33 research outputs found

    A survey of swarm intelligence for dynamic optimization: algorithms and applications

    Get PDF
    Swarm intelligence (SI) algorithms, including ant colony optimization, particle swarm optimization, bee-inspired algorithms, bacterial foraging optimization, firefly algorithms, fish swarm optimization and many more, have been proven to be good methods to address difficult optimization problems under stationary environments. Most SI algorithms have been developed to address stationary optimization problems and hence, they can converge on the (near-) optimum solution efficiently. However, many real-world problems have a dynamic environment that changes over time. For such dynamic optimization problems (DOPs), it is difficult for a conventional SI algorithm to track the changing optimum once the algorithm has converged on a solution. In the last two decades, there has been a growing interest of addressing DOPs using SI algorithms due to their adaptation capabilities. This paper presents a broad review on SI dynamic optimization (SIDO) focused on several classes of problems, such as discrete, continuous, constrained, multi-objective and classification problems, and real-world applications. In addition, this paper focuses on the enhancement strategies integrated in SI algorithms to address dynamic changes, the performance measurements and benchmark generators used in SIDO. Finally, some considerations about future directions in the subject are given

    Faculty Publications and Creative Works 2004

    Get PDF
    Faculty Publications & Creative Works is an annual compendium of scholarly and creative activities of University of New Mexico faculty during the noted calendar year. Published by the Office of the Vice President for Research and Economic Development, it serves to illustrate the robust and active intellectual pursuits conducted by the faculty in support of teaching and research at UNM

    Annual Research Report, 2009-2010

    Get PDF
    Annual report of collaborative research projects of Old Dominion University faculty and students in partnership with business, industry and governmenthttps://digitalcommons.odu.edu/or_researchreports/1001/thumbnail.jp

    Compact Dynamic Optimisation Algorithm

    Get PDF
    In recent years, the field of evolutionary dynamic optimisation has seen significant increase in scientific developments and contributions. This is as a result of its relevance in solving academic and real-world problems. Several techniques such as hyper-mutation, hyper-learning, hyper-selection, change detection and many more have been developed specifically for solving dynamic optimisation problems. However, the complex structure of algorithms employing these techniques make them unsuitable for real-world, real-time dynamic optimisation problem using embedded systems with limited memory. The work presented in this thesis focuses on a compact approach as an alternative to population based optimisation algorithm, suitable for solving real-time dynamic optimisation problems. Specifically, a novel compact dynamic optimisation algorithm suitable for embedded systems with limited memory is presented. Three novel dynamic approaches that augment and enhance the evolving properties of the compact genetic algorithm in dynamic environments are introduced. These are 1.) change detection scheme that measures the degree of dynamic change 2.) mutation schemes whereby the mutation rates is directly linked to the detected degree of change and 3.) change trend scheme the monitors change pattern exhibited by the system. The novel compact dynamic optimization algorithm outlined was applied to two differing dynamic optimization problems. This work evaluates the algorithm in the context of tuning a controller for a physical target system in a dynamic environment and solving a dynamic optimization problem using an artificial dynamic environment generator. The novel compact dynamic optimisation algorithm was compared to some existing dynamic optimisation techniques. Through a series of experiments, it was shown that maintaining diversity at a population level is more efficient than diversity at an individual level. Among the five variants of the novel compact dynamic optimization algorithm, the third variant showed the best performance in terms of response to dynamic changes and solution quality. Furthermore, it was demonstrated that information transfer based on dynamic change patterns can effectively minimize the exploration/exploitation dilemma in a dynamic environment

    University of Windsor Graduate Calendar 2022 Spring

    Get PDF
    https://scholar.uwindsor.ca/universitywindsorgraduatecalendars/1024/thumbnail.jp
    corecore