10,871 research outputs found

    Proteomic analysis of Glossina pallidipes salivary gland hypertrophy virus virions for immune intervention in tsetse fly colonies

    Get PDF
    Many species of tsetse flies (Diptera: Glossinidae) can be infected by a virus that causes salivary gland hypertrophy (SGH). The viruses isolated from Glossina pallidipes (GpSGHV) and Musca somestica (MdSGHV) have recently been sequenced. Tsetse flies with SGH have a reduced fecundity and fertility which cause a serious problem for mass rearing in the frame of sterile insect technique (SIT) programs to control and eradicate tsetse populations in the wild. A potential intervention strategy to mitigate viral infections in fly colonies is neutralizing of the GpSGHV infection with specific antibodies against virion proteins. Two major GpSGHV virion proteins of about 130 kDa and 50 kDa, respectively, were identified by Western analysis using polyclonal rabbit antibody raised against whole GpSHGV virions. The proteome of GpSGHV, containing the antigens responsible for the immune-response, was investigated by liquid chromatography tandem mass spectrometry (LC-MS/MS) and 61 virion proteins were identified by comparison with the genome sequence. Specific antibodies were produced in rabbits against seven candidate proteins including the ORF10 / C-terminal fragment, ORF47 and ORF96 as well as proteins involved in peroral infectivity PIF-1 (ORF102), PIF-2 (ORF53), PIF-3 (ORF76) and P74 (ORF1). Antiserum against ORF10 specifically reacted to the 130 kDa protein in a Western blot analysis and to the envelope of GpSGHV using immunogold-EM. This result suggests that immune intervention of viral infections in colonies of G. pallidipes is a realistic optio

    Sequence-structure-function relations of the mosquito leucine-rich repeat immune proteins.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The discovery and characterisation of factors governing innate immune responses in insects has driven the elucidation of many immune system components in mammals and other organisms. Focusing on the immune system responses of the malaria mosquito, <it>Anopheles gambiae</it>, has uncovered an array of components and mechanisms involved in defence against pathogen infections. Two of these immune factors are LRIM1 and APL1C, which are leucine-rich repeat (LRR) containing proteins that activate complement-like defence responses against malaria parasites. In addition to their LRR domains, these leucine-rich repeat immune (LRIM) proteins share several structural features including signal peptides, patterns of cysteine residues, and coiled-coil domains.</p> <p>Results</p> <p>The identification and characterisation of genes related to <it>LRIM1 </it>and <it>APL1C </it>revealed putatively novel innate immune factors and furthered the understanding of their likely molecular functions. Genomic scans using the shared features of <it>LRIM1 </it>and <it>APL1C </it>identified more than 20 <it>LRIM</it>-like genes exhibiting all or most of their sequence features in each of three disease-vector mosquitoes with sequenced genomes: <it>An. gambiae</it>, <it>Aedes aegypti</it>, and <it>Culex quinquefasciatus</it>. Comparative sequence analyses revealed that this family of mosquito <it>LRIM</it>-like genes is characterised by a variable number of 6 to 14 LRRs of different lengths. The "Long" LRIM subfamily, with 10 or more LRRs, and the "Short" LRIMs, with 6 or 7 LRRs, also share the signal peptide, cysteine residue patterning, and coiled-coil sequence features of LRIM1 and APL1C. The "TM" LRIMs have a predicted C-terminal transmembrane region, and the "Coil-less" LRIMs exhibit the characteristic LRIM sequence signatures but lack the C-terminal coiled-coil domains.</p> <p>Conclusions</p> <p>The evolutionary plasticity of the LRIM LRR domains may provide templates for diverse recognition properties, while their coiled-coil domains could be involved in the formation of LRIM protein complexes or mediate interactions with other immune proteins. The conserved LRIM cysteine residue patterns are likely to be important for structural fold stability and the formation of protein complexes. These sequence-structure-function relations of mosquito LRIMs will serve to guide the experimental elucidation of their molecular roles in mosquito immunity.</p

    Coiled-coil protein composition of 22 proteomes – differences and common themes in subcellular infrastructure and traffic control

    Get PDF
    BACKGROUND: Long alpha-helical coiled-coil proteins are involved in diverse organizational and regulatory processes in eukaryotic cells. They provide cables and networks in the cyto- and nucleoskeleton, molecular scaffolds that organize membrane systems and tissues, motors, levers, rotating arms, and possibly springs. Mutations in long coiled-coil proteins have been implemented in a growing number of human diseases. Using the coiled-coil prediction program MultiCoil, we have previously identified all long coiled-coil proteins from the model plant Arabidopsis thaliana and have established a searchable Arabidopsis coiled-coil protein database. RESULTS: Here, we have identified all proteins with long coiled-coil domains from 21 additional fully sequenced genomes. Because regions predicted to form coiled-coils interfere with sequence homology determination, we have developed a sequence comparison and clustering strategy based on masking predicted coiled-coil domains. Comparing and grouping all long coiled-coil proteins from 22 genomes, the kingdom-specificity of coiled-coil protein families was determined. At the same time, a number of proteins with unknown function could be grouped with already characterized proteins from other organisms. CONCLUSION: MultiCoil predicts proteins with extended coiled-coil domains (more than 250 amino acids) to be largely absent from bacterial genomes, but present in archaea and eukaryotes. The structural maintenance of chromosomes proteins and their relatives are the only long coiled-coil protein family clearly conserved throughout all kingdoms, indicating their ancient nature. Motor proteins, membrane tethering and vesicle transport proteins are the dominant eukaryote-specific long coiled-coil proteins, suggesting that coiled-coil proteins have gained functions in the increasingly complex processes of subcellular infrastructure maintenance and trafficking control of the eukaryotic cell

    Genome-wide identification of arabidopsis coiled-coil proteins and establishment of the ARABI-COIL database

    Get PDF
    Increasing evidence demonstrates the importance of long coiled-coil proteins for the spatial organization of cellular processes. Although several protein classes with long coiled-coil domains have been studied in animals and yeast, our knowledge about plant long coiled-coil proteins is very limited. The repeat nature of the coiled-coil sequence motif often prevents the simple identification of homologs of animal coiled-coil proteins by generic sequence similarity searches. As a consequence, counterparts of many animal proteins with long coiled-coil domains, like lamins, golgins, or microtubule organization center components, have not been identified yet in plants. Here, all Arabidopsis proteins predicted to contain long stretches of coiled-coil domains were identified by applying the algorithm MultiCoil to a genome-wide screen. A searchable protein database, ARABI-COIL (http://www.coiled-coil.org/arabidopsis), was established that integrates information on number, size, and position of predicted coiled-coil domains with subcellular localization signals, transmembrane domains, and available functional annotations. ARABI-COIL serves as a tool to sort and browse Arabidopsis long coiled-coil proteins to facilitate the identification and selection of candidate proteins of potential interest for specific research areas. Using the database, candidate proteins were identified for Arabidopsis membrane-bound, nuclear, and organellar long coiled-coil proteins

    A Splicing Mutation in the Novel Mitochondrial Protein DNAJC11 Causes Motor Neuron Pathology Associated with Cristae Disorganization, and Lymphoid Abnormalities in Mice

    Get PDF
    Mitochondrial structure and function is emerging as a major contributor to neuromuscular disease, highlighting the need for the complete elucidation of the underlying molecular and pathophysiological mechanisms. Following a forward genetics approach with N-ethyl-N-nitrosourea (ENU)-mediated random mutagenesis, we identified a novel mouse model of autosomal recessive neuromuscular disease caused by a splice-site hypomorphic mutation in a novel gene of unknown function, DnaJC11. Recent findings have demonstrated that DNAJC11 protein co-immunoprecipitates with proteins of the mitochondrial contact site (MICOS) complex involved in the formation of mitochondrial cristae and cristae junctions. Homozygous mutant mice developed locomotion defects, muscle weakness, spasticity, limb tremor, leucopenia, thymic and splenic hypoplasia, general wasting and early lethality. Neuropathological analysis showed severe vacuolation of the motor neurons in the spinal cord, originating from dilatations of the endoplasmic reticulum and notably from mitochondria that had lost their proper inner membrane organization. The causal role of the identified mutation in DnaJC11 was verified in rescue experiments by overexpressing the human ortholog. The full length 63 kDa isoform of human DNAJC11 was shown to localize in the periphery of the mitochondrial outer membrane whereas putative additional isoforms displayed differential submitochondrial localization. Moreover, we showed that DNAJC11 is assembled in a high molecular weight complex, similarly to mitofilin and that downregulation of mitofilin or SAM50 affected the levels of DNAJC11 in HeLa cells. Our findings provide the first mouse mutant for a putative MICOS protein and establish a link between DNAJC11 and neuromuscular diseases

    Sequence Conservation in Plasmodium falciparum α-Helical Coiled Coil Domains Proposed for Vaccine Development

    Get PDF
    BACKGROUND: The availability of the P. falciparum genome has led to novel ways to identify potential vaccine candidates. A new approach for antigen discovery based on the bioinformatic selection of heptad repeat motifs corresponding to alpha-helical coiled coil structures yielded promising results. To elucidate the question about the relationship between the coiled coil motifs and their sequence conservation, we have assessed the extent of polymorphism in putative alpha-helical coiled coil domains in culture strains, in natural populations and in the single nucleotide polymorphism data available at PlasmoDB. METHODOLOGY/PRINCIPAL FINDINGS: 14 alpha-helical coiled coil domains were selected based on preclinical experimental evaluation. They were tested by PCR amplification and sequencing of different P. falciparum culture strains and field isolates. We found that only 3 out of 14 alpha-helical coiled coils showed point mutations and/or length polymorphisms. Based on promising immunological results 5 of these peptides were selected for further analysis. Direct sequencing of field samples from Papua New Guinea and Tanzania showed that 3 out of these 5 peptides were completely conserved. An in silico analysis of polymorphism was performed for all 166 putative alpha-helical coiled coil domains originally identified in the P. falciparum genome. We found that 82% (137/166) of these peptides were conserved, and for one peptide only the detected SNPs decreased substantially the probability score for alpha-helical coiled coil formation. More SNPs were found in arrays of almost perfect tandem repeats. In summary, the coiled coil structure prediction was rarely modified by SNPs. The analysis revealed a number of peptides with strictly conserved alpha-helical coiled coil motifs. CONCLUSION/SIGNIFICANCE: We conclude that the selection of alpha-helical coiled coil structural motifs is a valuable approach to identify potential vaccine targets showing a high degree of conservation

    The genome of the Pacific oyster Crassostrea gigas brings new insights on the massive expansion of the C1q gene family in Bivalvia

    Get PDF
    C1q domain-containing (C1qDC) proteins are regarded as important players in the innate immunity of bivalve mollusks and other invertebrates and their highly adaptive binding properties indicate them as efficient pathogen recognition molecules. Although experimental studies support this view, the molecular data available at the present time are not sufficient to fully explain the great molecular diversification of this family, present in bivalves with hundreds of C1q coding genes. Taking advantage of the fully sequenced genome of the Pacific oyster Crassostrea gigas and more than 100 transcriptomic datasets, we: (i) re-annotated the oyster C1qDC loci, thus identifying the correct genomic organization of 337 C1qDC genes, (ii) explored the expression pattern of oyster C1qDC genes in diverse developmental stages and adult tissues of unchallenged and experimentally treated animals; (iii) investigated the expansion of the C1qDC gene family in all major bivalve subclasses.Overall, we provide a broad description of the functionally relevant features of oyster C1qDC genes, their comparative expression levels and new evidence confirming that a gene family expansion event has occurred during the course of Bivalve evolution, leading to the diversification of hundreds of different C1qDC genes in both the Pteriomorphia and Heterodonta subclasses

    A lineage-specific protein network at the trypanosome nuclear envelope

    Get PDF
    The nuclear envelope (NE) separates translation and transcription and is the location of multiple functions, including chromatin organization and nucleocytoplasmic transport. The molecular basis for many of these functions have diverged between eukaryotic lineages. Trypanosoma brucei, a member of the early branching eukaryotic lineage Discoba, highlights many of these, including a distinct lamina and kinetochore composition. Here, we describe a cohort of proteins interacting with both the lamina and NPC, which we term lamina-associated proteins (LAPs). LAPs represent a diverse group of proteins, including two candidate NPC-anchoring pore membrane proteins (POMs) with architecture conserved with S. cerevisiae and H. sapiens, and additional peripheral components of the NPC. While many of the LAPs are Kinetoplastid specific, we also identified broadly conserved proteins, indicating an amalgam of divergence and conservation within the trypanosome NE proteome, highlighting the diversity of nuclear biology across the eukaryotes, increasing our understanding of eukaryotic and NPC evolution.</p
    corecore