeferenced, the movement pattern is generated and written to an
XML file using GML (geography markup language) format.
Once the above steps are accomplished, the georeferenced geo-entity names are added

to the route document in the main database. The storage of the coordinates of the geo-
entity names and the coordinates of the route allows spatial queries to be made on the
routes database.

Computational complexity: Finding the spatial context (or equivalently finding a bound-
ing box containing three different geo-entity names) is the most computationally expensive
step in georeferencing the movement pattern, i.e., function “getListOfBndingBoxes” in Al-
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gorithm 1. If n is the number of geo-entity name records in a GIS database, then the number
of bounding boxes can be found using a brute force algorithm in O(n3). However, the spa-
tial context computation can be made more efficient using PostGIS spatial queries (e.g.,
contained in/intersection queries) and the GiST [16] index.

3.4 Route sketcher user interface

As introduced earlier, route sketcher is a Web 2.0 visual interface for displaying and analyz-
ing computationally processed direction documents. The two main functional components
include: processing a direction document on-the-fly to map and analyze that document;
and querying a repository of preprocessed documents to find documents of interest (e.g.,
that include route segments that pass near a feature of interest). In the following sub-
sections, we outline the route sketcher implementation and discuss the functionality of the
system briefly.

3.4.1 Route sketcher implementation

The route sketcherUI client application is built exclusively using HTML and JavaScript tech-
nologies (with the exception of the Google Street View component) allowing the UI to be
executed in any JavaScript-enabled web browser. The UI communicates with a server-side
Java servlet that uses Java API calls to execute spatial document classifier, route component
recognition and association, and geo-entity name extraction and georeferencing modules.
All communications between the client UI and server side are through AJAX HTTP re-
quests.

The mapping functionality of the route sketcher UI is built upon the Open Layers
JavaScript mapping client. Open Layers allows integration of our tools with Google Maps
for base-layer data. In addition, Open Layers allows for the overlay of geographic data
drawn from a web feature service (WFS) request. Geographic features found in the move-
ment pattern are queried from the Open Street Map database through aWFS request based
upon the feature ID previously found by the georeferencing module. Once the requested
data is returned to the client, it is drawn using scalable vector graphics (SVG) methods
in the Open Layers client. Geographic data is drawn in the client using vector format to
allow for browser events—such as, mouse-over, mouse-out, and mouse-click events—to be
attached to the geographic features for highlighting and linking with the direction terms
panel.

The Dojo toolkit was utilized for cross-browser JavaScript support enabling highlight-
ing of tokens, drawing of menus, and pop-ups within the route sketcher UI. Lastly, the UI
integrates Google Street View, which is a Google JavaScript API. Google Street View’s 360
degree street-level images allow the route sketcher user to get a street-level view of the sur-
roundings of their route directions.

3.4.2 On-the-fly processing and mapping

Analysts can use the route sketcher UI to visualize route directions in text documents. An
analyst can either upload an HTML document of interest to the system or point the system
to its URL. When a user activates the system to start processing the document, a local copy
of the document is first made at the server. Once the HTML document is saved at the
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server, the route sketcher UI uses AJAX requests to communicate with a Java web service
allowing the UI to execute the appropriate modules on the server to classify, extract, and
georeference the movement patterns contained within the document. Once processing is
complete, the directions are displayed on the map.
The route sketcher interface (see Figure 2) consists of two views. The directions on the

map are shown on the left view. Extracted and highlighted geo-entity names within text di-
rections are shown on the right view. Mapped and highlighted geo-entity names consist of
origins, destinations, cities, streets, and general geographic features. In the current version
of the tool, the entire road segment is highlighted on the left panel. Using the intersections
of the previous and next road segment in the directions, it should be straightforward to clip
the entire road segment and show only the part of the road that was part of the direction.
We intend to implement this in the future.
The mapped geographic movement patterns are drawn in a graphics layer overlaid

upon a Google Maps base map allowing for direct user interaction to help assess matches
between the text and the features. Standard linked brushing between map features and
text entities is supported. Mousing over geo-entity names in the text view (right) allows
the movement pattern to visually take shape (in the left view). For example, in Figure 2
the origin of Pittsburgh, PA, is highlighted (green triangle). Streets, geographic features,
destinations, and so forth can be explored. An analyst can zoom into the map to a feature
of interest using a control-click on the feature of interest.
An important feature of this research is the integration of computational methods with

direct human interaction to address hypotheses about text interpretations. One feature
that illustrates this combination is the ability for the analyst to override the system’s initial
geographic extent choice for the destination and cause the document to be reprocessed.
Doing so changes the bounding box applied to filter candidate matches for geographic fea-
tures. Analyst reporting can be done (within the interface) on the accuracy of the processed
document to assist analysts in the future and to help improve the overall system.

3.4.3 Querying of document repository

Our repository of preprocessed documents is stored in a PostgreSQL relational database
with the PostGIS extension. A Lucene text-based search of the repository returns a subset
of matching document snippets along with each document destination plotted on the map
(Figure 7).
The system allows for storage and retrieval of large corpora of directions documents

and supports large scale analyses. Using a relational database to query a large set of text
documents could result in poor performance. Therefore, the directions documents are in-
dexed using the Lucene API.When the analyst inputs a text query to the system, the system
sends such requests to the Lucene index to retrieve the matching documents. Document
IDs and text snippets are returned as results, and the system then retrieves the actual doc-
ument and geographic references from the database. This combination of Lucene indexing
and relational databases allows for scalable solutions for large datasets.
Figure 7 shows the results of a search to find all documents that contain the term “li-

brary.” In this example, the analyst has highlighted one particular set of directions for an
Alexandria, VA, library branch. Clicking on the destination or document snippets drills
down to the individual georeferenced documents as discussed in the previous section.
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Figure 7: Repository search for the query “Library.”

4 Experimental evaluation

In this section, we first introduce metrics for evaluating the various computational methods
that we have developed. The analytic part of the system can be evaluated using manually
generated “gold standards.” In Section 4.2, we discuss our dataset generation and collec-
tion. In Sections 4.3–4.5, we provide a systematic evaluation of the text analytic components
of the system. Then in Section 4.8 we describe some preliminary full-system evaluation re-
sults.

4.1 Evaluation metrics

We define sensitivity and specificity, which are statistical measures of the performance of a
binary classification test. Consider a study evaluating a test that screens people for cancer.
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Each person taking the test either has or does not have cancer. The outcome of the test can
either be positive (predicts that person has cancer) or negative (predicts the person does
not have cancer). Four results are possible:

1. true positive: a person having cancer diagnosed as having cancer,

2. true negative: a healthy person diagnosed as not having cancer,

3. false positive: a healthy person diagnosed as having cancer, and

4. false negative: a person having cancer diagnosed as not having cancer.

We can then define the following measures:

Sensitivity = Recall =
Number of true positives

Number of true positives+Number of false negatives

Specificity =
Number of true negatives

Number of false positives+Number of true negatives

Precision = PPV =
Number of true positives

Number of false positives+Number of true positives

Accuracy =
Number of true positives and true negatives

All
All = Number of true positives + true negatives+ false positives+ false negatives

F1 score = 2× Precision×Recall

Precision+Recall

The F1 score is the harmonic mean of the precision and recall and has been widely
used as an evaluation metric in information retrieval and machine learning. It captures the
accuracy of the classification.

4.2 Directions data set for classification testing

Our experimental dataset contained the following types of documents:

1. automobile or route directions documents,

2. mass-transit directions documents,

3. hiking directions documents,

4. mixed directions documents, and

5. non-direction-containing documents.

A route directions document dataset of over 11,000 web pages was identified using the
search results of the Yahoo! search engine. The search engine was queried with a set of
carefully selected keywords such as “direction turn mile go,” “turn mile follow take exit,”
etc. These terms are typically present in documents containing route directions. Each set
of queries contains 4 to 7 keywords. Manual examination shows 96% of these documents
contain route directions. Table 9 illustrates some sample queries and the number of unique
documents obtained from the returned results page.
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Search queries Number of documents
1 direction, turn, go, mile 986
2 direction, turn, left, right, exit 775
3 direction, turn, mile, take, exit 588

Table 9: Sample search queries and number of documents retrieved.

Similarly, the mass-transit and hiking directions document datasets were constructed
by using selected keywords such as “subway bus directions train center” and “hiking
directions trail walking difficulty” respectively. All documents were then manually in-
spected and labeled as either “hiking,” “mass-transit,” or “mixed directions” documents.
The mass-transit document dataset has 240 documents and the hiking directions dataset
has 271 documents. The mixed directions document set was constructed by choosing those
documents that contained both mass-transit and route directions during the manual in-
spection of the route directions and mass-transit document sets discussed above. The final
mixed document set contained 216 documents. As negative examples, i.e., documents that
do not contain any movement references, 216 documents were randomly selected from a
subset of 10,000web pages obtained using a random sampling of theWeb using the method
proposed by Henzinger et al. [17].

4.3 Evaluation of spatial document classification

We evaluated the document classification algorithms as follows. Since the route-direction
and non-direction-containing documents are very large in comparison to the other datasets,
N documents are randomly chosen from each of the five datasets to ensure that there is no
bias towards any specific dataset. Here N is the size of smallest dataset, i.e., size of the
mixed direction document set. A traditional stratified k-fold cross validation [9,37] scheme
is used to sample the datasets into k-samples of equal size. For our experiments, we chose
k=10. During each training-testing cycle, classification is performed using five classifiers:
the maximum entropy [20, 39], decision tree [3, 6], naı̈ve Bayes [10, 30], a stacked naı̈ve
Bayes and decision tree, and a stacked naı̈ve Bayes and maximum entropy classifier. The
classifiers were implemented using the MALLET [35] machine learning toolkit.

It was observed that the maximum entropy classifier performs best when identifying
the class of directions that documents belong to (as shown in Figure 3). The maximum
entropy-based classifier achieved 99% accuracy, sensitivity, and specificity for classifiers 1
and 4, 96% accuracy, 95% sensitivity, and 97% specificity for classifier 2 (“multi-mode” and
“single-mode” direction classifier). However, for classifier 3 (“mass-transit” and “mixed”
direction classifier), a stacked naı̈ve Bayes plus maximum entropy classifier performed
the best with 75% accuracy, 78% sensitivity, and 72% specificity. Generally, all classifiers
performed extremely well when classifying “direction-containing” and “non-direction-
containing” as well as “automobile” and “hiking” documents.

However, classifier 3 did not perform as well classifying “mass-transit” and “mixed”
direction documents. The average accuracy rates for these documents were 72%, 69%, and
74% for the maximum entropy, decision tree, and naı̈ve Bayes based classifiers. Stacked
classifiers performed slightly better with the stacked naı̈ve Bayes and maximum entropy
classifier having the best accuracy rate of 75%. Similarly, the stacked naı̈ve Bayes and
decision tree classifier had an accuracy rate of 74%. Both stacked classifiers had higher
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sensitivity rates in comparison to the other classifiers. The naı̈ve Bayes technique had the
best specificity of 75%. Thus, classification of documents containing spatial information re-
quires a hybrid combination of classifiers in multi-stage binary configuration where classi-
fier 3 uses a stacked naı̈ve Bayes andmaximum entropy classifier while the other classifiers
use the maximum entropy classifier.

4.4 Evaluation of sentence-level route component recognition

As reported in [50], over 10,000 sentences were labeled from 100 documents manually. In
order to compare different models, 10-fold cross validation was applied. For each model,
the precision, recall, and F1 score was calculated for all four classes. As expected, the
experiment results show that CRFs and MEMMs outperform naı̈ve Bayes and maximum
entropy. F1 scores for these models are presented in Table 10.

Classifier Destination Origin Route Action Other
Naı̈ve Bayes 0.56155 0.66109 0.90568 0.81159
MaxEnt 0.51803 0.70324 0.91366 0.81667
CRF 0.46536 0.75446 0.93298 0.83867
MEMM 0.51373 0.77559 0.92778 0.83094

Table 10: F1 scores of four class labels for sentence-level route component classification.
Best scores are highlighted in bold.

4.5 Evaluation of phrase-level destination name classification

A short-paper reporting our progress on phrase-level destination name recognition ap-
pears in ACM SIGSPATIAL 2011 [51]. In this subsection, we briefly report these results. 98
driving-direction documents were examined. 241 destination names present within these
documents were manually labeled. These destination names include the different varia-
tions and abbreviations of the same destination name. For example, in one document, the
destination name is “the Happy Berry farm.” Other mentions of the same destination name
in the document include “Happy Berry,” “the farm,” and “Happy Berry, Inc.” All such text
references are labeled as destinations. We then ran our algorithms, which resulted in 871
names being extracted that were classified as “not destination.” 240 out of these 871 names
were randomly selected. This sampling was performed in order to guarantee that the num-
bers of positive samples and negative samples are balanced, which ensures that the trained
model does not suffer from training biases due to the skewed sample sizes. In addition,
this ensures that high accuracy of classification due to good prediction of the majority class
label is avoided. Three machine learning models were then evaluated namely: naı̈ve Bayes
(NB), maximum entropy (MaxEnt), and C4.5 decision tree (C4.5). All experiments used
10-fold cross validation. Table 11 shows the averaged results from 10-fold cross validation
for phrase-level destination name classification. MaxEnt and C4.5 decision tree classifiers
were found to perform well for this task. Table 11 illustrates phrase-level destination name
classification results.
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Destination Non-destination Overall
Precision Recall F1 Precision Recall F1 accuracy

NB 78.16% 75.61% 76.42% 77.06% 78.60% 77.38% 77.10%
MaxEnt 85.50% 74.60% 79.17% 77.61% 86.32% 81.40% 80.63%
C4.5 83.22% 77.02% 79.55% 78.46% 83.73% 80.33% 80.22%

Table 11: Phrase-level destination name classification results. The highest scores are high-
lighted in bold.

4.6 Evaluation of destination tagger

To evaluate the performance of the destination taggermodule, a test set was generated that
consisted of 190 real addresses selected manually from a spatially-stratified route direction
corpus as developed in Xu et al. [49]. The test cases were in original formatting, since they
were directly selected from the route direction’s original web page, in order to cover the
wide flexibility of human-written postal address. Furthermore, the 190 addresses cover
48 states in the continental US and District of Columbia, which ensures covering the ad-
dress variety from the geographic perspective. Table 12 below shows the evaluation statis-
tics with a selection of examples. The destination tagger yielded 88% recall in recognizing
addresses. Because the regular expression patterns were designed to capture precise ad-
dresses, all recognized addresses are correct with no case of partial extraction.

Count Example test addresses
Addresses
recognized

168 a) Northtowne plaza, 691 Naamans road, Claymont, DE 19703
b) 2301 C street SW, Auburn, WA 98001-7410
c) 39849 127th st. Columbia,SD 57433
d) 398 Chestnut street, Union, New Jersey 07083
e) For directions on GPS or Mapquest use our old address of 3841
Cobbler mountain road, Delaplane, VA 20144
f) End at Classic Bowl: 8530 Waukegan rd, Morton Grove, IL 60053, US

Addresses
not
recognized

22 a) 164 Chelsea street, PO Box 96 — South Royalton, VT 05068
b) Freeport center, building Z-15, Clearfield, UT 84016
c) W349 N5293 Lacy’s ln, Okauchee, WI 53069
d) 10 Hartford avenue (Rt. 189) Granby, CT 06035

Table 12: Experimental evaluation of accuracy of the destination taggermodule

As shown in Table 12, destination tagger can match addresses in flexible formats, in-
cluding abbreviations for road name prefixes (e.g., “North,” “N.”) or suffixes (e.g., “St.,”
“st,” “rd.,” “ave.”), numbers written in ordinal form or as Arabic numerals, full name or
acronym of States (“New Jersey” or “NJ”). Extracting addresses from free-formed text is the
key functionality of destination tagger. Addresses written in free-form text can be correctly
extracted, which improves the input to the georeferencing module. For example, after
processing with destination tagger the text “Arrive at 44955 Cherry hill road., Canton, MI
48188-1001, on the Left” results in the output: “44955 Cherry hill road., Canton, MI 48188-
1001.” The unrecognized addresses in Table 12 have unusual characters (e.g., “—” or “()”)
or lack house numbers or street names (e.g., “Freeport center, building Z-15, Clearfield, UT
84016”). These patterns are not included in the original set of regular expressions. How-
ever, with the extendable architecture of destination tagger, it is feasible to write new regular
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expressions that match the unrecognized pattern and to add them to the existing set to
improve the recall.

No. Geo-entity Geo-entity Geo-entity Bounding Reference Exec.
name 1 name 2 name 3 box (km2) city time
(geo-counts) (geo-counts) (geo-counts) (ms)

1. (a) Pittsburgh 31st street E Ohio st 5 Pittsburgh 941
(1) bridge (2) (84)

(b) Pittsburgh 31st street E Ohio st 10 Pittsburgh 4336
(1) bridge (2) (84)

(c) 31st street Allegheny valley 31st street 5 Pittsburgh 3804
Bridge (2) expy (149) (445)

2. (a) Phoenix E Van Buren I-17 5 Phoenix 3310
(6) st (27) (168)

(b) Phoenix E Van Buren I-17 10 Phoenix 4697
(6) st (27) (168)

(c) E Van Buren I-17 North 7th 5 Phoenix 3041
st (27) (168) st(597)

3. (a) Madison ave Exterior st FDR dr 5 NYC 2684
bridge (4) (8) (85)

(b) Madison ave Exterior st FDR dr 10 NYC 15482
bridge (4) (8) (85)

(c) E 138th st Exterior st FDR dr 5 NYC 555
(7) (8) (85)

Table 13: Time required to compute the spatial context for three different movement pat-
terns. Execution time reported is in milliseconds.

4.7 Georeferencing runtimes

Table 13 presents the execution times required to compute the spatial context for three
different example movement patterns. All experiments were run on a PostgreSQL 8.4
database server with PostGIS 1.3.6 running on a dual Intel Xeon Server with 48GB RAM
and a RAID5 array on four Seagate 7.2K RPM drives. The January 2011 daily dump of
the Open Street Map database was downloaded and loaded using osm2pgsql. In addi-
tion to the default indexes, the Open Street Map text tags in the tables were indexed using
the generalized inverted index (GIN). Other necessary columns were indexed using B-tree
indexes. The three movement patterns were route directions in Pittsburgh, Phoenix, and
New York City (NYC). Table 13 also illustrates that the georeferencing algorithm was able
to compute the same route for a given route-directions input file by using different com-
binations of geo-entity names. For example, the route for the Pittsburgh example could
be computed by using two different sets of geo-entity names. The first set of geo-entity
names was “Pittsburgh,” “31st street bridge,” and “E Ohio st.” The second set was “31st
street bridge,” “Allegheny valley expressway,” and “31st street.” For the two different
sets of geo-entity names, the spatial context generated was different but geographically
close. This illustrates the robust capabilities of using such an approach in georeferencing
movement patterns. Increasing the bounding box size from 5km2 to 10km2 increased the
execution time for all three examples. This can be attributed to the larger number of records
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that must be checked against the larger bounding box. Using extremely large bounding box
sizes (e.g., 250km2) is not recommended since there is a larger likelihood of incorrect spatial
context generation as geographically distant geo-entity names (e.g., geo-entity names from
different but geographically close cities) can be used in spatial context generation. The
execution time for generating the spatial context for New York city was greater due to the
higher density of geo-entity names, which was expected.

4.8 Full system subjective evaluation

At this point, we do not have a systematic user-study to report. Metrics for measuring the
ease-of-use and utility of our visual interface need to be designed to pursue a thorough
evaluation of our front-end UI in the future. We have presented numerous demonstrations
of the system for a range of visitors. The coauthors individually tested the full system,
which incorporates all computational steps outlined above, to evaluate what works well
and what needs improvement. Each individual tested the system using multiple sets of
different web pages containing directions. The resulting maps were analyzed by the team.
We report brief anecdotal evidence of how our team used the visual analytic system. We
believe that the lessons learned are important and hence outline them here.

1. The search feature can be used to quickly search the database and retrieve interesting
routes, such as “All routes passing through City X,” “Directions to JFK (i.e., New
York’s John F. Kennedy airport),” etc.

2. In most cases, users could easily tell whether the georeferenced movement pattern
displayed on the left panel was in the right general geographic location or not within
a few seconds. The system generally does well at finding the correct geographic lo-
cation for the tested route directions. Currently, errors are usually related to system
limits in the ability to detect destinations for some directions (as discussed in the
preceding sections) or to matching geo-entity names from text to their geographic
references in geographic databases (multiple names for streets and highways cause
street segments to be missed). We will continue to improve the georeferencing mod-
ule of the system. However, when the system goes wrong, at least the analyst is not
misled into believing that the geographic reference displayed is correct.

3. Color-coding the landmarks and other locations mentioned on the right pane helped
the users identify the origins, destinations, and landmarks in the georeferenced
movement pattern displayed more easily. Users often used the highlighting feature
on the right-panel to mouse over a location name (geo-entity names) and to identify
on the map in the left panel where the location was.

4. There were several cases where the system sketched multiple options for the same
route. The analyst seeing the extracted textual description on the right-hand-side
of the browser could easily point to the correct choice. A control-click allows the
analyst to zoom in to see that sketch. We will add functionality to allow feedback by
the analyst to identify the correct option and store that into the database. This will
help to improve the system’s ability to disambiguate among the multiple sketched
movement patterns in the future.

In some cases, errors crept in because the system identified the wrong bounding box due
to ambiguous landmarks mentioned in the web page. The georeferencing module in the
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system identifies the bounding box and then tries to find the landmarks mentioned in the
text within that bounding box. Route sketcher provides the analyst with an ability to skim
through the route descriptions on the right-panel and to override the system choice of
bounding box when needed by inputting a US state bounding box or a user defined bound-
ing box. The system uses this feedback from the analyst to constrain the route sketched to
arrive at the correct solution. The system then runs the georeferencing algorithm again
using this new information to reprocess the directions and redisplay the new movement
pattern on the map.

5 Future work

Future work on the GeoCAM system includes adding more spatial reasoning support to
extract missing route segments from street databases, to clip route segments at turns, and
to improve the spatial reasoning by defining the spatial bounding box extent in more intel-
ligent ways for limiting spatial queries. One specific role for spatial reasoning methods is to
address the challenge of joining street segments that are stored separately in the database
(perhaps because some segments are tagged with their street name and others with a high-
way number). Beyond the problems of interpreting text statements correctly, the quality of
spatial data limits the accuracy of the GeoCAM system. For example, Open Street Map [15]
records have good coverage over developed countries but the street names do not follow
consistent naming conventions (for example, “East Main Street” may also be labeled as
“East Main St,” “E Main St,” “East Main Street,” “E Main Street”). In these cases, it is
difficult to find the entire street without the document having referred to every variation
of the name.
The GeoCAM system currently lacks the functionality of clipping streetswhen retrieved

segments extend beyond the actual route. A solution to this could be building a table that
stores every intersection of streets present in Open Street Map [15] and utilizing spatial
reasoning techniques to perform turn clipping. We will investigate this approach in future
work.

6 Conclusions and outlook

In this paper, we show how to automatically process human-generated route directions
and plot them on a map. A visual analytics environment, which combines machine learn-
ing and natural language processing methods with a geographic database, supports the
extraction, interpretation, and mapping of geographic references in context, and the cap-
ture of tacit analyst knowledge to refine the results returned by the system. An end-to-end
system was implemented and tested. We have assessed the computational methods for
identifying documents containing routes, categorizing those with routes on the basis of
mode of travel, and identifying and extracting origins, destinations, and route parts. Our
empirical assessments demonstrate acceptable performance for the first two of these and
reasonable performance on the third. Next steps in the research are to enhance methods
for analyst feedback to the system and add additional spatial reasoning capabilities to cope
with the many unique situations encountered with messy, real-world documents. In addi-
tion, after such improvements to our system, we will carry out formal usability testing to
assess the entire system from a user perspective.
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We believe that the same general infrastructure can be used to process directions given
in a different language. However, this requires a parser for the language. Sometimes even
geo-entity names are written differently in different languages , e.g., Spain/Espagne. Fur-
thermore, spatial concepts such as “through” also vary across languages. Thus, a gazetteer
that contains the location names in the target language is also a requirement. Once that is
available, the named entity extractor, like GATE, can be used for multiple languages. For
the classifiers, one would have to identify language features in the alternative language
that can be used to identify destinations, origins, and route directions. Of course, the GUI
would need to be altered to use a different language and perhaps alternative alphabet or
character system.

Lastly, a key component of the work has involved creating an ontological characteri-
zation of movement [2, 24, 41, 49]. Building on this, we identified a need to account for
regional differences and different languages. To this end, we are using tools developed
(the spatial document classification module) to create spatially stratified samples of lin-
guistically encoded movement patterns. As a starting point, we sampled documents from
the 48 contiguous states in the US and Washington, DC, based on the location of the desti-
nation [49]. Moreover, this approach can be easily scaled to account for all (at the moment)
English-speaking countries. The purpose of this sampling strategy is twofold: first, to
identify linguistic patterns that are region specific; and, second, to use this knowledge to
enhance the performance of the automatic extraction and characterization of movement
patterns.
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