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A global transformation is being fueled by unprecedented growth in the quality, quan-

tity, and number of different parameters in environmental data through the convergence

of several technological advances in data collection and modeling. Although these data

hold great potential for helping us understand many complex and, in some cases, life-

threatening environmental processes, our ability to generate such data is far outpacing our

ability to analyze it. In particular, conventional environmental data analysis tools are in-

adequate for coping with the size and complexity of these data. As a result, users are

forced to reduce the problem in order to adapt to the capabilities of the tools. To overcome

these limitations, we must complement the power of computational methods with human

knowledge, flexible thinking, imagination, and our capacity for insight by developing vi-

sual analysis tools that distill information into the actionable criteria needed for enhanced

decision support.



In light of said challenges, we have integrated automated statistical analysis capabili-

ties with a highly interactive, multivariate visualization interface to produce a promising

approach for visual environmental data analysis. By combining advanced interaction tech-

niques such as dynamic axis scaling, conjunctive parallel coordinates, statistical indicators,

and aerial perspective shading, we provide an enhanced variant of the classical parallel co-

ordinates plot. Furthermore, the system facilitates statistical processes such as stepwise

linear regression and correlation analysis to assist in the identification and quantification

of the most significant predictors for a particular dependent variable. These capabilities

are combined into a unique geovisual analytics system that is demonstrated via a pedagog-

ical case study and three North Atlantic tropical cyclone climate studies using a systematic

workflow. In addition to revealing several significant associations between environmen-

tal observations and tropical cyclone activity, this research corroborates the notion that

enhanced parallel coordinates coupled with statistical analysis can be used for more effec-

tive knowledge discovery and confirmation in complex, real-world data sets.

Key words: geovisual analytics, multidimensional multivariate data visualization, paral-

lel coordinates, tropical cyclone, hurricane, climate study, visual interaction techniques,

statistical analysis, exploratory data analysis, geovisualization, stepwise regression, corre-

lation analysis



DEDICATION

I dedicate this dissertation to my wife, Jessica, and my children, Julia and Blake.

ii



ACKNOWLEDGMENTS

First and foremost, I thank my Lord and Savior, Jesus Christ, for “renewing my strength”

daily and for teaching me patience through adversity during this journey. I thank God for

His amazing love manifested by the death, burial, and resurrection of His Son, Jesus Christ,

which paved the way for not only my salvation, but the salvation of all who believe and

follow Him.

But they that wait upon the LORD shall renew their strength; they shall mount
up with wings as eagles; they shall run, and not be weary; and they shall walk,
and not faint.

–Isaiah 40:31

For God so loved the world, that He gave his only begotten Son, that whoso-
ever believeth in Him should not perish, but have everlasting life.

–John 3:16

I also thank Dr. Swan, my major professor, for offering excellent academic and career

guidance as well as a wealth of encouragement and inspiration at just the right times along

the way. Dr. Swan’s enthusiam always motivated me to rise early and work late in order

to deliver my very best. I greatly appreciate Dr. Swan’s character, humility, easygoing

demeanor, and generosity as well as the example of loving dedication he displayed for his

own family. Insomuch as I have been blessed by knowing Dr. Swan, I hope that I can be

an equal blessing to others in the future.

iii



I also thank the extraordinary group of professors who served on my committee. I

thank Dr. Jankun-Kelly for the inspiring InfoVis lectures, informal meetings, and critiques

that helped me form the research ideas described in this dissertation. I have been contin-

ually amazed by his knowledge of visualization techniques and I have the highest regard

for his feedback on my own efforts. Furthermore, I greatly appreciate his humor and for

introducing me to the wonderful world of Mac. I thank Dr. Fitzpatrick for his abundant

enthusiasm and energy, for teaching me the art of statistical climate analysis, and for his

expert insight and guidance that formed the core of my climate study evaluations. I truly

admire Dr. Fitzpatrick for the tenacity and fortitude that he demonstrated as he rebuilt in

New Orleans after Hurricane Katrina. I thank Dr. Moorhead who, in addition to teaching

me and being a great role model, always had time to meet with me and shake hands with

my guests. My Ph.D. journey really began in 1999 when Dr. Moorhead took time out of

his busy schedule to discuss opportunities for MSU graduate study over a fine lunch at

the Stennis Space Center cafeteria. I thank Dr. Allen for helping me form a solid plan of

study, which made all the difference in maximizing my training time in Starkville. I also

want to thank Dr. Allen for his guidance and encouragement during this journey.

I thank Travis Atkison for being the best friend I have ever had in my life and teaching

me the game of racquetball. It is no coincidence that we started our Ph.D. pursuits at the

same time as we helped each other through. Travis, his wife, Rebekah, and sons, Anthony

and Zachary Atkison, will always be very dear friends of our family.

I also thank my pastor at Faith Baptist Church in Starkville, Dr. Blaine Allen, for his

friendship and spiritual guidance that sparked much needed maturity in my walk with the

iv



Lord. I am also thankful for the wonderful, genuine, and loving congregation at Faith. I

also thank my pastor at First Baptist Church in Purvis, MS, Rev. Bill Wright, for his words

of encouragement and Godly example. I am forever indebted to many people in these

churches for their prayers and support.

I acknowledge the support of the Naval Research Laboratory and the Select Graduate

Training program. My division head, Dr. Herbert Eppert, my branch head, Mike Harris,

and my supervisor, Will Avera, have always given me generous support, advice and en-

couragement. I thank my NRL co-workers and friends including John Breckenridge, Dr.

Paul Elmore, Dr. John Sample, Dr. Dave King, Josie Fabre, Kevin Shaw, Maura Lohrenz,

Les Baham, Stephanie Myrick, Mike Trenchard, Dianne James, Carolyn Gilroy, and Peggy

Fayard. I also thank my former manager at Lockheed Martin Scientific Systems, Larry

Wilson, for first encouraging me to take full advantage of opportunities to advance and

further my education.

I thank my project sponsors at PEO-C4I PMW-120, Dr. Edward Mozley, Marcus

Speckhahn, and Kim Koehler, for having the patience to endure my academic pursuits

while I also worked on their research programs. I thank Dr. Phil Klotzbach of Colorado

State University’s Tropical Meteorology Project for providing the Atlantic tropical cyclone

predictors data set that was used in the climate studies. I acknowledge the Earth System

Research Laboratory of the National Oceanic & Atomspheric Administration (NOAA) for

providing access to the Atlantic Meridional Mode (AMM) Index data set.

I would like to dearly thank my parents for raising me in a safe and loving environment,

putting me through school, and instilling within me a drive to excel. I thank my loving

v



mother, Penny Steed, for her cheerfulness, sacrificially giving of herself to help out when

trouble or sickness arose, and for bringing me to church in the days of my youth. I thank

my father, Terry Steed, for working so hard to provide for and protect our family, yet

always dedicating time to bring me fishing or hunting—I will always cherish these times.

I also thank my sister, Gail Clark, for her love, humor, and for being an inspiration to

everyone; I will always be proud to say that I am your little brother. I thank my two

nieces, Emily and Elizabeth Clark, for their tender smiles and hugs. I thank my father-

in-law and mother-in-law, Larry and Paula Miley, for giving me their daughter’s hand in

marriage and for their generous love and support throughout. In addition, I thank my

delightful grandmothers, Donnie Busbea and the late Bernice Steed, for their love and

affection. What a wonderful family!

Last but certainly not least, I want to thank my beautiful wife, Jessica, for sticking with

me since the seventh grade and loving me unconditionally, despite my many imperfections.

Jessica kept me grounded and focused on my mission while keeping our household in order

when I was engrossed in my work. Jessica, I simply could not have made it this far without

you. I thank my sweet and beautiful daughter, Julia (my Princess), who always melts my

heart with her smile, laughter, and enchanting green eyes. I also thank my thoughtful yet

strong-willed son, Blake (my Chief ), whose dedication and infectious laughter give me a

peace that is beyond words. The joy, love, and laughter so freely offered by my wife and

children nourishes my soul and I love them, dearly.

I firmly believe that any man’s finest hour, the greatest fulfillment of all
that he holds dear, is the moment when he has worked his heart out in a good
cause and lies exhausted on the field of battle—victorious.

– Vince Lombardi
vi



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Statement of Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Multidimensional Multivariate Data . . . . . . . . . . . . . . . . . . 11
2.2 Parallel Coordinates Mathematical Background . . . . . . . . . . . . 12
2.3 Statistical Analysis Techniques . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Simple Linear Regression . . . . . . . . . . . . . . . . . . . 21
2.3.4 Multiple Linear Regression . . . . . . . . . . . . . . . . . . 22

2.4 Tropical Cyclone Trend Analysis . . . . . . . . . . . . . . . . . . . 25
2.5 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.1 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . 30
2.5.2 Dynamic Interaction Techniques . . . . . . . . . . . . . . . . 33
2.5.3 Parallel Coordinates . . . . . . . . . . . . . . . . . . . . . . 34

2.5.3.1 Parallel Coordinates Theory . . . . . . . . . . . . . 35
2.5.3.2 Parallel Coordinates Technique Extensions . . . . . 39
2.5.3.3 Applications of Parallel Coordinates . . . . . . . . . 64

vii



3. APPROACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.2 Visualization Capabilities . . . . . . . . . . . . . . . . . . . . . . . 79

3.2.1 Classical Parallel Coordinates Interaction Capabilities . . . . 81
3.2.2 Dynamic Visual Queries . . . . . . . . . . . . . . . . . . . . 83
3.2.3 Axis Scaling (Focus+Context) . . . . . . . . . . . . . . . . . 85
3.2.4 Aerial Perspective Shading . . . . . . . . . . . . . . . . . . . 87

3.3 Analysis Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.3.1 Descriptive Statistical Indicators . . . . . . . . . . . . . . . . 90
3.3.2 Correlation Analysis Capabilities . . . . . . . . . . . . . . . 93
3.3.3 Multicollinearity Filter . . . . . . . . . . . . . . . . . . . . . 97
3.3.4 Regression Analysis Capabilities . . . . . . . . . . . . . . . 98
3.3.5 Axis Arrangement . . . . . . . . . . . . . . . . . . . . . . . 99

4. EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.1 Systematic Workflow for Environmental Analysis . . . . . . . . . . . 105
4.2 Case Study 1: Exploring Relationships in Body Dimensions . . . . . 109

4.2.1 Body Measurement Data . . . . . . . . . . . . . . . . . . . . 110
4.2.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3 Case Study 2: North Atlantic Tropical Cyclone Climate Study . . . . 122
4.3.1 CSU Climate Study Data Set . . . . . . . . . . . . . . . . . . 124

4.3.1.1 El Niño Variables . . . . . . . . . . . . . . . . . . . 127
4.3.1.2 Sea Level Pressure Variables . . . . . . . . . . . . . 129
4.3.1.3 Teleconnection Variables . . . . . . . . . . . . . . . 129
4.3.1.4 Quasi-Biennial Oscillation Variable . . . . . . . . . 130
4.3.1.5 Atlantic Sea Surface Temperature Variables . . . . . 130

4.3.2 Climate Analysis Results . . . . . . . . . . . . . . . . . . . . 130
4.4 Case Study 3: North Atlantic Intense Hurricane Climate Study . . . . 139

4.4.1 Climate Analysis Results . . . . . . . . . . . . . . . . . . . . 141
4.4.1.1 Correlation Analysis . . . . . . . . . . . . . . . . . 141
4.4.1.2 Significant Predictors Identified with Regression . . 149
4.4.1.3 Significant Predictors Identified without Regression . 158

4.5 Case Study 4: Atlantic Meridional Mode (AMM) . . . . . . . . . . . 163
4.5.1 AMM Data Set . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.5.2 Exploratory Analysis . . . . . . . . . . . . . . . . . . . . . . 164

4.5.2.1 Significant Predictors Identified with Regression . . 168
4.5.2.2 Multicollinearity Filter . . . . . . . . . . . . . . . . 171
4.5.2.3 Regression Analyses . . . . . . . . . . . . . . . . . 174

4.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
4.6 Lessons Learned from Climate Analysis with Geovisual Analytics . . 183

viii



5. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.1 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
5.3 Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 196

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

APPENDIX

A. ANALYSIS PARALLEL COORDINATES LITERATURE REVIEW . . . 213

ix



LIST OF TABLES

3.1 MDX visualization capabilities. . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.2 MDX analysis capabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.1 Body data set measurements and descriptions. . . . . . . . . . . . . . . . . . 111

4.2 Stepwise regression model for body measurement data set. . . . . . . . . . . 120

4.3 CSU tropical cyclone predictor data set parameters. . . . . . . . . . . . . . . 125

4.4 Stepwise regression models for NS, H, and IH categories. . . . . . . . . . . . 132

4.5 Stepwise regression model for IH category. . . . . . . . . . . . . . . . . . . 151

4.6 Above normal IH activity predictor ranges. . . . . . . . . . . . . . . . . . . . 153

4.7 Regression model for IH category with AMM and CSU data sets. . . . . . . . 172

A.1 Comparative summary of parallel coordinates literature review . . . . . . . . 214

A.2 Number of parallel coordinates papers per year. . . . . . . . . . . . . . . . . 221

A.3 Analysis of evaluations in parallel coordinates literature. . . . . . . . . . . . 221

x



LIST OF FIGURES

1.1 Snow’s map of the 1854 London cholera epidemic (from Tufte [144]). . . . . 2

2.1 The polyline in parallel coordinates maps the point C ∈ RN to R2. . . . . . . 13

2.2 Illustration of the point line duality for parallel coordinates. . . . . . . . . . . 14

2.3 Positive and negative correlations represented in parallel coordinates. . . . . . 20

2.4 Scatterplot showing sea surface temperature versus hurricane activity. . . . . 29

2.5 Spatio-temporal analysis with the “space-time cube” by Gatalsky et al. [51]. . 32

2.6 Ahlberg and Shneiderman’s [8] Dynamic HomeFinder . . . . . . . . . . . . 33

2.7 The Influence Explorer application introduced by Tweedie et al. [146]. . . . 34

2.8 Two variants of parallel coordinates introduced by Wegenkittl et al. [154]. . . 41

2.9 Correlation analysis in Siirtola’s [135] Parallel Coordinate Explorer. . . . . . 44

2.10 Correlation indicators in parallel coordinates by Siirtola [135]. . . . . . . . . 44

2.11 Siirtola [135] parallel coordinates without polyline averaging. . . . . . . . . . 45

2.12 Siirtola’s [135] parallel coordinates with polyline averaging. . . . . . . . . . 45

2.13 Andrienko and Andrienko’s [10] parallel coordinates system. . . . . . . . . . 47

2.14 Angular brushing and linked views by Hauser et al. [63]. . . . . . . . . . . . 49

2.15 The Time-Tunnel technique introduced by Notsu et al. [122]. . . . . . . . . . 52

2.16 A unique parallel coordinates variant introduced by Johansson et al. [86]. . . 53

xi



2.17 The parallel coordinates system interface by Ericson et al. [38]. . . . . . . . 55

2.18 Parallel Sets by Bendix et al. [19]. . . . . . . . . . . . . . . . . . . . . . . . 56

2.19 Formulation of the SGViewer by Sifer [134]. . . . . . . . . . . . . . . . . . . 58

2.20 The SGViewer by Sifer [134]. . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.21 The VIS-STAMP system introduced by Guo et al. [58]. . . . . . . . . . . . . 60

2.22 The DataRose concept by Elmqvist et al. [37]. . . . . . . . . . . . . . . . . 62

2.23 The S-shaped parallel coordinates axes introduced by Qu et al. [129]. . . . . 63

3.1 MDX user interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2 Annotated view of the interactive MDX axis widgets. . . . . . . . . . . . . . 82

3.3 MDX’s details-on-demand capabilities. . . . . . . . . . . . . . . . . . . . . . 84

3.4 Dynamic conjunctive query capabilities using MDX. . . . . . . . . . . . . . 85

3.5 Screen captures of an MDX axis before (a) and after (b) dynamic scaling. . . 86

3.6 Alfred Sisley’s 1873 painting Sentier de la Mi-cote, Louveciennes. . . . . . . 87

3.7 Continuous aerial perspective shading image sequence. . . . . . . . . . . . . 89

3.8 The axis box plots represent the variability statistics for the data values. . . . 91

3.9 The axis summary lines in MDX. . . . . . . . . . . . . . . . . . . . . . . . . 92

3.10 Construction of the MDX axis correlation indicators. . . . . . . . . . . . . . 94

3.11 Axis correlation indicators in MDX. . . . . . . . . . . . . . . . . . . . . . . 95

3.12 Axis correlation indicator color scale. . . . . . . . . . . . . . . . . . . . . . 96

3.13 Integration of MATLAB® with MDX. . . . . . . . . . . . . . . . . . . . . . 99

3.14 Axis arrangement by correlation coefficients and variability ranges. . . . . . . 102

3.15 Axes arranged by SLR r2 values (a) and MLR b values (b). . . . . . . . . . . 103

xii



4.1 Climate study system context diagram. . . . . . . . . . . . . . . . . . . . . . 106

4.2 Sequence diagram for climate study using MDX. . . . . . . . . . . . . . . . 107

4.3 Gender differences in the body measurements data set. . . . . . . . . . . . . 113

4.4 Gender differences between the Check Diameter and Thigh Girth variables. . 114

4.5 Scatterplot displays highlight gender differences in several measurements. . . 115

4.6 Histogram axis displays for all body measurement axes. . . . . . . . . . . . . 117

4.7 Detailed histogram view showing normal and gamma distributions. . . . . . . 118

4.8 Detailed analysis of strongly correlated body measurements. . . . . . . . . . 119

4.9 Stepwise regression results including both male and female subjects. . . . . . 121

4.10 Male-only and female-only stepwise regression models. . . . . . . . . . . . . 123

4.11 Geographic regions for the CSU predictors. . . . . . . . . . . . . . . . . . . 126

4.12 Walker Circulation illustration from NOAA. . . . . . . . . . . . . . . . . . . 127

4.13 NS regression model for below normal seasons (1950 to 2006). . . . . . . . . 135

4.14 H regression model for above and below normal seasons (1950 to 2006). . . . 137

4.15 IH regression model for above and below normal seasons (1950 to 2006). . . 138

4.16 Comparison of predictors in 2005 and 2006 hurricane seasons. . . . . . . . . 140

4.17 Multidecadal variability in IH activity shown in parallel coordinates. . . . . . 142

4.18 Correlation analysis of potential predictors with the IH axis. . . . . . . . . . 143

4.19 SLP correlation analysis using continuous aerial perspective shading. . . . . . 144

4.20 Correlation analysis of SST predictors in MDX. . . . . . . . . . . . . . . . . 145

4.21 Axis configuration after multicollinearity filter execution with IH category. . . 147

4.22 Correlation between June–July Niño 3 (1) and May SST (2) variables. . . . . 148

xiii



4.23 IH regression model for active and inactive seasons (1950 to 2006). . . . . . 150

4.24 Initial query ranges for predicting above normal IH activity. . . . . . . . . . . 154

4.25 Adjusted query ranges for predicting above normal IH activity. . . . . . . . . 155

4.26 Seasons within the refined predictor ranges for above normal IH activity. . . . 156

4.27 Non-active IH seasons within predictor ranges for active IH seasons. . . . . . 157

4.28 Full correlation analysis with the IH axis . . . . . . . . . . . . . . . . . . . . 159

4.29 Analysis of predictors by IQR ranges. . . . . . . . . . . . . . . . . . . . . . 161

4.30 Query ranges for active IH prediction identified without regression. . . . . . . 162

4.31 Correlation of AMM-June with the other eleven AMM variables. . . . . . . . 165

4.32 Correlation analysis for AMM variables and the IH category. . . . . . . . . . 166

4.33 AMM variable values for above and below normal IH activity. . . . . . . . . 167

4.34 All AMM and CSU variables plotted with the IH axis. . . . . . . . . . . . . . 169

4.35 Correlation analysis of IH, H and NS with all CSU and AMM variables. . . . 170

4.36 Correlation analysis after multicollinearity filtering for IH, H, and NS axes. . . 173

4.37 IH regression model with AMM and CSU variables (1950 to 2006). . . . . . 175

4.38 Significant axes values for above normal and below normal IH activity. . . . . 176

4.39 H regression model with AMM and CSU variables (1950 to 2006). . . . . . . 177

4.40 Correlation analysis between SLP variables and AMM-December. . . . . . . 178

4.41 NS regression model with AMM and CSU variables (1950 to 2006). . . . . . 179

4.42 Correlation analysis between the AMM variables and June–July Niño 3 (1). . 181

5.1 NOAA Best Track data set analysis user interface concept. . . . . . . . . . . 194

5.2 The Parallel Sets approach by Kosara et al. [103]. . . . . . . . . . . . . . . . 196

xiv



A.1 Plot of parallel coordinates paper count per year. . . . . . . . . . . . . . . . . 220

A.2 Plot of parallel coordinates literature evaluations. . . . . . . . . . . . . . . . 220

xv



CHAPTER 1

INTRODUCTION

In 1854, a devastating cholera epidemic was raging in London. In response, Dr. John

Snow conducted an elaborate investigation on the effect of the water supply on the spread-

ing cholera. In his search for clues, he placed dots at the locations of the recorded deaths

on a map of the neighborhood that also showed the drinking water well locations with

crosses (see Figure 1.1). From this map, the concentration of dots in the area surrounding

one of the wells (the well located at the center of the map on BROAD STREET) was re-

markable. He persuaded the local council to remove the handle of this well pump and the

epidemic stopped, suggesting that the disease was being transmitted by contact with the

handle [52, 144]. Although this same insight might have also been discovered via some

calculation, the use of a graphical analysis technique proved to be more efficient.

Over 250 years later, scientists and researchers face similar problems that require sift-

ing through data to find associations among a set of inter-related parameters. For instance,

medical researchers still strive to isolate causes and effects from disease outbreaks, intelli-

gence analysts search for patterns in complex data streams to protect national security, and

weather scientists seek to find correlations and patterns in environmental measurements to

better understand and predict weather phenomena.
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Figure 1.1

Snow’s map of the 1854 London cholera epidemic (from Tufte [144]).
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However, contemporary problems are exacerbated by unprecedented growth in both

the quality and quantity of data due to the convergence of several technological advances.

In 2002, Lyman and Varian [116] estimated that five exabytes of new information was

produced from print, film, magnetic, and optical storage media, which is equivalent to the

information contained in 37,000 new libraries with book collections the size of the Library

of Congress. Based on a world population of 6.3 billion, approximately 800 megabytes

(MB) of recorded information is produced annually per person [116]. The FedEx Corpo-

ration claims an average daily volume of more than 7.5 million shipment transactions [1].

On an average business day, 16.0 petabytes (PB) of data traffic crosses AT&T’s global

networks [2]. Furthermore, MacEachren and Kraak [118] estimate that up to 85% of all

information has a spatial component, which further complicates data analysis.

Although the data explosion is not restricted to any single domain, let us consider, in

greater detail, the situation regarding environmental data. The U.S. Naval Oceanographic

Office (NAVOCEANO) surveys the world’s oceans 24 hours a day, 7 days a week, and

at least 10 months of each year with the world’s finest-equipped ocean survey fleet. In

2002, Depner et al. [32] projected a 22-fold increase in the amount of bathymetric data to

be processed by NAVOCEANO in the future due to the installation of new data collection

equipment. This increase translates into about 2.75 terabytes (TB) per year versus the 2002

level of 125 gigabytes (GB) per year. If imagery and side scan sonar data are included,

the figure rises to 2400 times the 2002 data collection quantity which is about 300 TB per

year [32].
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There are many organizations, like NAVOCEANO, that face the challenge of develop-

ing new methods to effectively handle the exponential increase in the volume, quality, and

resolution of environmental data. Perhaps the most significant contributors to this increase

are in the American and international remote sensing programs. For instance, the National

Aeronautics and Space Administration’s (NASA’s) Earth Observing System1 produces 194

GB of data per day while Landsat 72 produces an additional 150 GB per day. Considering

the higher level products produced from these raw data to allow scientists to work with

easily understandable variables (e.g. surface temperature, ocean productivity), the volume

of data produced by these two satellite series alone is about one TB per day [30].

Although these data hold tremendous potential for revealing unknown and valuable

insight to help us understand complex systems and phenomena [12, 34, 58], our ability to

generate such data is far outpacing our ability to analyze it [30]. In this dissertation, we

corroborate the notion that new visual data analysis approaches are a key component to

understanding these new data. More specifically, we focus on utilizing visual analytics

to conduct climate trend analysis under the premise that the resulting technologies will

yield more rapid and accurate analysis. Existing tools in this domain are inadequate be-

cause they were not designed for the increasing quality, quantity, and number of different

parameters; they cannot provide dynamic interactions with the data behind the visualiza-

tions; and they are not linked to decision support algorithms. Methods to display and

scrutinize the data in useful and meaningful ways have not kept pace with recent advances

1The Earth Observing System is a coordinated set of polar-orbiting and low inclination satellites.

2Landsat 7 is a series of satellites that provide global land surface images.
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in climate modeling and measurement, thereby forcing scientists to reduce their problems

in order to adapt to the tools. Therefore, in order to effectively understand today’s environ-

mental data we need to follow Dr. Snow’s example and bring to bear innovative, practical

visual analysis techniques for enhanced knowledge extraction.

1.1 Motivation

In 1973, Hamming [60] said that “the purpose of computation is insight, not num-

bers.” Likewise, visualization should focus on insight (discovery, decision making, and

explanation) rather than pictures. In fact, Card et al. [24] define visualization as “the use

of computer-supported, interactive, visual representations of data to amplify cognition”

where cognition refers to the acquisition or use of knowledge. More recently, Munzner et

al. [121] likened visualization to statistics where the focus is on the analysis and interpre-

tation.

In scientific visualization, the representations tend to be based on physical data that are

inherently spatial. When the goal is to visualize nonphysical information—such as finan-

cial data, business statistics, documents, or abstract conceptions—there is a basic problem

of mapping nonspatial abstractions into an effective visual form. The mass and complex-

ity of such abstract information has been a key factor for extending visualization into the

abstract realm [24]. This situation has resulted in the emergence of the field of informa-

tion visualization, which is loosely defined as the use of interactive visual representations

of abstract data to enhance cognition. Ware [153] characterized information visualization
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as the fusion of various elements from the fields of computer graphics, human-computer

interaction, perception, and neurology.

The importance of visualization in dealing with today’s data explosion is amplified

by the recent U.S. National Institutes of Health (NIH) and U.S. National Science Foun-

dation (NSF) Visualization Research Challenges Report [92]. In this report, visualization

researchers are encouraged to “collaborate closely with domain experts who have driv-

ing tasks in data-rich fields to produce tools and techniques that solve clear real-world

needs [92].” Recently, Stephen Few [42] remarked that a wide chasm separates informa-

tion visualization researchers from software vendors that could benefit from their work.

Researchers are responsible for at least half the chasm due to three failures: much infor-

mation visualization research has no practical application, much information visualization

research produces incomprehensible visualizations and ineffective functionality, and much

information visualization research is not presented in an understandable and compelling

manner. According to Few, researchers should respond to the actual needs of the people.

Insomuch as the power of visualization is manifest in our innate ability to identify pat-

terns in graphical forms very quickly [113], the usefulness of today’s environmental data

will be determined by the insight that can be obtained from it. Applying new visualiza-

tion techniques will help scientists explore these data by reducing and refining the data

stream. By exploiting the high bandwidth human visual perception channel through visu-

alization interfaces, we can help scientists understand this data orders of magnitude faster

than looking at raw numbers or text. The insight provided through visualization can help
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scientists find and create new hypotheses, techniques, and methods that can improve our

daily lives [121].

Traditionally, maps have been utilized to present, synthesize, analyze, and explore en-

vironmental information. But due to the complexity and volume of information, maps

alone cannot address today’s challenges [106]. That is, when very large and complex mul-

tivariate data sets have to be visualized on traditional maps or in Geographic Information

System (GIS) environments, the current methods reach their limits [142]. Consequently,

the cartographic community is exploring new approaches to mapping which provide flexi-

ble interfaces to interact with the data behind the visualization and encourage exploration.

As stated by Kraak [106], the new approach is used to “stimulate visual thinking about

geospatial patterns, relationships and trends.” These new systems are operating in the

realm of geovisualization, where cartographic and geographic information representation

techniques are integrated with recent advances in scientific visualization, information vi-

sualization, exploratory data analysis, and image analysis [117].

From its beginnings, geovisualization has emphasized a visual analysis approach, but

the more recently introduced term ‘visual analytics’ makes this goal more explicit. In

general, visual analytics refers to the science of analytical reasoning facilitated by vi-

sual interfaces. These tools and techniques are used to synthesize information and derive

insight from large, ambiguous, and dynamic data, detect the expected and discover the

unexpected, provide timely, defensible, and understandable assessments, and communi-

cate assessments efficiently for action. The need for visual analytics is driven by an ever

increasing amount of data to analyze, increasing complexity and uncertainty in the data,
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decreasing amount of time to analyze data, and a lack of methods, technology, or tools

available today or perceived on the horizon [140]. Although the demand was initiated by

the needs of the U.S. Department of Homeland Security, it was quickly echoed by other

domains such as human health and commerce [141]. The same challenges are evident in

environmental data analysis.

A sub-area of visual analytics is called geovisual analytics, which focuses on visual

analytic tasks and tools involving geographic and temporal aspects of data. In this dis-

sertation, we extend interactive geovisual analytics to generate representations of multidi-

mensional, multivariate data and evaluate the effectiveness of the resulting capabilities in

the study of tropical cyclone trends.

1.2 Statement of Hypothesis

The following hypotheses motivated this dissertation:

1. The development of an advanced geovisual analytics approach using parallel coor-
dinates and statistical techniques reveals a deeper level of understanding than tradi-
tional methods when applied to the task of finding complex multivariate trends in
environmental data sets. With new ways to creatively explore the data, the approach
offers a more effective visual interface to glean new insight about the data behind
the visualization.

2. The effectiveness of the geovisual analytics approach is necessarily explored in the
context of practical environmental studies, which are grounded in real-world data
sets instead of invented or abstract data sets, in close collaboration with domain
experts. The discovery of new associations and the confirmation of known patterns
by domain experts will validate the promise of this new approach in environmental
data analysis.
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1.3 Contributions

The main contributions of this research are:

• Developed a parallel coordinates based visualization interface for representing mul-
tidimensional, multivariate data by integrating several previously introduced and
some new extensions in a single interface.

• Extended dynamic visual query techniques to provide enhanced access to the data
behind the visualization.

• Investigated statistical data analysis techniques that help identify and quantify sig-
nificant predictor variables for a single dependent variable.

• Fused the parallel coordinates interface, dynamic visual query techniques, and sta-
tistical analytics into an innovative geovisual analytics application.

• Evaluated the effectiveness of using new geovisual analytics in tropical cyclone cli-
mate analyses in close collaboration with a hurricane expert, Dr. Fitzpatrick (who
also served on this dissertation graduate committee), using a systematic workflow.

• Identified the strengths and weaknesses of using geovisual analytics in multivariate
analysis over traditional environmental analysis techniques.

• In regard to North Atlantic tropical cyclone activity, discovered several significant
associations in the AMM data set and confirmed many known trends in the CSU
data set, thereby corroborating the notion of enhanced analysis using our approach.

1.4 Organization

The remainder of this dissertation is organized as follows. In order to evaluate the hy-

potheses presented in this chapter, we conducted a comprehensive investigation of previ-

ously published parallel coordinates and other multivariate visualization techniques. The

results of this investigation, which are described in Chapter 2, were then used to build

a unique parallel coordinates geovisual analytics system for multivariate data analysis.

The system combines several fundamental parallel coordinates capabilities and variants of

more advanced techniques from prior works. The system also offers new interactive func-

tionality with parallel coordinates: dynamic axis scaling using mouse wheel movement
9



and continuous aerial perspective shading of polylines. These techniques are then used in

Chapter 4 to demonstrate the enhanced visual data analysis capabilities in four separate

case studies. The new insight obtained from these evaluations in collaboration with our

hurricane expert, Dr. Fitzpatrick, validate the promise of this approach in environmental

data analysis. Specifically, we developed a deeper level of understanding about the phys-

ical associations of global signals for seasonal North Atlantic tropical cyclone activity in

the latter three case studies.
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CHAPTER 2

BACKGROUND

2.1 Multidimensional Multivariate Data

Statisticians, psychologists, accountants, physicists, etc. have been studying multidi-

mensional, multivariate visualization long before the field of computer science emerged.

The introduction of low-priced personal computers in the 1980s opened the door to more

advanced graphical data analysis, which, in turn, led to the expansion of the quest for more

effective multidimensional multivariate visualization approaches [157]. Recent technolog-

ical advances have dramatically increased the need for new multidimensional multivariate

visualization techniques, especially in the realm of environmental analysis. These ad-

vances have increased not only the quality and the number of samples that are analyzed,

but also the number of different variables collected. Consequently, data sets with high di-

mensionality are becoming increasingly common in many domains (e.g. climate analysis,

computer science, finance, medical, social sciences) [154].

In 1997, Wong and Bergeron [157] published a review covering 30 years of multidi-

mensional multivariate visualization advances in which they note that much of the termi-

nology in the area is ill-defined, especially the term dimensionality. Although the math-

ematician considers the dimension to be the number of independent variables in an alge-
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braic equation, the engineer regards dimension as measurements of any sort (e.g. breadth,

length, height, area). In addition, the prefix multi is often interchanged with the prefix

hyper. In statistics, the prefix multi refers to two or more, while hyper refers to three and

four (or beyond) [157].

Furthermore, Wong and Bergeron [157] note that there is also a difference between

multidimensional objects and multidimensional data. The multidimensional object is

a spatial object where the goal is to understand its geometry. Commonly realized as

two dimensional images or three dimensional volumes, they are best described within

n-dimensional Euclidean spaces Rn. In contrast, multidimensional data refer to the study

of relationships among multiple parameters which can be classified as either dependent or

independent categories. In statistics, the terms factor and response are often used instead.

The dependent variable y is a function of the independent variable x. This relationship

is described by the equation y = f (x). Wong and Bergeron [157] used the convention

that the term multidimensional describes the dimensionality of the independent variables,

while the term multivariate refers to the dimensionality of the dependent variables.

2.2 Parallel Coordinates Mathematical Background

Inselberg [72] originally introduced parallel coordinates in the early 1980s. In general,

the parallel coordinates technique yields a two-dimensional representation of a multidi-

mensional multivariate data set. That is to say, the N-dimensional data tuple is represented

as a polyline where its N-points pass through N parallel y-axes. The resulting visualiza-
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tion provides a compact two-dimensional representation of even large multidimensional

multivariate data sets [135].

By mapping high-dimensional data onto two dimensions, the parallel coordinate plot

breaks the limitation of dimension representation in the Euclidean space that is generally

restricted to only three. Furthermore, the technique helps the viewer observe trends, pat-

terns, and correlations in a multidimensional multivariate data set. It can also be used

to visualize hyper-geometrical features such as multidimensional lines, planes and en-

velopes [73, 80, 81].

Figure 2.1

The polyline in parallel coordinates maps the point C ∈ RN to R2.

The parallel coordinates technique provides a one-to-one mapping between subsets

of RN and subsets of R2 yielding a systematic approach to the analysis of multidimen-

sional multivariate data. In R2 with xy-Cartesian coordinates, N vertical axes are placed

equidistant and perpendicular to the x-axis to graphically represent N variables, all having
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the same orientation as the y-axis and perpendicular to the x-axis (see Figure 2.1). The N-

dimensional point C with coordinates (c1,c2, . . . ,cN) is represented by points on the N axes

which are joined with a polygonal line whose N vertices are on the Xi-axis for i = 1, . . . ,N

and have xy-coordinates (i−1,ci). This establishes the correspondence between points in

RN and polygonal lines with vertices on X1,X2, . . . ,XN which is the fundamental duality

between the Cartesian and parallel coordinate systems [73, 80, 81].

Figure 2.2

Illustration of the point line duality for parallel coordinates.

As shown in Figure 2.2, points in the Cartesian system are represented by lines in the

parallel system. In two dimensions, a point in Cartesian coordinates corresponds to an

edge in parallel coordinates, whereas a line in Cartesian coordinates, represented by

l : x2 = mx1 +b, (2.1)

corresponds to a point

l̄ : (d/(1−m),b/(1−m)) (2.2)
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in parallel coordinates where d is the distance between the parallel axes. The point is also

called the envelope of the collection of points in the line l with coordinates (a,ma+b).

Another characteristic of the parallel system is the duality between rotation and trans-

lation with the Cartesian system. Rotation of a line about a point in the Cartesian sys-

tem is shown in the parallel system by the translation of the corresponding point along

a line representing the point of rotation in the Cartesian system. Inselberg [81] provides

comprehensive descriptions of this duality, the point line duality and other transformation

characteristics for parallel coordinates.

2.3 Statistical Analysis Techniques

In our research, we utilized a number of statistical methods to enhance cognition in

visual data analysis. In this section, we describe the following statistical analysis tech-

niques that we found to be the most beneficial to climate analysis: descriptive statistics,

correlation analysis, simple linear regression, and multiple linear regression.

2.3.1 Descriptive Statistics

Descriptive statistics are the most basic form of statistics, which describe patterns and

general trends in data sets. Key descriptive statistics include the mode, median, mean, cen-

tral tendency, variation, range, variance, standard deviation, skewness, interquartile range

(IQR) and kurtosis. In this research, we have focused on the median, mean, standard devi-

ation, and IQR measures. These statistics provide important measures of central tendency

and variability.
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Central tendency measures, such as the mean and median, give a single description

of the typical value in a data set. Although it is simply a numerical average, the mean, or

sample mean, is the most widely used central tendency measure. It is computed as the sum

of all the values divided by the number of values [151]. Suppose that the observations in a

sample are given by x1, x2, . . . , xn. The sample mean is given by

x =
n

∑
i=1

xi

n
=

x1 + x2 + . . .+ xn

n
. (2.3)

The mean is often used to characterize the “typical” value in a data set and it corre-

sponds to what scientists call the “center of mass.” If we consider the horizontal axis of

a histogram as a bar that has all the samples piled on it, where each sample has an equal

weight, the mean is the point at which the bar balances [25].

Another measure of central tendency is the median which essentially cuts the distri-

bution exactly in half; an equal number of values are larger than the median as there are

smaller than the median. By definition, this value is also called the 50th percentile [151].

The median is computed by sorting the data values from smallest to largest; the median

is the middle element. If there are an even number of elements, there is no single middle

sample, so we split the difference between the two middle samples and call the resulting

value the median [25]. It is important to note that the median may not be an actual or

possible value in the data set [151]. If x1, x2, . . . , xn represent observations in a sample of

size n, arranged in increasing order of magnitude, then the sample median is defined by
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x̃ =


x(n+1)/2, if n is odd,

xn/2+x(n/2)+1
2 , if n is even.

(2.4)

One advantage of the median is that it is easy to compute if the number of observations

is relatively small. On the other hand, the mean value will not vary as much from sample

to sample as will the median when dealing with samples from populations. Consequently,

if we wish to estimate the center of a population based on a sample value, the mean value

will yield more stable results than the median. That is, a sample mean is more likely to

be closer to the population mean than the sample median [151]. Another advantage of the

mean is that it can be manipulated algebraically which makes it easier to use in equations

than the median [69].

A disadvantage of the mean is that it can be sensitive to extreme values, which are also

known as outliers, since it is calculated by adding up all the samples in the distribution.

Conversely, the median is not influenced by extreme values and it gives a better center of

the data values [69].

Another important set of statistics are the variability measures that quantify how dis-

persed the values in a data set tend to be. In particular, we are interested in the interquartile

range (IQR) and standard deviation range. The IQR is the difference between the 25th and

the 75th percentile scores; it is essentially the range of the middle 50% of the data values.

For a set of data, the 25th percentile is the value for which 25% of the data are less than

that value. This value is the same as the median of the data that are less than the over-

all median. The 25th percentile is also known of as the first quartile, low quartile, lower

17



quartile, and Q1. Similarly, the 75th percentile is the number for which 75% of the data

values are less than that number. This value is the same as the median of the part of data

that is greater than the median. The 75th percentile is also known of as the third quartile,

high quartile, higher quartile, and Q3 [25]. The IQR is used as a robust measure of scale

and can be as an alternative to the standard deviation for quantifying variability. Because

it is based on the median values, the IQR is less affected by extremes than the standard

deviation and it is the measure of scale used in the box plot technique [145].

The most common measure of statistical dispersion is the standard deviation, which

measures in the same units as the data the average amount by which the values in a data

set differ from the mean value. Formally, the standard deviation is the root mean square

deviation of values from their arithmetic mean. If the data set has many values close to the

mean, then the standard deviation is small; if many values are far from the mean, then it is

large. When all the values are equal, then standard deviation is zero [151]. If x1, x2, . . . , xn

represent the sample of size n, and x is the mean of the sample, then the sample standard

deviation is defined by

s =

√
1

n−1

n

∑
i=1

(xi− x)2 (2.5)

2.3.2 Correlation Analysis

Correlation analysis attempts to measure the strength of the relationships between

two variables by using a single number called the correlation coefficient. The measure

of the correlation between two variables X and Y is estimated by the sample correlation
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coefficient, r, which is also called the Pearson product-moment correlation coefficient.

This quantity is named after Karl Pearson who developed the method to do agricultural

research [151]. Given a series of n measurements of X and Y written as xi and yi where

i = 1,2, . . . ,n, r is given by

r =
n∑xiyi− (∑xi)(∑yi)√

[n∑xi2− (∑xi)2][n∑yi2− (∑yi)2]
. (2.6)

By facilitating a measure of how related two variables are, correlation analysis allows

us to make predictions about one variable based on what is known about another. There are

two directions or types of correlation: positive and negative. With a positive correlation, as

values of one variable increase, values of the other variable also increase. Likewise, as the

values of one variable decrease, the values of the other variable will also decrease [110].

The right side of Figure 2.3 shows a positive correlation between the HP and Displacement

axes in a scatterplot and a parallel coordinate plot.

With a negative correlation, as the values of one variable increase, the values of the

other variable decrease. Likewise, as values of one variable decrease, the values of the

other variable increase. This is an inverse correlation which is also called negative to

describe the direction of the correlation [110]. The left side of Figure 2.3 shows a negative

correlation relationship between the HP axis and the MPG axis in a scatterplot and a

parallel coordinate plot [110].

Both positive and negative correlations range in strength from weak to strong. A pos-

itive correlation is a number between 0 and 1 where 0 means no correlation and 1 is a

perfect positive correlation. As the correlation coefficient gets closer to 1, it is getting
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stronger. That is, .8 is stronger than .6 but .6 is stronger than .4. On the other hand, a

negative correlation is a number between 0 and −1 where 0 means no correlation and −1

is a perfect negative correlation. As the correlation gets closer to −1, it is getting stronger.

Then, −.7 is stronger than −.5, but −.5 is stronger than −.3 [110]. In practice, r is rarely

perfect as it usually lies somewhere between −1 and +1 [151].

Figure 2.3

Positive and negative correlations represented in parallel coordinates.

When an independent variable is highly correlated with several other independent vari-

ables, the variable has collinearity. This condition is also described as multicollinearity or

ill conditioning. The variable has much in common with several other variables and may

have little information unique to itself [69]. This condition results in a loss in power and

makes interpretation more difficult in the results of a regression model.
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The advantage of correlation analysis is that we can make predictions about the behav-

ior of one variable based on what we know about another variable if the two variables are

correlated. The disadvantage of this approach is that one must remember that correlation

does not measure cause. That is to say, correlation tells us that two variables are related but

it does not tell us that one causes the other. Consequently, it is important to avoid drawing

conclusions about cause and effect using correlation analysis [110].

2.3.3 Simple Linear Regression

The term regression comes from Sir Francis Galton (1822–1911) and his work on

heredity. While studying the seeds sizes in mother and daughter pea plants, Galton noted

that the seed sizes tend to regress to the mean from mother to daughter plants. Mother

plants with very large seeds would produce daughter plants with seeds that are above

average but closer to the mean size—an effect Galton termed the “regression to medi-

ocrity.” [25].

In modern usage, the purpose of regression is to develop an equation to predict one

variable based on the knowledge of another. We have a single dependent variable or re-

sponse Y , which depends on one or more independent variables, x1, x2, . . . , xk. The fit of

this relationship is characterized by a prediction equation called the regression equation.

With a single Y and a single x, we have a regression of Y on x. For k independent variables,

we have a regression of Y on x1, x2, . . . , xk [151]. The term simple linear regression (SLR)

refers to regression procedures that involve a single regressor variable.

21



The regression equation is given by

Y = a+bX + ε. (2.7)

In this equation Y is the dependent variable, a is the y intercept, b is the gradient or

slope of the line, X is the independent variable and ε is a random error term. In our SLR

analysis, we utilize the SLR r2 term, which comes from the linear correlations and signifies

the portion of variation in Y that is explained by the straight-line regression [151].

2.3.4 Multiple Linear Regression

In most problems, more than one independent variable is necessary for the regression

model. When the model is linear in the coefficients, it is called a multiple linear regression

(MLR) model. We now have multiple predictors and we want to predict Y on the basis

of our knowledge of all the predictors, an extension of SLR [69]. Formally stated, the

multiple regression problem is about finding the regression equation to predict Y on the

basis of k predictors, x1, x2, . . . , xk. The MLR equation is given by

ŷ = b0 +b1x1 +b2x2 + . . .+bkxk. (2.8)

In this equation b0 represents the intercept and b1, b2, . . . , bk represents the regres-

sion coefficients for predictors x1, x2, . . . , xk [69]. In our research, we employed stepwise

regression with a “backwards glance” to identify the most relevant predictors for Y . This

method selects the optimum number of most important variables using a predefined signif-

icant value. Stepwise regression helps find a model that does a good job of predicting the
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dependent variable with as few independent variables as possible. Reducing the number

of independent variables is helpful because it simplifies the interpretation and it usually

means cheaper data collection and analysis [25].

The idea of stepwise procedures is to start with an initial model and add or delete

variables step by step, one at a time, to make the model better. The procedure stops when

no appreciable improvement is gained by making another step. Although the resulting

model may not be the best of all possible models, it is generally one of the best [25].

Chalmer [25] provides the following steps for the stepwise regression procedure.

1. The first step is to find the independent variable that has the strongest correlation
with the dependent variable. If the correlation is significant, the variable is added to
the model.

2. The second step is find the independent variable, of those not yet added to the model,
that provides the greatest increase in the coefficient of multiple determination, R2,
if added to the model. If the increase is significant, and the variable tolerance is not
too small, it is added to the model.

3. The next step is to re-evaluate the independent variables in the model and deter-
mine if any should be removed. The variable with the highest p-value is removed
conditioned on the p-value being larger than some pre-determined level. This step
distinguishes stepwise regression from forward selection.

4. The second and third steps are repeated until there are no more variables that meet
the criteria for addition or deletion.

Stepwise regression is dangerous when it is used with a large number of variables and

a small sample size. Howell [69] suggested at least ten observations for every predictor

and noted that others have suggested the number of observations, N, should exceed the

number of predictors, p, by at least fifty or N ≥ p + 40. Even when these conditions are

met, the results should be considered preliminary and should be confirmed by additional

data [25].
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With the MLR analysis used here, extra steps are taken to ensure the proper selection

of variables. The initially chosen variables are examined for multicollinearity using an

automatic filter; if any variables are correlated with each other by more than the signif-

icant correlation threshold, one is removed. In this way, the chosen variables are truly

independent of each other.

In addition, a normalization procedure is also used in our MLR analysis so that equal

comparison between the variables can be executed. Denoting σ as the standard deviation

of a variable, y as the dependent variable, x as the predictor mean, and y as the dependent

variable mean, a number k of statistically significant predictors are normalized by the

following regression:

(y− y)/σy =
k

∑
i=1

bi(xi− xi)/σi. (2.9)

The advantage of this approach is that the importance of a predictor may be assessed by

comparing regression coefficients bi between different variables, and that the y-intercept

becomes zero. In addition, xi may be interpreted (to a first approximation) as a threshold

value which distinguishes between positive and negative contributions (for bi > 0), and the

opposite for negative bi.

We also evaluate R2 as a criterion to illustrate the adequacy of a regression model. The

R2 value indicates what proportion of the total variation in the response Y is explained by

the model [151]. The equation for R2 is

R2 =
SSR
SST

= ∑
n
i=1(ŷi− y)2

∑
n
i=1(yi− y)2 . (2.10)
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The regression sum of squares, SSR, reflects the amount of variation in the y-values

explained by the model. The SST is the total corrected sum of squares of y. Here ŷ is used

to distinguish between estimated or predicted values given by the regression equation and

an actual observed value y for some value of x [151]. The R2 term is similar to the r2

term discussed in the preceding section on SLR. However, the r2 term is the proportion of

variability of one variable that is explained by the linear relationship to another variable.

If we have a linear model and one independent variable, the R2 is the same as the square

of the correlation between the dependent and independent variables, r2 [25].

2.4 Tropical Cyclone Trend Analysis

In climate studies, scientists are interested in discovering which environmental factors

influence significant weather phenomena. A prominent weather feature is a tropical cy-

clone, defined as a warm-core non-frontal synoptic-scale cyclone, originating over tropical

or subtropical waters, with organized thunderstorms and a closed surface wind circulation

about a well-defined center. Tropical cyclones begin as a tropical depression, with sus-

tained 10-meter winds less than 17 m
s . Most intensify into tropical storms which have

sustained winds between 17 m
s (39 mph or 34 knots) and 32 m

s (73 mph or 63 knots).

About 56% of tropical cyclones reach winds of at least 33 m
s (74 mph or 64 knots), and are

then designated with regional terms such as hurricanes in the Atlantic basin, and typhoons

in the Western North Pacific Ocean. When sustained 10-meter winds reach 49 m
s (111 mph

or 96 knots), they are called intense hurricanes in the Atlantic [6].
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Most people first think of the winds associated with these systems as the main source

for destruction. When winds exceed design specifications, structures fail and the debris

sent flying into the air compound the damage. Winds also cause downed trees and power

lines which cause prolonged power outages. In addition to the steady winds from these sys-

tems, wind gusts, tornadoes, downbursts from thunderstorms, and sometimes mesoscale

vortices at the boundary of the eye and eye wall generate pockets of enhanced winds which

amplify the destruction. Flooding from tropical cyclones is also quite destructive and is

currently the leading cause hurricane-related fatalities in the United States. Remnants of

tropical systems can also cause inland rain accumulation that may lead to flooding and

even mudslides. Historically, the most deadly aspect is the storm surge which is defined

as the abnormal rise of the sea along the shore [46].

The variability and destructiveness of recent hurricane seasons have escalated efforts

to forecast hurricane activity. Tropical cyclone activity in each ocean basin can vary on a

yearly scale as well as a multidecadal scale due to large-scale atmospheric influences and

climate forcing. Scientists are developing procedures to forecast whether an upcoming

tropical cyclone season1 will be above normal, normal, or below normal.

Annual hurricane activity forecasting began in the early 1980s when Dr. William Gray

at Colorado State University began to study how to predict, months in advance, the number

of tropical storms and hurricanes for the upcoming Atlantic hurricane season. In 1984,

Gray started publicly predicting how active Atlantic hurricane seasons would be before

they started. Through this research, Gray and his colleagues have discovered many global

1The North Atlantic tropical cyclone season begins on June 1 and ends on November 30 each year.

26



signals that affect hurricane activity such as El Niño Southern Oscillation (ENSO), African

rainfall, pressure and temperature difference between the western African coast and the

Sahel region during the previous February – May period, Caribbean sea surface pressure,

Quasi-Biennial Oscillation, Caribbean wind shear, Atlantic Ocean water temperature, and

the strength of the Azores high-pressure system. Gray predicts above average hurricane

activity for a season when more of these predictors are favorable for hurricane activity than

unfavorable. On the other hand, if more are unfavorable, a quiet season is predicted. When

the same number of predictors have positive and negative influences, an average season is

predicted2. However, care should be taken when attributing the activity to any one feature

because most of the features are interrelated. For example, El Niño is associated with

strong Caribbean wind shear [46].

Gray generates quantitative predictions using statistical techniques and intuition. Be-

tween 1984–2004, Gray correctly predicted above or below average activity in sixteen of

the twenty-one seasons. Even the four incorrect years have led to improvement of the

forecast methods. For example, the 1989 forecast led to the discovery of the importance of

African rainfall since this was the only non-drought year of that decade. Starting in 1990,

African rainfall was included in the forecasts [46].

Gray’s seasonal forecasts draw a great deal of public attention. Furthermore, insurance

companies use the predictions to prepare for an upcoming season by buying insurance

for themselves (a practice known as reinsurance). Gray’s work has also inspired other

2An average hurricane season for the Atlantic has about nine tropical storms, six of which will become
hurricanes and two of which will be intense.
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universities and organizations to issue seasonal forecasts using various statistical method-

ologies [46]. Others are studying causes of multidecadal cycles of activity, and whether

anthropogenic global warming is also an influence [109].

One particularly useful method for predicting seasonal hurricane activity is based on

the idea that there are predictors of the main dynamic parameters that affect storm activity

which can be observed up to a year in advance. Using historical data, their importance is

estimated using statistical regression techniques similar to those described by Vitart [150].

Although sometimes complicated to establish, these techniques provide an ordered list

of the most important predictors for dynamic parameters. Klotzbach et al. [101] use

this technique for forecasting North Atlantic tropical cyclone activity. Similarly, Fitz-

patrick [44, 45] applied stepwise regression analysis to the prediction of tropical cyclone

intensity. Scientists gain additional insight in these studies by evaluating descriptive statis-

tics and performing correlation analysis.

In conjunction with statistical analysis, researchers have relied on simple scatterplots

(see Figure 2.4) and histograms which require several separate plots or layered plots to

analyze multiple variables. Using separate plots, however, is not an optimal approach in

this type of analysis due to perceptual issues such as change blindness (a phenomenon

described by Rensink [130]), especially when searching for combinations of conditions.

Change blindness results in the inability of the low-level human perceptual system to recall

detail outside the viewing area. A more useful technique employed by statisticians to

uncover patterns in multivariate data is the scatterplot matrix (SPLOM), which contains

all the pairwise scatterplots of the variables on a single display in a matrix configuration;
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Figure 2.4

Scatterplot showing sea surface temperature versus hurricane activity.

but it requires a large amount of screen space and forming a multidimensional association

from a set of two-dimensional displays is mentally challenging.

Although layered plots condense the information into a single display, there are sig-

nificant issues due to occlusion and interference as demonstrated by Healey et al. [64].

Furthermore, the geospatial data used in climate studies are usually displayed in the con-

text of a geographical map; although certain important patterns (those directly related to

geographic position) may be recognized in this context, additional information may be dis-

covered more rapidly using non-geographical information visualization techniques. Due

to the multivariate nature of climate study data, researchers need interactive visualization

techniques that can accommodate the simultaneous display of many variables.
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2.5 Literature Review

To cope with the demands of environmental data analysis, basic research efforts are

underway to identify new visualization techniques using guidelines from human percep-

tion. While some researchers are developing illustrative visualization solutions to repre-

sent multidimensional multivariate data sets, other efforts draw inspiration from advances

in the domain of information visualization. Solutions to these problems will emerge from

these fields and from other areas such as Exploratory Data Analysis (EDA) and visual in-

teraction methods. That is, the challenges of environmental data analysis require solutions

that fuse aspects from each of these areas in a manner that feels seamless to the analyst.

In this section, we present a review of significant research related to both these topics and

our approach.

2.5.1 Exploratory Data Analysis

In general, EDA is an attitude or philosophy about the execution of data analysis [4].

Introduced by Tukey [145], EDA relies heavily on graphical techniques to investigate data

and discover significant hypotheses. EDA complements conventional statistical tools for

testing hypotheses, a process Tukey calls confirmatory data analysis (CDA). In 1977,

Tukey believed that too much emphasis was being placed on CDA and that, although it

is necessary, there is no need to begin with it. Instead, EDA and CDA can and should pro-

ceed side-by-side. Unless EDA reveals new insight (usually quantitative), there is likely

no need for CDA (except for planning and experiments). Likewise, even though EDA is
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the foundation stone (first step) it can never be the entire story; CDA goes further than

EDA, accessing the strengths of evidence [145].

EDA places an emphasis on the use of images that yield rapid insight about data rather

than on the quality of the graphics [24]. Tukey believed that pictures based on data ex-

ploration should force their messages upon the analyst and pictures that tell us what we

already know are mostly a waste of space. On the other hand, pictures that require intense

review and concentration are wasteful of time and inadequate in effect. Tukey postulated

that the greatest value of an image in EDA is “when it forces us to notice what we never

expected to see [145].” This principle has been carried over into more recent research in

information visualization and illustrative visualization whereby unconventional represen-

tation techniques are utilized to foster creative thinking.

During analysis, while the data is manipulated to reveal its structural secrets, the an-

alyst must remain ready to grasp new, often unsuspected, insight. When insight is dis-

covered, the underlying structure of the data is revealed. In addition to knowing what is

in the data, it is often equally important for the analyst to understand what is not in the

data [4]. With these goals in mind, EDA systems should provide specific items that an

analyst will want to exhaust such as a good fitting economical model, a list of outliers, a

sense of robustness of conclusions, estimates for parameters, uncertainty for estimates, a

ranked list of important factors, conclusions about statistical significance of factors, and

optimal settings [4].

Recently, Gatalsky et al. [51] presented a EDA technique, called the “space-time cube”,

to analyze events in spatio-temporal data. They were interested in visual EDA techniques
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that allowed the analyst to understand how the events are distributed in time and space. The

“space-time cube” supports the representation of time as an additional spatial dimension.

Using earthquake data, the authors demonstrated the promise of the “space-time cube”

in detecting events that occur closely in space within short time intervals as shown in

Figure 2.5. In this figure, the vertical positions of the circles correspond to event times and

the circle sizes and colors reflect event characteristics. While evaluating this system, they

also determined that a linked map view is crucial to the usefulness of the cube display and

incorporation of an automated cluster detection capability would make it more useful by

reducing manual searches [51].

Figure 2.5

Spatio-temporal analysis with the “space-time cube” by Gatalsky et al. [51].
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2.5.2 Dynamic Interaction Techniques

In modern EDA systems, the capability to dynamically interact with the data behind

the visualization is crucial to its usefulness. A good example of this interactivity was de-

scribed in 1994 when Ahlberg and Shneiderman introduced the concept of rapid, dynamic

queries using visual widgets in the HomeFinder [133] and FilmFinder applications [8].

With this concept, the visualization is continuously updated as users adjust sliders and

buttons to ask simple questions and find patterns or exceptions in the data. This approach

benefits the novice and expert alike because the novice can learn the visual query mechan-

ics faster and the expert can use the same interface to formulate more complex queries.

Figure 2.6

Ahlberg and Shneiderman’s [8] Dynamic HomeFinder
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Figure 2.7

The Influence Explorer application introduced by Tweedie et al. [146].

Shneiderman introduced the Dynamic HomeFinder application (see Figure 2.6) to

demonstrate the dynamic query concept in a geographic scattermap. The application is

designed to help real estate brokers and clients find home listings. The user controls the

information that is displayed by manipulating sliders and buttons (in the right panel) that

control factors such as price, number of bedrooms, and distance to work [133]. A simi-

lar system called the FilmFinder [8] provides an exploratory interface to a movie database.

After Ahlberg and Shneiderman introduced these concepts, Tweedie et al. [146] introduced

the Influence Explorer which extended the double slider concept to include frequency in-

formation between the slider handles (see Figure 2.7).

2.5.3 Parallel Coordinates

The parallel coordinates visualization technique provides the core functionality in our

system. This multidimensional multivariate information visualization technique has a rich

history since its introduction in the 1980s. In the remainder of this section, we will provide

a brief history of parallel coordinates by examining the prior works in three areas: theory,

extensions, and applications.
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2.5.3.1 Parallel Coordinates Theory

While studying Euclidean geometry as a Ph.D. student, Alfred Inselberg was frustrated

by the lack of visualization techniques for multidimensional geometry and experimented

with placing the coordinate axes parallel to one another. In 1959, his professors encour-

aged him to pursue the idea. In 1977, Inselberg revisited the concept after being challenged

by his linear algebra students to show some multidimensional spaces. This activity lead to

the subsequent formulation of the parallel coordinate theory. Later, Inselberg collaborated

with Bernard Dimsdale who made many critical contributions [71].

Inselberg was originally motivated by a challenge to construct planar diagrams of N-

variable representations (RN → R2). The resulting polygonal lines in parallel coordinates

reveal a particular set of linear dependent vectors [73]. Inselberg first published the par-

allel coordinate methodology in 1981 [72] and later refined the concept in 1985 [73] and

1987 [79]. These initial papers covered the theory of parallel coordinates with specific ap-

plication to the visualization of hyper-geometrical surfaces. Inselberg provides a thorough

mathematical description of the concept in several subsequent publications [74–78,80–82].

In 1987, Inselberg and Chomut [79] published a paper focused on the convexity algorithm

for parallel coordinates. Later, Fiorini and Inselberg [43] discussed the potential of paral-

lel coordinates for use in configuration space representation of a mechanical arm in order

to demonstrate the potential of parallel coordinates for cases where Cartesian coordinates

cannot be used.

In 1990, Inselberg and Dimsdale [80] expanded the parallel coordinates discussion to

detail its use in visualizing analytic and synthetic multidimensional geometry. In addition
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to a formal, mathematical definition, the application of parallel coordinates to air traffic

control, robotics, computer vision, computational geometry, statistics, and instrumentation

is also mentioned [80].

Later that same year, Wegman [155] employed parallel coordinates to the analysis

of high-dimensional data. Motivated by the poor performance of traditional representa-

tion techniques (such as scatter diagrams) and their inability to work well beyond three

dimensions, Wegman decided to draw the n-dimensional axes as parallel instead of or-

thogonal. Although parallel coordinates may seem complex to comprehend at first glance,

Wegman [155] notes that the rich intuition about the appearance of structures in Carte-

sian coordinates has been developed over many years and similar intuition about parallel

coordinates must also be developed.

Wegman introduces several statistical interpretations for parallel coordinate polyline

configurations. He notes that correlation structures can be easily diagnosed; for example,

highly positively correlated data tend to have lines that do not intersect between the axes.

Wegman also mentions that rank-based statistics are expected to have an intimate relation-

ship to parallel coordinates because of scale invariance. Moreover, linear relationships are

easy to spot in parallel coordinate plots, particularly negative linear relationships, because

the eye seems to quickly spot the crossover effect. Detecting linear structure is important

to understanding the data, especially in linear regression models. Furthermore, clustering

is easily diagnosed and the clustering may occur in multiple dimensions. Wegman ob-

served that the mode, the location of the most intense concentration of observations, will

be represented as the most intense bundle of broken line paths [155].
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Wegman presents parallel coordinate plots from a data set of seventy-four 1979 model-

year automobiles which has five dimensions of data to demonstrate the effectiveness of this

method at representing several relationships in this data set. Wegman also discusses some

extensions to parallel coordinates such as a density plot feature to help with over-plotting

in large data sets, and the use of color histograms to replace the lines in the plot [155].

According to Inselberg’s 1997 paper, parallel coordinate plots are designed to

• Exhibit low representational complexity,

• Work for any N,

• Treat every variable uniformly,

• Represent the display object’s projective transformations,

• Intuitively convey information about the object it represents, and

• Stand on a methodology that is based on rigorous mathematical and algorithmic
results [74].

Inselberg also presents a scenario for the knowledge discovery process, guidelines for

using parallel coordinates in data mining, and construction and use of visual models for

multivariate relations. He uses a VLSI chip production data set which contains measures

for sixteen process parameters [74].

The first guideline Inselberg mentions is to not be intimidated by the picture. It is also

important to understand the objectives of the system and use them to obtain visual cues

prior to embarking in the exploration process. The viewer should also carefully scrutinize

the picture and test assumptions, especially those you are very confident of. For each

of these guidelines, the author gives a working example using the chip production data

set [74].
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Later, Inselberg and Avidan [77,78] describe a classification algorithm that is designed

to automate some of the discovery process for high-dimensional data using parallel coor-

dinates. The algorithm provides comprehensible and explicit rules, does dimensionality

selection (minimal set of original variables required to state the rule) and it orders the vari-

ables to optimize the clarity of separation between the designated set and its complement.

The first data set used is a satellite image data set with thirty-six variables. Also a vowel

recognition data set is used which has about ten variables of eleven vowels and a monkey

neural data set is used which has 600 samples of about thirty-two variables. Using the

discovery algorithm with the monkey neural data set, they found that two particular vari-

ables showed the greatest separation. Using traditional approaches would have required

the inspection of a scatterplot with 496 pairs to identify this relationship [77, 78].

In 2001, Inselberg [76] described the application of parallel coordinates to visual and

automatic knowledge discovery. A VLSI chip production data set and case studies illus-

trating the use of parallel coordinates for process control are presented in this publication;

these data and a similar case study were mentioned previously in Inselberg’s 1997 pa-

per [74]. The Classifier automation feature mentioned in this publication [76] is also

described in the author’s prior works [77, 78].

In another publication, Inselberg [75] discussed the use of parallel coordinates for

collision detection in air traffic control. More recently, Hung and Inselberg [70] utilized the

technique to represent families of planes and hyperplanes and to visualize the properties

of complex surfaces like the winding helicoid.
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2.5.3.2 Parallel Coordinates Technique Extensions

Since Inselberg’s [72] introduction of the parallel coordinates concept, many innova-

tive extensions have been applied to the technique. In 1995 and 1996, Lee et al. [113,114]

discussed multidimensional visualization techniques based on parallel coordinates. They

developed a system called WinVis that differs from standard parallel coordinate represen-

tations in four ways. First of all, the user can toggle between having a line represented as

a tuple (database record) or several tuples satisfying a specified attribute value. To reduce

the complexity of lines with large amounts of data, group bars appear on the vertical axes

in the place of attribute values. Users can also group subjects of interest into classes to

see how the data set represents them and how they correlate with other attributes in the

data. Horizontal histograms appear to the right of the group bars when the data is di-

vided into classes. Furthermore, the application also includes the capability to partition a

continuous axis into ranges and it provides both unsupervised (clustering) and supervised

machine-learning techniques [113, 114].

Martin and Ward [119] investigated the brushing operation—the mechanism that al-

lows for interactive selection of subsets of data for highlighting, deletion, or masking—

on a variety of display types. Traditionally, these interactions have been implemented

as painting or rubberband rectangles, but they describe a new method that provides N-

dimensional brushing capabilities in a multivariate data visualization tool called Xmdv-

Tool. This tool provides four display types, one of which is parallel coordinates. In the

parallel coordinates display, the user can brush lines as filled regions across all axes us-

ing the mouse. Five brushing operations are presented for all the display types: linking
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(between the difference displays), masking (deleting), moving average, and quantitative

presentation. Of these techniques presented, only highlighting is discussed for the parallel

coordinates display. In addition to these brushings, the authors present a limited user study

to evaluate the system’s usability [119].

In 1997, Gröller et al. [56] used parallel coordinates to visualize the behavior of dy-

namical systems whose temporal evolution from some initial state is governed by a set of

rules. After formally introducing the mathematical concepts of dynamical systems, several

visualization techniques are described for analyzing these systems. In addition to classi-

cal parallel coordinates, two new variants are described: extruded parallel coordinates and

three-dimensional parallel coordinates [56]. This work is described in more detail by We-

genkittl et al. [154]. The authors begin with a formal description of multidimensional

data and several common methods for visualizing high-dimensional data such as attribute

mapping, geometric coding, sonification, reduction of dimension, and parallel coordinates.

The authors introduce the concept of extruded parallel coordinates (see Figure 2.8(a)) in

which the parallel coordinates system is moved along the third spatial axis instead of us-

ing the same coordinate system for each sample. Figure 2.8(a) shows a discrete sampled

trajectory in parallel coordinates (left) and a three-dimensional extruded surface defining

the same trajectory (right). The polyline of the sample can be viewed as cross sections

of a moving plane with a complex surface that defines the trajectory. Correlation and

clustering can be detected visually and rotating the surface reveals the evolution of the

trajectories over time without any animation methods that would be otherwise necessary.

The authors also note that convergence or divergence can be observed by slightly mod-
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ifying the starting coordinates. Moreover, the authors introduce another concept called

three-dimensional parallel coordinates (see Figure 2.8(b)) in which the third dimension is

used as opposed to the two-dimensions used in standard parallel coordinates. Using this

concept, the information resides in separate two-dimensional spaces (planes) where two

dimensional trajectories are shown. These planes are combined in three-space and linked

by surfaces that connect the separated projections of trajectories [154].

(a) Extruded parallel coordinates

(b) Three-dimensional parallel coordinates

Figure 2.8

Two variants of parallel coordinates introduced by Wegenkittl et al. [154].

In 1998, Ankerst et al. [13] described a systematic approach for arranging dimensions

according to their similarity so that dimensions showing a similar behavior are positioned

next to each other. The similarity algorithm is a heuristic algorithm since the one and two
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dimensional similarly problem is NP-complete. In computer science, NP-complete prob-

lems make up the class of the most difficult computational problems for which no efficient

solution algorithm has been discovered. In addition to describing the similarity algorithm,

an experimental evaluation of the technique is presented using parallel coordinates, circle

segments, and recursive patterns [13].

In 1999, Chou et al. [28] addressed the identification of clusters with parallel coor-

dinates. The authors describe a system that helps determine whether or not a set of n-

dimensional points are close to a certain line using a scan-line algorithm implemented in

the Java programming language [28]. Hoffman et al. [68] described a graphic primitive

called the dimensional anchor which is an attempt to provide a unified framework for a

variety of visualizations, including parallel coordinates.

Fua et al. [49] focus on interactive visualization of large multivariate data sets (data sets

that contain 106 to 109 elements or more) by using extended parallel coordinates. Specifi-

cally, multi-resolution views via hierarchical clustering are utilized to present the parallel

coordinates display and convey information about the clusters. A suite of navigation and

filtering tools implemented as OpenGL extensions to XmdvTool 3.1 are also provided to

navigate the resulting structure. The software provides drill-down and roll-up operations

to view data at a level of increasing detail and decreasing detail, respectively. The system

also provides a proximity-based color scheme and a feature called dimensional zooming

which is a distortion operation that allows the user to scale up each dimension indepen-

dently with respect to the extents of the brushed subspace [49]. The authors provide more

details on the system and describe two cases studies in a subsequent publication [50].
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Motivated by limited interaction capabilities in conventional parallel coordinates, Si-

irtola [135] introduced two unique techniques for dynamic interaction. Siirtola focuses

on direct manipulation capabilities which are defined as manipulating a visual control and

getting a response within 0.1 seconds. The first technique, polyline averaging, facilitates

the dynamic summarization of a set of polylines to reduce computational requirements.

The other technique provides an interactive visualization of correlation coefficients be-

tween subsets of polylines. Furthermore, Siirtola describes direct queries that allows users

to select ranges from the y-axes for highlighting. These ranges can be combined with other

ranges using the logical connectors AND, OR, and XOR which corresponds to a database

management system query. In essence, these capabilities demonstrate the intuitive method

parallel coordinates offer for doing visual data mining [135].

Siirtola’s parallel coordinates user interface (UI) provides many powerful features. In

addition to displaying the minimum and maximum values for the axes, the percentage of

lines selected are shown beneath each axis. The application can also display the quartiles

for an axis as a box plot—a useful feature for dividing a set of polylines into subsets.

Siirtola’s system can also represent the correlation coefficients graphically (see Figure 2.9

and Figure 2.10) [135]. In Figure 2.9 a subset with positive correlation is shown on the

left and a subset with negative correlation is shown on the right. In Figure 2.10 a subset is

shown where better mileage has a positive correlation coefficient with higher horsepower.

Siirtola discusses a capability called dimensional zooming whereby the selected axis

is scaled up according to a selected range. Hierarchical clustering is also discussed but

the author states that this technique is too computationally intense for interactive use. For
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Figure 2.9

Correlation analysis in Siirtola’s [135] Parallel Coordinate Explorer.

Figure 2.10

Correlation indicators in parallel coordinates by Siirtola [135].
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Figure 2.11

Siirtola [135] parallel coordinates without polyline averaging.

Figure 2.12

Siirtola’s [135] parallel coordinates with polyline averaging.

45



interactive summarization, Siirtola suggests simple averages of a set of lines to get a quick

overview. The standard deviation can also be shown (graphically) to reveal information

hidden by the averaging. An example is briefly discussed comparing American, Euro-

pean, and Japanesse cars using normal lines (see Figure 2.11) and averaged lines (see Fig-

ure 2.12) for the popular cars data set. Another interesting example is shown by animating

the performance and efficiency of American cars in 1970–1982 [135].

In 2001, Andrienko and Andrienko [10] used parallel coordinates dynamically linked

to an interactive map by simultaneously highlighting corresponding objects (see black

lines in Figure 2.13 that represent smallest percentages of old population). Using data

from the 1991 Census of Portugal, the authors focus on the visualization of several com-

parable attributes. The parallel coordinates plot is linked to the maps is two ways: mouse-

over linking and durable selection. The authors extend the parallel coordinates display to

provide common axis scales (for the comparable attribute) and vertical alignment of the

medians and quartiles of the attributes (a similar plot can be created using the mean and

standard deviation). Data is shown in several choropleth maps and a parallel coordinates

display. It is noted that with parallel coordinates, prevailing parallel lines indicate posi-

tive correlation while diagonal lines may mean negative correlation [10]. Later, Chen and

Wang [27] introduced a dimension reduction technique that is based on a genetic algo-

rithm called quad-tree mapping to overcome overcrowded parallel coordinates and other

multidimensional technique displays.

In 2002, Heyden et al. [67] integrated parallel coordinates with principal component

analysis (PCA) and N-way PCA to analyze large multi-response experimental designs.
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Figure 2.13

Andrienko and Andrienko’s [10] parallel coordinates system.

The approach is compared to the traditional method of calculating factor effects by multi-

ple linear regression. The parallel coordinates technique is presented as a useful and com-

plementary aid to interpretation of large multi-response experimental design data. The

techniques add a multivariate dimension to the more traditional univariate analysis of such

data.

In Hauser et al. [63], an angular brushing interaction and a smooth brushing technique

for degree-of-interest functions (focus+context) are described. With angular brushing (see

Figure 2.14(a)) the space between the axes can be used to select lines as opposed to the

standard brushing techniques that work on the parallel axes themselves. The user can

specify a subset of slopes which yields the data points that are to be highlighted; this

method can also be combined with composite brushing. Furthermore, brushing and linked

displays are discussed in the work. Figure 2.14(b) shows an example of the display in a
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brushing and linking case study with a scatterplot (left), a linked three-dimensional view

(top right), and parallel coordinates (bottom right).

In 2003, Yang et al. [161] introduced a new approach for dealing with high dimensional

data called Visual Hierarchical Dimensions Reduction (VHDR). This technique provides

hierarchical dimension ordering, spacing, and filtering that is based on the similarities

among the dimensions. The technique is also discussed in Yang et al. [160] and Peng et

al. [125]. The technique can be used with parallel coordinates and other multidimensional

visualization techniques (such as star glyphs and pixel-oriented techniques). Similarly,

Zhao et al. [164,165] use an edit-distance based technique to rearrange variables in parallel

coordinates to enhance the discovery of interesting patterns.

In research by Graham and Kennedy [55], the traditional polylines in parallel coor-

dinates are replaced with a collection of smooth curves across the axes to overcome line

crossovers and the ambiguity they may cause. Furthermore, a focus+context technique

that involves the spreading out of points on axes with a few discrete values is introduced.

The smooth curves are meant to resolve the difficulty of following lines that share com-

mon points on axes—the cross-over problem. The spreading technique is meant to aid in

differentiating lines that are bunched close together along their paths [55]

Dykes and Mountain [34] presented an innovative system that provides several linked

views of the spatio-temporal data in a geovisualization interface. One display method

used in the system is geocentric parallel coordinates. These plots are used to analyze

quantitative, multivariate data and relate the statistical and spatial distributions with other

dynamically linked views.
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(a) Angular brushing.

(b) Linked views.

Figure 2.14

Angular brushing and linked views by Hauser et al. [63].
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Brodbeck and Girardin [22] developed an interactive visualization system called Sur-

veyVisualizer which aids in the visual analysis of customer satisfaction survey information.

The system uses a visual encoding called the Parallel Coordinate Tree which combines the

advantages of a familiar tree layout with parallel coordinates. The system also uses a

bifocal lens as a distortion effect in the parallel coordinates view [22].

Johansson et al. [91] presented a novel extension to parallel coordinates that uses a

classification approach, the self-organizing map (an unsupervised learning algorithm), to

create an initial clustering of the data. The authors developed this extension to help with

the visualization of large data sets. A zoomable interface and linked views form the foun-

dation of the system. An example molecular data set with 1000 tuples and 16 data items

is used to illustrate the approach [91].

Barlow and Stuart [16] introduced a software system that animates the movement of

parallel coordinate objects in time. The animated parallel coordinates represent the chang-

ing positions of objects within the multidimensional space but viewed in two-dimensional

space.

Andrienko and Andrienko [11] describe several modifications to classical parallel co-

ordinates for visually exploring object classes resulting from cluster analysis. Several

other multidimensional visualization techniques (scatterplots, table lens, histograms) are

also evaluated for use in the visualization system. The paper mentions statistical-based

scaling of the axes. In addition, classes are also represented in parallel coordinates with

ellipses instead of lines and also as “striped” envelopes. Both methods are based on the

partitioning of the value ranges of the attribute into equal frequency intervals. Extensive
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examples with a demographic data set are given stressing the effectiveness of the proposed

extensions.

Artero et al. [14] used parallel coordinates to visualize large data sets which usually

result in overcrowded displays. In this publication, a synthetic data set with 7,500 five-

attribute records was used for analysis. Algorithms are presented that identify clusters of

information using frequency and density information from the data set. Running times for

the algorithms and results are presented and the techniques are compared to prior cluster-

ing techniques that have been used with parallel coordinate [14].

Notsu et al. [122] developed a visualization technique called Time-tunnel to display

parallel coordinates. Using data-wings, this tool intuitively displays multiple representa-

tions of data. Time-tunnel consists of three main types of representation: a data-wing, a

time-plane, and time-bar. As shown in Figure 2.15, a data-wing is a box that has a shape

like a sheet. The upper parallel coordinate plot in this example is converted into a Time-

tunnel plot with three data-wings. For multidimensional data, the user can use multiple

data-wings [122].

Johansson et al. [86] presented a new approach for simultaneously exploring the rela-

tionships of a single dimension with many others in the data set (see Figure 2.16). This

method is achieved by extending standard parallel coordinates to a 3-dimensional, clus-

tered, multi-relational representation. With this technique the axes are placed on a circle

with a focus axis in the center. Furthermore, a technique called relation spacing is used to

position the axes according to how interesting the different relations are. A number of in-

teraction techniques are proposed also and the K-means clustering algorithm is used in the
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Figure 2.15

The Time-Tunnel technique introduced by Notsu et al. [122].

application. Plots in the paper are given based on housing, pollution, and meteorological

data sets [86].

Johansson et al. [89] also addressed the visualization of a large number of data ele-

ments in parallel coordinates. With parallel coordinates, the overcrowded display is usu-

ally too cluttered to find patterns, trends, and relationships. The authors try to solve this

problem by using clusters and high-precision textures to represent them more effectively in

parallel coordinates. A number of interaction techniques are also discussed to allow inves-

tigation of the structure in the clusters. A transfer function is introduced that is used with

the parallel coordinates to allow for a more powerful and customized analysis process. In

addition, a feature animation technique is described that facilitates the visualization of sta-

tistical properties in the clusters. This technique helps the viewer see the skewness and the

variance of a cluster which can be used as guidance for starting the analysis. The system
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Figure 2.16

A unique parallel coordinates variant introduced by Johansson et al. [86].

also has an outlier enhancement feature that uses the IQR to define an item as an outlier or

not; items in the upper and lower 25 percent of the data are considered outliers.

In 2006, Johansson et al. [90] combined the clutter reduction and multi-relational three-

dimensional parallel coordinates to address the dense parallel coordinates display. They

also described a feature animation techniques to aid in the presentation of cluster statis-

tics. Later, Forsell and Johansson [47] compared multi-relational, three-dimensional par-

allel coordinates to standard two-dimensional parallel coordinates in a comprehensive user

study. Based on the results of this study, they recommend standard two-dimensional paral-

lel coordinates for tasks concerning relationships between data items and multi-relational

three-dimensional parallel coordinates for establishing relationships between variables.

The results showed some advantages of three-dimensional parallel coordinates, such as

the ability to have more relations with a particular axis simultaneously visible, at the cost
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of having line patterns distorted by perspective effects. The study results suggested that the

perspective effects should not be a hindrance to the viewer [47]. Later, Johansson et al. [87]

expand this study and from their results concluded that the three-dimensional parallel co-

ordinates with eleven axes is as efficient as standard two-dimensional parallel coordinates

in terms of the noise level in the data.

Ericson et al. [38] addressed over-plotting and clutter in parallel coordinates with mul-

tiple linked views. The system interface has handles on each axis to crop the data as a form

of brushing. Classification of the selected data as clusters or histograms can be turned on

and off as layers over the parallel coordinates display. Clusters are calculated using the

K-means technique and cluster centroids are re-calculated after every change in the data

selection. As shown in Figure 2.17, a linked statistical display is provided which shows

statistics for the selected dimensions. The left side of this figure shows the system before

brushing and the right side shows it after brushing. In the statistical display, the y-axis is

the median value and the x-axis is the mean value. When selection changes are made, the

symbols are animated to the new positions so the user can follow the changes more intu-

itively. The application is developed in Visual Basic.Net with the OpenViz visualization

library and all calculations are performed in real-time using the MATLAB® mathematical

programming environment [38].

Bertini et al. [21] described a system called SpringView which offers simultaneous

viewing of parallel coordinate plots with a new visualization technique called radviz. The

radvis is a two-dimensional visualization in which data elements are drawn on a normal-

ized circle that presents the data dimensions uniformly spaced on its circumference. The
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Figure 2.17

The parallel coordinates system interface by Ericson et al. [38].

views are dynamically linked to one another for user interaction. Two data sets were

used to assess the effectiveness of the system. The focus of this effort is to address clut-

tered views in multidimensional visualization. Furthermore, an automated technique is

presented for showing similarities or clustering in the data [21].

Fanea et al. [40] combined parallel coordinates and star glyphs in such a way that the

advantages of both representations are used to offset their deficiencies when used sepa-

rately. This new technique is called Parallel Glyphs and it extends two-dimensional par-

allel coordinates into the third dimension and naturally connects them with star glyphs.

In addition, color scales are applied to the three-dimensional Parallel Glyphs to support

comparison and selection tasks in three-dimensions. The authors also demonstrate a num-
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ber of interesting interaction methods with the new technique to enhance data comparison.

One of the interactions is a lens interaction technique [40]. Later, Bendix et al. [19] and

Kosara et al. [103] described the concept of Parallel Sets which is essentially a modifica-

tion of parallel coordinates tailored specifically for categorical data (see Figure 2.18).

Figure 2.18

Parallel Sets by Bendix et al. [19].

In 2006, Albazzaz and Wang [9] modified parallel coordinates with dimension reduc-

tion and upper and lower limits for separating abnormal and normal data in the plots. The

dimension reduction transforms the original variables to a smaller number of variables.

The upper and lower limits (like percentiles) are drawn as darker polylines in parallel

coordinates [9].

Novotný and Hauser [123] offered a new approach to focus+context visualization in

parallel coordinates that focuses on being truthful to outliers. The technique enables the
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context visualization at several levels of abstraction for representing outliers and trends.

The technique is applied to data sets with up to three million data records and up to fifty

dimensions and an illustration of the workflow of the system is provided [123].

Ellis and Dix [36] described several ways to measure occlusion in parallel coordinates

using an implementation called Sampling Lens. Three methods are discussed for calcu-

lating occlusion: the raster algorithm which rasterizes the lines on a grid and counts the

number of plotted points at each grid cell to get an estimate of the over-plotted percent;

the random algorithm which treats every plotted point as if it were randomly placed in the

viewable pixels and calculates the over-plotted percent using probability; and the lines al-

gorithms that estimates the intersection volumes of all lines crossing the lines. The random

algorithm is identified as the best option in terms of accuracy and efficiency [36].

Sifer [134] presented a new visualization method that uses parallel dimension axes.

Called SGViewer, this technique is compared to parallel coordinates and table-based in-

terfaces in several case studies. As shown in Figure 2.19 the technique is derived from

parallel coordinates and Parallel Sets [103]. The main difference from Parallel Sets is that

the color paths have been dropped in an effort to remove clutter. A screen capture from

the SGViewer is shown in Figure 2.20 with sales data [134].

Guo et al. [58] introduced a geovisualization system, called VIS-STAMP, for under-

standing spatio-temporal and multivariate patterns. As shown in Figure 2.21, the approach

involves a self-organizing map, parallel coordinates, several forms of reorderable matri-

ces, a geographic small multiple display, and a two-dimensional cartographic color design

method. After clustering the data set with the self-organizing map and assigning colors,
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Figure 2.19

Formulation of the SGViewer by Sifer [134].

Figure 2.20

The SGViewer by Sifer [134].

58



the parallel coordinates plot is used to show the cluster of multivariate profiles. The paral-

lel coordinates implementation has a number of interesting features. First, the plot uses a

nested-means scaling on each axis to alleviate the problem of overlapping lines. Nested-

means is a nonlinear scaling method that recursively calculates a number of mean values

(and submeans) and uses these values as break points to divide each axis into equal-length

segments. Also the thickness of the lines indicates frequency information for the cluster.

The application also supports several other scaling methods on the axes. The axes support

min-max scaling (using the minimum and maximum data values to linearly scale the axis),

cell min-max scaling (using the minimum and maximum cluster mean values) and global

min-max scaling (using the minimum and maximum for all variable values) [58].

Xu et al. [158] discussed a visualization technique based on the scatter plot matrix,

star diagrams and parallel coordinates concepts. The three coordinate-based geometrical

visualizations are combined into a single visualization called the parallel dual plot. The

new method is created by transforming a scatter plot into a star glyph, then the star glyph

is presented with parallel coordinates. The authors claim this technique overcomes the

over-plotting problem in standard parallel coordinates [158].

Johansson et al. [88] introduced temporal density parallel coordinates and depth cue

parallel coordinates as extensions of two-dimensional parallel coordinates for the analy-

sis of temporal data. The temporal density technique reveals the density of a specified

time period and is based on a density map that can be updated. The depth cue method

reveals where in time actual data values or changes occur. These techniques use polygons
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Figure 2.21

The VIS-STAMP system introduced by Guo et al. [58].
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instead of lines to represent temporal changes and have been implemented on the GPU for

interactive performance with thousands of data items [88]

Hao et al. [61] described a technique called Intelligent Visual Analytics Query (IV-

Query) that fuses visual interaction and automated techniques to help the analyst discover

special patterns, properties, or relations in the data. The benefits of the technique are

demonstrated over traditional zoom and filter techniques using several real world data

sets. The IVQuery concept is demonstrated with parallel coordinates, visual maps, and

scatter plot representations. The technique incorporates ordering by correlation coeffi-

cients (Pearson Correlation), offers similarity measures (normalized Euclidean distance),

k-means clustering, and nearest neighbor classification. These measures are used in the

application to rearrange the visual layout. A case study is presented for each representation

technique. For parallel coordinates, the case study demonstrates the pair-wise correlation

coefficient calculation of a selected attribute with the other attributes and the automatic

reordering of the axes with the results. The reordering places attributes with positive cor-

relations on the right of the selected attribute and negative correlations on the left with

descending order [61].

Elmqvist et al. [37] presented a visualization application called DataMeadow that is

composed of several compact representations called DataRose. The DataRose provides

interactive representations of multiple large-scale multivariate data sets. As shown in Fig-

ure 2.22, the DataRose is a parallel coordinate starplot of selected data columns with

dynamic query sliders integrated into each axis. With the starplot, the parallel coordinates

system is folded into polar space and each axis is mapped to the radius of a circle. The
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Figure 2.22

The DataRose concept by Elmqvist et al. [37].

DataRose offers three representation modes: color histogram, opacity band, and parallel

coordinates [37].

Qu et al. [129] used parallel coordinates and polar systems to visualize weather data

related to air pollution. The authors present extensions to the standard display axis in paral-

lel coordinates to overcome the inadequacy of a straight axis for encoding wind direction.

As shown in Figure 2.23, a S-shaped axis is used to alleviate these problems and attract

attention to the wind direction variable which is very important to air pollution analysis.

In addition, the system combines parallel coordinates with scatterplots above each axis

for accurate quantitative analysis. It is noted that lines in the parallel coordinates become

points in the scatterplots. The system uses a weighted complete graph as a guide map for

displaying the relationships between dimensions. In the graph, the node is weighted with

the correlation coefficients between variables. In addition to providing a way to visualize
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the relationships, the graph is also used to generate an optimal axis order for parallel coor-

dinates in either an interactive or an automatic mode. The correlation coefficients are also

indicated with color in the visualization where red is used for positive values and blue is

used for negative values [129].

Figure 2.23

The S-shaped parallel coordinates axes introduced by Qu et al. [129].

Kumasaka and Shibata [108] introduced a new variant of parallel coordinates called the

textile plot. In the textile plot, the ordering, locations, and scales of the axes are chosen

automatically so that the polylines are as horizontal as possible. The suitability of this

technique is explored for numerical and categorical data, or a mixture of these different

types [108].

Shearer et al. [132] described the application of animation to parallel coordinates with

non-time-varying data. The approach is described for a particle physics simulation data

set which contains a large number of points [132]. Haroz et al. [62] described the anal-

ysis of time-variant cosmological particle data using parallel coordinates. They utilized
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multiple views for interactive exploration and selection of important features to overcome

limited visualization dimensions and facilitate uncertainty visualization in the correlations

between variables [62].

2.5.3.3 Applications of Parallel Coordinates

Since its introduction as a method for representing hyper-geometrical surfaces [72],

the parallel coordinates technique has been applied to many different domains. In 1995,

Martin and Ward [119] used three data sets to evaluate their brushing operations for paral-

lel coordinates: a data set containing information about American, European, and Japanese

automobiles manufactured between 1970–1983; a crime statistics data set for Detroit in the

years 1961–1973; and a data set with 8000 ore grade values and their positions [119].

In 1998, Ankerst et al. [13] presented an similarity-based axis arrangement approach

for parallel coordinates using a data sets of eight different stock prices. In 1999, King and

Harris [97] utilized parallel coordinates to visualize pulmonary capillary exchange data.

This is one of the first practical uses of parallel coordinates in the medical domain [97].

Goel et al. [53] introduced a visualization tool to aid aircraft designers during the

conceptual design stage. In this stage, the design of an aircraft is defined by a vector of

10–30 parameters. The goal of the system is to find the vector that minimizes an objective

function while meeting a set of constraints. The tool, called VizCraft, allows the viewer

to switch between a visualization of the aircraft and a view of the design in the form of a

parameter set. The system’s parallel coordinates display capabilities allow the designer to

compare one design with another using human pattern recognition capabilities [53].
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Fua et al. [50] presented two case studies using their hierarchical parallel coordinates

technique and tree-maps with a five-dimensional data set with 16,000 elements. This data

set was formed by combining Satellite Pour I‘Observation de la Terre (SPOT) satellite

imagery, magnetics, and radiometrics remote sensing data sets from the Grant’s patch

region of Western Australia [50].

Hall and Berthold [59] employed parallel coordinates to visualize fuzzy data. Fuzzy

data may consist of fuzzy rules, which can be viewed as cutting a swath through an n-

dimensional space. Three examples are given to show the utility of this application. The

data set used is the well-studied Iris plant database which consists of 150 examples each

with four features which describe three types of Iris classes [59]. Berthold and Hall [20]

later revisited the fuzzy parallel coordinates system using the same flower data set and a

new ocean satellite image data set.

Siirtola [135] used the American Statistical Association (ASA) cars data set which has

nine dimensions (two dimensions are categorical), 406 polylines, and 3,654 data items.

The cars data set stores all cars road tested by the Consumer Reports magazine between

1971 and 1983 [135].

In 2001, Lee et al. [115] investigated the use of two different visualization techniques

to analyze real-world, clickstream data for online retail sales. Session data are han-

dled with parallel coordinates and product performance data are visualized using starfield

graphs [115]. Later, Spraragen and Podlaseck [139] used an extended version of paral-

lel coordinates to browse many hundreds of musical works. In addition to describing the

system’s interface design, the authors present an initial usability study [139].
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Falkman [39] introduced a new three-dimensional parallel coordinates technique, called

The Cube, to support clinicians in daily diagnostic work. The technique is represented by

three-dimensional parallel diagrams with a linked statistics panel [39]

In 2002, Hauser et al. [63] described applications of parallel coordinates to compu-

tational fluid dynamics and the cars data set. In 2003, Yang et al. applied their VHDR

system to a real world data set derived from part of the unweighted PUMS census data of

the Los Angeles and Long Beach area for the years 1970, 1980, and 1990. The data set

has 42 dimensions and 20,000 elements [161].

Siirtola [136] integrated parallel coordinates with a visualization technique called the

Reorderable Matrix in a linked display. These two display techniques are analyzed and

the results are reported of an experiment that compares the participants’ task performance

with the two views, with and without linking. The experiment showed that the view link-

ing slows the task performance but it accelerates learning and is well received by the

users [136].

Unwin et al. [148] utilized parallel coordinates for exploratory modeling analysis—

evaluating and comparing many models simultaneously. The target data set comes from

a trial on a treatment for primary biliary cirrhosis of the liver. There were 418 patients

and seventeen potentially explanatory variables. Using standard interactive parallel coor-

dinates, the authors described an in-depth study of how the tool is used to discover patterns

in the data set [148].

Friendly and Kwan [48] discussed a framework for ordering information in visual dis-

plays. The authors developed several principles for ordering information and applied them
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to parallel coordinates and several other display techniques. The authors noted that paral-

lel coordinates work well for well-structured data but it is sometimes disappointing with

real data. A number of parallel coordinate plots are shown in this paper, most of which

come from a crime statistics data set [48].

Edsall [35] discussed implementations of interactive parallel coordinates showing spa-

tial and spatio-temporal data with linked maps and scatterplot views. The plots are demon-

strated as an effective data exploration tool through case studies in two different problem

domains: climate modeling and analysis and epidemiology. These domains are similar be-

cause researchers in both areas search for patterns and trends across space and time. The

climate study system was constructed in Tcl/Tk and linked to IBM’s Data Explorer for use

with climatological data. The epidemiology system was developed with ArcView’s GIS

system using its scripting language Avenue [35].

Potts et al. [128] and, later, Tory et al. [143], applied parallel coordinates to the lay-

out of the parameter space used for volumetric rendering. The variables include camera

orientation, transfer functions for color and opacity, zoom and translation of the view, a

volumetric data file, and a rendering technique. In this layout, all parameters are explicitly

represented to illustrate the space of available options for volume rendering. The system

also features a history bar to allow users to backtrack to previous states and quickly scroll

to see when options have been tried. Usability testing has shown that the tool is promising

for the exploration of volume data [128, 143]. Crider et al. [31] described a port of the

interface introduced by Tory et al. [143] that allowed it to be controlled by physical sliders

on a mixer board instead of graphical widgets. Based on a user study described in the
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paper, the mixing board with motorized sliders seems like a promising interaction device

for a variety of visualization applications [31].

Zhao et al. [164, 165] demonstrated their parallel coordinates tool, called V-Miner,

along with a case study about Motorola engineers’ use of the tool to find significant pat-

terns in their product test and design data. The data set used in this analysis is from an

extensive set of tests by Motorola engineers on a new type of mobile phone and it consists

of over 100 test variables that characterize the performance of the mobile phone. The tool

was used by Motorola engineers for about three months and they reported that it helped

them find important patterns and information about the test data [164, 165].

In 2004, Schneidewind et al. [131] used parallel coordinates as one of several visual-

ization techniques to analyze image retrieval results. The system provides several linked

views where the parallel coordinates display is the preferred technique to analyze features

in detail [131].

Later, Johansson demonstrated a parallel coordinates extension by analyzing a molec-

ular data set with 1000 tuples and sixteen data items [91]. Barlow and Stuart tested a

parallel coordinates system with neurophysiological research data sets [16]. In addition,

Andrienko and Andrienko provided examples of parallel coordinates plots from a demo-

graphic data set [11].

Wang et al. [152] used parallel coordinates in a visual data mining tool, VisDM-PC, that

can interactively perform data classification, relativity analysis, association rule analysis

and implement the roll-up and drill-down function. The system functions were tested using

several data sets. A data set of Chinese 2000 CET (College English Test) scores which
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contains six attributes was used in the examples. The data set consisted of 246 scores. The

application features are introduced along with patterns in the data set to demonstrate its

effectiveness [152].

In 2005, Yang [162] visualized association rules using smooth polylines in standard

parallel coordinates. Later, Krasser et al. [107] applied parallel coordinates to the analysis

of network traffic information.

Lanzenberger et al. [111] compared the stardinates and parallel coordinates techniques

for visualizing psychotherapeutic data. A comparative study with twenty-two participants

revealed that stardinates were a more appropriate method for interpreting highly structured

data in detail and parallel coordinates showed advantages for gaining insight on the first

glance [111].

Johansson et al. [86] presented extended parallel coordinate plots based on housing,

pollution, and meteorological data sets. Soon thereafter, Grünfeld [57] used parallel co-

ordinates and scatterplot display techniques to visualize data that describes the contents

of the metals Cu (copper), Ni (nickel), Pb (lead), V (vanadium) and Zn (zinc) in mosses

within an area of 300 × 300 km in southern Sweden, sampled in 1985 (177 samples),

1990 (156 samples), and 1995 (188 samples). The freeware visualization package Xmdv-

Tool was used in the visual analysis. In addition to highlighting several interesting findings

in the data, the author discussed the advantages and limitations of the visualization tech-

niques compared to histograms, quartile plots, and proportional symbol maps [57].

Feldt et al. [41] described a multiple linked view application (one view was parallel co-

ordinates) and its use in the analysis of a statistical database for Sweden. The application
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was called the GeoWizard and it was a distributed application that provided a parallel coor-

dinates display for an overview along with a scatter plot matrix. In addition, a choropleth

map and the 2D scatter plot provided more detailed views of the data [41].

Ericson et al. [38] evaluated extended parallel coordinates with three different data

sets: the cars data set, a pollution data set, and a stock market data set. For each data

set, plots were shown and an evaluation of the use of the interface was given for inves-

tigating specific features of the data set. A good workflow was given that demonstrates

patterns in the data and how the capabilities of the application helped in the discovery of

the patterns [38].

Matković et al. [120] addressed the visualization of data from injection system simu-

lations in an innovative system called ComVis. ComVis supported multiple linked views

and common information visualization displays such as scatterplots, histograms, parallel

coordinates, etc. [120]. The ComVis system was expanded later by Konyha et al. [102] and

an additional case study of a road traffic data set was described. The focus of this paper

was on the visualization of data sets that include families of function graphs [102].

Fanea et al. [40] presented a case study of their technique called Parallel Glyphs using

a set of one hundred generations of plants generated by a genetic algorithm, each having

five attributes. Later, Bendix et al. [19] and Kosara et al. [103] used sales and marketing

data and a demographic data set from the Titanic disaster for case studies of their Parallel

Sets techniques that was derived from parallel coordinates.

In 2006, Karki et al. [95] applied a new visualization system that uses parallel coordi-

nates with star plots, scatter plots, and polygon-surface rendering techniques for exploring
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large collections of mineral elasticity data. Dwyer et al. [33] discussed the analysis of

network-structured data using centrality analysis. The authors presented three methods

for exploring and comparing centrality measures within a network: three-dimensional par-

allel coordinates, orbit-based comparison, and hierarchy-based comparison. These meth-

ods were demonstrated in case studies using biological and social network data sets [33].

Later, Albazzaz and Wang [9] demonstrated parallel coordinates extensions in statistical

process control.

Pillat and Freitas [126] discussed a multiple coordinated view interface that was de-

signed to visualize multidimensional data. The InfoVis Toolkit was used in the system

implementation and one of its views provided a parallel coordinates display. The au-

thors described an informal experiment and presented plots using the cars data set [126].

Lawrence et al. [112] presented a visualization system called exploRase which provides

parallel coordinates and other methods in interlinked displays for the exploratory analysis

of systems biology data.

Jern and Franzèn [84] introduced a parallel coordinates display integrated with time

series and trend graph displays that serve as a visual control panel for the GeoAnalyt-

ics application. The authors presented a case study using Sweden’s statistical databases,

which contains economic, social, and demographic information. In addition to the stan-

dard parallel coordinates view, the system provided five other linked views of the data

set [84].

Kraak [105] focused on the new role of maps in the analysis of today’s complex data;

a new breed of map visualizations that operate in the realm of geovisualization. A mock
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geovisualization was developed to represent the events of Napoleon’s campaign. In the ini-

tial exploration and discovery phase, the author suggested the use of a parallel coordinates

display for an overview of the data set [105].

Ye and Lin [163] used parallel coordinates to speed up the convergence rate of sim-

ulated annealing for moderate and high dimensional optimization problems. Rather than

polygonal lines, smooth curves were used in the parallel coordinates display and several

numerical studies were presented to demonstrate the improved performance of the tech-

nique [163].

Bair et al. [15] presented information on perceptually optimal visualizations of lay-

ered three-dimensional surfaces. The authors presented guidelines for generating texture

patterns that minimize confusion in depth discrimination and maximize the ability to find

distinct features. The authors used parallel coordinates in conjunction with Analysis of

Variance, Linear Discriminant Analysis, and Decision Trees to analyze the data from hu-

man in the loop experiments. The parallel coordinate plot was identified as a convenient

way to visually assess hypotheses about relationships among the parameters [15]. Later,

Sifer presented a parallel coordinates based visualization method using a sales data set and

a network traffic data set [134].

Singer et al. [138] used parallel coordinates to analyze the structure and functionality

of communication networks. A network of n nodes were transformed to n points in an

n-dimensional space. The authors began with visualization of subgraphs of the Internet

AS graph and continued with the visualization of networks at the IP level. Using parallel

coordinates, the authors showed how they can identify network properties such as stability
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in instances of node-link failures, node back-up, node interdependence, and unique topo-

logical patterns common in networks [138]. Guo et al. [58] presented a case study of their

system called VIS-STAMP using a sales data set which includes sixteen industry types for

forty-nine states and twelve years.

Siirtola and Räihä [137] surveyed interaction techniques for parallel coordinates and

compared them to established visualization design guidelines. The authors also described

their experiences with several prototype parallel coordinates applications and an experi-

ment to study the usability of parallel coordinates. In this experiment, information tech-

nology professionals were asked to answer questions about the ASA cars data set using

SQL query tools and a parallel coordinates application. The results of this study suggested

that parallel coordinates user interfaces were not as difficult to use as generally believed.

Although the accuracy of the answers was about the same between the two methods, the

parallel coordinates method was substantially faster in solving the set of tasks.

In 2007, Park and Martin [124] utilized parallel coordinates to assess the reusability of

waste (any solid, liquid, or contained gaseous substance arising from the application of a

process) using several case studies. Later, Caat et al. [23] addressed the visualization of

time-varying multichannel electroencephalography (EEG) data. The system uses a tiled

organization in the form of a two-dimensional row-column presentation instead of the one-

dimensional arrangement of columns that is used in classical parallel coordinates. There

was one tile for every electrode and each tile displayed a combined minmax plot, density

map, and parallel coordinates plot. The method was compared to existing EEG visualiza-

tion methods based on a number of criteria. Also, a user evaluation was described in which
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the method was compared to traditional EEG visualization techniques. For the experiment

task, the new visualization method was about 40% faster than the standard visualization

method. The speed gain was without loss of information and the new method used less

space than the standard visualization method. The new method did not show decreases in

speed with increased amounts of information but the standard visualization method had a

decrease in speed with an increase of data. The new method was recommended for use in

studying healthy people and in clinical settings [23].

Xu et al. described the use of a parallel coordinates extension called parallel dual

plots to the analysis of a vegetable oil data set [158]. Later, Xu et al. [159] focused on the

capability of parallel coordinates to assist in visual pattern recognition and classification

using the same vegetable oil data set. The system described in this paper provides three

interaction operations: fading or exposing, translation, and zooming [159].

Jern et al. [85], described their use of the GeoAnalytics toolkit which includes a parallel

coordinates display with standard interaction capabilities. A sample application was de-

scribed called GeoWizard which used parallel coordinates with embedded visual inquiry

methods that serves as the visual control panel for dynamically linked and coordinated

views [85].

Jern [83] also described an approach called Visual Space Management which incorpo-

rated multiple linked views and explored retail data related to space performance. That is,

the tool was intended to help retailers gain a better understanding of each store’s layout

in relation to its capacity and performance. The system integrated several information vi-

sualization techniques and a three-dimensional interactive layout of the store floor plans
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with retail data sources. Built on the GeoAnalytics toolkit, the parallel coordinate plots

provided a multivariate visual control panel in the coordinated system [83].

Henley et al. [66] utilized parallel coordinates and scatter plots to compare nucleotide

sequences for genomic study. A user study was conducted to evaluate the advantages

and disadvantages for each visualization technique. All subjects indicated that parallel

coordinates caused confusion from the crossing lines and subjects also noticed that the

parallel coordinates showed long common sequences well. Overall the subjects in this

study preferred the scatter plot to the parallel coordinates display [66].

A.Godinho et al. [7] presented a system called PRISMA that explored the use of mul-

tiple coordinated views to visualize multidimensional data sets. The system provided

treemap, scatterplot, and standard parallel coordinates displays. The authors presented

the results from a usability study which involved eleven users [7].

Elmqvist et al. [37] presented a case study of the DataRose technique using U.S. Cen-

sus data. In this case study, a convincing workflow was described that followed the use

of the tool by a fictitious analyst searching for new patterns in the data. Also the authors

presented the results of a user study (a qualitative expert review) that involved two visual-

ization researchers. The study followed a think-aloud protocol and the authors noted the

feedback from the researchers [37].

Hao et al. demonstrated the IVQuery technique using real world data sets such as data

warehouse performance, product sales, and server performance [61]. Qu et al. [129] pre-

sented a case study of their extended parallel coordinates system using an air pollution data

to demonstrate the improved effectiveness at correlation detection, finding similarities and
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differences, and time series trends. The authors found that the effectiveness of parallel

coordinates depends on the axis order. They also noted that parallel coordinates worked

well for showing general correlations and the polar system worked well for more quanti-

tative analysis. They also briefly mentioned some feedback on the system from domain

scientists [129].

Chang et al. [26] introduced an interactive urban information visualization tool that

provided continuous levels of abstraction. The system also provided multiple data views,

one of which is a parallel coordinates display that was color-coded to match a matrix

view. A user study was described, feedback on the system was reported, and a case study

was presented with demographic data from the 2000 U.S. Census [26]. In 2008, Jones et

al. [93] described a data exploration system for time-varying, multivariate, point-based

data from gyrokinetic particle simulations. In this system, a parallel coordinates view

provided a global overview of the data [93].
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CHAPTER 3

APPROACH

In this research, geovisual analytics have been brought to bear in the domain of envi-

ronmental data analysis to facilitate more effective knowledge extraction than traditional

approaches—the type of research that has long been considered the central promise of

visualization. The research approach is motivated by the following hypotheses:

1. The development of an advanced geovisual analytics approach using parallel coor-
dinates and statistical techniques reveals a deeper level of understanding than tradi-
tional methods when applied to the task of finding complex multivariate trends in
environmental data sets. With new ways to creatively explore the data, the approach
offers a more effective visual interface to glean new insight about the data behind
the visualization.

2. The effectiveness of the geovisual analytics approach is necessarily explored in the
context of practical environmental studies, which are grounded in real-world data
sets instead of invented or abstract data sets, in close collaboration with domain
experts. The discovery of new associations and the confirmation of known patterns
by domain experts will validate the promise of this new approach in environmental
data analysis.

Traditional climate study workflows use statistical processes to automatically discover

significant predictors using historical data. However, the lack of adequate visual analysis

tools in the realm of environmental data analysis forces the scientist to reduce the prob-

lem to fit the tools. We have discovered new insight by expanding the tools to facilitate

exploratory visual analysis of the associations in the data. Moreover, the coupling of statis-
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tical data analysis processes directly into the visual interface enables faster, more accurate

discovery and confirmation of patterns in the data.

In the remainder of this chapter, we provide a detailed overview of the various ca-

pabilities of the new geovisual analytics systems, which was produced after our compre-

hensive investigation of prior approaches presented in Chapter 2. The new system com-

bines several fundamental parallel coordinates capabilities and variants of more advanced

techniques from prior works. The system also offers new interactive functionality with

parallel coordinates: dynamic axis scaling using mouse wheel movement and continuous

aerial perspective shading of polylines. These techniques are used in Chapter 4 to demon-

strate the enhanced visual data analysis capabilities in four separate case studies. The new

insight obtained from these evaluations validated the promise of this approach in environ-

mental data analysis. Specifically, we developed a deeper level of understanding about the

physical associations of global signals for seasonal North Atlantic tropical cyclone activity

in the latter three case studies.

3.1 System Overview

An innovative geovisual analytics system called MDX has been developed that com-

bines interactive parallel coordinates with automated statistical processes to provide a

practical tool for analyzing multivariate data sets. MDX was developed using the Java

Development Kit version 1.6 and its Advanced Windowing Toolkit and Swing class li-

braries. From a software engineering perspective, the system consists of 6,766 Total Lines
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of Code1 and 5,360 Method Lines of Code2 in thirty-five classes. The system provides in-

teractive performance on a laptop computer with a 2.33 GHz Intel Core 2 Duo processor,

three GB Random Access Memory (RAM), and an ATI Radeon X1600 graphics card with

256 MB Video RAM.

As shown in Figure 3.1, MDX provides an efficient graphical user interface (GUI)

that offers a settings panel (upper left panel), an interactive table view of axis settings

and statistics (lower panel), and an enhanced parallel coordinates view (upper right panel).

Although the table and settings panels are critical for the usability of our system, the

parallel coordinates panel is the heart of the visual analysis capabilities. In this panel, the

classical parallel coordinates plot is extended with dynamic interaction capabilities that

provide access to the data behind the visualization. Furthermore, the parallel coordinates

view is dynamically linked with statistical indicators and automatic statistical processes to

provide an ideal environment for exploratory data analysis.

3.2 Visualization Capabilities

The visualization capabilities of the system are contained in the parallel coordinates

panel. In addition to many fundamental parallel coordinates capabilities such as relocat-

able axes, axis inversion, and details-on-demand, this panel provides several innovative

interaction capabilities such as axis scaling (focus+context), aerial perspective shading,

1The TLOC counts non-blank and non-comment lines in a compilation unit.

2The MLOC counts non-blank and non-comment lines inside method bodies.
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Table 3.1

MDX visualization capabilities.

Capability Name Description

Dynamic Axis Scaling Interactively scale (zoom into) an axis.
Aerial Perspective Encode proximity with line shading.
Dynamic Visual Queries Conjunctive queries with UI widgets.
Statistical Indicators Visually encode analysis results.
Interactive Scatterplots Precise analysis of variable relations.

and dynamic visual queries. In this section, we highlight these visualization capabilities

which are also summarized in Table 3.1.

3.2.1 Classical Parallel Coordinates Interaction Capabilities

Over the years, there have been many innovative extensions to the original parallel

coordinates plot that have greatly increased its usefulness. Several of these extensions were

integrated into the MDX system. Perhaps the most fundamental extension is the ability to

quickly reorganize the axes [135]. This capability allows the viewer to quickly rearrange

the axes to explore new relationships which is particularly beneficial as the dimensionality

of the data increases. In MDX, the viewer can click the left mouse button on the axis name

to select and drag the axis to a new position. When the viewer releases the mouse button,

the axes will be automatically reordered so that the axis being moved is inserted at the new

location and the other axes are rearranged appropriately.

Axis inversion is another fundamental feature in the parallel coordinates display [63].

In our system, the viewer can invert an axis by left clicking on the arrow at the top of the
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Figure 3.2

Annotated view of the interactive MDX axis widgets.
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axis (see Figure 3.2). When this arrow is clicked the top and bottom values for the axis are

switched and the display is regenerated. In addition to serving as a button for switching

the axis between ascending and descending order, the arrow also indicates the direction of

increasing values on the axis.

As illustrated in Figure 3.3, MDX also provides a basic details-on-demand capability

that gives the viewer the ability to click on an axis with the middle mouse button to dis-

play the axis value under the mouse [63]. In this example, the query reveals a value of

39.661903. The right side of Figure 3.2 shows an additional details-on-demand feature

whereby the application displays the values for the top and bottom of the focus area and

applies a more prominent highlight color to the axis whose area is intersected by the mouse

position.

Additionally, our system’s display can be customized through an intuitive pop-up

menu. That is, when the viewer clicks the right mouse button in the display, a pop-up

menu is revealed which can be used to control many features such as the display of statis-

tical indicators, color schemes, display of tick marks, or performing screen captures. Most

of these same settings and functions can be accessed via the settings panel (see Figure 3.1).

3.2.2 Dynamic Visual Queries

Since the viewer is often interested in grouping subsets of data, our application also

provides a method to select lines using double-ended sliders. As shown in Figure 3.2,

each axis has a pair of sliders which define the top and bottom range for the query area.

This capability is an extension of prior research on dynamic interaction techniques [8,
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Figure 3.3

MDX’s details-on-demand capabilities.

133, 146], particularly those focused on parallel coordinates [63, 135]. The viewer can

drag these sliders to dynamically adjust which lines are highlighted effectively giving the

viewer the capability to perform rapid, conjunctive queries. Lines within the query area of

each visible axis are rendered with a more prominent color while the remaining lines are

rendered with a less prominent shade of gray.

In Figure 3.4, an example visual query is shown using with a seasonal tropical cyclone

statistics data set. In this example, the Named Storms (NS) and Intense Hurricanes (IH)

axis sliders have been set to highlight the two years with an above normal number of

named storms and a below normal number of intense hurricanes for data between 1950 and

2006. In Figure 3.1, another visual query example is shown with the popular American
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Figure 3.4

Dynamic conjunctive query capabilities using MDX.

Statistical Association (ASA) cars data set3. In this figure, the sliders on the Year axis

have been adjusted to highlight the more recent model year records.

3.2.3 Axis Scaling (Focus+Context)

MDX’s dynamic axis scaling capability provides a method to interactively tunnel

through the data until a smaller subset of the original data is in focus. MDX allows the user

to modify the minimum and maximum focus area values for a selected axis using mouse

wheel movement. This capability builds on other parallel coordinates focus+context im-

plementations presented in research literature [14, 50, 89, 123].

As shown in Figure 3.2, each axis is partitioned into three sections delineated by hori-

zontal tick marks: the central focus area and the top and bottom context areas. When the

3The ASA cars data set is available online at http://stat.cmu.edu/datasets
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(a) (b)

Figure 3.5

Screen captures of an MDX axis before (a) and after (b) dynamic scaling.

mouse is hovering over the focus area, an upward mouse wheel motion expands the display

of the focus area outward and pushes outliers into the context areas (see Figure 3.5).

A downward mouse wheel motion causes the inverse effect: focus region compression.

Alternatively, the user may use the mouse wheel over either of the two context areas to

alter the minimum or maximum values separately. The user may also manually enter the

minimum and maximum values by typing them in appropriate fields of the table view

panel (see Figure 3.1). This intuitive capability helps to free space and reduce line clutter,

thereby making it easier to analyze relation lines of interest.
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Figure 3.6

Alfred Sisley’s 1873 painting Sentier de la Mi-cote, Louveciennes.

3.2.4 Aerial Perspective Shading

MDX also offers an innovative line shading scheme that is useful for rapidly moni-

toring trends due to the similarity of data values over multiple dimensions. This shading

scheme simulates the human perception of aerial perspective whereby objects in the dis-

tance appear faded while objects nearer to the eye seem more vivid. The technique is a

fundamental technique used in painting, especially landscapes (see Figure 3.6). As the dis-

tance between the viewer and an object is increased, the contrast between the object and

background decreases. Background colors are less saturated and shift toward the back-

ground, which is usually blue.
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In our implementation, aerial perspective shading can be used in either a discrete or

continuous mode. In the discrete mode, the lines are colored according to the axis region

that they intersect. If any point of a relation line is in the context (non-focus) area of at

least one axis, the line is shaded with a light gray color and drawn beneath the non-context

lines. If all the points on a relation line fall within the query area of each axis (the area

between the two query sliders), the line is colored using a dark gray value that attracts

the viewer’s attention and the remaining lines (non-query and non-context) are colored a

shade of gray that is slightly darker than the context lines but lighter than the query lines.

The resulting effect for discrete aerial perspective shading is illustrated in Figure 3.1 and

Figure 3.4.

In the continuous mode, non-context lines go through an additional step to encode the

distance of the line from the mouse cursor. As shown in Figure 3.5 and Figure 3.7, query

lines that are nearest to the mouse cursor receive the darkest value while lines farthest

from the mouse cursor are shaded with a lighter gray. The other query lines are shaded

according to a non-linear fall-off function that yields a gradient of colors between said

extremes. Consequently, the lines that are nearest to the mouse cursor are more prominent

to the viewer due to the color and depth ordering treatments and the viewer can effectively

use the mouse to quickly interrogate the data set. In addition to the query lines, the shading

scheme is also applied to the small scatterplots that are displayed beneath each axis (see

Figure 3.7).

88



(a
)

(b
)

(c
)

Fi
gu

re
3.

7

C
on

tin
uo

us
ae

ri
al

pe
rs

pe
ct

iv
e

sh
ad

in
g

im
ag

e
se

qu
en

ce
.

89



Table 3.2

MDX analysis capabilities.

Capability Name Description

Stepwise Regression Ranks predictors for a specific dependent variable.
Simple Regression Quantifies individual predictor significance.
Correlation Analysis Calculate and display correlation indicators.
Multicollinearity Filter Hide highly correlated predictors.
Optimal Axis Arrangement Arrange axes by one of several statistical measures.
Descriptive Statistics Calculates descriptive statistics on-the-fly.

3.3 Analysis Capabilities

MDX also offers many analysis capabilities that help identify and quantify significant

relationships in the data. In addition to graphical indicators of key descriptive statistical

quantities, our system provides correlation and regression analysis, an automatic multi-

collinearity filter, and automatic axis arrangement capabilities. In the remainder of this

section, these capabilities, which are summarized in Table 3.2, are described in detail.

3.3.1 Descriptive Statistical Indicators

To support the interactive analysis capabilities of MDX, each axis offers visual rep-

resentations of key descriptive statistics that are identified in Figure 3.2. The median,

interquartile range (IQR), and the frequency information are calculated for the data in the

focus area of each axis. Alternatively, the user can configure the system to display the

mean and standard deviation range. These central tendency and variability measures pro-

vide a numerical value that indicates the typical value and how “spread out” the samples

are in the distribution, respectively. As shown in Figure 3.8, the wide overall box plots

90



represent the descriptive statistics for all the axis samples while the more narrow query

box plots, which are draw over the overall box plots, capture the descriptive statistics for

only the samples that are selected with the axis query sliders. The thick horizontal lines

that divide the box plots vertically represents the median value in the IQR mode and the

mean in the standard deviation range mode.

Figure 3.8

The axis box plots represent the variability statistics for the data values.

Alternatively, the viewer can modify the display settings to represent the overall central

tendency and variability measures using a gray polygon connected between the axes and

a blue-gray dashed line, respectively (see Figure 3.9). The variability polygon is drawn

beneath the other polylines in the parallel coordinates display by connecting the IQR or

standard deviation range top and bottom limits between the axes. Similarly, the dashed

central tendency line is drawn by connecting the median or mean values between the axes.
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The viewer can use this feature for quickly summarizing an axis during analysis. For

example, if the data set is very large, the individual polyline drawing can be disabled and

the axis summary enabled to dramatically increase the rendering speed of the system. The

user can perform all statistical analysis processes and evaluate the descriptive statistics in

this summary mode. When a detailed plot is desired, the individual polyline rendering can

be reactivated.

Figure 3.9

The axis summary lines in MDX.

On each axis bar interior, the frequency information can also be displayed by repre-

senting histogram bins as small rectangles with widths that are indicative of the number of

lines that pass through the bin’s region (see Figure 3.2). That is, the widest bins have the

most lines passing through while more narrow bins have less lines. In addition to enabling
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or disabling the histogram display, the user can also fine tune the frequency display by

modifying the histogram bin size in the settings panel.

3.3.2 Correlation Analysis Capabilities

In statistics, correlation analysis attempts to measure the strength of relationships be-

tween pairs of variables to facilitate the prediction of one variable based on what is known

about another. The relationship between two variables can be quantified using a single

number, r, that is called the correlation coefficient [151]. Our system uses the Pearson

product-moment correlation coefficient (also called the sample correlation coefficient) to

measure the correlation between the axes visible in the parallel coordinates panel.

For each pair of axes in the display, our system computes r which results in a correla-

tion matrix. As shown in Figure 3.10, the rows from this correlation matrix are displayed

graphically beneath each axis as a series of color-coded blocks (see Figure 3.2). Each

block uses color to encode the sample correlation coefficient between the axis directly

above it and the axis that corresponds to its position in the set of blocks. For example,

the first block in the correlation indicators under each axis in Figure 3.11 represents the

correlation strength between the axis above it and the first axis, the MPG axis. When the

mouse hovers over an axis in the parallel coordinates panel, the axis is highlighted and the

correlation coefficient blocks corresponding to it below the other axes are enlarged (see

Figure 3.11).

The blocks are colored blue for negative correlations and red for positive correlations.

The stronger the correlation, the more saturated the color so that stronger correlations are
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Figure 3.10

Construction of the MDX axis correlation indicators.
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Figure 3.11

Axis correlation indicators in MDX.
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more prominent. The correlation indicator color scale is shown in Figure 3.12. An axis’

r value with itself is always equal to one and the corresponding indicator block is colored

white. What’s more, when the absolute value of a correlation coefficient is greater than or

equal to the significant correlation threshold, the block is colored with the fully saturated

color. The significant correlation threshold is a user-defined value that is displayed at the

bottom of the parallel coordinates plot (see Figure 3.1). The correlation threshold can be

adjusted via the settings panel.

Figure 3.12

Axis correlation indicator color scale.

In addition to the sample correlation coefficient indicators, the system also displays

small scatterplots below the correlation indicators for each axis when an axis is high-

lighted (see Figure 3.11). These scatterplots are created by plotting the points with the

highlighted variable as the y axis and the variable directly above the scatterplot as the x

axis. Each scatterplot also shows the numerical r value associated with the pair of axes
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below the scatterplot. The scatterplots provide a visual means to quickly confirm the type

of correlation (positive or negative) and the strength of the correlation. It is important to

note that the type of correlation is also visually detectable in the line configuration of the

parallel coordinates plot. As shown in Figure 3.11, parallel coordinate lines that cross in

an ’X’ pattern are characteristic of a negative correlation while lines that appear to be more

parallel indicate a positive correlation.

Unlike the other correlation indicators, the scatterplot is useful for discovering nonlin-

ear relationships between variables. For example, a nonlinear relationship can be observed

in a scatterplot even if the correlation coefficient is zero. In Figure 3.1, nonlinear relation-

ships are illustrated in the scatterplots beneath the second, third, and fourth axes.

3.3.3 Multicollinearity Filter

Our system provides an automatic multicollinearity filter to ensure the proper selection

of axes in subsequent multiple linear regression analysis. This filter examines the visible

axes in the parallel coordinates display for multicollinearity; if any axes are correlated with

each other by more than the significant correlation threshold, one axis is removed from the

display. The filter removes the axis that has a lower r with the dependent axis. In this way,

the remaining axes are truly independent of each other.

The user can reduce multicollinearity manually by using the correlation indicators to

identify and filter correlated axes within a predefined threshold. However, the filter pro-

vides an automatic way to ensure independence that can be performed at the click of a
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button. Removing the strongly correlated independent axes will ultimately improve sub-

sequent MLR analysis by avoiding over-fitting the data.

3.3.4 Regression Analysis Capabilities

Regression analysis is often employed to identify the most relevant relationships in a

particular data set. Such techniques are effective for screening data and providing quanti-

tative associations. In addition to simple linear regression, MDX offers stepwise multiple

linear regression with a backwards glance which selects the optimum number of the most

important variables using a predefined significance level [151]. Stepwise regression can

complement multivariate visualization by isolating the significant variables in a quanti-

tative fashion. As illustrated in Figure 3.13, our system executes a MATLAB®4 script

and captures output from the MATLAB® “regress” and “stepwisefit” utilities that perform

simple and stepwise regression, respectively. The MATLAB® output stream is then parsed

and displayed graphically within the parallel coordinates panel.

In our MLR analysis, a normalization procedure is used so that the y-intercept be-

comes zero and the importance of a predictor may be assessed by comparing regression

coefficients, bi, between different predictors. As shown in Figure 3.2, the system visually

encodes b in the parallel coordinates panel using the box below the axis label and to the

left of the arrow. Like a thermometer, the box is filled from the bottom to the top based

on the magnitude of b. The box is colored red if the coefficient is positive and blue if it is

negative. The box to the right of the arrow encodes the r2 output from the SLR process. In

4MATLAB® is an environment and language for mathematical analysis. More information can be found
on this product at http://www.mathworks.com.
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Figure 3.13

Integration of MATLAB® with MDX.

addition to the coefficients, the MLR analysis returns an overall R2 value which provides a

quantitative indication of how well the model captures the variance between the predictors

and the dependent variable. The box beneath the dependent variable axis name encodes

the overall R2 value from the MLR analysis (see Figure 3.2).

When these boxes are filled with a light gray ‘X’ (see Figure 3.14), the value is not

defined (the SLR or MLR process has not been executed) or, in the case of the MLR

analysis, the variable was excluded during the selection process. It is also important to

note that the axis corresponding to the dependent variable is indicated by light gray text

on a dark gray box for its title, the reverse shading of the other axes. The dependent axis

shading is illustrated by the IH axis on the right in Figure 3.2.

3.3.5 Axis Arrangement

MDX can automatically arrange the axes in the parallel coordinates panel using one

of the precomputed statistical measures previously mentioned. The user can choose to sort

the axes by one of the following statistical measures:
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• correlation coefficient (r),

• IQR / standard deviation range,

• MLR coefficient (b), or

• SLR (r2) value.

This capability facilitates more rapid statistical comparison of axes. The user can

execute the sorting process using the Process tab in the settings panel or though the pop-

up menu that is displayed when the user right clicks in the parallel coordinates panel.

When the axes are sorted by the correlation coefficient, one axis is selected initially

as the target axis. The axes are then sorted according to the r value of the target axis and

the other visible axes. As shown in Figure 3.14(a), the axes with negative correlations

are arranged to the left of the target axis in ascending order. Similarly, the axes with

positive correlations are arranged to the right of the target axis in descending order. The

strongest correlations are placed nearest to the target axis while the weakest correlations

are placed farthest. When the axes are sorted in this manner, the user can quickly identify

the strongest correlations with the target axis.

The IQR / standard deviation range, MLR b, and SLR r2 arrangement options all sort

the axes in descending order based on the statistical measures. The dependent axis is

placed at the leftmost position and the other axes are arranged accordingly. The IQR

/ standard deviation range arrangement (see Figure 3.14(b)) is useful for examining the

dispersion characteristics of each axis. The SLR r2 arrangement (see Figure 3.15(a)) is

useful for observing the individual correlation of axes with the dependent axis. The MLR
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b arrangement (see Figure 3.15(b)) helps to analyze the stepwise regression model results

and quantify the most significant axes for the dependent axis.
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(a) Axes arranged by correlation coefficients.

(b) Axes arranged by population variability ranges.

Figure 3.14

Axis arrangement by correlation coefficients and variability ranges.
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(a) Axes arranged by SLR r2.

(b) Axes arranged by MLR b.

Figure 3.15

Axes arranged by SLR r2 values (a) and MLR b values (b).
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CHAPTER 4

EVALUATION

Traditional statistical data analysis, particularly in the realm of environmental study,

will benefit immensely by incorporating new visual analytic techniques using a sophis-

ticated system like MDX. In this chapter, we validate the two hypotheses presented in

Chapter 1 with four practical case studies. The hypotheses that motivated this dissertation

are:

1. The development of an advanced geovisual analytics approach using parallel coor-
dinates and statistical techniques reveals a deeper level of understanding than tradi-
tional methods when applied to the task of finding complex multivariate trends in
environmental data sets.

2. The effectiveness of the geovisual analytics approach is necessarily explored in the
context of practical environmental studies, which are grounded in real-world data
sets instead of invented or abstract data sets, in close collaboration with domain
experts. The discovery of new associations and the confirmation of known patterns
by domain experts will validate the promise of this new approach in environmental
data analysis.

These case studies reveal that a geovisual analytics approach enables the scientist to

achieve a deeper level of understanding of the data than conventional multivariate analy-

sis techniques. The latter three case studies presented in this chapter address real-world

problems and have been conducted in close collaboration with a hurricane expert, Dr.

Fitzpatrick, who also serves on the graduate committee for this dissertation. In addition
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to demonstrating the promise of this approach for multivariate data analysis, these evalua-

tions highlight several significant associations in North Atlantic tropical cyclone predictor

data sets—a noteworthy contribution to the understanding of these destructive weather

features.

The first case study demonstrates the capabilities of MDX with a pedagogical data set

that is used to demonstrate statistical data analysis to students. In the other three case

studies, MDX is used to identify and quantify significant associations in tropical cyclone

predictor data sets. To this end, the climate studies fulfill the NIH/NSF Visualization Chal-

lenges Report recommendation that visualization researchers “collaborate closely with do-

main experts who have driving tasks in data-rich fields to produce tools and techniques that

solve clear real-world needs [92]” through the inclusion of a hurricane expert throughout

the analysis. In the remainder of this chapter, we will describe the workflow developed

for conducting these case studies, the details of each case study, and the strengths and

weaknesses for using geovisual analytics in climate analysis.

4.1 Systematic Workflow for Environmental Analysis

The visualization capabilities and statistical processes offered by MDX provide a rich

environment for performing complex multivariate data analysis. During the system devel-

opment and testing, we formulated a systematic workflow to guide the scientist. In this

section, the workflow, that is depicted graphically in Figure 4.1, will be described. A more

detailed illustration of this workflow is provided in Figure 4.2. Although this workflow
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Figure 4.1

Climate study system context diagram.

is described in a sequential order, typical analysis involves several iterations and moving

between the various processes.

After preparing and loading the data set into the system, the scientist will manually

filter the display to remove unnecessary axes. Then, the scientist will manually arrange

the variable axes and interact with the display using the previously mentioned visual query

techniques. During this initial exploratory analysis, the scientist will acquire a preliminary

overview of the entire data set.

Next, the scientist will observe the statistical correlations in the data using the correla-

tion analysis processes and indicators. The system’s automated axis arrangement tools can

be used in this stage to highlight strong correlations and compare IQR or standard devia-

tion ranges in the data. To prepare for the regression analysis, the scientist can manually
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Figure 4.2

Sequence diagram for climate study using MDX.
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reduce multicollinearity by using the correlation indicators to identify and filter correlated

variables using a predefined significance level. The scientist can also utilize the automatic

multicollinearity filter to ensure that the predictors are truly independent of one another.

Removing the strongly correlated independent variables will ultimately improve the MLR

analysis by avoiding over-fitting the data. The scientist will gain additional insight in this

phase by observing correlations between the predictors as well as correlations between

each predictor and the dependent variable.

After the correlation analysis, the scientist will use the integrated SLR process. This

capability provides an alternative indication of the individual associations between the

predictors and the dependent variable. The scientist may glean additional insight from this

exercise to determine if additional variables should be removed from the view. Then, the

scientist is ready to execute the MLR process in order to quantify the significance of the

predictors to the dependent variable. The result of this process is a ranked list of the most

important variables for the dependent variable. Unlike the SLR and correlation analysis,

the MLR analysis considers the contribution in relation to the other predictors.

By following this workflow in our system, the scientist will develop new ideas about

how the specific variables can be used to predict the dependent variable. That is, the

scientist will have formed hypotheses about the associations between the variables. Then,

the scientist can continue to explore the data in the system to attempt to prove or disprove

the new hypotheses; a process that Tukey [145] calls confirmatory data analysis. For

example, the scientist may discover patterns in the climate data that will help predict the

hurricane activity in 2005 based on the analysis of data from 1950 to 2006. If the theory
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holds after this testing, the scientist may use the new insight to predict future hurricane

activity.

4.2 Case Study 1: Exploring Relationships in Body Dimensions

Our first case study uses a data set that is well-suited for statistical data analysis

and more complicated multivariate analyses such as regression and discriminant analysis.

In fact, Peterson et al. [65] used this data set to illustrate a practical project, which is

based on research by the first two authors of the work, for teaching students the art of

data analysis. In this project, the authors investigated the correspondence between body

build, weight, and girths in a group of physically active men and women, most of whom

were within the normal weight range. Body build was characterized by skeletal width and

depth measurements at nine well-defined locations. The study affirmed the notion that

body build (skeletal) variables and height predict scale weight substantially better than

height alone. Using regression, a weight equation based on the body build variables was

obtained for the group. Also trunk and limb girths were recorded at twelve well-defined

sites and regression analysis was again used to determine the best prediction equations for

the measured girths. This data set gives students an opportunity to explore anthropometric,

forensic, and ergonomic topics using several analysis techniques [65].

This case study will provide a good demonstration of the value of the MDX capabil-

ities using a data set that exhibits valuable characteristics. In addition to having several

strong correlations, the data set has a large number of samples compared to the number

of different variables. The following analysis of this data will provide an ideal study to
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evaluate the effectiveness of MDX, which will precede several more complicated analyses

of real-world climate data sets that have more complex associations. We will conduct the

analysis of this data set following the same steps as the authors suggest, except we will

omit the discriminant analysis and some additional regression tasks which are mentioned

in the project.

4.2.1 Body Measurement Data

The body dimension data set contains measurements from a total of 507 subjects—260

females and 247 males. The measurements were taken primarily from individuals in their

twenties and early thirties, all physically active. For each individual, 25 measurements,

which are listed in Table 4.1 were recorded [65].

The data set includes nine diameter (or skeletal) measurements and twelve girth (or

circumference) measurements. At the time of physical maturation, the nine skeletal sites

have generally attained their maximum size. Except for the three “boney” girths of the

wrist, knee, and ankle, the girth measurements change over the life span. In addition to

these measurements, which are recorded in centimeters, each subject had his or her age

(years), weight (kilograms), and gender recorded [65].

4.2.2 Data Analysis

As shown in our workflow, the project begins with exploratory analysis of the data

using descriptive statistics, such as the mean, median, and standard deviation. The in-

teractive descriptive statistical indicators of MDX facilitate rapid exploration with details
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Table 4.1

Body data set measurements and descriptions.

Variable Name Description

Skeletal Measurements:
Biacromial diameter
Biiliac diameter Also called “pelvic breadth”.
Bitrochanteric diameter
Chest depth Between spine and sternum at nipple level,

mid-expiration.
Chest diameter At nipple level, mid-expiration.
Elbow diameter Sum of two elbows.
Wrist diameter Sum of two wrists.
Knee diameter Sum of two knees.
Ankle diameter Sum of two ankles.

Girth Measurements:
Shoulder girth Over the deltoid muscles.
Chest girth Nipple line in males and just above breast tissue

in females, mid-expiration.
Waist girth Narrowest part of torso below the rib cage,

average of contracted and relaxed position.
Navel (or “Abdominal”) girth At umbilicus and iliac crest,

iliac crest as a landmark.
Hip girth At level of bitrochanteric diameter.
Thigh girth Below gluteal fold, average of right and left girths.
Bicep girth Flexed, average of right and left girths.
Forearm girth Extended, palm up, average of right and left girths.
Knee girth Extended, palm up, average of right and left girths.
Calf maximum girth Average of right and left girths.
Ankle minimum girth Average of right and left girths.
Wrist minimum girth Average of right and left girths.

Other Measurements:
Age Years
Weight Kilograms
Height Centimeters
Gender 1 – male, 0 – female
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accessible on-demand. One of the first facts that arise from this activity is the statistical

differences between genders in the group of subjects. We use the query sliders and discrete

aerial perspective shading on the Gender axis to observe the measurement differences. The

resulting image, which is shown in Figure 4.3, provides an overview of the differences be-

tween gender. This plot captures the strong linear correlations of the measurements with

the Weight axis (except for the Age variable). The parallel coordinates plot also shows that

several axes have outliers that may be considered for removable from the data set. For

example, some subjects are near the age of 60, which is well outside the IQR range for the

Age axis. For the measurements that change over the life span, these outliers may affect

our regression analyses. Furthermore, this image shows a mass of polylines which makes

it difficult to use the parallel coordinates plot to discover interesting associations. To over-

come this problem, we can utilize the continuous aerial perspective shading (proximity

line shading) and axis scaling features. The small scatterplots that are rendered beneath

the axes also help with this issue by providing an alternative view of the relationships.

We examine on the Chest Diameter axis in Figure 4.4 which shows substantial differ-

ence in male and female subjects. That is, the median of the female subjects is nearly at

the bottom of the IQR range while the median for the male subjects is almost exactly the

same as the top of the IQR range. It is also significant to note that the median value of

the male subjects exceed the female subjects in all measurements except for Thigh Girth.

In Figure 4.5, the Weight axis is highlighted and the scatterplots for this variable and the

other variables are shown beneath each axis. This figure provides another illustration the

gender differences for several measurements. In this figure, the Gender query slider is
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set to highlight the female subjects. The line shading then helps to visually distinguish

between the male and female samples and two distinct groups of points are visible. The

two groups are most distinct for the Thigh Girth variable.

In Figure 4.4 the query box plots reveal the fact that women typically exceed men

in this measurement. While these analyses on gender differences would require several

separate plots using traditional techniques, the MDX interface captures these details in a

single view.

(a) Females. (b) Males. (c) Females. (d) Males.

Figure 4.4

Gender differences between the Check Diameter and Thigh Girth variables.
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Figure 4.5

Scatterplot displays highlight gender differences in several measurements.

115



The authors of the body data study also note that the distributions of the data can also

be observed graphically via simple histograms. Using the histogram displays in MDX,

we can show the frequency information for all the sample measurements simultaneously

as shown in Figure 4.6. From this view, we see that the measurements are typically mod-

eled well by normal or gamma distributions. We zoom into this overview and use the

axis histogram displays to reveal the approximately normal distributions exhibited by the

Biacromial Diameter axis for the female (see Figure 4.7(a)) and male (see Figure 4.7(b))

subjects; and a gamma distribution was discovered on the Waist Girth axis for female

subjects (see Figure 4.7(c)).

As previously noted in the discussion of Figure 4.3, most of the measurements ex-

hibit strong correlations. We can employ MDX’s correlation analysis capabilities (parallel

coordinates line configurations, scatterplots, and correlation indicators) to explore these

associations. As noted by the study authors, similar families of body dimensions are ex-

pected to have strong correlations. In Figure 4.8(a), the correlations indicators reveal a

strong correlation between Biiliac Diameter and Bitrochanteric Diameter for all samples.

In Figure 4.8(b), the indicators reveal the strong correlation between Bicep Girth and Fore-

arm Girth in male subjects. In Figure 4.8(c), the strong correlation between Hip Girth and

Thigh Girth in women is shown.

The authors of the body data study also performed multiple regression analysis on

the data set. We used MDX’s automated multicollinearity filter and stepwise regression

capabilities to develop a model of the most significant measurements with Weight as the

dependent variable. The authors of the body data study did not execute a multicollinearity
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(a) Female
biacromial
diameter.

(b) Male
biacromial
diameter.

(c) Female
waist girth.

Figure 4.7

Detailed histogram view showing normal and gamma distributions.

filter or provide stepwise regression analysis results in the article. In Table 4.2 the results

are listed for the regression analyses performed with the Weight axis as the dependent

variable for all subjects, male subjects, and female subjects.

The first regression model included all 507 subjects (male and female subjects). The

multicollinearity filter removed all measurements except the Waist Girth, Thigh Girth, and

Biiliac Diameter variables. The resulting regression model yielded an R2 value of 86%

(see Figure 4.9). Based on this model, the most significant measurement for calculating

Weight in male and female subjects was Waist Girth. The tight, linear clustering of lines

in the scatterplot and the high correlation coefficient (r = .9) provided additional evidence

of the strong association between the variables.
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Table 4.2

Stepwise regression model for body measurement data set.

Male and Females (507 subjects)
(R2 is 86%)

Chosen Variables Normalized Sample Mean
Coefficients b

Waist Girth 0.791 76.98
Thigh Girth 0.196 56.86
Biiliac Diameter 0.071 27.83

Males (247 subjects)
(R2 is 85%)

Chosen Variables Normalized Sample Mean
Coefficients b

Hip Girth 0.728 97.76
Height 0.186 177.74
Elbow Diameter 0.156 14.46
Biacromial Diameter 0.040 41.24

Females (260 subjects)
(R2 is 86%)

Chosen Variables Normalized Sample Mean
Coefficients b

Hip Girth 0.779 95.65
Height 0.111 164.87
Wrist Diameter 0.110 9.87
Biacromial Diameter 0.092 36.5
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Figure 4.9

Stepwise regression results including both male and female subjects.

The second regression model included only the 247 male subjects. Prior to running

the regression analysis, the multicollinearity filter removed all variables except for Hip

Girth, Height, Wrist Diameter, and Biacromial Diameter. The stepwise regression model

yielded an R2 value of 85% (see Figure 4.10(a)). The regression model indicated that Hip

Girth is the most significant measurement for determining Weight. The Hip Girth variable

also exhibited a tight, linear trend in the scatterplot and a strong correlation coefficient

(r = .88) to support its selection. This regression model included none of the variables

that were selected when both the male and female subjects were considered.

The last regression model was generated using only the 260 female subjects. The mul-

ticollinearity filter removed all except the Hip Girth, Height, Wrist Diameter, and Biacro-

mial Diameter variables. The subsequent regression model then resulted in an R2 value of

86% (see Figure 4.10(b)). The most significant variable in this case was Hip Girth, which

also exhibited a very tight, linear trend in the scatterplot and a strong correlation coeffi-
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cient (r = .9). Again, none of the variables from the regression model that included the

male and female subjects were included in this model. However, three of the variables in

this model are also included in the model for the male subjects. In the male subject model,

the variable with the third highest regression coefficient is Elbow Diameter, whereas the

females subject model had the Wrist Diameter as the variable with the third highest regres-

sion coefficient. Regression coefficients for the variables that are common to both models

are very similar in value.

4.3 Case Study 2: North Atlantic Tropical Cyclone Climate Study

As discussed in Chapter 2 Section 2.4, regression analysis is often employed to iden-

tify the most relevant climate relationships for tropical cyclone activity. Such techniques

are effective in screening data and providing quantitative associations; but multivariate

analysis can be difficult. In this case study, we use the MDX system to evaluate the regres-

sion model formed using a set of tropical cyclone predictors for the following categories:

number of named storms (NS); number of hurricanes (H); and number of intense hurri-

canes (IH). This case study will outline how stepwise regression and parallel coordinates

can complement each other in such an analysis. That is, the geovisual analytics can vi-

sually depict the same association that weather scientists find meaningful and provide a

deeper level of understanding when used in conjunction with traditional multiple regres-

sion analysis.
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(a) Male Samples.

(b) Female Samples.

Figure 4.10

Male-only and female-only stepwise regression models.
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4.3.1 CSU Climate Study Data Set

For the second and third case studies, we analyzed a data set containing potential en-

vironmental predictors for a tropical cyclone climate study. This data set was provided by

Dr. Phil Klotzbach [99] of the Tropical Meteorology Project1 at Colorado State University

(CSU), and is used to predict the frequency of Atlantic tropical cyclones for the upcoming

hurricane season by categories. These categories include:

• Number of named storms (winds 17 m
s or more, at which tropical cyclones receive a

“name”)

• Number of hurricanes

• Number of intense hurricanes

These variables have known relationships to Atlantic tropical cyclone activity. For

example, Chu [29] described how the North Atlantic basin has fewer tropical cyclones

during El Niño Southern Oscillation (ENSO) years, but active seasons in La Niña years.

Because of this relationship, scientists use ENSO signals as some predictors of seasonal

storm activity. In Table 4.3, variables 1 through 8 are believed to characterize ENSO

events. Scientists at the Tropical Meteorology Project issue six forecast reports each year

based on statistically significant predictors from this data set.

Table 4.3 lists sixteen potential environmental predictors from the data set along with

their geographical region. In Fig. 4.11, the geographical regions where each predictor is

measured is shown in a geographic map. In the remainder of this section, the physical

relationships of these climate variables to Atlantic tropical cyclone activity are discussed.

1The CSU Tropical Meteorology Project website is located at http://typhoon.atmos.colostate.edu/.
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iñ
o

3
5S

-5
N

,9
0-

15
0W

(e
as

te
rn

eq
ua

to
ri

al
tr

op
ic

al
Pa

ci
fic

O
ce

an
)

(2
)

M
ay

SS
T

5S
-5

N
,9

0-
15

0W
(e

as
te

rn
eq

ua
to

ri
al

tr
op

ic
al

Pa
ci

fic
O

ce
an

)
(3

)
Fe

br
ua

ry
20

0-
m

b
U

5S
-1

0N
,3

5-
55

W
(e

qu
at

or
ia

lE
as

tB
ra

zi
l)

(4
)

Fe
br

ua
ry

–M
ar

ch
20

0-
m

b
V

35
-6

2.
5S

,7
0-

95
E

(S
ou

th
In

di
an

O
ce

an
)

(5
)

Fe
br

ua
ry

SL
P

0-
45

S,
90

-1
80

W
(e

as
te

rn
So

ut
h

Pa
ci

fic
O

ce
an

)
(6

)
O

ct
ob

er
–N

ov
em

be
rS

L
P

45
-6

0N
,1

20
-1

60
W

(G
ul

fo
fA

la
sk

a)
(7

)
Se

pt
.5

00
-m

b
G

eo
po

te
nt

ia
lH

ei
gh

t
35

-5
5N

,1
00

-1
20

W
(w

es
te

rn
N

or
th

A
m

er
ic

a)
(8

)
N

ov
em

be
rS

L
P

7.
5-

22
.5

N
,1

25
-1

75
W

(s
ub

tr
op

ic
al

no
rt

he
as

tP
ac

ifi
c

O
ce

an
)

(9
)

M
ar

ch
–A

pr
il

SL
P

0-
20

N
,0

-4
0W

(e
as

te
rn

tr
op

ic
al

A
tla

nt
ic

O
ce

an
)

(1
0)

Ju
ne

–J
ul

y
SL

P
10

-2
5N

,1
0-

60
W

(t
ro

pi
ca

lA
tla

nt
ic

O
ce

an
)

(1
1)

Se
pt

em
be

r–
N

ov
em

be
rS

L
P

15
-3

5N
,7

5-
97

W
(s

ou
th

ea
st

G
ul

fo
fM

ex
ic

o)
(1

2)
N

ov
.5

00
-m

b
G

eo
po

te
nt

ia
lH

ei
gh

t
67

.5
-8

5N
,5

0W
-1

0E
(N

or
th

A
tla

nt
ic

O
ce

an
)

(1
3)

Ju
ly

50
-m

b
U

5S
-5

N
,0

-3
60

(e
qu

at
or

ia
lg

lo
be

)
(1

4)
Fe

br
ua

ry
SS

T
35

-5
0N

,1
0-

30
W

(n
or

th
w

es
tE

ur
op

ea
n

C
oa

st
)

(1
5)

A
pr

il–
M

ay
SS

T
30

-4
5N

,1
0-

30
W

(n
or

th
w

es
tE

ur
op

ea
n

C
oa

st
)

(1
6)

Ju
ne

–J
ul

y
SS

T
20

-4
0N

,1
5-

35
W

(n
or

th
ea

st
su

bt
ro

pi
ca

lA
tla

nt
ic

O
ce

an
)

SS
T

–
Se

a
Su

rf
ac

e
Te

m
pe

ra
tu

re
SL

P
–

Se
a

Le
ve

lP
re

ss
ur

e

125



Fi
gu

re
4.

11

G
eo

gr
ap

hi
c

re
gi

on
s

fo
rt

he
C

SU
pr

ed
ic

to
rs

.

126



4.3.1.1 El Niño Variables

In a normal year, air rises in the western tropical Pacific (where the water is the

warmest as well as slightly elevated) and sinks in the eastern tropical Pacific which is

a phenomenon known as the Walker Circulation (see Figure 4.12 for the NOAA Geophys-

ical Fluid Dynamics Laboratory [3]). During an El Niño event, the easterly surface trade

winds that cause this water bulge in the western Pacific weaken, and the warm water travels

eastward. Furthermore, El Niño conditions shift the upward portion of the Walker Circu-

lation to the eastern Pacific, creating upper-level westerly winds in the Atlantic Ocean as

well as subsidence. Both of these factors inhibit tropical cyclone formation and intensifi-

cation in this region. Opposite conditions (abnormally strong trade winds and colder than

normal eastern Pacific water) are called La Niña. La Niña years are associated with weak

wind shear and little subsidence in the Atlantic, typically producing active tropical cyclone

activity in this basin.

Figure 4.12

Walker Circulation illustration from NOAA.
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El Niño events are characterized by several possible variables. The June–July Niño

3 (1) variable represents sea surface temperature (SST) anomalies of the eastern equato-

rial tropical Pacific Ocean. Positive values of this variable indicate an El Niño event, and

negative represents a La Niña event. May SST in the eastern equatorial Pacific (2) rep-

resents a similar relationship. The first clues of an impending El Niño can be detected in

February by observing three variables. Upper-level westerly (zonal) wind anomalies off

the northeast coast of South America imply that the upward branch of the Walker Circula-

tion associated with ENSO remains in the western Pacific and that El Niño conditions are

likely to be present in the eastern equatorial Pacific for the next four to six months. This

situation is measured by the February 200-mb zonal wind (U) in equatorial East Brazil

(3). Likewise, anomalous late winter meridional (north) winds at 200-mb in the South In-

dian Ocean are also associated with El Niño conditions (February–March 200-mb V in the

South Indian Ocean (4)). Finally, sea level pressure (SLP) in the eastern Pacific south of

the equator is a measure of the trade winds whereby weak trade winds (or westerly surface

winds) are associated with lower SLP and, therefore, El Niño conditions, while the op-

posite is correlated to La Niña conditions. Therefore, February SLP in the eastern South

Pacific (5) is a possible variable. Some fall variables are also correlated to El Niño con-

ditions, such as the October–November SLP in the Gulf of Alaska (6), September 500-mb

Geopotential Height in western North America (7), and November SLP in the subtropical

northeast Pacific (8).
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4.3.1.2 Sea Level Pressure Variables

Pressure in the Atlantic Ocean is also inversely related to tropical cyclone activity,

and seems to contain both monthly as well as longer term relationships. Low SLP in

the tropical Atlantic implies increased atmospheric instability, moisture, and ascent (more

favorable for the genesis of tropical cyclones), and weaker trade winds (which correspond

to less wind shear that can tear up the thunderstorms in tropical cyclones). Low SLP

in the spring tends to persist through the summer and fall. Therefore, potential variables

include March–April SLP in the eastern tropical Atlantic (9), June–July SLP in the tropical

Atlantic (10), and September–November SLP in the southeast Gulf of Mexico (11).

4.3.1.3 Teleconnection Variables

The atmosphere is characterized by long-term oscillations which impact global wind

patterns, known as teleconnections. Two of these oscillations related to tropical cyclone

activity are the Arctic Oscillation and the North Atlantic Oscillation [17]. When these

oscillations are in one phase, they cause more ridges in the Atlantic, which corresponds to

less wind shear. Also, on decadal timescales, weaker zonal winds in the sub-polar areas are

indicative of a relatively strong thermohaline circulation and therefore a warmer Atlantic

Ocean. A variable which measures this oscillation is the November 500-mb Geopotential

Height in the North Atlantic (12).
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4.3.1.4 Quasi-Biennial Oscillation Variable

Research has also shown that the Quasi-Biennial Oscillation (QBO) is correlated to

tropical cyclone activity. The QBO is a stratospheric (16 to 35 km altitude) oscillation of

equatorial east-west winds which vary with a period of about 26 to 30 months or roughly 2

years. These winds typically blow for 12-16 months from the east, then reverse and blow

12-16 months from the west, then back to easterly again. The west phase of the QBO has

been shown to provide favorable conditions for development of tropical cyclones, possibly

because it reduces wind shear. A variable which measures the QBO is the July 50-mb

Equatorial Wind (U) around the globe (13).

4.3.1.5 Atlantic Sea Surface Temperature Variables

The Atlantic SST is another major influence on tropical cyclone activity in that basin.

Like SLP, winter and spring anomalies tend to persist throughout the season. Therefore,

February SST off the northwest European Coast (14), April–May SST off the northwest

European Coast (15), and June–July SST in the northeast subtropical Atlantic (16) are

potential predictors. In addition, warm SST anomalies also tend to correlate with low SLP.

4.3.2 Climate Analysis Results

Stepwise regression with a backwards glance is used in this analysis, which selects the

optimum number of most important variables using a predefined significance value (90%

in this study). Stepwise regression can complement parallel coordinates by isolating the
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significant variables in a quantitative fashion. The interactive MDX system can then be

used to develop a deeper understanding of the complex relationships between the variables.

An extra step is taken to ensure the proper selection of variables. The initially chosen

variables are examined for multicollinearity; if any variables are correlated with each other

by more than 0.5, one is removed and the code rerun. In this way, the chosen variables

are approximately independent of each other. A normalization procedure is also executed

for equal comparison between the variables and the predictor variable mean, xi, can be

interpreted (to a first approximation) as a “threshold” value to distinguish between positive

and negative contributions. Years when independent variables contain large deviations

from the mean could be associated with very active or inactive years, and require closer

examination. As will be seen, the geovisual analytics in MDX facilitate the examination

of active and inactive Atlantic hurricane seasons.

The sixteen potential variables listed in Table 4.3 are examined in the stepwise regres-

sion, yielding several independent variables for each dependent variable. These results

show that several climate factors impact tropical cyclone activity. The chosen predic-

tors are shown in Table 4.4 along with their normalized regression coefficient and sample

mean. The explained variance (R2) is shown in the table sub-headings.

The stepwise regression shows only one significant El Niño variable (late winter South

Indian Ocean 200-mb meridional winds (4)) impacts total number of storms; it is the

second most influential predictor. Late winter northwest coastal European SST (14) is

the leading predictor. The North Atlantic Oscillation (manifested by 500-mb geopotential

height in the North Atlantic (12)) ranks third, and is also the only variable seen in all three
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Table 4.4

Stepwise regression models for NS, H, and IH categories.

Number of Named Storms (NS)
(R2 is 34%)

Chosen Variables Normalized Sample Mean
Coefficients b

Feb. SST (14) 0.302 13.8
Feb.–Mar. 200-mb V (4) –0.244 2.5
Nov. 500-mb Geopot. Ht. (12) 0.232 5213.0
Sep.–Nov. SLP (11) –0.175 1015.0

Number of Hurricanes (H)
(R2 is 42%)

Chosen Variables Normalized Sample Mean
Coefficients b

Oct.–Nov. SLP (6) –0.284 1009.6
June–July SST (16) 0.259 22.2
Nov. 500-mb Geopot. Ht. (12) 0.258 5213.0
Sep.–Nov. SLP (11) –0.208 1015.0

Number of Intense Hurricanes (IH)
(R2 is 54%)

Chosen Variables Normalized Sample Mean
Coefficients b

Nov. 500-mb Geopot. Ht. (12) 0.345 5213.0
June-July SLP (10) –0.315 1016.2
Sep. 500-mb Geopot. Ht. (7) 0.292 5753.3
Feb. SST (14) 0.235 13.8
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tables. This suggests that the presence of a ridge in the Atlantic is conducive to an above

average tropical cyclone season. Finally, low September–November SLP in the southeast

Gulf of Mexico (11) also encourages the formation of tropical cyclones. Note that the

coefficient has a negative sign, showing that the lower the pressure, the better the chance

of tropical cyclone activity.

For number of hurricanes, the analysis surprisingly shows that October–November

SLP in the Gulf of Alaska (6) is the most important predictor. The physical role is not

clear, although scientists know it is correlated to El Niño activity. Northeast subtropical

Atlantic SST (16) and North Atlantic 500-mb geopotential height (12) are tied for second,

and southeast Gulf SLP (11) again ranks fourth. The explained variance is 42%—more

than the 34% for named storms. This suggests stronger predictor relationships for number

of hurricanes.

For intense hurricanes, the variance increases to 54%. In this case, the North Atlantic

November 500-mb geopotential height variable (12) is the strongest predictor. Early sum-

mer tropical Atlantic SLP (10) ranks number two, followed by September 500-mb geopo-

tential height in western North America (7) and February SST off the northwest coastal

Europe (14). The higher variance and distinctly different chosen predictors suggests differ-

ent environmental influences are required for intense hurricanes. This analysis correlates

the presence of high pressure in the western U.S. and over the Atlantic, low summer At-

lantic SLP, and warm SST as necessary conditions for intense hurricanes.

Because there is unexplained variance and several predictors, can parallel coordinates

glean any more insight? To answer this question, the data sets are stratified into below
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normal, normal, and above normal seasons using MDX’s interactive capabilities, and the

significant predictors identified by the stepwise regression are analyzed visually. Using

the key statistical indicators, the below normal, normal, and above normal seasons are de-

termined by moving the query sliders for the axis of interest to encapsulate the lines above

the standard deviation range, within the standard deviation range, and below the standard

deviation range, respectively. After setting the query sliders, the aerial perspective shading

highlights the relationships of interest for a particular polyline (storm year record), thus

enabling rapid analysis of the variables.

Figure 4.13 shows a plot for seasons with below normal named storms (sample size

of sixteen). Even though the regression shows February Atlantic SST (14) as the most

important overall predictor, it is not as effective for discerning inactive seasons. The

plot shows considerable scatter, and with only six years of significantly below average

SST. The dynamic query capabilities of MDX make these combined queries and subsam-

ple analysis a nearly effortless exercise. September–November Gulf of Mexico SLP (11)

also exhibits much scatter, with a slight majority of years with above normal pressure.

However, February–March 200-mb South Indian Ocean meridional winds (4)—a surro-

gate measurement of El Niño—shows fifteen seasons (94%) of strong north winds, tightly

clustered in the plots. This suggests El Niño is the major contributor to inactive Atlantic

tropical cyclone seasons. Note also that below normal November North Atlantic 500-mb

geopotential heights (12) plays a pivotal role for quiet seasons. Fourteen seasons (87%)

contain lower geopotential heights in November, suggesting the presence of upper-level

troughs which can shear tropical cyclones. However, this signal is not as strong as the El
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Niño predictor. Additionally, many non-query lines exist for positive 200-mb V, showing

that other factors besides El Niño contribute to normal and active seasons. In fact, a simi-

lar parallel coordinates stratification analysis shows that November North Atlantic 500-mb

geopotential heights (12) and September–November Gulf of Mexico SLP (11) tend to be

the critical players for an active tropical cyclone season (not shown).

Figure 4.13

NS regression model for below normal seasons (1950 to 2006).

Figure 4.14(b) shows seasons with below normal hurricane activity (nineteen seasons).

El Niño again tends to dominate the signal through the fall Gulf of Alaska SLP (6) term.

However, in contrast to number of named storms, Atlantic SST (16) becomes important

for number of hurricanes. This suggests that when water temperature is below normal,

tropical storms will have difficulty reaching hurricane status. For above normal hurricane
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activity (see Figure 4.14(a)), November North Atlantic 500-mb geopotential height (12)

and Gulf of Mexico SLP (11) tend to exert dominant roles, with El Niño and June–July

Atlantic SST a secondary factor.

Intense hurricanes warrant special consideration, since they cause 80% of the eco-

nomic damage from tropical cyclones. Figure 4.15(b) shows that cold February Atlantic

SST (14) and high Atlantic June–July SLP (10) tend to reduce the number of intense hur-

ricanes, with November North Atlantic 500-mb geopotential heights (12) playing a sec-

ondary role and September 500-mb geopotential height in western North America (7) con-

tributing no role. In contrast, all four predictors have tightly clustered lines showing they

all play dominant roles in seasons with above normal intense hurricane activity (see Fig-

ure 4.15(a)). These terms are associated with the presence of ridges in the western U.S.

and the Atlantic, below average Atlantic SLP, and warm wintertime Atlantic SST off the

northwestern European Coast. Ridges are low shear environments, showing that the lack

of upper level troughs is an important factor for seasons with many intense hurricanes.

Low SLP indicates minimal subsidence. Sinking air suppresses cloud growth and also

dries the lower atmosphere, both of which are not conducive to the formation and devel-

opment of tropical cyclones. Low SLP also could indicate better organized tropical waves

(from which many Atlantic tropical cyclones form). Warm wintertime northeast Atlantic

water also is a good precursor for above average intense hurricane activity.

We can also use MDX’s geovisual analytics to investigate the differences between the

extremely busy 2005 season and the slightly below average 2006 season. Figure 4.16

shows the 2005 and 2006 seasons along with the chosen predictors from all three cate-
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(a) Above normal seasons.

(b) Below normal seasons.

Figure 4.14

H regression model for above and below normal seasons (1950 to 2006).
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(a) Above normal seasons.

(b) Below normal seasons.

Figure 4.15

IH regression model for above and below normal seasons (1950 to 2006).
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gories (named storms, hurricanes, and intense hurricanes) listed in Table 4.4. This plot

reveals that most of the terms are nearly the same except for October–November SLP in

the Gulf of Alaska (6) (above average in 2005, below average in 2006) and June–July SLP

in the tropical Atlantic (10) (below average in 2005, above average in 2006). Klotzbach

and Gray [100] and Bell et al. [18] demonstrated that the tropical Atlantic was quite dry

through most of the 2006 hurricane season due to subsidence associated with the onset of

an unusually late ENSO event (indicated by the Gulf of Alaska SLP (6) term), as well as

frequent outbreaks of African dust storms that year.

4.4 Case Study 3: North Atlantic Intense Hurricane Climate Study

In the third case study, we use the same CSU data set employed in the second case

study to demonstrate the utility of an extended version of the MDX system, which includes

statistical analysis capabilities. Whereas, in the second case study, the regression analysis

is executed externally in a separate process using the IMSL® software2, the MDX system

has been modified for the second case study to provide integrated access to multiple and

single linear regression, correlation analysis, and new statistical indicators. The primary

objective of this study is to discover the most important predictors for seasonal intense

hurricane activity in the North Atlantic to improve forecasting skill. The secondary objec-

tive is to identify additional associations between predictors and temporal patterns in the

data. In the remainder of this section, the results of this study are described.

2The IMSL® numerical libraries are developed by Visual Numerics. More information can be found on
the software at http://www.vni.com/products/imsl/.
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4.4.1 Climate Analysis Results

After loading the predictors and seasonal storm statistics, the visual analysis tools are

used to explore the data set and rearrange the axes. In Figure 4.17, the active and inac-

tive IH seasons are highlighted. This plot reveals a gap on the Year axis (the first axis

in Figure 4.17(a)) for the active seasons. From 1960 to 1994, a relatively quiet period

is observed—there are no seasons with an above normal number of intense hurricanes.

What’s more, Figure 4.17(b) shows that the inactive seasons are clustered into this same

time of normal or below normal activity. This visual observation agrees with findings

published in the weather research literature [54, 100, 101], which suggests a strong mul-

tidecadal variability in the number of intense hurricanes per year in the North Atlantic.

Another notable observation is that most of the predictors have low variability (evident by

the relatively small overall IQRs) except for the July 50-mb Equatorial Wind (U) around

the globe (13) predictor (the first axis in Fig. 4.17).

4.4.1.1 Correlation Analysis

To prepare for the MLR analysis and to address the secondary objective of the study,

the correlations between the predictors are investigated by arranging the sixteen axes by

the correlation coefficient with the IH axis. In Figure 4.18, the dependent axis, IH, is high-

lighted to show its correlation with each individual predictor. The predictor axes are also

arranged in descending order according to each predictor’s correlation coefficient with the

IH axis; negative correlations are arranged on the left and positive correlations are ar-

ranged on the right of the IH axis. The correlation indicators and axis positions reveal
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(a) Active IH seasons. (b) Inactive IH seasons.

Figure 4.17

Multidecadal variability in IH activity shown in parallel coordinates.

that the strongest correlations with the IH axis are June–July SLP in the tropical Atlantic

(10) and November 500-mb Geopotential Height in the far North Atlantic (12)—the axes

directly to the left and right of IH in Figure 4.18, respectively. More specifically, the en-

larged color-coded correlation indicator box, ‘X’-shaped crossings in parallel coordinates,

downward slope in the scatterplot, and numerical display of r in this plot reveal that axis

(10) has the strongest negative correlation. Likewise, the strongest positive correlation

with axis (12) is evident by the correlation indicator, the more parallel polylines in parallel

coordinates, the upward slope of the scatterplot, and the numerical display of r.

The image sequence shown in Figure 4.19 illustrates the use of the continuous aerial

perspective shading capability to investigate a strong negative correlation between October–

November SLP in the Gulf of Alaska (6) and November SLP in the Subtropical NE Pacific

(8) axes. The mouse is moved from the top to the bottom of axis (8) in this image se-
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quence. This intuitive visual query technique, which shades the polylines according to

their proximity to the mouse cursor, highlights the ‘X’-shaped polyline crossings between

these axes, which is indicative of a negative correlation in parallel coordinates. The neg-

ative correlation polyline configuration can be compared to the more parallel polyline

configuration between the positively correlated axis (8) and February SLP in the eastern

South Pacific (5) axis in Figure 4.19.

Figure 4.20

Correlation analysis of SST predictors in MDX.

In Figure 4.20, the correlations between three SST predictors and the April–May SST

off the Northwestern European Coast (15) predictor are shown. In the parallel coordinate

plot, strong correlations are identified when |r| ≥ 0.5, the significant correlation threshold,
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and visually by a fully saturated correlation indicator. This plot reveals that a relatively

strong positive correlation exists between axis (15) and both the February SST off the

Northwestern European Coast (14) and the June–July SST in the Northeastern Subtropical

Atlantic (16) axis. Meanwhile, the May SST in the eastern equatorial Pacific (2) predictor

exhibits almost no correlation (r = .02).

To reduce the multicollinearity between the SST predictors, axis (14) and (16) must be

removed since they have a strong correlation with axis (15) and axis (15) has a stronger

correlation with the IH axis (see Figure 4.21). Removing these and any other variables

with strong correlations between predictors will ensure the independence of the predictors

and thus improve the MLR analysis results.

Before removing axis (14) and (16), the physical relationships between these variables

can be considered in order to investigate the cause of the strong correlation. From the

geographic extents of these variables listed in Table 4.3 and show in Figure 4.11, we

observe that the three SST predictors with strong correlations are all sampled in the North

Atlantic Ocean. However, axis (2), which exhibits a very weak correlation, is measured in

the Pacific Ocean. Therefore, the strong correlations among axis (14), (15) and (16) can

be mostly attributed to the close geographical proximity of the measurements whereas the

low correlation of axis (2) can be attributed to the fact that it is measured in the Pacific

ocean.

We also discover that the strongest correlation in the data set is between the June–

July Niño 3 (1) and May SST (2) predictors where r = .78 (Figure 4.22). As indicated by

the geographical regions for these predictors (see Figure 4.11 and Table 4.3), a primary
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reason for the strong positive correlation between these predictors is due to the common

geographical region for measurement. Also, the fact that these predictors are measured at

nearly the same time of the year contributes to the association.

Figure 4.22

Correlation between June–July Niño 3 (1) and May SST (2) variables.

The scientist can continue to employ the correlation indicators to manually find and

eliminate the highly correlated predictors, or use the system’s automatic multicollinearity

filter. Applying this filter to the climate data set removes March–April SLP in the eastern

tropical Atlantic (9) (because of its strong correlation with axis (10)), axis (14) and (16)

(strong correlation with axis (15)), November SLP in the Subtropical NE Pacific (8) (strong

correlation with October–November SLP in the Gulf of Alaska (6)), June–July Niño 3 (1)
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(strong correlation with axis (2)), and February 200-mb zonal wind (U) in Equatorial East

Brazil (3) (strong correlation with February SLP in the Southeast Pacific (5)). In Fig-

ure 4.21, the resulting axis configuration is shown, arranged by the correlation coefficient

with the IH axis. In this plot, we find that the only remaining r values greater than the

significant correlation threshold (visually indicated by the fully saturated fill color in the

enlarged correlation indicators) are the two axes on either side of the IH axis; but these

correlations are with the dependent axis which does not affect the independence between

the predictors.

4.4.1.2 Significant Predictors Identified with Regression

Using our system’s automatic SLR and stepwise MLR processes, the predictors are

automatically analyzed to determine the most important predictors with respect to the

number of intense hurricanes in a season. In Figure 4.23, the results of the MLR and SLR

analysis are shown. Here the predictors are arranged according to the magnitude of the

MLR coefficient, b. The significance level in the stepwise regression analyses is 80%.

The numerical results of the regression listed in Table 4.5 and the visual representation

shown in Figure 4.23 suggest that the five chosen variables are the most significant predic-

tors for the number of intense hurricanes in a season. Highlighting the active and inactive

ranges in Figure 4.23 also reveals how each specific variable behaves in either active or

inactive seasons.

In order to validate the selection of these five predictors from a weather science per-

spective, we can evaluate the physical relationships between each predictor and the de-
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(a) Active IH seasons.

(b) Inactive IH seasons

Figure 4.23

IH regression model for active and inactive seasons (1950 to 2006).
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Table 4.5

Stepwise regression model for IH category.

Number of Intense Hurricanes (IH)
(R2 is 58%)

Chosen Variables Normalized Sample Mean
Coefficients b

Nov. 500-mb Geopot. Ht. (12) 0.3524 5213.38
June–July SLP (10) –0.3121 1016.23
Sep. 500–mb Geopot. Ht. (7) 0.2514 5753.33
Feb.–Mar. 200-mb V (4) –0.1871 2.53
Sep.–Nov. SLP (11) –0.1431 1014.98

velopment of tropical cyclones. The most significant predictor, axis (12), which, as men-

tioned earlier measures the the long-term oscillations which impact global wind patterns,

known as teleconnections. The MLR results indicate that when predictor (12) is normal or

above normal, the environment is more favorable for the development of intense hurricane

systems.

Pressure in the Atlantic Ocean is inversely related to tropical cyclone activity; low

sea-level pressure in the tropical Atlantic implies increased atmospheric instability, mois-

ture, and ascent (more favorable for the genesis of tropical cyclones), and weaker trade

winds (which correspond to less wind shear that can tear up the thunderstorms in tropical

cyclones). This relationship explains the selection of axis (11) and axis (10), which are

normal or below normal in seasons with above normal IH activity.

The MLR analysis also identified two variables that characterize El Niño events which

inhibit tropical cyclone formation and intensification in the Atlantic. The first clues of

an impending El Niño can be detected in February by observing three variables. The
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MLR analysis selected one of these variables, axis (4), which measures the anomalous late

winter meridional winds at 200-mb in the southern Indian Ocean (a condition associated

with El Niño). As shown in Figures 4.24 and 4.25, normal to below normal values of (4)

correspond to more favorable conditions for intense hurricane development. The MLR

model includes one Fall variable, axis (7), that is correlated to El Niño conditions for the

following year. This predictor is more favorable for hurricane intensification in normal to

above normal measurements.

Having identified the most significant predictors and validated their selections, the next

step is to determine the range of values for each predictor that corresponds to the above

normal IH seasons. In Figure 4.24, the query sliders are used to highlight the points with

high values on axis (12), low values for axis (16), low values for axis (7), high values for

axis (4), and low values for axis (11). This plot reveals that using these axis ranges to

predict the intense hurricanes of a season would result in successfully identifying eleven

of the fourteen seasons (74%) that had a high number of intense hurricanes between 1950

and 2006. On the other hand, using this technique might result in missing three seasons

with above normal activity (with seven, six, and five intense hurricanes). In particular,

one of the storm seasons that is not selected by this query is the infamous 2005 hurricane

season which had seven intense hurricanes, including the cataclysmic Hurricane Katrina.

Using the visual query capabilities, minor adjustments can be applied to the query sliders

of the significant predictors to ensure that all fourteen seasons with active intense hurricane

activity are captured (see Figure 4.25). Then, the predictor ranges can be used to predict
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Table 4.6

Above normal IH activity predictor ranges.

Predictor Name Initial Range Tweaked Range
Nov. 500-mb Geopot. Ht. (12) > 5170.00 > 5170.00
June–July SLP (10) < 1016.60 < 1016.78
Sep. 500–mb Geopot. Ht. (7) > 5732.00 > 5730.50
Feb.–Mar. 200-mb V (4) < 3.62 < 3.87
Sep.–Nov. SLP (11) > 1015.26 > 1015.26

the activity of future tropical cyclone seasons with respect IH activity. The significant

predictor ranges that are shown in these plots are listed numerically in Table 4.6.

In Figure 4.26, the query sliders are reset on the IH axis to include all storm years that

fall within the refined predictor ranges. From this plot and the plot in Figure 4.27, we

find that an additional eleven seasons are falsely identified as seasons with above normal

IH activity when, in fact, the seasons show normal activity levels. These eleven seasons

represent type I errors (also called false positives) where the test returns a positive result

when the actual condition is absent. That is, the query ranges indicated the season has

above normal IH activity when, in reality, the actual activity is not above normal. From

the perspective of human safety, we prefer to have type I errors instead of type II errors

(also called false negatives) where we fail to forecast the above normal activity season

when, in truth, the activity is above normal. After adjusting the initial query ranges, we

eliminate the three type II errors previously mentioned, but the eleven type I errors remain.
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4.4.1.3 Significant Predictors Identified without Regression

We can also omit the automatic MLR regression analysis and instead rely on the

descriptive statistical indicators, correlation analysis capabilities, and visual query capa-

bilities of MDX to find the most important predictors. First we analyze the correlation

coefficients with the IH axis. As shown in Figures 4.18 and 4.21, axes (10) and (12) have

the highest negative (r = −.56) and positive correlation (r = .53), respectfully. In fact,

these are the only predictors with a correlation coefficient over the significant correlation

threshold, ±0.5. Next, the query sliders are used to isolate the seasons with above normal

IH activity and the axes are sorted by the correlation coefficient for the queried seasons.

The resulting configuration reveals that, for the above normal IH seasons, the strongest

correlation is with the May SST (2) axis (r = −0.39), followed closely by the November

SLP (8) axis (r =−0.38); but no predictors have a correlation coefficient above the signifi-

cant correlation threshold. Based on these correlation analyses, no significant conclusions

can be formed about the most important predictors of above normal IH activity.

Now the descriptive statistics and visual query techniques will be used to search for

the most significant predictors. With the above average IH seasons still highlighted, the

axes are rearranged in MDX based on the IQR ranges (Figure 4.29(a)). In this plot, the

September–November SLP (11), February 200-mb zonal winds (3), and September 500-

mb Geopotential Height (7) predictors have the three tightest clustering of lines, which

manifests visually by the query quartile plots. With the same axis arrangement, the seasons

with below average IH activity are isolated (see Figure 4.29(b)) to compare the behavior
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of the predictors. Comparing the predictor behaviors in Figure 4.29, we find that the

following axes have the most noticeably different behavior: (11), (4), (12), (10), and (16).

Using these axes, we try to identify predictor ranges that can be used to isolate the

seasons with above normal IH activity. With the query sliders for the IH axis set to isolate

the seasons with above normal activity, we use the five predictor query sliders to define

the range of each predictor that includes the above normal IH seasons. In the process, we

discover that the ranges of axes (7) and (1) can be used to significantly improve selection

of active seasons; and axis (10) is inconsequential because resetting its query sliders does

not affect which seasons are selected. This exploratory analysis reveals the following

axes as the most important predictors for determining above normal IH activity: (11), (7),

(4), (12), (1), (16), and (14). In Figure 4.30(a), the selected axes (those that have their

query sliders set) and their query ranges are shown capturing all fourteen above normal

IH seasons. In Figure 4.30(b), the query sliders on the IH axis are reset to show that

an additional five seasons are selected in the predictor query ranges that are actually not

above normal seasons. Using these query ranges for these seven predictors, the number of

type I errors is reduced by six and there are still no type II errors. However, this scheme

required two additional predictors. Furthermore, we note that the following predictors

were selected in the investigation with and without regression analysis: (11), (7), (4), and

(12).
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4.5 Case Study 4: Atlantic Meridional Mode (AMM)

In the fourth case study, we examine the Atlantic Meridional Mode (AMM) data set,

which has been shown to have strong associations with North Atlantic tropical cyclone

activity in recent research by Vimont [149] and Kossin [104]. In this study, the main goal

is to observe the significance of the AMM variables in relation to the CSU predictors. In

addition, we will compare the data set to the CSU predictor data and highlight interesting

correlations and statistical measurements within the AMM data set. The AMM variables

will be examined as predictors for the number of intense hurricanes, number of hurricanes,

and number of named storms.

4.5.1 AMM Data Set

The AMM is a dynamic mode of variability that is integral to the tropical coupled

ocean-atmosphere system. AMM is also strongly related to seasonal hurricane activity

on decadal and interannual time series. This connection is due to the AMM’s associa-

tion with several local climate conditions that all influence tropical cyclone activity col-

lectively [149]. AMM is highly correlated with a number of local climatic factors such

as SST, shear, low-level vorticity and convergence, static stability, and SLP. These local

factors cooperate to increase or decrease Atlantic hurricane activity. Most agree that the

AMM is characterized by a meridional SST gradient near the thermal equator location,

winds that blow toward warmer water and veer to the right in the Northern hemisphere

and to the left in the Southern hemisphere according to the Coriolis force [104].
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The AMM data set was obtained from the Earth System Research Laboratory of the

National Oceanic & Atmospheric Administration (NOAA). The AMM data set used in

this analysis covers the years 1950–2006. For each year, the AMM data set has twelve

values, one value for each month. The AMM spatial pattern is determined by applying a

Maximum Covariance Analysis to sea surface temperature and the zonal and meridional

components of the 10-meter wind field. The data are defined over the region (21S-32N,

74W-15E), and smoothed spatially using three longitude and two latitude points [5].

In this case study, the AMM variables are also analyzed with the CSU predictors that

are described in the previous case study. The resulting analysis will help to identify the

relative importance of the AMM variables in isolation and relative to the CSU predictors.

4.5.2 Exploratory Analysis

We began by using MDX to conduct exploratory analysis of the AMM data set in

isolation. One of the most prominent features that was discovered in this phase is that

the monthly AMM variables have strong positive correlations with months that are near in

time. For example, Figure 4.31 shows the correlation coefficients with the AMM-June vari-

able. This figure shows that exceptionally strong correlations exist with the four nearest

months (AMM-April, AMM-May, AMM-July, and AMM-August). The figure also shows

a weak correlation between the AMM-June and AMM-January variables. In fact, each

AMM variable exhibits this pattern—the correlation strength between the variables falls

off as the temporal separation increases. The correlation indicators also show that all of
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Figure 4.31

Correlation of AMM-June with the other eleven AMM variables.

the correlation coefficients are positive since each correlation indicator block is colored

red.

When we evaluate the correlations of the AMM variables with the IH axis, we observe

that the highest correlations occur in the months that historically have the highest intense

hurricane activity. In Figure 4.32, the AMM-August and AMM-September months have

the second and third strongest correlation with the IH axis. It is not surprising that the

weakest correlations with the IH activity are observed in the winter and spring months

that are outside the North Atlantic season (June 1 – November 30); but it is remarkable

that the strongest correlation is with the AMM-December axis. The red (positive) corre-

lation indicators and scatterplots beneath each axis also reveal that each AMM variable

is positively correlated with the IH activity; as the AMM index increases, the number of
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Figure 4.32

Correlation analysis for AMM variables and the IH category.

intense hurricanes also increases. These same trends were also found while observing the

AMM variable correlations with the NS and H statistics; but the correlations with the these

other seasonal statistics were slightly weaker than with the IH statistic.

Using the axis sliders, we compare the AMM variable values for seasons with above

normal and below normal IH activity in Figure 4.33. We notice in this figure that as

the AMM values increase, the IH activity also increases. This observation reinforces the

positive correlation between the AMM variables and the IH variable. The AMM variables

were also examined for seasons with above and below normal NS and H activity and the

same positive correlations were observed.

After exploring the AMM variables in isolation, the next phase of our analysis included

the CSU data set. In Figure 4.34, the twelve AMM variables are plotted along with the
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(a) Above Normal IH Activity.

(b) Below Normal IH Activity.

Figure 4.33

AMM variable values for above and below normal IH activity.
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sixteen CSU parameters and the IH dependent variable for a total of twenty-nine variables.

This figure demonstrates that the number of axes that can be displayed simultaneously in

parallel coordinates is only restricted by the horizontal resolution of the display device. In

this figure, the AMM variables are sorted by the month measured, which results in more

parallel polyline configurations than the CSU parameters since the AMM variables change

gradually each month.

We investigated the correlations between the IH axis and the independent variables.

We used the MDX axis arrangement to order the axes according to the correlation coeffi-

cient with the IH axis and the resulting display is shown in Figure 4.35(a). From this fig-

ure, we see that the four strongest correlations are with AMM variables (AMM-December,

AMM-September, AMM-August, and AMM-November). Similar correlation analysis is

shown in Figure 4.35(b) and Figure 4.35(c) for the H and NS statistics, respectively. For

the H statistic, the six strongest correlations are with AMM variables: AMM-December,

AMM-November, AMM-September, AMM-August, AMM-October, and AMM-July. For

the NS statistic, the five strongest correlations are with AMM variables: AMM-November,

AMM-December, AMM-October, AMM-September, and AMM-August.

4.5.2.1 Significant Predictors Identified with Regression

To determine the most significant predictors among the CSU and AMM variables for

seasonal tropical cyclone activity, we used the MDX stepwise regression analysis capa-

bilities. We generated three regression models for each of the seasonal statistics: NS; H;

and IH. These are the same dependent variables as we used in the second case study. The
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results of the regression analyses are listed numerically in Table 4.7. In the remainder of

the section, we discuss these analyses and how the MDX visual analytics reveal a deeper

level of understanding. The significance level in the three stepwise regression analyses

that follow is 80%.

4.5.2.2 Multicollinearity Filter

Prior to the regression analyses, the multicollinearity filter was executed for the twenty-

eight independent variables with the IH, H, and NS dependent variables. In all three cases,

the filter removed seventeen of the independent variables from the axis configuration, leav-

ing eleven variables in the display. For the IH and H cases, only two AMM variables are

included in the new configuration: AMM-December and AMM-May. In Figure 4.36(a), the

unfiltered axes for the IH case are arranged according to the correlation coefficient with

the IH axis. This figure reveals that the AMM-December axis has the highest correlation

(r = .64) of the remaining axes. In Figure 4.36(b), the remaining axes for the H case are

arranged according to the correlation coefficient with the H axis. This figure reveals that

once again the AMM-December axis has the highest correlation coefficient (r = .62)—a

significantly stronger correlation than the second highest correlation (r = .47) with the

November 500-mb Geopotential Height (12) axis.

For the NS case, three AMM variables remain after the filter, as shown in Figure 4.36(c):

AMM-November, AMM-January, and AMM-June. Figure 4.36(c) shows the resulting

configuration with the axes arranged according to the NS axis correlation coefficient.

From this figure, we discover that the highest correlation coefficient is with the AMM-
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Table 4.7

Regression model for IH category with AMM and CSU data sets.

Number of Named (NS)
(R2 is 45%)

Chosen Variables Normalized Sample Mean
Coefficients b

AMM-Nov 0.5241 0.081
Oct–Nov SLP (6) –0.2032 1009.56
Nov. 500–mb Geopot. Ht. (12) 0.1540 5213.38

Number of Hurricanes (H)
(R2 is 56%)

Chosen Variables Normalized Sample Mean
Coefficients b

AMM-Dec 0.5027 0.045
Feb. 200–mb U (3) –0.2404 8.713
Nov. 500–mb Geopot. Ht. (12) 0.2248 5213.38
Oct–Nov SLP (6) –0.1893 1009.56

Number of Intense Hurricanes (IH)
(R2 is 65%)

Chosen Variables Normalized Sample Mean
Coefficients b

AMM-Dec 0.3421 0.045
Nov. 500-mb Geopot. Ht. (12) 0.2951 5213.38
Jun–July SLP (10) –0.2535 1016.23
Sep. 500–mb Geopot. Ht. (7) 0.2250 5753.33
Feb–Mar 200–mb V (4) –0.1239 2.53
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(a)

(b)

(c)

Figure 4.36

Correlation analysis after multicollinearity filtering for IH, H, and NS axes.
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November axis (r = .62), which is substantially stronger than the second strongest corre-

lation (r = .41) with the November 500-mb Geopotential Height (12) axis.

4.5.2.3 Regression Analyses

After executing the multicollinearity filter, the MDX stepwise regression capabilities

were used to find the most significant predictors among the remaining eleven variables.

With the IH variable as the dependent variable, the regression model included the five

variables shown in Figure 4.37. From the figure, we see that the R2 value for this model is

65%, which is better than the 58% obtained using only the CSU predictors in case studies

2 and 3 (see Table 4.4 and Table 4.5). In this model, the AMM-December variable had

the highest regression coefficient (b = 0.3421). The other four variables included in the

model are from the CSU data set and they were also included in the models produced in

case studies 2 and 3. The only variable not selected in this model that was selected in case

studies 2 and 3 is September–November SLP in the southeast Gulf of Mexico (11). This

variable was not included because the AMM explained more variance and variable (11)

could no longer explain any new variance in this particular model.

In Figure 4.38, the values of the regression model variables are compared for above

normal IH activity and below normal IH activity. These figures demonstrate the promise of

these variables for forecasting IH activity because the typical value for active and inactive

seasons is either below or above the overall typical value. Moreover, the IQR is either

entirely below or entirely above the overall IQR for all the variables except September

500-mb Geopotential Height (7) in below normal seasons.
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Figure 4.37

IH regression model with AMM and CSU variables (1950 to 2006).

When the H variable is set to the dependent variable, the regression model included

the four variables shown in Figure 4.39. The R2 value for this model was 56%, which

was significantly better than the 42% from the analysis with only the CSU predictors (see

Table 4.4). Like the IH regression model, the AMM-December variable had the strongest

regression coefficient (b = 0.5027)—significantly higher than the next strongest coefficient

(b = −0.2404). Like the case study 2 model, this model included both the October–

November SLP (6) and November 500-mb Geopotential Height (12) variables; but in this

model variable (6) had the lowest coefficient instead of the highest. Furthermore, this

model dropped the June–July SLP (10) and September–November SLP (11) variables and

included the February 200-mb zonal wind in equatorial East Brazil (3) variable. Variables

(10) and (11) are dropped for the same reason that the IH model dropped variable (11).

However, the model kept variable (6) that also measures SLP. The reason variable (6) was
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(a) Above normal IH activity.

(b) Below normal IH activity.

Figure 4.38

Significant axes values for above normal and below normal IH activity.
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retained and variables (10) and (11) were dropped is likely due to geographic locations—

variable (6) was measured in the Gulf of Alaska and variables (10) and (11) were measured

in areas that overlap the AMM variables (see Figure 4.11). Since variable (6) had the

weakest correlation with AMM-December of these three SLP variables (see Figure 4.40),

it was not included in the model for the H category since there was little new variance to

explain.

Figure 4.39

H regression model with AMM and CSU variables (1950 to 2006).

When the NS variable was set to the dependent variable, the regression model included

only three variables shown in Figure 4.41. The R2 value for this model was 45%, which

was significantly better than the 34% from the analysis with only the CSU predictors (see
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Figure 4.40

Correlation analysis between SLP variables and AMM-December.

Table 4.4). The only variable included in this model that was also included in the model

from case study 2 was November 500-mb Geopotential Height (12). Like the H regression

model, the AMM and CSU NS regression model also added the October–November SLP

(6) variable because it had weak correlation with AMM-November since it was measured

in the Gulf of Alaska. The February SST (14) was removed by the multicollinearity filter

process because it was strongly correlated with the AMM-November variable (r = .56) and

it had a weaker correlation (r = .42) than the AMM-November (r = .62) with the depen-

dent variable. Similarily, the September–November SLP (11) variable was removed by the

filter because it was strongly correlated with the AMM-January variable (r =−.58) and it

had a weaker correlation (r =−.32) than the AMM-January (r = .33) with the dependent

variable. Unlike the other two AMM regression models, this model resulted in the exclu-
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sion of the AMM-December variable, which was also removed during the multicollinearity

filter process due to strong correlation with the AMM-November variable(r = .92).

Figure 4.41

NS regression model with AMM and CSU variables (1950 to 2006).

In the H and NS models, the February 200-mb U (3) and October–November SLP

(6) variables are CSU predictors that were not included in the corresponding regression

models with only the CSU data. Each of these variables are correlated to El Niño condi-

tions. They are likely included in the model because, as Vimont and Kossin [104] state,

the AMM is largely independent of ENSO. In Figure 4.42, the independence of these vari-

ables can be observed in the lack of correlation between the twelve AMM variables and

the June–July Niño 3 (1) variable.
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It is also remarkable that the November 500-mb Geopotential Height (12) variable was

included in the three AMM and CSU regression models, as well as the three CSU re-

gression models presented in case study three. As described in Section 4.3.1.3, variable

(12) measures the long-term oscillations that impact global wind patterns. Specifically, it

represents a different climate signal from the AMM that is called the North Atlantic Oscil-

lation. Vimont and Kossin [149] stated that the AMM and the North Atlantic Oscillation

are independent during the hurricane season which may explain its inclusion in all three

AMM models. Furthermore, the fact that the geographic regions for variable (12) and the

AMM do not overlap may contribute to the independence of the variables. Since variable

(12) is included in all regression models in case studies 2, 3, and 4, it is highlighted as a

very significant signal for tropical cyclone trend analysis.

4.5.3 Discussion

In the second case study, we demonstrate that parallel coordinates, a visualization

technique designed specifically for multivariate information, can be used to confirm and

clarify the results of stepwise regression for a tropical cyclone climate study. While the

regression analysis gives us an ordering of the most important environmental variables,

visual analysis using parallel coordinates facilitates a deeper understanding of the envi-

ronmental causes for above average, normal, and below average seasonal statistics. Using

the interactive visual analysis features of the MDX interface, the viewer can intuitively

and rapidly explore these relationships.
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In the third case study, we show that interactive parallel coordinates can be used in

conjunction with automated decision support algorithms to discover and confirm hypothe-

ses about climate data. The expanded version of MDX used in this case study provides

the same promising capabilities shown in the first evaluation, as well as new analytic com-

ponents that guide the exploration. The expanded system effectively blends the analytic

spotlight of statistical analytics and the inferential floodlight of visual exploration to facil-

itate high-dimensional geovisual analytics [156]. Using traditional analysis alone in the

third case study would require the examination of 136 scatterplots to observe the same

associations that are efficiently captured in a single frame of the interactive visualization

system presented the second case study.

The fourth case study used the enhanced MDX capabilities to demonstrate the impor-

tance of the AMM data set in relation to the CSU predictors. The AMM data set has

recently been shown in weather science literature to have strong associations with trop-

ical cyclone activity. In addition to further corroborating the effectiveness of the MDX

system, the simultaneous statistical analysis of both the CSU and the AMM data sets is a

significant contribution from a weather science perspective. Furthermore, this case study

demonstrated that, when combined with the CSU predictor data set, the AMM variables

significantly boost the variance explained for each of the three dependent variables.
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4.6 Lessons Learned from Climate Analysis with Geovisual Analytics

The development and evaluation of MDX has highlighted several strengths and weak-

nesses related to the application of geovisual analytics in climate analysis. In the remainder

of this section, some of the more salient observations are discussed.

Traditionally, climate studies are performed using a collection of separate visualiza-

tion and data analysis tools. Furthermore, the data visualization is often facilitated using

only static plots. As a result, the scientists have limited interactivity with the data, which

hinders the discovery of new hypotheses. The integrated statistical and visual analysis ca-

pabilities in MDX allow the scientist to connect the statistical and visualization processes

on-the-fly for more rapid and creative knowledge discovery. The benefits of having an

all-in-one environment became evident when we used the expanded version of MDX. In

the second case study, the statistical analysis was executed in an external statistics package

and the results were visualized using MDX parallel coordinates plots. That is, a weather

scientist familiar with the statistics package generated tabular outputs from the statistical

analysis tools, which were then fed to a computer scientist who generated parallel coordi-

nates plots using MDX. This disjoint process required several days to reach conclusions.

But with the expanded version of MDX, the statistical analysis and visualization capa-

bilities are integrated a single environment, which makes independent analysis possible

for each collaborator. The integrated environment represents perhaps the most significant

improvement in the expanded version of MDX. In addition, the ability to directly interact

with the data via dynamic visual queries is a vast improvement over the traditional static

plots. Perhaps the greatest evidence of the promise of this approach came from the hur-
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ricane expert in our climate studies, Dr. Fitzpatrick, who indicated that the MDX system

made it possible to validate the AMM data set more quickly and more comprehensively

than what would have been possible with conventional analysis techniques.

Of the statistical indicators added in the expanded version of MDX, the new corre-

lation indicators that are shown beneath each predictor axis provide the most significant

benefit. The value of these indicators is apparent when we consider the task of identifying

and reducing multicollinearity among the independent variables. In the second case study,

we reduced multicollinearity by conducting correlation analysis with a tabular correlation

matrix. The correlation matrix is a square matrix where each i, j element is equal to the

correlation coefficient between the i and j variable. In order to perform this analysis,

the scientist first located the coefficients that were higher than the predefined correlation

threshold. Then, the row and column index elements were used to identify the variables

and the correlation coefficient of each variable with the dependent variable was found from

the table. Of the two predictors, the one with the weaker correlation with the dependent

variable is removed from the display. In the expanded version of MDX, the interface is

designed to streamline the correlation analysis by positioning the rows of the correlation

matrix beneath each predictor axis in a set of color-coded blocks. As shown in Figure 4.20,

the saturation of the box color indicates the strength of the correlation which effectively

highlights the strongest correlations. Furthermore, the additional scatterplot displays, par-

allel coordinates plot, and numerical correlation coefficient display further enhance corre-

lation analysis with multiple linked views of the associations at varying levels of detail.
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Without the enhanced correlation indicators, the scientists may have to examine each pair

of variables separately, a task that could require hundreds of scatterplots.

In addition to providing enhanced correlation analysis capabilities, the graphical sta-

tistical indicators provide a visual uncertainty metric which supplements knowledge dis-

covery. For example, a tight clustering of lines in parallel coordinates might indicate a

relatively stable predictor that may yield better results than another predictor with more

dispersed lines. The statistical indicators can also directly guide the analysis as illustrated

in our use of the central tendency and variability indicators to determine active, inactive,

and normal hurricane seasons in the two case studies.

The utilization of multiple linked views in the expanded version of MDX helps the

scientist by facilitating more creative exploratory analysis and offering additional views

of the data. For example, non-linear relationships are more difficult to discover in parallel

coordinates but straightforward to identify in a scatterplot. On the other hand, the number

of variables that can be displayed in parallel coordinates are only restricted by the horizon-

tal screen resolution while a scatterplot is generally restricted to two or three dimensions.

Moreover, it is difficult to decipher the correlation between axes in all but the extreme

cases in parallel coordinates, but the scatterplot is more useful in less extreme cases that

we encounter more often in real-world data. Having both the parallel coordinate plot and

scatterplot in MDX gives the scientist access to both views in a complementary fashion,

which offsets said deficiencies. Furthermore, the inclusion of the enhanced parallel coor-

dinates encourages the weather scientist to consider the associations in new ways, which

may lead to fresh insight.
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We also noticed that using animation with the continuous aerial perspective line shad-

ing is helpful for identifying varying behavior of a particular axis over multiple dimensions

(see Figure 4.19). The proximity-based parallel coordinates line shading is also applied

to the data points in the small scatterplots beneath each axis. With this capability, we can

move the mouse cursor from the top to the bottom of the Year axis to animate the tem-

poral variability in the predictors. Capturing the animation effect in a movie or sequence

of images is an effective means for visually communicating the behavior of a variable.

The investigation of new automated animation capabilities is a promising direction for fu-

ture research using the parallel coordinates technique. For instance, animating the axis

arrangements and predictor relationships might further amplify cognition and improve the

communication of results in climate studies.

Although the assortment of statistical indicators and multiple plots demonstrates great

promise for enhanced knowledge discovery, the display can quickly become cluttered. The

parallel coordinates plot alone is infamous for its tendency to easily become incomprehen-

sible with large data sets. So, we are naturally aware of the potential for overwhelming

clutter in the MDX interface which combines parallel coordinates and several graphical

indicators. To control clutter, MDX provides access to display parameters in a settings

panel. From this panel, the scientist can toggle options and change settings. The incor-

poration of predefined display settings based on skill levels or specific tasks might also

help reduce the user’s cognitive load. For example, we can predefine display settings for

specific tasks (e.g. correlation analysis, regression analysis, statistical analysis) or based

on the skill level (e.g. novice, intermediate, expert).
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The parallel coordinates plot, although it has been used often in visualization litera-

ture, is still relatively unknown to most domain specific scientists (in this case weather

scientists). Consequently, conveying results that are discovered in parallel coordinates (or

any unconventional visualization technique for that matter) is difficult and requires some

degree of training to teach the audience how to read the results. So, communicating results

to the domain experts using MDX plots can be challenging, at least initially. To alleviate

this issue, we might reproject the results from the parallel coordinates plots into more com-

mon displays, like scatterplots, scatterplot matrices, or line graphs. Having these export

capabilities built into MDX would allow the scientist to explore the data set using more

advanced visual analysis methods, but use more common plots to share insight.

We devoted a significant amount of time to finding an optimal color scheme for the

MDX interface. The color scheme and layout was formulated by drawing on color design

principles from fine art and graphic design, as well as empirical perceptual studies [153]

discussed in the MSU Information Visualization course and practical evaluation in the

software. For example, we use muted colors in most graphical elements reserving the

most saturated colors for small portions of the display. This creates a visual balance that is

aesthetically pleasing to the viewer. Furthermore, the most vivid colors are placed on the

peripheral of the display to further balance the view. The color-coded correlation blocks

are a good illustration of the significance of a well-planned color design. When planned

intelligently, the overall color scheme of the application will greatly improve the user

experience by reducing fatigue and making important relationships stand out to the viewer.
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The color scheme can also improve the viewer’s confidence in software’s capabilities, at

least initially, which is crucial to efficient communication of results.
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CHAPTER 5

CONCLUSION

This research has demonstrated that interactive parallel coordinates, a visualization

technique designed specifically for complex multivariate information, can be used in con-

junction with advanced statistical analysis to discover and confirm hypotheses in environ-

mental data. While automated statistical analysis techniques yield an ordering of the most

significant associations among a set of inter-related parameters, the dynamic visual analy-

sis capabilities facilitate a deeper understanding of the relationships. The capabilities have

been fused into a powerful geovisual analytics system, called MDX, and evaluated via a

pedagogical case study as well as three real-world tropical cyclone climate studies using a

systematic workflow. This dissertation has validated the following hypotheses:

1. The development of an advanced geovisual analytics approach using parallel coor-
dinates and statistical techniques reveals a deeper level of understanding than tradi-
tional methods when applied to the task of finding complex multivariate trends in
environmental data sets. With new ways to creatively explore the data, the approach
offers a more effective visual interface to glean new insight about the data behind
the visualization.

2. The effectiveness of the geovisual analytics approach is necessarily explored in the
context of practical environmental studies, which are grounded in real-world data
sets instead of invented or abstract data sets, in close collaboration with domain
experts. The discovery of new associations and the confirmation of known patterns
by domain experts will validate the promise of this new approach in environmental
data analysis.
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In the remainder of this chapter, several specific impacts of this research and future

work are discussed.

5.1 Impact

This dissertation makes several contributions to the state of the art of environmental

data analysis using geovisual analytics. First of all, we have fused together variants of

several previously introduced interactive capabilities into one of the most advanced par-

allel coordinates based geovisual analytics environment. That is, although many of the

techniques of our our interface were first introduced in earlier publications, no one has

combined these techniques into a single interface.

One way that we have extended the functionality of the parallel coordinates display

is by applying dynamic visual query techniques to provide enhanced access to the data

behind the visualization. Although many of these interactions are considered fundamental

parallel coordinates features, we have also incorporated several variants of more innovative

extensions such as the dynamic axis scaling and the continuous aerial perspective shad-

ing. Our axis scaling approach is unique in the way it is controlled by the mouse wheel

movement. Also, the aerial perspective shading utilizes an innovative line shading scheme

based on a non-linear fall-off function that effectively shades the line closest to the mouse

cursor in a more prominent manner.

Although other researchers have integrated statistical analysis algorithms with infor-

mation visualization techniques, we found no prior works that linkied automated regres-

sion and correlation analysis techniques into a seamless parallel coordinates interface like
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our application. This unique approach yields an effective means to quantify individual

associations between parameters and it also helps quickly identify and quantify the most

significant associations.

These advances in the parallel coordinates representation, dynamic visual query meth-

ods, and automated statistical analytics have also been combined into an a unique geovi-

sual analytics application that is specifically designed to help one conduct environmental

data analysis by correlation and regression processes.

Over the course of this research, we formulated a systematic workflow for using geo-

visual analytics to conduct exploratory environmental data analysis. This workflow is a

formalization of the traditional climate study approach using correlation and regression

analysis but utilizing a visual analysis environment. Using the MDX system and this

workflow, we evaluated the effectiveness of the new geovisual analytics approach in three

tropical cyclone climate studies. These case studies corroborate the claims that geovisual

analytics hold much potential for improving the investigation of climate data sets. The case

studies also provided an excellent opportunity to identify the strengths and weaknesses of

this approach over more traditional climate analysis systems and they highlighted several

significant associations for understanding tropical cyclone activity. These case studies are

the first application of geovisual analytics to the study of tropical cyclone trends.

In the three tropical cyclone climate studies used to evaluate the effectiveness of the

geovisual analytics approach, several significant discoveries were brought to light. In ad-

dition to validating the results of regression analysis using our representation techniques,

interesting physical relationships in the CSU tropical cyclone predictor data set were high-
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lighted. Furthermore, we isolated several global signals by combined analysis of the CSU

and the AMM data sets—a significant investigation of twenty-nine variables. These dis-

coveries validate the promise of our new approach in climate analysis.

The researchers involved in this work provide a unique blend of expertise in both the

visualization and earth sciences realms. In addition to my earth sciences background,

this team consisted of three visualization and computer graphics professors (Drs. Jankun-

Kelly, Moorhead, and Swan), a hurricane expert (Dr. Fitzpatrick), and a software engineer-

ing professor (Dr. Allen) with extensive experience in software evaluations. Furthermore,

this research effort addresses the NIH/NSF Visualization Challenges Report recommen-

dation that visualization researcher “collaborate closely with domain experts who have

driving tasks in data-rich fields to produce tools and techniques that solve clear real-world

needs [92]” by the inclusion of Dr. Fitzpatrick throughout the design and evaluation of the

system.

5.2 Future Work

Over the course of this project, several ideas for future research that extend the con-

cepts presented in this dissertation have been identified. In this section, these topics are

described.

Although removing the geographical map from the MDX interface helps locate non-

geospatial parameter associations, geospatial associations are most evident in the context

of a geographical map. Adding an additional linked map view to MDX would help the sci-

entist identify these patterns. However, traditional map views are restricted to representing
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three or four variable fields simultaneously. Some visualization researchers have begun to

explore the application of illustrative rendering techniques from the overarching field of

computer graphics to the representation of environmental data in spatial maps. For exam-

ple, Kirby et al. [98] successfully applied perceptual techniques to represent six velocity-

derived quantities at each spatial location in a single flow visualization image. Prior to

this work, the deformation of fluid elements was represented in qualitative sketches (in

this case six) that were difficult to directly connect to the rest of the flow field. Later,

Healey et al. [64] introduced new visualization methods for superior pattern recognition

in multidimensional weather data. Future work is planned to expand these techniques to

provide additional spatial representations of the climate data that complement the non-

geographical views.

Additional advanced interaction techniques can be investigated and applied to the vi-

sualization interface. Such efforts will naturally extend the work by Shneiderman [133]

and Tweedie [147] on dynamic visual queries and advanced interaction widgets, respec-

tively. Incorporation of these concepts into the previously mentioned visualization systems

should yield more effective exploratory analysis. In preparation for this work, we formu-

lated a “mock-up” of an interaction widget, which is shown in Figure 5.1.

It is envisioned that the user can interact with this system via sliders and a unique

widget that displays each storm in the data set as a color-coded square. With this interface,

the storm squares are aligned along the horizontal axis according to the storm years, and

they are ordered chronologically along the vertical axis. This unique widget will drive the
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Figure 5.1

NOAA Best Track data set analysis user interface concept.
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information displayed in the map context as well as any non-geographic representations,

such as parallel coordinates.

Another promising project is to explore the application of additional multivariate infor-

mation visualization techniques to environmental data analysis. That is, additional mul-

tivariate visualization techniques—such as star coordinates [94], VisDB [96], and Table

Lens [127]—can be used to explore the climate data used in the tropical cyclone climate

studies. In addition, to expanding the techniques and formulating new approaches, this

project would provide an excellent opportunity to compare and contrast the various ap-

proaches in their ability to improve the knowledge discovery and decision making pro-

cesses in real-world scenarios.

Some of the weather information that has been gathered has included categorical data.

While the continuous, numerical dimensions are well understood in multivariate visualiza-

tion, categorized data is not sufficiently addressed. Examples of this type of data include:

product or customer categories, location of hurricane landfall, and bank account types.

These type of data generally have a small number of different values that usually have

special meanings. Furthermore, the categories usually have no inherent order [103].

Recently, Kosara et al. [103] presented a new approach to the visualization of categor-

ical data that is called Parallel Sets. In this system, traditional Venn diagrams and parallel

coordinates representation techniques are combined [103]. As shown in Figure 5.2, the

authors addressed the simultaneous display of continuous and categorical data in the Par-

allel Sets technique. However, there is significant room for improving on the integration

of continuous dimensions using this technique. To improve the capabilities of MDX, the
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Figure 5.2

The Parallel Sets approach by Kosara et al. [103].

Parallel Sets concept can be extended to provide a solution that works well with data sets

that contain both continuous and categorical data.

The evaluation of our geovisual analytics approach to climate study can also be ex-

tended to include more case studies with different data sets. In addition, comparing tra-

ditional techniques with the geovisual analytics method via a human subject user study

would provide valuable insight on the potential of our new approach.

5.3 Related Publications

Publications that are related from this dissertation research are described in the fol-

lowing list:

• C. A. Steed, P. J. Fitzpatrick, T. J. Jankun-Kelly, A. N. Yancey, and J. E. Swan II,
“Practical Application of Parallel Coordinates to Hurricane Trend Analysis,” Posters
Compendium: IEEE Visualization 2007, Sacramento, California, October 2007, pp.
4–5, IEEE Computer Society.
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• C. A. Steed, P. J. Fitzpatrick, T. J. Jankun-Kelly, J. E. Swan II, and A. N. Yancey, An
Interactive Parallel Coordinates Techniques Applied to a Tropical Cyclone Climate
Analysis, Tech. Rep. NRL/MR/7440–08-9126, Naval Research Laboratory, Stennis
Space Center, MS 39529, June 2008.

• C. A. Steed, P. J. Fitzpatrick, T. J. Jankun-Kelly, and J. E. Swan II, Visual Analysis
of North Atlantic Hurricane Trends using Parallel Coordinates and Statistical Tech-
niques, Tech. Rep. NRL/MR/7440–08-9130, Naval Research Laboratory, Stennis
Space Center, MS 39529, July 2008.

• C. A. Steed, P. J. Fitzpatrick, T. J. Jankun-Kelly, and J. E. Swan II, “North At-
lantic Hurricane Trend Analysis using Parallel Coordinates and Statistical Tech-
niques,” Geospatial Visual Analytics Workshop. International Cartographic Asso-
ciation, September 2008. http://geoanalytics.net/GeoVisualAnalytics08/ (current 9
Oct. 2008).

• C. A. Steed, P. J. Fitzpatrick, T. J. Jankun-Kelly, A. N. Yancey, and J. E. Swan II, “An
Interactive Parallel Coordinates Techniques Applied to a Tropical Cyclone Climate
Analysis,” Computers & Geosciences, 2008, Under Review.
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[137] H. Siirtola and K.-J. Räihä, “Interacting with Parallel Coordinates,” Interacting
with Computers, vol. 18, no. 6, Dec. 2006, pp. 1278–1309.

[138] Y. Singer, O. Greenshpan, and A. Inselberg, “Multidimensional Visualization of
Communication Networks,” IEEE Convention of Electrical and Electronics Engi-
neers in Israel, Eilat, Israel, Nov. 2006, IEEE, pp. 371–375.

[139] S. L. Spraragen and M. Podlaseck, “A High-Density Catalog for Online Browsing,”
Proceedings of the Hawaii International Conference on System Sciences, Maui,
Hawaii, Jan. 2001, IEEE, pp. 1–9.

[140] J. J. Thomas, “Visual Analytics: Why Now?,” Information Visualization, vol. 6,
2007, pp. 104–106.

[141] J. J. Thomas and K. A. Cook, eds., Illuminating the Path: The Reserach and De-
velopment Agenda for Visual Analytics, IEEE Computer Society, Los Alamitos,
California, 2005, http://nvac.pnl.gov/agenda.stm (current 9 Sept. 2008).

[142] C. Tominski, P. Schulze-Wollgast, and H. Schumann, “3D Information Visualiza-
tion for Time Dependent Data on Maps,” Proceedings of the Ninth International
Conference on Information Visualization, London, England, Jul. 2005, IEEE Com-
puter Society, pp. 175–181.

[143] M. Tory, S. Potts, and T. Möller, “A Parallel Coordinates Interface for Exploratory
Volume Visualization,” IEEE Transactions on Visualization and Computer Graph-
ics, vol. 11, no. 1, Jan. 2005, pp. 71–80.

[144] E. R. Tufte, The Visual Display of Quantitative Information, Graphics Press,
Cheshire, Connecticut, 1983.

[145] J. W. Tukey, Exploratory Data Analysis, Addison-Wesley, 1977.

[146] L. Tweedie, R. Spence, H. Dawkes, and H. Su, “Externalising Abstract Mathe-
matical Models,” Proceedings of the Conference on Human Factors in Computing
Systems, Vancouver, British Columbia, Canada, Apr. 1996, ACM, pp. 406–412.

[147] L. Tweedie, R. Spence, H. Dawkes, and H. Su, “Externalising Abstract Mathe-
matical Models,” Proceedings of the Conference on Human Factors in Computing
Systems, Vancouver, British Columbia, Canada, Apr. 1996, ACM, pp. 406–412.

210



[148] A. Unwin, C. Volinsky, and S. Winkler, “Parallel Coordinates for Exploratory Mod-
elling Analysis,” Computational Statistics and Data Analysis, vol. 43, no. 4, Aug.
2003, pp. 553–564.

[149] D. J. Vimont and J. P. Kossin, “The Atlantic Meridional Mode and hurricane activ-
ity,” Geophysical Research Letters, vol. 34, 2007, pp. 1–5.

[150] F. Vitart, “Dynamical Seasonal Forecasts of Tropical Storm Statistics,” Hurri-
canes and Typhoons: Past, Present, and Future, R. J. Murnane and K.-B. Liu, eds.,
Columbia University Press, 2004, pp. 354–392.

[151] R. E. Walpole and R. H. Myers, Probability and Statistics for Engineers and Scien-
tists, 5th edition, Prentice Hall, Englewood Cliffs, New Jersey, 1993.

[152] H.-B. Wang, C.-B. Wang, K. Kiu, B. Meng, and D.-R. Zhou, “VISDM-PC: A Visual
Data Mining Tool Based on Parallel Coordinate,” Proceedings of the International
Conference on Machine Learning and Cybernetics, Shanghai, China, Aug. 2004,
IEEE Computer Society, pp. 1244–1248.

[153] C. Ware, Information Visualization: Perception for Design, 2nd edition, Morgan
Kaufmann, 2004.
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Table A.1: Comparative summary of parallel coordinates literature review

When Who Objective Case Study User Study

1981 Inselberg [72] N-dimensional geometry, PCP theory - -

1985 Inselberg [73] N-dimensional geometry, PCP theory X -

1987 Inselberg & Chomut [79] N-dimensional geometry, PCP theory - -

1989 Fiorini & Inselberg [43] PCP theory, control robotic arm - -

1990 Inselberg & Dimsdale [80] N-dimensional geometry, PCP theory, air traffic con-

trol

X -

1990 Wegman [155] multidimensional data analysis, PCP theory X -

1994 Inselberg & Dimsdale [81] N-dimensional geometry, PCP theory - -

1994 Inselberg & Dimsdale [82] N-dimensional geometry, PCP theory, air traffic con-

trol

X -

1995 Lee et al. [114] grouping lines, statistical analysis, WinVis - -

1995 Martin & Ward [119] multidimensional brushing, XmdvTool - X

1996 Lee & Ong [113] clustering, grouping, statistical analysis, WinVis X -

1997 Gröller et al. [56] 3D PCP, extruded PCP - -

1997 Inselberg [74] Analysis strategies with PCP X -

1997 Wegenkittl et al. [154] 3D PCP, extruded PCP X -

1998 Ankerst et al. [13] similarity-based axis arrangements, clustering, stock

market data

X -

1999 Chou et al. [28] PCP theory, clustering - -

1999 King & Harris [97] pulmonary capillary exchange data X -

1999 Inselberg & Avidan [77] PCP theory, automated classification X -

1999 Goel et al. [53] PCP for aircraft design X -

1999 Fua et al. [49] brushing, large data sets, clustering, tree-map,

proximity-based shading, distortion

X -

1999 Hoffman et al. [68] visualization framework, dimensional anchors X -

2000 Fua et al. [50] brushing, large data sets, clustering, tree-map,

proximity-based shading, distortion, remote sensing

data

X -

2000 Hall & Berthold [59] fuzzy data, clustering X -

Continued on next page
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Table A.1 – continued from previous page

When Who Objective Case Study User Study

2000 Siirtola [135] polyline averaging, correlation indicators, statistical

analysis

X -

2000 Inselberg & Avidan [78] PCP theory, classification X -

2001 Lee et al. [115] analysis of clickstream data for online sales X X

2001 Spraragen & Podlaseck [139] visualization of musical works - X

2001 Andrienko & Andrienko [10] geovisualization, linked views, comparable attributes,

statistical indicators

X -

2001 Falkman [39] daily clinicians diagnostic work, 3D PCP, linked dis-

plays, clustering, focus+context

X -

2001 Inselberg [76] PCP theory, automatic classification X -

2001 Inselberg [75] air traffic control X -

2001 Chen & Wang [27] brushing, dimensional reduction, overcrowded PCP - -

2002 Heyden et al. [67] principal component analysis, multivariate data anal-

ysis, multi-response experimental design data

X -

2002 Hauser et al. [63] angular brushing, linked displays, visual query, com-

putational fluid dynamics data

- -

2003 Yang et al. [161] visual hierarchical dimension reduction X -

2003 Berthold & Hall [20] & Hall fuzzy data, clustering, ocean satellite image data X -

2003 Siirtola [136] linked views, comparison of PCP and the Reorderable

Matrix view

- X

2003 Graham & Kennedy [55] line clutter, smooth curved polylines, focus+context - -

2003 Dykes & Mountain [34] linked views, geovisualization, statistical analysis,

geocentric PCP

X -

2003 Unwin et al. [148] comparing models, medical trial data analysis X -

2003 Friendly & Kwan [48] information ordering, crime statistics data X -

2003 Edsall [35] spatio-temporal, brushing, linked views, climate

modeling & analysis, epidemiology

X -

2003 Yang et al. [160] similarity-based dimensional ordering, dimension

spacing, dimension filtering

- -

Continued on next page
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Table A.1 – continued from previous page

When Who Objective Case Study User Study

2003 Brodbeck & Girardin [22] combines tree layout with PCP, bifocal lens distortion,

focus+context

- -

2003 Potts et al. [128] visualization of parameter space used in volumetric

rendering

- -

2003 Zhao et al. [164] change patterns, edit-distance based axis arrange-

ment, product test and design data

X -

2004 Schneidewind et al. [131] image retrieval analysis, linked views X -

2004 Johansson et al. [91] classification, self-organizing map, clustering, zoom-

ing, large data sets, linked views, molecular data

- -

2004 Barlow & Stuart [16] temporal PCP animation, neurophysiological data vi-

sualization

X -

2004 Andrienko & Andrienko [11] clustering, statistical-based axis scaling, classes in

PCP, demographic data

X -

2004 Zhao et al. [165] edit-distance based axis arrangement, product test and

design data

X -

2004 Wang et al. [152] correlation analysis, zooming, classification, similar-

ity analysis, test score data set analysis

X -

2004 Artero et al. [14] large data sets, overcrowding, clustering X -

2005 Yang [162] smooth polylines, visualizing association rules, net-

work traffic data analysis

X -

2005 Tory et al. [143] visualization of parameter space used in volumetric

rendering, medical visualization

- X

2005 Lanzenberger et al. [111] comparison of stardinates and parallel coordinates,

psychotherapeutic data

- X

2005 Notsu et al. [122] new PCP display technique, 3D PCP, time series data X -

2005 Johansson et al. [86] 3D PCP, clustering, axis arrangement, pollution data,

meteorological data

- -

2005 Grünfeld [57] comparing PCP to other visualization techniques, en-

vironmental data, spatio-temporal data

X -

2005 Feldt et al. [41] linked views, statistical database for Sweden X -

Continued on next page
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Table A.1 – continued from previous page

When Who Objective Case Study User Study

2005 Ericson et al. [38] clustering, linked views, brushing, animation, statisti-

cal indicators

X -

2005 Bertini et al. [21] linked views, clutter, clustering X -

2005 Matković et al. [120] injection system simulation data analysis, linked

views

X -

2005 Fanea et al. [40] 3D PCP, parallel glyphs, interaction, distortion, fo-

cus+context, color scales

X -

2005 Bendix et al. [19] categorical data, statistical indicators, parallel sets,

sales, marketing, and demographic data

X -

2005 Johansson et al. [89] large data sets, clustering, interaction, transfer func-

tion, animation, statistical indicators

- -

2006 Karki et al. [95] linked views, mineral elasticity data X -

2006 Albazzaz & Wang [9] dimension reduction, outlier detection, process con-

trol

X -

2006 Dwyer et al. [33] network structured data centrality analysis, biological

and social network data

X -

2006 Pillat & Freitas [126] linked views - X

2006 Johansson et al. [90] 3D multi-relational PCP, clustering, transfer function,

density map, feature animation

X -

2006 Lawrence et al. [112] linked views, systems biology data analysis, GGobi X -

2006 Kosara et al. [103] categorical data, statistical indicators, parallel sets,

sales, marketing, and demographic data

X -

2006 Jern & Franzén [84] geovisualization, visual analytics, spatio-temporal

data, linked views, statistical analysis

- -

2006 Kraak [105] geovisualization, new roles for maps - -

2006 Ye & Lin [163] optimization problems, simulated annealing, curved

PCP polylines

X -

2006 Novotný & Hauser [123] focus+context, outlier detection, large data sets - -

2006 Ellis & Dix [36] automatic clutter reduction, lens distortion, measur-

ing occlusion in PCP displays

X -

Continued on next page
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When Who Objective Case Study User Study

2006 Bair et al. [15] analysis of perception experiment data with PCP X -

2006 Hung & Inselberg [70] PCP theory, multidimensional geometry - -

2006 Sifer [134] extension of parallel sets to remove clutter, sales and

network traffic data analysis

- X

2006 Konyha et al. [102] linked views, brushing, time series data, function

graphs, optimization of fuel injection system

X -

2006 Singer et al. [138] analysis of communication network data X -

2006 Guo et al. [58] geovisualization, spatio-temporal, self-organizing

map, linked views, axis scaling, small multiples

- -

2006 Siirtola & Räihä [137] survey of PCP interaction techniques, PCP usability

study

- X

2007 Forsell & Johansson [47] axis permutation, 3D PCP, 3D vs. 2D PCP, comparing

3 types of PCP

- X

2007 Caat et al. [23] visualization of time-varying multichannel electroen-

cephalography (EEG) data

- X

2007 Park & Martin [124] analysis of waste reusability X -

2007 Xu et al. [158] combined scatterplot, star diagram and PCP into par-

allel dual plot, overplotting, pattern recognition

X -

2007 Xu et al. [159] overplotting, pattern recognition, visual classification,

machine learning, support vector machines

X -

2007 Crider et al. [31] using physical sliders on mixer board for interaction - X

2007 A.Godinho et al. [7] linked views, comparing scatterplots, PCP, and

treemap displays

- X

2007 Henley et al. [66] genomic study, PCP and scatterplots, disadvantage

and advantages of PCP

- X

2007 Jern [83] retail space management - -

2007 Jern et al. [85] geovisualization, visual analytics, linked views, vi-

sual query

- -

2007 Johansson et al. [88] temporal data, GPU, large data sets X -

Continued on next page
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2007 Elmqvist et al. [37] large data, PCP and starplot, dynamic queries, work-

flow, qualitative expert review

X X

2007 Hao et al. [61] interaction and automation techniques, correlation

analysis, similarity measures, clustering

X -

2007 Chang et al. [26] urban information visualization, linked views X X

2007 Qu et al. [129] weather data, curved PCP axis, axis arrangement, cor-

relation analysis

X -

2008 Haroz et al. [62] cosmology, uncertainty visualization, large data sets,

spatio-temporal data

X -

2008 Shearer et al. [132] animation, small displays, clutter reduction, scalabil-

ity, geospatial data

X -

2008 Kumasaka & Shibata [108] numerical and categorical data, textile plot PCP ex-

tension

X -

2008 Johansson et al. [87] comparing 2D PCP and 3D PCP - X

2008 Jones et al. [93] time-varying data, plasma physics simulations, parti-

cle data, linked views

X -
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Figure A.1

Plot of parallel coordinates paper count per year.

Figure A.2

Plot of parallel coordinates literature evaluations.
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Table A.2

Number of parallel coordinates papers per year.

Year Number of Publications
1981 1
1985 1
1987 1
1989 1
1990 2
1994 2
1995 2
1996 1
1997 3
1998 1
1999 6
2000 4
2001 7
2002 2
2003 12
2004 7
2005 13
2006 19
2007 15
2008 5

Table A.3

Analysis of evaluations in parallel coordinates literature.

Neither User Study or Case Study 23 (3%)
User Study Only 17 (13%)
Case Study Only 65 (62%)
Case Study and User Study 3 (3%)
Total Papers 105 (100%)
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