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Abstract

In recent years, the field of evolutionary dynamic optimisation has seen significant

increase in scientific developments and contributions. This is as a result of its

relevance in solving academic and real-world problems. Several techniques such as

hyper-mutation, hyper-learning, hyper-selection, change detection and many more

have been developed specifically for solving dynamic optimisation problems. How-

ever, the complex structure of algorithms employing these techniques make them

unsuitable for real-world, real-time dynamic optimisation problem using embedded

systems with limited memory.

The work presented in this thesis focuses on a compact approach as an alternative

to population based optimisation algorithm, suitable for solving real-time dynamic

optimisation problems. Specifically, a novel compact dynamic optimisation algo-

rithm suitable for embedded systems with limited memory is presented. Three

novel dynamic approaches that augment and enhance the evolving properties of

the compact genetic algorithm in dynamic environments are introduced. These

are: 1) change detection scheme that measures the degree of dynamic change 2)

mutation schemes whereby the mutation rate is directly linked to the detected de-

gree of change and 3) change trend scheme that monitors change pattern exhibited

by the system.

The novel compact dynamic optimization algorithm outlined was applied to two

differing dynamic optimization problems. This work evaluates the algorithm in

the context of tuning a controller for a physical target system in a dynamic envi-

ronment and solving a dynamic optimization problem using an artificial dynamic

environment generator. The novel compact dynamic optimisation algorithm was

compared to some existing dynamic optimisation techniques. Through a series

of experiments, it was shown that maintaining diversity at a population level is

more efficient than diversity at an individual level. Among the five variants of

the novel compact dynamic optimization algorithm, the third variant showed the

best performance in terms of response to dynamic changes and solution quality.

Furthermore, it was demonstrated that information transfer based on dynamic

change patterns can effectively minimize the exploration/exploitation dilemma in

a dynamic environment.
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Chapter 1

Introduction

The application of evolutionary algorithms to dynamic optimisation problems has

been an active area of research for the past decade. This research field, although

relatively young, has increasingly attracted interest from the evolutionary compu-

tation community. As pointed out by Jin and Branke (2005), the earliest applica-

tion of evolutionary computation to dynamic optimisation dates back to 1966 (Fo-

gel et al., 1966). Although this research field is relatively advanced, there are still

open research questions. One important question is how well do current dynamic

optimisation algorithms integrate properly in the context of real-time dynamic

optimisation using embedded systems with limited computational resources.

1.1 Overview

Optimisation in a sense has existed since the beginning of civilization. Today

optimisation problems can be found everywhere in science, technology and even

our daily life activities e.g. planning (Bui et al., 2012), vehicle routing (Dantzig and

Ramser, 1959; Mavrovouniotis and Yang, 2015) and tuning of controllers (Gongora

et al., 2009; Zhang et al., 2009). Most real-world optimisation problems are often

influenced by uncertain and dynamic factors, as such it is unlikely that a solution

found for a particular problem would remain valid for a long period of time. In

order to counter these dynamic changes, appropriate mechanisms are required to

adapt the current solution. This type of problem can be referred to as a dynamic

optimisation problem (DOP) (Jin and Branke, 2005).

1
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In DOPs, values of the optima change with time, thus rendering the problem

of optimum finding to optimum tracking. This means the fitness landscape1 of

a given problem is dynamic with both the search space and fitness being time

dependent. When solving DOPs, evolutionary algorithms (EAs) are considered a

good choice because they are inspired from the principles of biological evolution,

which takes place in dynamic environment (Goldberg, 1989).

(a) Search space with popultation
converging at time t

(b) Optimum change position at time t+1

Figure 1.1: Typical behaviour of an optimisation algorithm in a dynamic en-
vironment (green circles represents candidate solutions and red circle represent

optimum solution)

The interest in improving the performance of EAs in dynamic environments con-

tinues to increase so as to identify promising techniques capable of addressing

more complex dynamic optimisation problems. Many studies have demonstrated

that the conventional EA is suitable for finding the optimum of complex problems

when the promising region of the search space remains constant during an opti-

misation process (Battiti and Passerini, 2010; Panda, 2011; Nelson et al., 2009;

Gongora et al., 2009). However, when solving dynamic optimisation problems the

conventional EA is not suitable because the algorithm is expected to not only find

the optimum but also track the optimum with respect to time (Jin and Branke,

2005; Nguyen et al., 2012).

The nature of DOPs presents challenges to traditional optimisation algorithms

because these problems usually require the tracking of the changing environment

1A fitness landscape represents the search space of an optimisation problem that exposes the
difference in fitness of the solution such that those with good fitness are higher. This means
optimal solutions are the maxima of the landscape. This idea has been extended to dynamic
fitness seascape. This dynamic fitness seascape represents a quantitative measure of adaptation
that counts the excess of good genomic change over disruptive genomic change (see Mustonen
and Lässig (2009, 2010) for more details).
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with respect to time. In general, addressing DOPs using EAs can be grouped into

four classes of techniques Nguyen et al. (2012):

� Using implicitly or explicitly defined memory to store and reuse useful in-

formation so as to adapt the EA whenever a change occurs (Yang and Yao,

2008).

� Creating multi-populations to distribute the search force into the search

space (Branke et al., 2000).

� Promoting diversity by inserting random immigrants back into the popula-

tion (Tinós and Yang, 2007b; Mavrovouniotis and Yang, 2013a).

� Adjusting genetic operators adaptively (Eiben et al., 1999, 2006).

Most of the dynamic EAs are a combination of one or two of the above techniques,

which increases the computational complexity of the respective algorithm (Nguyen

and Yao, 2009a; Yang, 2008; Turky and Abdullah, 2014).

Evolutionary optimisation algorithms have been successfully applied to solving

DOPs. However, their application to real-world problems using small embedded

systems with resource constraints is limited due to the complex nature of the

algorithm. As a result, a compact dynamic optimisation approach is investigated

as an efficient alternative since it requires less computational resources.

The next section introduces the research problem followed by the research ap-

proach, research objectives and the outline of this thesis.

1.2 Research problem

While research in dynamic optimisation is relatively advanced, most of the research

is based on artificial benchmark problems (Li et al., 2011; Halder et al., 2013)

where the degree of dynamism and complexity of the problem is controlled. These

benchmark problems are in the form of a dynamic optimisation problem generator

that is used to generate a predefined landscape and change dynamics (e.g Li et al.

(2008); Li and Yang (2008)). There have been some applications based on real-

world problems either using real-world data or solving problems originating from

real world scenarios (e.g Kanoh (2007); Atkin et al. (2008)).
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Numerous dynamic techniques have been proposed to tackle dynamic problems

more effectively. However, the complex structure of existing population-based dy-

namic optimisation algorithms makes them unsuitable for solving real-time DOPs

on-board an embedded system with limited memory. Therefore a memory saving

dynamic approach can be considered appropriate for such DOPs. In a nutshell,

this thesis seeks to answer the following research question:

Is it possible to solve dynamic optimisation problems using a compact

optimisation algorithm, especially real-time dynamic optimisation on-

board a small-scale embedded system with limited memory?

The main reason for investigating such problems is that, despite the ever growing

availability of enhanced computational devices, there are some applications that

are based on systems with limited computational resources, specifically limited

amount of available memory. Some of these systems are required to execute com-

plex, specific operations such as online training procedures, generating solutions

for an optimisation problem. A good example of such application is the optimisa-

tion of control systems’ parameters in real-time. The optimisation process must

be carried out on board a micro-controller as quickly as possible, in order to leave

a larger time slot for real-time communication with sensors and actuators.

In this situation, the structure of dynamic optimisation algorithms plays a crucial

role if a high efficiency of operation is desired. Therefore many complex dynamic

optimisation algorithms e.g. population-based algorithms have been developed as

they often allow the detection of promising solutions. Due to hardware limita-

tions, these types of dynamic optimisation algorithms can be inappropriate and

unacceptable. This is because of the complex structure of the algorithms, as

they employ different modifications which increase the computational resources

required such as memory space and execution time (e.g Yang et al. (2013); Li

et al. (2012); Nguyen et al. (2013)). As stated earlier most dynamic optimisation

(population-based) algorithms have a long execution time which makes them un-

suitable for most real-time control optimisation problems. This is because most

control problems requires a fast response and algorithms in this category mainly

rely on the concurrent evaluation of multiple solutions (Iacca et al., 2012).

For the purpose of this thesis, hardware limitations and small scale embedded

systems refer to devices and applications with limited computational resources

specifically limited in the amount of available memory.
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1.3 Research approach

The complex structure of most dynamic optimisation algorithms hinders their

application using a small-scale embedded system. Using classic search and opti-

misation methods, it is not possible to achieve optimal performance in a dynamic

environment. This is because dynamic optimisation problems are time dependent

and real-world problems experience dynamic changes that are unpredictable.

This research develops a novel compact optimisation algorithm, suitable for solving

DOPs affected by hardware limitation i.e. using small scale embedded systems

with limited computational resource. More specifically, a novel variant of the

compact genetic algorithm is developed without compromising on computational

requirements. The standard compact genetic algorithm (Harik et al., 1999) has

been applied to static optimisation problems (Gallagher et al., 2004; Phiromlap

and Rimcharoen, 2013a).

However, optimal performance of the compact genetic algorithm is limited when

solving dynamic optimisation problems. As a result, modifications to the standard

compact genetic algorithm are investigated, so as to improve the performance of

the algorithm for such problems.

The realisation of such compact dynamic optimization algorithm is of high rel-

evance, especially in the design of robust controllers for control applications in

dynamic environments. Rather than testing candidate solutions on a synthetic

benchmark simulation, the individuals can be evaluated on a real system, thus

reducing the existing gap between academic research and real world applications.

An example of a possible application is the tuning of control parameters for un-

manned aerial vehicles in a dynamic environment. Other areas of application could

be the design of active automobile suspension systems, evolving parameter for eye

tracking systems, forecasting of real time data and applications with hardware

limitations and time constraints.

1.4 Research objectives

The primary objective of this research is to develop a novel compact optimisation

approach as an alternative to complex population based algorithms suitable for

solving real-time DOPs on-board embedded systems with limited memory. Specif-

ically the following schemes are investigated in this research:
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� A novel change detection scheme that measures the degree of change in a

dynamic environment without a significant increase in computational re-

quirements. This scheme regulates how and when the compact algorithm

reacts to a dynamic change.

� A novel adaptive mutation scheme that depends on the degree of change in a

dynamic environment such that the probability of mutation is directly pro-

portional to the degree of change. This scheme focuses on the maintenance

of diversity to preserve the ability of the compact algorithm to adapt quickly

in a dynamic environment.

� A novel change trend scheme that monitors the change pattern in a dynamic

environment such that the algorithm learns and adapts quickly. This scheme

in combination with the change detection and adaptive-mutation scheme is

used to enhance the performance of the algorithm.

The schemes above are designed to allow direct implementation on embedded

hardware systems. This research examines the schemes mentioned above in the

context of tuning a controller for a physical target system, a torsional mass spring

system in a dynamic environment. In addition, these schemes are evaluated using

an existing dynamic benchmark generator.

1.5 Structure of thesis

The remainder of this thesis is organised as follows:

� Chapter 2 provides background information and a literature survey on opti-

misation techniques, evolutionary dynamic optimisation, evolutionary algo-

rithms in control systems and compact optimisation algorithms. A detailed

survey on recent advances coupled with analysis and discussion is presented.

� Chapter 3 describes a novel compact optimisation algorithm for solving dy-

namic optimisation problems. An adaptive-mutation compact genetic algo-

rithm suitable for solving real-world dynamic optimisation problem, specif-

ically embedded hardware systems with limited computational resources is

presented.

� Chapter 4 describes the setup scene for all experiments. This includes an ar-

tificial dynamic benchmark generator and a dynamic optimisation problem
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using a physical system. Rather than testing candidate solutions of com-

peting algorithms in an artificial benchmark simulation only, solutions are

evaluated on the real-physical system.

� Chapter 5 presents experimental test results and analysis to support the

research hypothesis. In this chapter, competing algorithms are evaluated

in different environment dynamics using the dynamic benchmark generator

and the physical system described in chapter 4. The chapter is concluded

by a summary of the findings and discussion of the results.

� Chapter 6 concludes this thesis with discussion on achievement and respec-

tive impacts. Finally, opportunities for further research on the theory and ap-

plication of the adaptive-mutation compact genetic algorithm are discussed.



Chapter 2

Literature Review

A literature review is presented in this chapter to provide the required background

knowledge. This review sets the context of the field to enhance the accessibility for

both the evolutionary dynamic optimisation and compact optimisation algorithm

(cOA) communities. Key DOP techniques and cOAs are reviewed to understand

previous work and the relevance of this thesis.

This chapter is organised as follows; Section 2.1, introduces optimisation algo-

rithms. Specifically, a review of deterministic and heuristic optimisation algo-

rithms is presented. Section 2.2 provides background knowledge about DOPs.

Section 2.3 reviews evolutionary algorithms used in control system design in static

and dynamic environment. Section 2.4 reviews compact optimisation algorithms.

Finally, section 2.5 summarizes this Chapter.

2.1 Optimisation Algorithms

Generally optimisation algorithms are iterative. They start with an initial random

solution or guess of a defined variable, then generate a sequence of estimates before

converging to an optimum (local or global). Algorithms in this category differ in

the strategies used to move from one generation to another. Most optimisation

algorithms make use of a target function to measure the fitness of solutions every

generation (Rahmati and Mallakzadeh, 2011), some make use of the gradient of

a given problem (Koussa et al., 2012) while others solve for the first and second

derivative (Pazderin and Yuferev, 2009). There are optimisation algorithms that

pile up information every generation (Bao et al., 2009) and some that improve

8
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the quality of solutions sampled by using the local information discovered at each

generation (Pham et al., 2011).

Regardless of the description above, a good optimisation algorithm should be ef-

ficient, accurate and robust, identify good solutions without being affected by

approximation error and noise. Some of these properties are likely to infringe with

one another. For example an optimisation algorithm that exhibits fast conver-

gence, may converge to a local optimum. On the other hand a robust optimisation

algorithm can be slow and computationally intensive. Therefore, when developing

or selecting an optimisation algorithm the trade-off between the rate of conver-

gence, robustness and memory requirements must be put into consideration in

order to achieve the desired performance (Črepinšek et al., 2013).

The field of optimisation algorithms has seen improvements over the past decades,

with researchers comparing, evaluating and examining different algorithms. Re-

cent developments of optimisation algorithms can be grouped into heuristic and

deterministic optimisation approach. This section gives an explanation of these

methods.

2.1.1 Deterministic algorithms

Optimisation algorithms in this category take advantage of the analytical at-

tributes of a problem to generate chronological sequence of points before con-

verging to an optimum. For some deterministic optimisation algorithms, calculus

serves as a tool for the optimum of a given problem (Haupt and Haupt, 2004).

For instance, when solving for the extrema of function with multiple variables, an

approach will be to set the gradient of the function to zero and solve for the roots.

This means that the roots of such function are minima if the gradient is greater

than zero. However, deterministic optimisation algorithms do not necessarily re-

veal a global minimum. Therefore, the gradient of a given function in most cases

points to the steepest downhill.

This method is suitable for problems where the minimum is close to the initial

random guess but inefficient when the gradient of a function can not be deter-

mined. Some examples of algorithms in this category are: Steepest decent (Cartis

et al., 2010; Meza, 2010), Conjugate gradient (Dai, 2011; Narushima et al., 2011),

Newton-raphson method (Zhu, 2014; Polyak, 2007) and Quasi-Newton method

(Fletcher, 1987; Heath, 1998; Lewis and Overton, 2013).
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These algorithms have been used to solve optimisation problems (Zanella et al.,

2012). They have a rigorous guarantee for finding at least one solution. How-

ever, the computational complexity of deterministic algorithms can be excessive

for problems characterised by large dimensions. In addition, most combinatorial

and continuous problems are NP-Hard, thus increasing the computational resource

would not resolve the associated complexity. Others have compared various de-

terministic optimisation algorithms in order to identify which is more efficient,

accurate and robust.

A review of the application of deterministic optimisation algorithms to manage-

ment and engineering problems was presented by Lin et al. (2012). Although this

paper highlighted successful applications based on the deterministic algorithms,

they pointed out that for convex problems, there are other efficient numerical tech-

niques suitable for such problems. However, real-world optimisation problems are

(in most cases) non-convex with large dimensions (see Chiang (2008)). This im-

plies that the use of deterministic optimisation technique becomes inappropriate

because of the associated computational complexity.

A gradient-based optimisation algorithm was compared to a genetic and hybrid

optimisation algorithm in Chaparro et al. (2008) for the task of determining the

parameters of a constituent model. The results shown prove that the deterministic

optimisation algorithm exhibits fast convergence to a local minimum unlike the

genetic algorithm which converged to a global minimum. The hybrid algorithm

presented in the paper takes the advantage of both optimisation algorithms by

locating a point close to the minima using the genetic algorithm before using the

gradient-based algorithm as a local search algorithm to achieve the minimum.

Colaço and Dulikravich (2009) investigated the application of heuristic and deter-

ministic optimisation algorithms to an optimisation problem. The paper confirmed

that most deterministic optimisation algorithms converge to a local optimum un-

less modified using an adaptive search step size technique. They pointed out that

most optimisation problems are non-convex. This implies that solving for the

second derivative of such a problem is not possible. Therefore, second derivative

and gradient-based optimisation methods are not suitable and would result in

robustness and reliability problems.

Also, it is important to state at this point that to the author’s best knowledge,

there have been no algorithms employing only the deterministic optimisation ap-

proach for solving dynamic optimisation problems due to the computational com-

plexity associated with this method.
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2.1.2 Heuristic algorithms

Unlike deterministic techniques, heuristic optimisation techniques take a different

approach. These are algorithms that search for solutions to optimisation problems

in conditions where the complex nature of the problem or the permitted computing

time available do not allow an accurate solution. This means heuristic optimisation

algorithms do not guarantee finding the optimal solutions. These algorithms are

designed to search for solutions near the optimum in a reasonable time and are

studied for both discrete and continuous optimisation problems.

Heuristic optimisation algorithms can be grouped into population-based and single

solution algorithms. The single solution approach builds up a solution step by step,

always picking the next step that offers the most obvious benefits. Some examples

of algorithms following this approach are Tabu search (Gonzalez-Sieira et al., 2013)

and Simulated annealing (SA) (Kirkpatrick et al., 1983). The population-based

approach simultaneously updates a set of solutions and permits the transfer of a

worse solution from one generation to another so as to avoid getting stuck in the

local minimum (i.e. promoting diversity), e.g. Genetic algorithm (GA) (Patel and

Raghuwanshi, 2010), Ant colony optimisation (ACO) (Dorigo et al., 2006) and

Differential evolution (DE) (Neri and Tirronen, 2010).

There are several algorithms that have employed the heuristic approach in solv-

ing complex, challenging optimisation problems. Ying et al. (2009) proposed a

modified GA for the design of a PID controller. Due to the issue of premature

convergence associated with a simple GA, the author describes new crossover and

mutation functions. The modified GA was used to tune the gains of a PID con-

troller for an experimental fermentation device. Performance of the algorithm was

compared to the classic Ziegler-Nichols and Smith techniques. From results shown,

the proposed modified GA performed better than the classic method.

A hybrid genetic algorithm which is based on particle swarm optimisation and

interval algorithm was proposed in Xiao et al. (2010). They applied particle swarm

optimisation to the mutation operation in the GA and an interval algorithm in the

initialization of population of the GA. The hybrid approach was used in optimising

parameters of a PID controller. Their results showed the proposed algorithm

prevented the issue of premature convergence, improved stability of the algorithm

and achieved a good step response of the PID controller.

These algorithms adopt different techniques to avoid getting stuck in a local op-

timum. So exploration and exploitation properties are considered important for
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finding the global optimum of a given problem. Usually a heuristic algorithm

explores a solution space during the initial generation, with big and/or random

steps. Then in subsequent generations the algorithm explores the solution space

with small steps in order to find the best acceptable solution. It is important to

state that while the heuristic approach offers more flexibility than the deterministic

approach, some heuristic optimisation algorithms are known to be computationally

expensive (require long execution time and memory).

2.1.3 Discussion

This section discussed two optimisation techniques. The deterministic optimisa-

tion approach takes advantage of the analytical properties of a given problem to

generate a sequence of points that converge to a minimum. The nature of DOPs

presents challenges to the deterministic approach as this type of problem requires

tracking of the changing environment with respect to time. The performance of

a deterministic optimisation algorithm cannot be guaranteed when solving DOPs

since this type of problem takes into account other factors such as noisy fitness

functions and approximation error (Nguyen et al., 2012).

The deterministic approach works well in situations where the model of a problem

is well-defined with low dimensions such that the gradient, first and second deriva-

tive can be solved. It is also important to state that the computational effort of

algorithms employing the deterministic approach increases with the problem size

and in the case of DOPs becomes too complex to tackle (Colaço and Dulikravich,

2009).

On the other hand, the heuristic approach offers more flexibility and efficiency

for DOPs. According to Zanakis and Evans (1981), the heuristic optimisation

approach is considered advantageous when a simplified model of a problem which

can be an inaccurate representation of the real-world problem is used. In such cases

a near optimal solution is considered instead of searching for the exact solution

to an inexact problem. The performance of the heuristic optimisation method is

independent of the initial solution and is derivative-free. It overcomes the main

limitations of the deterministic approach getting stuck in local minima. In addition

to this, the characteristics of an objective function are inconsequential for the

success of algorithms employing the heuristic optimisation approach.



Chapter 2 Literature Review 13

The work in this thesis follows the heuristic optimisation approach based on the

evidence that it is easier than others to implement and treats the objective func-

tion as a black box, a simple connection between inputs and outputs with no

derivative information required. The heuristic approach relies on initial random-

ization associated with logical patterns as well as different constraint handling

methods. This approach is suitable for non-linear and non-convex problems with

many decision variables which are features of most DOPs (Hatzakis and Wallace,

2006; Mavrovouniotis and Yang, 2013b).

2.2 Dynamic Optimization Problems (DOPs)

Optimisation problems exist in all areas of industry, research and management.

For more than 20 years static optimisation has been an active area of research.

However, the inclusion of time dependency by Goldberg and Smith (1987) created

a distinct degree of difficulty. Many static problems can be modelled as dynamic

optimisation problems in which some parameters change during an optimisation

process.

A DOP can be defined mathematically as follows:

DOP =

{
optimise f(x, t) (2.1a)

s.t. x ∈ F (t) ⊆ S(t) ∈ T (2.1b)

where S is the problem search space, f : S×T → R is a target function that assigns

a fitness value f(x, t) at time t to candidate solutions x ∈ S. F (t) represents a set

of viable solutions x ∈ F (t) ⊆ S.

From Eq. 2.1, a DOP can defined as a succession of static optimisation problems

that are linked under some dynamic rules. The dynamic nature of such a problem

comes from the magnitude and frequency of change in an environment.

Dynamic changes in an environment can be dimensional or non-dimensional changes.

Problems that involve the addition or removal of design variables during an opti-

misation process are referred to as dimensional changes. In this type of problem,

a change in environment affects the representation of solutions and in some cases

transforms viable solutions to non-viable solutions. The non-dimensional change

corresponds to dynamic changes that affect the values of design variables. This

type of change can be easily handled by an efficient dynamic algorithm.



Chapter 2 Literature Review 14

The next section discusses different dynamic optimisation techniques, performance

measure and change detection techniques.

2.2.1 Enhancement Techniques to EAs for Solving DOPs

The nature of dynamic optimisation problems (DOPs) presents challenges to tra-

ditional optimisation algorithms because these problems require the changing en-

vironment to be tracked/monitored with respect to time. EAs can be considered

a good option for solving DOPs. In DOPs, values of an optimum changes with

time, thus changing the problem of optimum finding to optimum tracking. This

means the fitness landscape of a given problem is dynamic with both the fitness

and search space being time dependent. Below are some enhancement techniques

to EAs for solving DOPs:

2.2.1.1 Memory

The addition of memory schemes to EAs in order to enhance performance in a

dynamic environment has been implemented by researchers (Branke, 1999; Barlow

and Smith, 2008), especially when changes in the environment are periodical or

recurrent. The basic principle of a memory scheme is to store good solutions

(with any other information) and reuse them when a new environment is detected.

Information can be stored in memory in two ways: either integrated implicitly as

redundant representation or explicitly as a separate memory component.

Implicit memory schemes make use of redundant representations to store useful

information for EAs to exploit during an optimisation process. There exist differ-

ent redundant representations of memory for EAs such as diploid, haploid1 and

multiploid 2 (Uyar and Harmanci, 2005; Yang, 2006). Redundant representations

using diploid genomes are the most common implicit memory scheme. A diploid

EA is usually an algorithm whose chromosomes contain two alleles at each locus

(Yoshida and Adachi, 1994). According to Lewis et al. (1998) and Yang (2007b),

for tackling dynamic optimisation problems, the diploid and multiploid represen-

tation are highly suitable.

1A haploid or single-stranded chromosome contains half the cell of a diploid genome.
2A multiploid consists of a number of chromosome and a dominance mechanism underlying

it interpretation Collingwood et al. (1996).
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Lewis et al. (1998) demonstrated that the redundant coding scheme does not en-

sure enough diversity in dynamic optimisation problems that experience random

or oscillatory changes (for example situations where one or more target variables

change randomly during a search). Also in implicit coding schemes, the redun-

dant representation may become too large and this affects the performance of the

optimisation algorithm (i.e. increased computational burden). In order to recover

knowledge about the previous state of the environment, the implicit coding scheme

needs to encode the information about its current state into the representation.

The number of changing states of a given dynamic optimisation problem is directly

proportional to the redundant code needed for representing the changing states.

The explicit mechanism makes use of a precise representation (in the form of a

defined memory size) to store a good solution which will be used later in a new

environment(or in the event of an environment change). For the explicit memory

scheme, certain factors need to be carefully considered: what to store in memory,

how to represent the environment, how to update and organise solutions in memory

and how to use solution (and associated information) stored in memory. A common

practice with regards to the first factor is to store best performing solutions and

use them later when an environment change occurs. This is known as direct

memory scheme (Simões and Costa, 2008; Yang and Yao, 2005). For some dynamic

optimisation problems, the most diversified solutions (in terms of fitness value) are

stored in memory. Instead of storing only a good solution, it is also good to store

any relevant information associated with the best performing solutions in memory.

Then in the event of an environment change, the good solutions and associated

information are reused as a similarity measure to compare the new environment

with good memory solutions. This method is known as an associative memory

scheme (Richter, 2010).

One of the early implementations of the memory scheme was by Ramsey and

Grefenstette (1993) for a robot control problem. The robot stores good solutions

in a permanent memory with relevant information about the robot’s current en-

vironment. Memory size or space are usually limited, as a result the allocated

memory needs to be used efficiently. This leads to the second factor; how to orga-

nize and update memory. This can be achieved by storing the best found solution

of the current generation (or final generation) in memory and the update mech-

anism can be implemented in two ways: by replacing old solutions in memory

(individual oriented) (Simoes and Costa, 2007) or by replacing the solution with

the least contribution to diversity (population oriented) (Yang, 2005a). And for

the last factor on how to use solutions and information stored in memory, common
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practice is to retrieve the best solution in memory at every generation or after a

defined number of iterations or only when the environment changes.

In general, memory techniques are most useful in cyclic dynamic environments (

environments that reappear), otherwise they are not very effective (Branke, 1999).

2.2.1.2 Diversity

Promoting and maintaining diversity during an optimisation process can be achieved

in many ways, for example by increasing the mutation rate (Cobb, 1990), by insert-

ing random individuals back into the population (Yang and Yao, 2008), by moving

individuals from one sub-population to another and by keeping the sub-population

away from one another (Zhu et al., 2006).

In Yang and Tinos (2008), a hyper-selection scheme for GAs was presented to

tackle DOPs. This scheme increased the selection pressure whenever an envi-

ronment change occurred. In conventional GAs, individuals in the population

converge to an optimal solution in a static environment as a result of the selection

pressure. However, in a dynamic environment, converging to an optimum becomes

a problem for the conventional GA since it does not encourage sufficient diversity,

thus making it hard to adapt to a changed environment.

In Cobb (1990); Cobb and Grefenstette (1993), a mutation scheme was proposed

to introduce diversity into an EA in a dynamic environment. The algorithm starts

with a small mutation rate that is applied to the EA population, but this mutation

rate is not fixed. When there is a change in the fitness landscape, the mutation

rate is increased using a mutation factor (which is user defined) so as to encourage

diversity in the population. But if the mutation factor is too high then the effect

of the mutation scheme becomes equivalent to a restart scheme (i.e. restarting the

optimisation process).

According to Morrison and De Jong (2000), a triggering mechanism is employed

to activate the mutation scheme whenever a change occurs. This was achieved by

monitoring the running average of the best individuals of the population over a

defined number of iterations. When there is a decrease in the running average of

the best individuals of the population, the mutation rate is raised. This mutation

scheme is referred to as the hyper-mutation. Several authors have combined the

hyper-mutation scheme with other methods to improve the performance of EAs in

dynamic environments (Cheng and Yang, 2012; Cheng, 2012). Vavak et al. (1996,
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1997) introduced the variable local search in which the probability of mutation is

increased gradually.

The hyper-mutation scheme creates an adaptive EA with small incremental and

computational cost, but requires that the mutation factor be picked a priori. While

several articles have adopted the hyper-mutation method, none has considered an

adaptive method for controlling the hyper-mutation factor such that the probabil-

ity of mutation is directly proportional to the diversity scheme used.

Apart from the hyper-mutation and random immigrant techniques, the co-evolutionary

technique has been used to encourage population diversity e.g. fitness sharing and

crowding (Cedeno and Vemuri, 1997; Manner et al., 1992).

2.2.1.3 Multi-population

Another approach which resembles the diversity approach is the multi-population

scheme. Algorithms in this category maintain several sub-populations in parallel

so that the search force is distributed. Each sub-population tracks a different area

in the search space. One sub-population will focus on locating the global optimum,

while another sub-population monitors the environment for any possible change.

Algorithms employing this technique must consider two important factors for an

efficient application:

� Assigning different tasks to the sub-population i.e. one sub-population to

search and another sub-population to track the global optimum.

� The sub-population should be divided appropriately so as to make sure that

sub-populations are not overlapped to have best diversity and to avoid situ-

ations where many sub-populations locate the same peak.

In Branke et al. (2000) a Self-organizing Scout was presented, where the main

population of the algorithm explored the search space to locate an optimum. When

an optimum was found, a new sub-population was created and used to track

changes in the optimum. Nguyen and Yao (2009a) presented a Repair-GA for

solving dynamic constrained problems. This method makes use of a large sub-

population which mainly explores the search space and a smaller sub-population

which tracks the moving feasible region in the search space.
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In Ursem (2000), a multi-national GA (which grants the search and track ability

to the sub-population) was presented. Each sub-population can search for new

optimums and track changes. This way, whenever a sub-population locate a new

optimum, it splits into two sub-populations to ensure that each sub-population

only tracks one optimum at a time.

Algorithms following the multi-population approach have the ability to generate

and maintain diversity, and are a good candidate for tackling problems with com-

peting peaks (Li et al., 2015; Turky and Abdullah, 2014). This technique can be

used to simulate the memory technique (i.e. used to recall information from pre-

vious generation) since one sub-population is dedicated for tracking and retaining

previous solutions. This technique is able to search and track the movement of

multiple optima in the search space.

However, too many sub-populations can slow down an optimisation process due to

a large number of parallel locations in the search space. Also, the multi-population

approach is not suitable for environments that experience cyclic or recurrent dy-

namic change as it requires the calculation of distance or similarity metrics to sepa-

rate sub-populations which might affect performance. In fact, the multi-population

approach is not suitable for memory constrained dynamic optimisation problems

e.g. embedded system or direct hardware implementation.

There are other DO techniques which aim to improve the performance of con-

ventional EA when tackling DOPs such as the Prediction approach which learn

dynamic change patterns from previous environments and try to predict changes

in future environments (Hatzakis and Wallace, 2006; Rossi et al., 2008; Nguyen

and Yao, 2009b; Simões and Costa, 2009a,b) and the Self-adaptive mechanism for

EAs (Woldesenbet and Yen, 2009; Cobb, 1990; Yang and Yao, 2005).

Yu et al. (2010) proposed a new concept for solving DOPs known as robust opti-

misation over time (ROOT). They pointed out that the idea of tracking moving

optimum of a dynamic optimisation problem has some practical limitations;

� In order to keep track of optimum in dynamic optimisation problems, detec-

tion of environmental changes is important.

� Since environmental change is unpredictable, the idea of using knowledge

from the past is not reliable as there are situations where the environment

could change even before the optimum for the current state is found. This can

lead to restarting the search process multiple times, which is time-consuming

and inefficient.
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� Due to limited computational resource such as computing time, an optimum

solution may not be used (even if found suitable for real world application).

� In real world applications a decision made to improve performance at present

may become void or reduce performance in future environments.

According to the authors, a solution is robust over a defined time interval if its

fitness value remains insensitive to dynamic changes. Therefore, the main task

is to find a sequence of robust solutions over a defined time interval. Fu et al.

(2012) developed and discussed measures that can be used to classify and analyse

dynamic changes for the purpose of tackling ROOT problems. The main objective

of this paper was to identify what aspect of the fitness landscape is affected by an

environment change. Some of the measures developed by the authors are:

� Optimum degradation, which measures the rate at which the performance

of a previous optimum degrades for a particular environment change.

� Estimating optimum degradation, which is used to estimate the rate of op-

timum degradation without knowledge of the exact optimum.

� Optimum survival length, this measures how long the performance of previ-

ous optimum can remain valid in consecutive environment change.

� Estimated optimum survival length, similar to the idea of estimating opti-

mum degradation, but estimates the optimum survival length in consecutive

environment changes.

� Survival rate, this measure is used to estimate how long good solution from

the last environment change remains valid in a later environment change.

� Fitness correlation, measures the correlation coefficients of fitness of before

and after a dynamic change.

In order to analyse these measures, three problem instances of the moving peak

problem were used. Simulation results shown indicated that these measures permit

evaluation of various environmental changes. For a more detailed review of DO

techniques please refer to Nguyen et al. (2012).

Apart from the approaches mentioned above, for an EA to function properly the

genetic operators need to be tuned properly (as it affects performance and is

problem-dependent) and this can be achieved in three ways: 1) Deterministic
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method which involves adjusting the value of the strategy parameter using a de-

terministic rule which is fixed. 2) Adaptive method that makes use of feedback

from the optimisation process to determine when to change the strategy parame-

ter, which can be in form of an IF-THEN rule and may involve a credit assignment

which defines the quality of the solution discovered. 3) Self-adaptive method where

the mechanism for updating the strategy parameter is implicitly defined i.e. within

the EA being used (Eiben et al., 1999; Eiben and Smit, 2012).

2.2.1.4 Change detection

Detecting changes in a fitness landscape has been an active research area with

many methods being proposed but the task itself is not easy. In change detection,

several important factors need to be taken into consideration such as the severity

of change, change predictability, frequency of change, and cycle accuracy/length

(Richter, 2009).

Some of the existing dynamic optimisation algorithms employ an explicit action

to respond to dynamic changes. Some of these algorithms assume that any change

in the environment is made known to the algorithm or the algorithm has to detect

the change.

Re-evaluating dedicated solutions

Algorithms in this category regularly re-evaluate dedicated detectors in order to

detect environmental changes. The detectors are usually part of a population of

solutions e.g. elite solutions (Altin and Topcuoglu, 2014; Hu and Eberhart, 2002;

Kramer and Gallagher, 2003) or can be a separate sub-population (Nguyen and

Yao, 2010; Li et al., 2006; Zou et al., 2004).

However, these detectors do not always guarantee constant change detection since

the dynamic change may not affect the location of the detectors in the search

space. Several algorithms such as (Yang, 2007a), have adopted this method in

detecting environmental change by using solutions stored in memory as dedicated

detectors.

It was demonstrated by Richter (2009) that this change detection technique favours

situations where environmental changes are difficult to detect. A common limita-

tion of this method is when noise exists in the objective function, the detectors
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may not detect a dynamic change. Another concern is the additional cost of

re-evaluating the detectors every generation.

Monitoring algorithms behaviour

Some of the existing algorithms employing this method monitor the performance

of the best solutions in the population. This means a dynamic change is detected

by monitoring a drop in the value of the best solution over a number of defined

generations (Cobb, 1990). While other algorithms constantly monitor for a drop

in diversity. Morrison (2004) studied the possibility of detecting change based

on population diversity, relationship between the diversity of a fitness value and

success rate of the change detection. Richter (2009) presented a change detection

technique based on a statistical hypothesis test, so as to find the difference between

the distribution of population for two generations.

Algorithms that follow this approach, do not require any additional function eval-

uation. However, since there are no dedicated detectors, there is no guarantee

that a dynamic change will be detected.

2.2.2 Performance measure

When tackling DOPs, it is important to assess the quality of solutions so as to

compare the performance against other dynamic optimisation algorithms. In the

context of a static environment, during an optimisation process it is often enough

to report the best solution found by an algorithm at the end of the process (or

end of each iteration/generation). In some cases the memory used, execution

time and some error measures are considered. However, when dealing with DOPs

reporting just the above mentioned information is not enough because there is

other information about the optimisation process that needs to be taken into

account. This information includes the algorithm’s ability to detect and respond

to change, the algorithm’s ability to differentiate between noise and change, the

ability to switch region of concentration in the search space as the change occurs,

and most importantly how well the algorithm tracks the moving optimum.

An in-depth analysis of performance measures for optimisation algorithms in dy-

namic environments was presented in Weicker (2002). Three characteristics were

considered important for evaluating an optimisation algorithm in a dynamic envi-

ronment:
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� How accurately the algorithm is able to track the optimum at a given time.

� The stability of an algorithm: if change in the environment does not affect

the optimisation accuracy severely, then the algorithm is considered stable.

Even in extreme changes an optimisation algorithm should limit the drop in

fitness.

� How fast the algorithm reacts to changes during the optimisation process.

In the field of dynamic optimisation, there are many measures for evaluating the

performance of dynamic algorithms. These performance measures can be grouped

into two categories namely Fitness-based and Behaviour-based performance mea-

sures (Nguyen et al., 2012). The common measures within these categories are

discussed below:

2.2.2.1 Fitness-based measure

These are performance measures that evaluate the ability of an algorithm to find

an optimum solution or optimum solutions that are closest to global optimum.

This section will give a brief review of common fitness-based measures for DOPs:

� Best-of-generation: This is one of the most commonly used performance

measures (Alba and Sarasola, 2010; Chen et al., 2011; Mavrovouniotis and

Yang, 2013b). This measure is calculated as the average for a defined number

of runs of the best fitness values at each generation:

FBOG =
1

G

G∑
i=1

(
1

N

N∑
j=1

FBOGij

)
(2.2)

where FBOGij expresses the fitness value of the best solution at generation

i of run j, G is the total number of generations for a run and N is the

total number of runs. This measure can be used to compare algorithms

quantitatively. However, due to the difference in the fitness landscape and

different change periods, this measure can be considered to be biased as it

is not normalised.

� Modified Offline error: This measure calculates the average error of the

best solution since the last change in environment (Branke, 2001). This
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measure returns a value x≥0, where a 0 signifies best performance. The

modified offline error is defined as follows:

Foe =
1

G

G∑
i=1

fe(i) (2.3)

where G is the number of generations so far and fe(i) is the best error since

the last dynamic change found by an algorithm at generation i. This measure

is commonly used in evaluating the performance of dynamic optimisation

algorithms. However, it requires that the moving optimum be made known

for every period, which is not true in real-world dynamic problem.

� Modified Offline performance: Similar to the modified offline error, the

modified offline performance evaluates the performance of a dynamic op-

timisation algorithm in situations where the global optimum is unknown

(Mavrovouniotis and Yang, 2014b,a) and is defined as follows:

Fop =
1

G

G∑
i=1

fp(i) (2.4)

where G is the number of generations so far and fp(i) is the best error

since the last dynamic change found by an algorithm at generation i. The

advantages and disadvantages of Fop are similar with the FBOG. However,

it has an additional disadvantage because it requires that the period of a

dynamic change is known.

� Accuracy: Also known as relative error, measures the accuracy of an opti-

misation process assuming that the best and worst values in the search space

are known a priori (Weicker, 2002). The accuracy of a dynamic optimisation

algorithm is defined as follows:

acc =
FBOG(t)− fmin(t)

fmax(t)− fmin(t)
(2.5)

where FBOG expresses the fitness value of the best solution, fmax(t) is the

max value in a search space and fmin(t) is the min value in a search space

at generation t respectively. The value returned is between 0 and 1, where

1 is the best possible performance.

This measure does not depend on the fitness rescaling and is less biased

to the time of change, where the fitness difference becomes large. Weicker

(2002) pointed out that this measure is only effective if the entire search
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space is not a plateau at any iteration otherwise the denominator of Eq.(2.5)

at generation t would be 0 (i.e. resulting to a division by zero error).

2.2.2.2 Behaviour-based measure

The behaviour-based performance measure is used to evaluate whether a dynamic

optimisation algorithm exhibits certain behaviour in a dynamic environment. This

measure takes many forms such as monitoring and maintaining diversity through-

out an optimisation process, and avoiding a significant fitness drop when a change

occurs. Some of the behaviour based measures are discussed below:

� Total diversity: The total-diversity Tdiv measures the level of diversity

within a population. This also depends on the encoding scheme used, as

there are different metrics for different coding scheme. However, only the

binary encoding scheme is shown here (interested readers please refer to

Nguyen et al. (2012)). Usually, on binary-encoded problems, the hamming-

distance is used as the diversity measure(Rand and Riolo, 2005; Yu et al.,

2009). Tdiv at generation i can be defined as follows:

Tdiv =
1

G

G∑
i=1

(
1

N

N∑
j=1

divij

)
(2.6)

where in the case of binary encoded representation, divij is given as:

divij =
1

lµ (µ− 1)

µ∑
a=1

µ∑
b6=a

hd (a, b) (2.7)

where µ is the population size, l is the encoding length and hd(a, b) is the

hamming distance between solutions a and b.

Tdiv can be used in tuning an optimisation algorithm for a balance between

exploration and exploitation. This means a high diversity score signifies high

exploration which is equivalent to a random walk.

� Stability: This performance measure is used to evaluate the increase of fit-

ness after a dynamic change occurs (Weicker, 2002). In general an algorithm

is considered stable if the algorithms accuracy is not significantly affected

by a dynamic change.

stab(t) = max
{

0,
(
acc(t) − acc(t+1)

)}
(2.8)
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where acc(t) and acc(t+1) is optimisation accuracy (as defined in equation 2.5)

before and when a dynamic change occurs respectively. The values returned

from this performance measure is between 0 and 1, where 0 is the best

possible value.

� Reactivity (convergence speed after change): This performance mea-

sure evaluates how fast a dynamic optimisation algorithm reacts to dynamic

changes. The reactivity of a dynamic algorithm at time t is defined as fol-

lows:

react(t) = min

{
t
′ − t | t<t′ ≤ G, t

′ ∈ N,
Acc(t′ )
Acc(t)

≥ (1− ε)
}
∪ (G− t) (2.9)

where G is the total number of generations. This particular performance

measure suffers from a particular drawback: it is only useful if there exists

an actual drop in performance whenever a change in environment occurs. If

not, there is no information about how well a dynamic algorithm responds

to dynamic changes.

Apart from these measures other authors have reviewed different performance

measures e.g. Ben-Romdhane et al. (2013); Nguyen et al. (2012). Having looked

at some of these measures, a conclusion can drawn that there exists no universal

performance measure for comparing algorithms, rather performance measures are

problem dependent or user defined.

2.2.3 Discussion

Dynamic optimisation problems present challenges to the conventional evolution-

ary algorithm. As stated earlier, these problems are influenced by uncertain and

dynamic factors. In order to counter these factors an adaptive mechanism is

required to introduce changes to the optimisation process. When solving such

problems the main objective is to minimize cost over a period of time. There is

literature addressing DOPs, but none has considered a memory efficient compact

approach as an alternative to population-based algorithms. In DOPs, fitness val-

ues of the optima change with time. Consequently, the fitness landscape of such

problem is dynamic with the possibility of both the fitness and search space being

time dependent.

While the research in DOPs is progressing, most of the current research is based on

artificial benchmark problems (Li et al., 2011, 2008; Mavrovouniotis et al., 2013)
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where the level of dynamism and complexity of a problem are controlled. These

artificial benchmark problems are in the form of a DOP generator that generates

a predefined landscape and permits the control of how the change occurs, and the

type of change. One of the commonly used artificial benchmark problem is the

Moving Peak Benchmark (MPB) (Branke, 1999; Mavrovouniotis et al., 2013). This

benchmark consists of a multi-dimensional landscape with several peaks, where the

position, width and height of each peak are modified once every defined iteration

to simulate a change in environment. The level of complexity of this problem can

be augmented further by increasing the problem dimension, number of peaks and

by introducing noise into the whole landscape.

There are other artificial benchmark problems (Li and Yang, 2008; Yang and Yao,

2005; Rohlfshagen and Yao, 2009) that follow the same idea but what remains un-

clear is what feature of a real-world problem do these artificial benchmark problems

model. Since real-world problems experience dynamic changes that are unpre-

dictable and uncontrollable, how do these benchmark problems take into account

these unpredictable changes?

Interesting real-world dynamic optimisation problems have began to appear in

the last few years. However, these real-world problems make use of real-world

data to do simulations (e.g. Atkin et al. (2008)) before exporting solutions to the

actual real-world problems (Mills-Tettey et al., 2008). For example; in Dam et al.

(2007), an online data mining task in a changing environment was solved using

a classifier system known as a genetic-based learning classifier system (GBLCS).

The evaluation function of a multi-rover was evolved in an uncertain and noisy

environment using an EA. A pollution control system, car distribution system for

off-lease vehicles and path planning of ships was solved in Michalewicz et al. (2007)

using Adaptive Business Intelligence (ABI).

There have been several other applications to real-world problems with positive re-

sults. However a major concern is the complex structure of the algorithms used, as

they employ so many modifications to the conventional algorithm which increases

the computational resources needed to execute them. This hinders their applica-

tions to real-world optimisation problems (using memory constrained embedded

systems). Most of these algorithms have long execution time and this makes them

unsuitable for most real-world problems, since most real-world optimisation re-

quires a fast response.
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2.3 Evolutionary Algorithms in Control Systems

The field of control systems has been an active area of research for many decades. A

control system can be found in cars, industrial equipment, communication systems,

medical equipment and many more. For a system to function properly a control

system is required. A control system plays a key role in the design of experimental

equipment used in scientific research. This implies that the field of control systems

will continue to grow as long as new technologies are developed. The main aim

of control system design is to find a controller that makes it possible to control

complex systems effectively.

∑
Controller

Evolutionary algorithm

System
Input

Sensor

Setpoint +

Control parameters

Error Output

Feedback

−

Measured output

Figure 2.1: Overview of a typical evolutionary feedback controller loop

2.3.1 Control design techniques

For an effective control of a dynamic plant (system), it is important to have a firm

understanding of the plant’s behaviour i.e input-output relationship (see Fig. 2.1).

This behaviour can be explicitly defined using a model of the plant or implicitly

defined using a numerical model of the plant. This can be in form of experimental

data, control laws that have been tuned based on experiments.

2.3.1.1 Model-based

Most control algorithms rely on models of a plant to be controlled (Karsai et al.,

2003). These models are constructed from physical observations and considera-

tions of a defined plant (i.e. mathematical behaviour of the plant). These models

are accurate to an acceptable level in order to achieve dynamic performance of the
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feedback control (Jensen et al., 2011). This method is known as Model-based de-

sign. These models are usually built for a particular plant (i.e. plant specific) and

cannot be transferred to another model (e.g by using a helicopter model to control

a cart pole system model), therefore restricting its application to a particular type

of plant.

The ability of a model to act as a physical system must be reviewed by comparing

model behaviour with the actual system behaviour. This means any mathematical

model of a plant must be validated, as wrong and erroneous conclusions can be

drawn from results obtained while simulating inadequate plant models. In order

to avoid such mistake, a control/physical law (which can be in the form of New-

ton’s law of motion) is used to model the behaviour and parameters of a plant

(Franceschini and Macchietto, 2008).

2.3.1.2 Model-free

Model-free control method implies the absence of a detailed analytical (software)

model of the physical system, derived by a control designer, engineer or technician.

This model consists of very few parameters that are estimated on-line while the

plant is active (Fliess and Join, 2009). There are situations where a numerical

model of a plant is considered valid in understanding the behaviour of a plant.

These are situations where a plant is too complex and expensive to model. This

includes time varying systems and plant models with parameters that needs to be

defined experimentally.

Model-free control involves trying to estimate what can be modified through the

measurement of input and output of a system in order to achieve good output, and

this means constructing a numerical model of the system (Gédouin et al., 2011).

The main idea behind model-free control is to identify the input-output behaviour

of a controlled system so as to modify the behaviour of the system using a defined

control law. This is achieved within a defined time and for each sample time, the

estimation is updated for good performance.

Close coupling of system identification and the control design steps is important

features of model-free control design technique. This makes the design process

easy so that if the plant controller is simplified, the simplification process is carried

out with respect to the controllers input-output relationship, unlike model based

design which follows the plant input-output relationship (Woodley et al., 2001;

Lauwerys et al., 2005).
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2.3.2 Evolutionary optimisation of controllers

The global optimisation field has been an active area of research, giving rise to dif-

ferent optimisation algorithms for problems in both continuous and combinatorial

domain. Heuristic and stochastic algorithms have been developed as efficient tools

for global optimisation and have been applied to various optimisation problems in

diverse field.

Evolutionary optimisation techniques have been applied in the design of control

systems (hui Chang et al., 2011; Gongora et al., 2009; Passow et al., 2008; Smit

and Eiben, 2009). Control system design based on optimisation can be carried

out in order to obtain optimum control parameters (which can be offline or on-

line). Optimisation based on EAs evaluates over many generations population of

individuals (solutions) usually specified by artificial genotypes. In some cases this

process follows the Darwinian principle of evolution, the fittest individuals proceed

to next generation to produce new offspring.

An important decision in evolving control systems is whether or not to use simula-

tion at the evaluation stage, then transfer the end result to the real-world problem.

Since a conventional evolutionary approach potentially evaluates a population of

solutions over many generations, a natural approach would be to carry out simu-

lations so as to speed up the process, making it more feasible.

A control system evolved using a carefully constructed simulation environment

would generate almost an identical behaviour in the actual real system. How-

ever, this is only true for simple control problems and simple environments. If

there exist any form of change in the behaviour of a system, the results obtained

from simulation becomes invalid. In such situations, the simulation becomes time

consuming to construct and computational intensive and expensive.

2.3.2.1 Static optimisation

The majority of control system optimisation approaches have been in a static en-

vironment, where the fitness landscape, objective function and control parameters

remain constant. However this is not always true in a dynamic environment.

A new design method was presented in hui Chang et al. (2011) to determine opti-

mal parameters for a PID controller using the adaptive fast evolutionary algorithm
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(AFEP). The AFEP was used in combination with a PID control to solve the po-

sition control problem of a DC motor. The method was tested on the position

control system of a SYL-5 PM DC motor and compared with conventional EP

and the Z-N (Ziegler and Nichols) tuning method. Results obtained showed that

the proposed method can improve dynamic performance of the system in a more

efficient way.

A neural adaptive control system based on the accelerated evolutionary program-

ming was proposed in (Wang et al., 2006). The AEP was used to train an ANN so

as to obtain optimal performance. The ANN of the control system, models com-

plex processes with uncertainty which then returns the signals for on-line tuning

of the controller.

In Makaitis (2003), evolutionary programming was used as an iterative learning

process to evolve rules of a Mamdani fuzzy controller. This controller was applied

to an elevator control system problem. The fuzzy controller consists of two inputs

(position and velocity) and a single output (acceleration). A total of 17 linguistic

terms were defined for both the inputs and output of the controller. The evolu-

tionary algorithm was also used for modifying the rules in the knowledge base,

so as to permit concurrent adjustment of both the linguistic terms and the fuzzy

logic rules.

In Chiang (2010) an intelligent control system using genetic programming was pro-

posed. The control system generates control rules automatically even in uncertain

or unknown environments. The controller consists of a symbolic rule controller,

percepter and an adaptor. The control system is made up of two stages, the learn-

ing stage - which uses flexible genetic programming to build initial control rules

and the adaptive stage - which is for controlling the plant. The control system

was applied to a robot path planning problem and result obtained, showed that

control performs well but requires more cpu time.

A PID control optimisation technique using a GA was presented by Passow and

Gongora (2008). The optimisation process was implemented on a real flying robot.

This optimisation technique was compared with hand tuning method and it was

observed that the real-time tuning technique using GA granted more robust per-

formance.

Some control optimisation process run on a host computer while potential solu-

tions are sent from the computer to a target system through a communication

link (please see Passow and Gongora (2008); Caraffini et al. (2013); Gongora et al.
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(2009)). These solutions are evaluated using the target system where control per-

formance is recorded and sent back to the host computer for fitness evaluation.

Although this method has proven effective, the environment upon which these con-

trols are evaluated experience some form of uncertain and dynamic changes which

are unpredictable. In many control systems these uncertain and dynamic factors

come from the errors of the real-world physical equipments and disturbances.

2.3.2.2 Dynamic optimisation

In general, the gap between academic benchmarks and real-world applications (us-

ing physical systems) in control optimisation exist not only in the way academic

benchmark environments are designed but also in the way the associated optimi-

sation algorithms are designed. Optimisation algorithms often exploit simulation

discrepancies in an opportunistic manner to achieve high fitness values with unre-

alistic behaviours.

On the other hand, in DOPs most optimisation algorithms are also designed to

work well in benchmark simulations. However, for a real-world problem some

algorithms may not work well to satisfy other optimisation goals. This is because

environmental changes in real-world scenarios are unpredictable. As a result the

best solution achieved by a dynamic algorithm after a change might be notably

different from the solution before a change (i.e. promising region in the search

space experience significant displacement).

In Isaacs et al. (2008), a memetic algorithm was presented for solving dynamic

multi-objective optimisation problems. The learning error of a neural network

was minimized using a memetic algorithm. The optimised neural network was

then used to control a dynamic model of an Unmanned Aerial Vehicle (UAV). The

neural network controller was trained online due to the significance of noise which

could render offline training ineffective.

Mitra and Venayagamoorthy (2008) presented an adaptive control strategy for a

DSTATCOM controller in an electric ship power supply based on Artificial Immune

System (AIS). The main objective of their paper was to maintain the regulation of

a reference value for a bus voltage in a ship power supply unit (i.e. using a simpli-

fied hardware set-up of the ship system) in real-time. According to this paper, a

PI controller was first tuned using PSO so as to obtain optimum parameter. Then

AIS was used to adjust the solution online to minimize disturbance. Although this
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strategy is limited by its computing time and complex structure of the algorithms,

the results were promising.

An optimal visual proportional differential controller was presented by Wang et al.

(2008). The PD controller was used to improve the performance of a visual servoing

system. Using the visual servoing system experiments were carried out to minimize

robot trajectory from a reference trajectory. According to the paper, experiments

were carried out using a physical system. However, a mathematical model of the

system was defined offline and optimisation was also carried out offline.

There are other applications of DOAs based on models of real-world problems

or using data obtained from real-world scenarios (Alvarez-Gallegos et al., 2005;

Tawdross et al., 2006; Jatmiko et al., 2008; Haugwitz et al., 2009). Although

the dynamic algorithms used in these papers show good performance, the com-

plex structure of these algorithms limit their direct implementation on embedded

hardware with limited memory. This is because these algorithm employ more

than one dynamic optimisation techniques which in turn increases the memory

requirements needed to run such algorithm. In addition, the model used may not

relate directly to the actual system. Some important features such as noise and

uncertainties may have been neglected.

2.3.3 Discussion

From the reviews carried out, it was observed that there exists a great gap between

academic research theory and practice. From a pragmatic perspective, some re-

searchers have developed algorithms that successfully solve optimisation problems

using real-world scenarios or real-world data, while other researchers have evalu-

ated dynamic algorithms using artificial benchmark problems. A good observation

is the complex structure of dynamic optimisation algorithms being proposed, they

employ different modifications to improve performance in dynamic environments.

However, these modifications increase the computational complexity of the algo-

rithm making them unsuitable for small scale embedded micro-controllers.

Real-time control applications are typically implemented on embedded micro-

controllers with limited computational power. This makes them a good candidate

for developing dynamic optimisation algorithms suitable for solving real-time, real-

world problems notwithstanding resource constraints. Available computational

resource is an important factor which is often neglected. In embedded micro-

controllers, the memory is often restricted and has to be used efficiently.
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However, the need to solve an optimisation problem at a specific rate, imposes

a very large computational demand on the device implementing the control op-

erations. So far control optimisation has been widely adopted in situations that

permit long execution and evaluation times. The bulk of research on the develop-

ment of dynamic optimisation algorithms focuses on computation counts or fitness

evaluations and implementation, and can afford long computing times.

Therefore, it is essential to develop algorithms that can be directly applied to

real-world dynamic problems, specifically real-world dynamic problems using an

embedded system (with limited limited memory) so as to reduce the gap between

academic research and real-world applications.

2.4 Compact Optimization Approach (cOA)

The availability of powerful and complex computational devices continues to in-

crease constantly. However, there are some applications that make use of intel-

ligent systems that are affected by hardware limitation to perform some specific

operations in real-time. This situation is typical in an embedded systems. These

impose the use of simple hardware structures (due to cost and physical space re-

quirements) that are affordable for real-time control system optimisation, where

all control, evaluation and optimisation operations are carried out on-board the

micro-controller.

In such situations, the structure of an optimisation algorithm plays an important

role in the performance of the algorithm if high efficiency is desired. The research

on complex population-based algorithms has been increasing constantly because of

their ability to detect a solution in the promising region of a search space. However,

direct implementation of these algorithms on an embedded system is not possible

due to hardware limitations and the complex structure of these algorithms.

This section gives an overview of compact optimisation algorithms (cOA), which

are optimisation algorithms that belong to a class of estimation of distribution

algorithms (EDAs) (Larraanaga and Lozano, 2001; Pelikan et al., 2000). Applica-

tions to DOPs and limitations of existing cOAs are also highlighted.
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2.4.1 Compact genetic algorithm (cGA)

The compact genetic algorithm was proposed by Harik et al. (1999) as an esti-

mation of distribution algorithm that creates offspring populations based on an

estimated probability model of the parent population. The cGA uses a probabil-

ity vector (
−→
P ) to model the distribution of the population and represent the bit

probability of 0 or 1.

−→
P = {P1, . . . , Pl} (2.10)

where l is the binary string length and Pi ∈ {0, 1}, (i = 1,. . . ,l). The probability

vector is initially assigned 0.5 to represent a randomly generated population. Two

candidate solutions are sampled from
−→
P and their respective fitness calculated.

The solution with the best fitness value biases the
−→
P based on the population size

Np. The probabilities Pi in
−→
P increases by 1

Np
if the ith gene of the best solution

sampled displays a 1 and deceases by 1
Np

if the ith gene of the best solution displays

a 0. On the contrary, if the ith gene of both the best and worst solution sampled

are the same, Pi is not modified.

P
′

i =


Pi +

1

Np

if besti = 1, (2.11a)

Pi −
1

Np

if besti = 0. (2.11b)

One of the advantages of the cGA is that the population size does not mean a

real population but a simulated population and based on this a large population

can be effectively exploited without compromising the memory requirement of any

application. The cGA can simulate high selection pressure by incorporating the

elitism method. This provides a means for reducing genetic drift by ensuring that

the best performing solution is passed onto the next generation. The pseudo-code

describing cGA is shown in Table 2.4.1.

Other variants of the cGAs have been developed to enhance the speed and accuracy

of convergence of the original cGA. Some of the cGA variants are discussed in the

following section:
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Algorithm 2.4.1: cGA (l, Np)

l← string length, Np← population size
Step 1 : Initialize probability vector(P ){

for i← 1 to l
do P [i]← 0.5

while t<max generation

then



Step 2 : Sample solutions from P{
solution1← generate(P )
solution2← generate(P )

Step 3 : Let solutions compete{
winner, loser ← compete(solution1, solution2)

Step 4 : Update working P

for i← 1 to l

do


if winner[i] 6= loser[i]

then


if winner[i]← 1

then
{
P [i]← P [i] + 1

Np

else
{
P [i]← P [i]− 1

Np

t← t+ 1

Table 2.1: Pseudo-code of a conventional compact genetic algorithm (cGA)

Ahn and Ramakrishna (2003) presented two novel variants of the cGA. These

algorithms are known as the persistent cGA (denoted as pe-cGA) and the non-

persistent cGA (denoted as ne-cGA). Both algorithms share the same idea as the

conventional cGA. However, pe-cGA and ne-cGA achieved better fitness when

compared to the conventional cGA. During the initialisation stage, two solutions

are randomly generated. Then in subsequent generations, only one solution (usu-

ally the best in terms of fitness value) is retained as an elite and compared to

another randomly generated solution. The elite solution biases the
−→
P only if it

outperforms the randomly generated solution. However, if the randomly solution

outperforms the elite solution, it replaces the elite and
−→
P is updated using the

new elite. The pe-cGA differs from the ne-cGA in that the elite replacement only

occurs if a random solution outperforms the elite solution. While in ne-cGA, the

elite is replaced not only if outperformed by a randomly generated solutions but

also after every n generations regardless of the fitness value of the elite.

In Mininno et al. (2008), a real-valued compact Genetic Algorithm (rcGA) was

proposed. The rcGA exports the idea of the compact logic of the cGA to the

real-valued domain without a substantial increase in memory requirements. The
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Algorithm 2.4.2: nonpersistent rcGA (d, η, Np, θ, λ)

d← problem dimension
Np← population size
λ← initial standard deviation
θ ← the present length of inheritance
η ← the allowable length of inheritance

Step 1 : Initialize mean (µ), and variance (σ) vectors of Pfor i← 1 to d

do

{
µj ← 0
σj ← λ

while t<max generation

then



Step 2 : Sample one solution from P
if first generation

then

{
θ ← 0
elite solution← generate(P )

random solution← generate(P )
Step 3 : Let solutions compete

winner, loser ← compete(elite solution, random solution)
if (θ<η) and (winner == elite solution)

then
{
θ ← θ + 1

else if (winner == random solution)

then

{
elite solution← winner
θ ← winner

else

{
elite solution← generate(P )
θ ← 0

Step 4 : Update mean (µ), and variance (σ) of P
for i← 1 to d

do


µ

′
[i]← µ[i] + 1

Np (winner[i] − loser[i])(
σ

′
[i]
)2
← max{0, v′

i}
v

′

i ← (σ[i])2 + (µ[i])2 − (µ
′
[i])2 + 1

Np

(
winner[i]2 − loser[i]2

)
t← t+ 1

Table 2.2: Pseudo-code of a non-persistent real-valued compact genetic algo-
rithm (rcGA)

rcGA makes use of a n× 2 matrix:

P t =
[
µt, σt

]
(2.12)

where µ and σ are vectors that represent the mean and standard deviation of

solutions sampled using a Gaussian probability distribution function truncated

within the interval [-1, 1]. At the initial stage of an optimisation, for each variable

i, µl[i] = 0 and σl[i] = λ where λ is positive value.
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Similar to the pe-cGA and ne-cGA, two solutions are sampled from P t with one as

an elite. The mechanism for sampling a design variable x[i] is defined as follows:

PDF (truncNorm(x)) =
e
− (x−µ[i])2

2σ[i]2

√
2
π

σ[i]
(
erf

(
µ[i]+1√
2σ[i]

)
− erf

(
µ[i]−1√
2σ[i]

)) (2.13)

where erf represents an error function (please refer to Abramowitz and Stegun

(1972)). After the evaluation stage, the elite/winner solution biases P and the

update rule for µ and σ is defined as follows:

µ
′
[i] = µ[i] +

1

Np

(winner[i]− loser[i]) , (2.14)

(
σ
′
[i]
)2

= (σ[i])2 + (µ[i])2 − (µ
′
[i])2 +

1

Np

(
winner[i]2 − loser[i]2

)
(2.15)

where Np is the simulated population size. The pseudo-code describing rcGA is

shown in Table 2.4.2. Two variants of the rcGA were studied (i.e. pe-rcGA and

ne-rcGA) in Mininno et al. (2008) with results and it was observed that the level

on the elitism is problem dependent.

2.4.2 Other cOA

Apart from the cGA and its variants, other cOA have been proposed, suitable

for solving memory constrained optimisation problems. Mininno et al. (2011)

introduced the compact Differential Evolution (cDE). The cDE modifies the rcGA

by sampling more solutions in accordance to the mutation rule of the conventional

Differential Evolution (DE) (Das and Suganthan, 2011). A memetic variant of the

cDE was presented in (Baraglia et al., 2001), which is composed of a cDE and

a local search. Other similar related cOA research is presented and discussed in

Neri et al. (2010); Lanzi et al. (2008); Fossati et al. (2007); Nakata et al. (2013)

and Tominaga et al. (2013).

2.4.3 Addressing DOPs

Although optimisation in dynamic environments has been an active field of EA

research for the past two decades, only recently the DOP has started to raise

interest among Estimation of Distribution Algorithms (EDAs) researchers.
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One of the first EDAs applied to a DOP was the population-based incremental

learning algorithm (PBIL) (Baluja, 1994), which was used in Yang and Yao (2008,

2003, 2005) to solve DOPs created by a benchmark generator. The first cGA

applied to DOP was presented in Harik (1999). The approach used was based

on random restart mechanism i.e. at each environment change the population

undergoes a random restart so that diversity in the population can be increased

at the beginning of the new environment. The paper also demonstrated the use

of learned structural information about the problem to accelerate the growth of

highly fit substructures so that the algorithm can adapt to the new environment.

This method was later extended in Sastry et al. (2005) to include sub-structural

niching (i.e. in sub-structural niching, niches are defined within linkage group

rather at individual level). After computing the average fitness of each substruc-

ture, the sampling probabilities are changed based on the associated fitness.

An approach for maintaining diversity throughout an optimisation process using

EcGA was presented in Chuang and Smith (2013). A restricted tournament re-

placement strategy was used to demonstrate that the problem structure should

be considered when maintaining diversity. The main aim of their paper was to

develop an algorithm that responds to change without the additional means of

detecting an alteration in the fitness landscape. In addition, They explained that

diversity should be maintained at a sub-structural level when solving DOPs.

2.4.4 Discussion

Although some of these algorithms have been successful in tackling DOPs, from

reviews, it was observed that some of the applications of variants of the cGA to

DOPs did not explicitly state how changes in the environment was determined or

sensed. There have been no mechanisms that permit knowledge and information

transfer from one environment to another. To the best of the author’s knowledge

none of these applications to DOPs using cGA has applied a mechanism to deter-

mine the degree of change in the dynamic environment while maintaining diversity.

The observed questions are addressed in this thesis.



Chapter 2 Literature Review 39

2.5 Summary

This chapter introduced the existing literature on the methods and concepts dis-

cussed within the thesis. Dynamic optimisation techniques and performance mea-

sures were presented and discussed. In addition, some limitations of the existing

dynamic approach were discussed. Compact optimisation algorithms were pre-

sented in this chapter, as well as associated progress and limitations. This chapter

can be considered as the base upon which this work is built.

The next chapter presents and discusses in detail a novel compact optimisation

algorithm that is suitable for real-world (real-time) dynamic optimisation prob-

lems and more specifically dynamic problems using memory constrained embedded

systems.



Chapter 3

Compact Approach to Dynamic

Optimisation

In order to successfully solve dynamic optimisation problems using an evolutionary

algorithm, there is a need for additions to the conventional algorithmic structure.

Most of the dynamic optimisation techniques discussed in section 2.2 can be trig-

gered and hence made to work properly if dynamic changes are made known to the

algorithm (visible and detectable). This means that the issue of change detection

is of high practical relevance in solving DOPs. Apart from detecting change in a

dynamic environment, there are other important questions that need answers such

as 1.) ”how does the change detection improve the performance of an algorithm?”

and 2.) ”does the environment exhibit change patterns that can be learnt by a

dynamic optimisation algorithm?” This chapter seeks to provide answers to these

questions.

This chapter presents and discusses a novel variant of the cGA known as adaptive-

mutation compact genetic algorithm (denoted as amcGA). Specifically three

novel contributions are presented in this chapter that make up the amcGA struc-

ture: a novel change detection scheme 3.1.1, novel adaptive mutation schemes 3.1.2

and a novel change trend scheme 3.1.3. Based on these schemes, five variants of

the amcGA are presented in this chapter and are denoted as amcGA1, amcGA2,

amcGA3, amcGA4 and amcGA5 (please see Eq. 3.5, 3.6, 3.7, 3.10 and 3.11 re-

spectively).

40
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3.1 Adaptive-mutation Compact Genetic Algo-

rithm (amcGA)

In static environments, the goal of an optimisation algorithm (in most cases) is to

find the global optimum. However, in a dynamic environment where the considered

problem is time varying, the goal of an optimisation algorithm is to find and track

the changing optimum over time.

The cGA is of particular interest in this research, not only for the reduction of

memory requirements but also because of its compact structure, the absence of

random selection, recombination and the lack of population. As discussed in sec-

tion 2.4.1, the cGA represents its population as a probability vector over a set of

solutions. This implies that the cGA only models the existence of its population,

similar to the sGA with uniform crossover using a small amount of memory (Gold-

berg, 1989; Harik et al., 1999). This makes the cGA suitable for small scale em-

bedded hardware systems with limited memory and processing capabilities since

population-based optimisation algorithms are computationally more expensive,

and thus unsuitable for such application.

More specifically, the potential of the cGA is particularly promising because em-

bedded systems are an important part of modern technology in various fields,

such as evolvable hardware (Gallagher et al., 2004; Kramer and Gallagher, 2003;

Aporntewan and Chongstitvatana, 2001). Although, the conventional cGA is com-

putationally efficient (in terms of memory requirements), it can not solve difficult

optimisation problems such as deceptive functions. This is due to the fact that

it lacks the memory required to retain information (e.g. linkage of genes) about

such problems (Harik et al., 1999).

Previous studies have shown limitations of the conventional cGA (Chuang and

Smith, 2013; Phiromlap and Rimcharoen, 2013b). It lacks the search power re-

quired to solve some optimisation problems such as dynamic optimisation, multi-

objective and highly dimensional problems. Several techniques have been proposed

aiming to improve the performance of the conventional cGA. Most of these authors

(e.g Ahn and Ramakrishna (2003); Silva et al. (2007, 2008)) focus on introducing

techniques to overcome reduction in performance when tackling problems with

high order building blocks (BBs). Another contribution is the addition of the

elitism scheme by Ahn and Ramakrishna (2003). The elitism scheme has been
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used to demonstrate the best balance between performance and demand of re-

sources (see Ahn and Ramakrishna (2003)). Although, the elitism approach does

not encourage genetic drift, the level of elitism should be controlled appropriately

because high selection pressure may lead to premature convergence.

Despite the performance exhibited by the cGA when tackling problems of low order

BBs, its performance is limited when high order BBs are inherent in a problem.

This implies that even with the compact nature of the cGA, the information about

high order interaction between solution structure (chromosome) does not last over

generations. However, the performance of the cGA improves when the selection

pressure is increased. The selection pressure increases the probability of high

order building blocks to last over generations. Some authors have modified the

conventional cGA to enhance performance by regulating selection pressure e.g.

pe-cGA and ne-cGA (Ahn and Ramakrishna, 2003), mcGA (Zhou et al., 2002;

Gallagher et al., 2004) and mcGA with elitism (Silva et al., 2007, 2008). Among

all modified variants, the mcGA with elitism showed best performance in terms of

trade off between solution quality and convergence speed (Silva et al., 2008).

The performance of the conventional cGA in a dynamic environment is limited as

once the probability vector converges it is unable to adapt to the changed envi-

ronment. In addition to this the conventional cGA has a limited ability of finding

the global optimum in highly dimensional search space. As a result, novel modifi-

cations to the original algorithm are required so as to boost its performance when

tackling DOPs. The novel modifications discussed in this section are designed to

augment the abilities of the conventional cGA by modifying the standard eval-

uation cycle. These novel modifications allow the algorithm to retain the small

footprint of the conventional cGA and greatly increase its search efficiency in dy-

namic environments (see Chapter 5).

3.1.1 Change detection

The first novel contribution is a change detection scheme that detects and deter-

mines the degree of change in a dynamic environment. Usually, for an algorithm to

address DOPs efficiently, it is important to detect changes in a dynamic environ-

ment (Richter, 2009). Section 2.2.1.4 in chapter 2 described different change de-

tection schemes (highlighting advantages and limitations of each approach). This

section introduces a novel change detection scheme that measure the degree of

change cd in a dynamic environment based on the fitness of an elite. In order to



Chapter 3 Compact Approach to Dynamic Optimisation 43

achieve this, a Gaussian function is employed because this function is suitable for

problems that require continuously differentiable curves and smooth transitions

(Hameed, 2011). This function is defined as follows:

cd = e−a (3.1)

where:

a =
(∆f − c)2

2σ2
(3.2)

and c = 1 is the mean (i.e. maximum change), σ represents standard deviation

and ∆f is the change in fitness or fitness difference between the elite solution at

generation t− 1 and the same elite solution re-evaluated at generation t:

∆f = f (e, t− 1)− f (e, t) (3.3)
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0
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0.4
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c d

σ = 0.3
σ = 0.5
σ = 0.7

The curves in the plot represents
different variance for the change
detection scheme (i.e. σ). This
parameter also defines how sen-
sitive the amcGA is to dynamic
changes i.e. when to output a new
cd which is used to calculate prob-
ability of mutation.

Figure 3.1: Diagram demonstrating the change detection scheme with x-axis
as input and y-axis as output

It is important to state that decline in fitness of the elite solution is considered in

this research as a sign of change in the environment i.e. the algorithm monitors

the performance of the elite solution (see Fig. 3.1). The algorithm employs the

elitism approach, where the best solution from a previous generation is transferred

and evaluated in subsequent generations.
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3.1.2 Adaptive mutation

The second novel contribution is the addition of a diversity scheme to help maintain

diversity during an optimisation process. This is accomplished by modifying the

conventional cGA cycle so that an improved mutation scheme is used to generate

a mutated version of an elite solution for tournament selection.

In this section, it is hypothesized that:

”using an adaptive mutation scheme is better than a mutation scheme

with two fixed mutation rates (base mutation and high mutation)

which are controlled by a mutation factor that must be picked a priori”

i.e. the hypermutation scheme (Cobb, 1990; Morrison and De Jong, 2000).

If the mutation factor in the hypermutation scheme is not picked carefully, it would

result in insufficient variation in the population or would clearly disrupt the overall

performance of an EA. The adaptive mutation scheme discussed here makes use of

the degree of change cd in an environment to regulate the probability of mutation

pm (see Eq. 3.4) such that the degree of change in a dynamic environment is

directly proportional to the probability of mutation.

Adaptation of genetic operators (in some cases) depends on how operators are

updated. In general, adaptation of genetic operators can be grouped into two

main categories i.e. population-level and individual-level adaptation (Angeline,

1995). At an individual-level adaptation, the properties of an individual in a

population are modified, whereas in population-level adaptation, parameters are

globally adapted by using the feedback information from the population or feed-

back during an optimisation process. The majority of existing literature follow the

individual-level adaptation e.g. (Cheng and Yang, 2012; Kramer and Gallagher,

2003; Morrison and De Jong, 2000) and many more. However, the individual-level

adaptation suffers the drawback of requiring more time to evaluate or calculate

new genetic parameters for each gene locus at different iterations (please see Korejo

et al. (2009)).

Unlike the mutation scheme adopted by most EAs where mutation is applied di-

rectly to candidate solutions (individual-level mutation) to create another solution

for selection, the mutation scheme discussed in this section is applied directly to

the probability vector that generated the best solution (i.e. elite) since the prob-

ability vector represents a distribution of the population.
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In order to adaptively control the mutation rate (probability of mutation) pm, cd

is converted to the mutation rate such that a high degree of change results in a

high mutation rate and a low degree of change results in a low mutation rate.

However, when no change occurs the algorithm proceeds as a conventional cGA.

The probability of mutation pm is defined as:

pm = ml + (cd − dl) .
(
mh −ml

dh − dl

)
, pm [0.01, 0.5] (3.4)

where ml = 0.01 is low probability of mutation, mh = 0.5 is high probability of

mutation, dl = 0.0 is low degree of change and dh = 1.0 is high degree of change.

These parameters have been set to these values so as to control the probability of

mutation and prevent ”random-walk” in a search space.

Suppose at generation t−1 an elite solution e with fitness f (e, t− 1) was obtained,

the
−→
P that generated the solution (i.e. associated

−→
P ) is held in a temporary

memory
−−→
mP . At generation t, e is re-evaluated and a new fitness value is obtained

i.e. f(e, t). If the fitness difference ∆f is greater than a defined threshold cThres

(i.e. sensitivity level), then a change is said to have occurred which triggers the

mutation scheme. The mutation scheme is applied directly to
−−→
mP to generate a

mutated version of the elite solution em to compete with e.

The conventional cGA makes use of a real-valued probability vector which gener-

ates two solutions when sampled. In order to apply the mutation scheme to
−−→
mP ,

a random number r = rand (0.0, 1.0) is generated and compared with pm,
−−→
mP is

mutated as follows:

� amcGA1:

mP
′

i =

{
rand (cd,mPi) if r <pm, (3.5a)

mPi if r >pm (3.5b)

� amcGA2:

mP
′

i =

{
|mPi + (r − pm)| if r <pm, (3.6a)

mPi if r >pm (3.6b)

� amcGA3:

mP
′

i =


mPi +

(
r − pm

2

)
if r <pm, (3.7a)

mPi −
(
r − pm

2

)
if r >pm (3.7b)
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Algorithm 3.1.1: amcGA1→3(l, Np, cThres)

l← string length
Np← population size
cThres← change threshold
tm ← mutation count
Mmax ← maximum mutation
Step 1 : Initialize probability vector(P ){

for i← 1 to l
do P [i]← 0.5

while t<max generation

then



Step 2 : Sample solutions from P

if t← 1
then

{
elite solution← generate(P )

else if t> 1 and envChanged← true

then

{
mutated elite solution← generate(mP )
random solution← mutated elite solution

else
{
random solution← generate(P )

Step 3 : Let solutions compete

winner, loser ← compete(elite solution, random solution)
if new elite found← true and t> 1

then

{
mP ← P
newEliteFound← false

Step 4 : Detect changecompute cdif t>1 and cd> cThres
then

{
envChanged← true

elite solution← winner
Step 5 : Apply mutation scheme

if envChanged← true

then



amcGA1 or amcGA2 or amcGA3
(please see eqns 3.5, 3.6 & 3.7 respectively)
tm ← tm + 1
if tm ≥Mmax

then

{
tm ← 0
envChanged← false

Step 6 : Update working P

if envChanged← false

then



for i← 1 to l

do


if winner[i] 6= loser[i]

then


if winner[i]← 1

then
{
P [i]← P [i] + 1

NP

else
{
P [i]← P [i]− 1

NP
t← t+ 1

Table 3.1: Pseudo-code of amcGA1, amcGA2 and amcGA3

The amcGA2 and amcGA3, make use of the scaled mutation rate pm (i.e. based

on the degree of change) to regulate the amount a mutation operation alters the

probability vector within the algorithm. From equations 3.6 and 3.7, it can be
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noted that amcGA3 increases and decreases
−−→
mP

′
at a reduced scale

(
r − pm

2

)
.

The amcGA2 alters
−−→
mP

′
only if r<pm, while amcGA1 is a randomised mutation

based on the current values of elements of
−−→
mP

′
and the degree of change cd. The

pseudo-code describing amcGA1, amcGA2 and amcGA3 is shown in Table 3.1.1.

3.1.3 Change trend

Sometimes, changes in dynamic environments may exhibit some trends. In such

cases, it might be beneficial to try to use these change trends to improve the al-

gorithm’s response to subsequent changes in such dynamic environments. Some

studies have been made following this idea by exploiting the predictability of dy-

namic environments (Simões and Costa, 2009b,a).

Memory approaches (Branke, 1999; Yu and Suganthan, 2009), which were origi-

nally proposed to deal with periodical changes, can also be considered as a type

of prediction method. Algorithms following the prediction approach make use of

a memory scheme to cope with various types of changes (e.g. cyclic, noisy and

random). However they require the use of accurate training data and dedicated

memory allocation, which makes the respective algorithm computationally more

expensive.

In this thesis, a novel change trend
−→
tchg is employed to enhance the performance

of the amcGA in a dynamic environment. This is achieved by applying
−→
tchg to

−−→
mP

so that
−−→
mP learns from past dynamic changes and adapts to subsequent dynamic

changes, instead of explicitly using stored training data. The change trend
−→
tchg

can be implemented in two ways: a) binary-encoded problems (btchg) and b) real-

valued problems (rtchg).

� Trend scheme for binary-encoded problems btchg:

When solving binary-encoded problems, a straight forward approach is to

continuously calculate the difference between the probability vector held in

temporary memory
−−→
mP and the current working probability vector

−→
P
′
before

and after an environment change occurs. This way the behaviour exhibited

by the
−→
P
′

is monitored (direction and rate of convergence).

From the btchg pseudo-code, it is clear that the tchg is obtained based on how

much elements of
−→
P
′
increase or decrease with regards to

−−→
mP . Obtaining

−→
tchg

for binary-encoded problems based on solutions sampled can be difficult since
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the difference between solutions will be made up of ”1s” or ”0s” depending

on preference. This implies that for binary-encoded problems,
−→
tchg should be

monitored at population-level rather than individual-level (see Table 3.1.2).

Algorithm 3.1.2: btchg(l)

l← binary string length
if eliteFound← true & t > 1

then

{
for i← 1 to l

do
{
btchg[i]← mP [i]− P ′ [i]

Table 3.2: Pseudo-code of binary change trend scheme

� Trend scheme for real-valued problems rtchg:

In order to calculate tchg of n variables,
−→
P and

−−→
mP are defined as an array

that holds l × n probabilities (where l is the binary string length) i.e.:

−→
P = {Pi, ..., P(l×n)} P ∈ {0, 1}, i = {1, ..., (l × n)} (3.8)

−−→
mP = {mPi, ...,mP(l×n)} mP ∈ {0, 1}, i = {1, ..., (l × n)} (3.9)

From the
−−→
rtchg pseudo-code, it can be observed that for real-valued problems,

the change trend obtained is based on the difference between an old elite

solution and a newly discovered elite solution. This is because the change

trend comes from the variation in solutions sampled from the current working−→
P
′
. The means this scheme updates automatically based on how often a new

elite is obtained (see Table 3.1.3).

Similar to the pe-cGA (Ahn and Ramakrishna, 2003), two solutions (s1 =

[l×n] and s2 = [l×n]) are sampled from
−→
P . Then in subsequent generations,

only one solution (usually the best in terms of fitness value) is retained as an

elite and compared to another randomly generated solution. If another new

elite (i.e. enew) is discovered before or after an environment change occurs

then
−→
tchg is calculated as the difference between the new elite and previous

elite (i.e. eold).
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Algorithm 3.1.3: rtchg(n)

n← problem dimension
if eliteFound← true & t > 1

then

{
for i← 1 to n

do
{
rtchg[i]← elitenew[i]− eliteold[i]

Table 3.3: Pseudo-code of real-valued change detection scheme

3.1.4 Adaptive-mutation with change trend

The change trend scheme is integrated into the amcGA such that the amcGA

makes use of change patterns exhibited by the current working probability vec-

tor
−→
P to mutate the probability vector held in memory

−−→
mP , so as to boost the

algorithm’s response to dynamic change i.e:

� amcGA4:

mP
′

i =


∣∣∣∣mPi +

(
rand(0, pm)− tchg

l

)∣∣∣∣ if r <pm, (3.10a)∣∣∣∣mPi − (rand(0, pm)− tchg
l

)∣∣∣∣ if r >pm (3.10b)

� amcGA5:

mP
′

i =


∣∣∣∣mPi +

(
rand(0, pm)− pm

2

)
− tchg

l

∣∣∣∣ if r <pm, (3.11a)

mPi if r >pm (3.11b)

where l is the binary string length.

From Eq. 3.10 and 3.11, it can be observed that the change trend scheme was

applied to amcGA2 and amcGA3 which yields amcGA5 and amcGA4 respectively

to study the effect of tchg on the performance of the algorithm (see Table 3.1.4).

This way, the mutation strategy updates itself based on the change pattern ex-

hibited by the probability vector. Also tchg controls the amount (and direction) a

mutation operation changes the value of each element in
−−→
mP .

After the mutation operation, a mutated version elite solution em is sampled from−−→
mP

′
to compete with e. if em outperforms e, it replaces e and

−−→
mP

′
replaces the
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Algorithm 3.1.4: amcGA4 & 5(l, n, Np, cThres)

l← string length
n← problem dimension
Np← population size
cThres← change threshold
tm ← mutation count
Mmax ← maximum mutation

Step 1 : Initialize probability vector(P ){
for i← 1 to l

do P [i]← 0.5
while t<max generation

then



Step 2 : Sample solutions from P

if t← 1
then

{
elite solution← generate(P )

else if t> 1 and envChanged← true

then

{
mutated elite solution← generate(mP )
random solution← mutated elite solution

else
{
random solution← generate(P )

Step 3 : Let solutions compete

winner, loser ← compete(elite solution, random solution)
elite solution← winner
if new elite found← true & t> 1

then

mP ← P
compute tchg(btchg or rtchg)
new elite found← false

Step 4 : Detect changecompute cdif t>1 and cd> cThres
then

{
envChanged← true

Step 5 : Apply mutation scheme

if envChanged← true

then



amcGA4 or amcGA5
(please see eqns 3.10 & 3.11 respectively)
tm ← tm + 1
if tm ≥Mmax

then

{
tm ← 0
envChanged← false

Step 6 : Update working P

if envChanged← false

then



for i← 1 to l

do


if winner[i] 6= loser[i]

then


if winner[i]← 1

then
{
P [i]← P [i] + 1

Np

else
{
P [i]← P [i]− 1

Np

t← t+ 1

Table 3.4: Pseudo-code of amcGA4 and amcGA5
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current working
−→
P . The mutation scheme is repeated for a defined number of gen-

erations similar to the hypermutation scheme. After the mutation operation, the

algorithm continues as a conventional cGA unless another environmental change

occur. Table 3.5 shows a summary of the dynamic schemes embedded within each

variant of the amcGA.

Table 3.5: Summary of the change detection, adaptive mutation and change
trend schemes.

amcGA1 amcGA2 amcGA3 amcGA4 amcGA5

Change detection X X X X X
Adaptive mutation 1 X
Adaptive mutation 2 X X
Adaptive mutation 3 X X

Trend scheme 1 X
Trend scheme 2 X

The adaptive mutation scheme presented in this section is somewhat similar to

the well established Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

(Hansen and Ostermeier, 1996, 2001; Hansen and Kern, 2004), which is a standard

in continuous domain evolutionary optimisation (in static environments). Both al-

gorithms share the same idea of storing information about a candidate solution

which is used to update or bias the solution sampling process. However, in the

CMA-ES evolution cycle, after the evaluation and ranking of the solutions, their

relative steps are used to update the parameters of the sampling distribution. This

process is repeated throughout the evolution cycle until a termination criteria is

met. On the other hand, the amcGA only updates
−−→
mP when an elite is discov-

ered and samples a mutated elite from it when a dynamic change occurs. This

sampling and update process is only repeated for a defined number of iterations.

In addition, the amcGA is developed for combinatorial optimisation problems and

the embedded adaptive mutation scheme can be considered as an improved form

of the popular hyper-mutation scheme.

3.1.5 Discussion

Mutation promotes diversity and can be used to improve the ability of an optimi-

sation algorithm to react to dynamic changes. However, mutation on its own can
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reduce the performance of an algorithm if the rate of mutation is not controlled

appropriately.

Comparing the adaptive mutation scheme presented here with other mutation

schemes applied to the cGA, it is clear the adaptive-mutation scheme operates

on population-level unlike that of Silva et al. (2007, 2008), where mutation is

applied to potential solutions. When addressing DOPs using EAs, diversity in

the population is useful for adapting in a changing environment, since members

of the population represent potential solutions that can be applied to different

environmental circumstances. The adaptive mutation scheme is embedded within

all amcGA variants to promote diversity in dynamic environments, to ensure that

the population (the probability vector) maintains diversity while solving a DOP

and slowly move towards the optimal solution.

The change detection scheme presented in this section can be viewed as a fusion

between the change detection using a dedicated detector and change detection

based on an algorithm’s behaviour (i.e. using a change trend scheme).

3.2 Summary

In this chapter, a novel variant of the cGA denoted as amcGA, suitable for solving

dynamic optimisation problems was introduced. The amcGA is made up of 3 core

components: a novel change detection scheme, novel adaptive mutation schemes

and a novel change trend scheme. These components guide the amcGA to exploit

local optima, explore new promising regions in a search space, converge to best

global optimum and enable the algorithm escape local optima.

In order to regulate the amount a mutation operation alters the probability vector,

novel mutation strategies are implemented by means of an adaptive mutation

scheme at a population level. The adaptive mutation scheme is based on the

degree of change in a dynamic environment such that a high degree of change

results to a high mutation rate.

Change patterns or trends in a dynamic environment are also captured by the

algorithm so as to improve overall performance. The novel change trend scheme

enables the amcGA to automatically monitor direction and rate of change exhib-

ited by the current working probability vector.
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Next chapter will present and discuss the set-up for all experiments including

benchmark problems and control optimisation problems in a dynamic environment

using a physical system.



Chapter 4

Set-up Scene for Experiments

The experimental study of the amcGA algorithm is performed based on two dy-

namic benchmark problems: 1.) a DOP using a synthetic dynamic benchmark

generator (i.e. XOR DOP generator and 2.) a DOP using a physical system,

more specifically a torsional mass-spring damper system in a dynamic environ-

ment. These dynamic test environments are described in this chapter as well as

associated parameter settings for all experiments. In this thesis, the optimisation

problems considered are problems of single objective and without constraints in

the decision space, except the constraint of the search domain using the physi-

cal system. It is important to state that all variants of the amcGA described in

Chapter 3 were used in all experiments described in this Chapter.

4.1 Artificial benchmark generators

Researchers have developed several dynamic problem generators (dynamic syn-

thetic problems) for the purpose of comparing the performance of EAs developed

for dynamic environments. As stated in Chapter 2, DOPs are constructed by

changing parameters and properties of static optimisation problems. Through

proper control and modification of certain parameters, different dynamic envi-

ronments (and levels of dynamism) can be simulated for static problems such as

change dynamism (severity, frequency, cyclicity and predictability of change) and

problem dimension.

Dynamic benchmark problems are essential in the process of developing, evaluating

and comparing the performance of dynamic optimisation algorithms. Nguyen

54
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(2011); Morrison (2004) and Yang (2004) highlighted the characteristics of a good

benchmark generator:

� Applicability : It should closely (to an extent) resemble or model real-world

problems

� Flexibility : It should be easy to configure by a user for different dynamic

settings (such as change severity, frequency and periodicity) and different

scales (such as the number of optima, dimensions and domain ranges).

� Simplicity : It should be efficient and easy to adapt to user specifications.

� Generalization: It should allow the representation of different dynamic

scenarios. it should not be problem/algorithm specific.

Apart from the above characteristics, there are other properties associated with

a DOP generator which can be classified based on the following criteria (Nguyen,

2011):

� Time linkage: If a current solution found by a dynamic optimisation al-

gorithm influences future dynamic changes.

� Detectability : Whether dynamic changes are made visible to the optimi-

sation algorithm (using dedicated detectors or based on the behaviour of the

algorithm).

� Dimensionality : Whether dynamic changes affect the problem dimension.

� Predictability : If changes in a dynamic environment are predictable.

� Randomized/Cyclic: Whether dynamic changes are random or cyclic,

where same environment re-appear.

� Properties that change: Whether dynamic changes affect parameters of

the objective function and constraints.

Different dynamic benchmark generators have been developed over the years and

used in various literature to construct a dynamic test environment to evaluate

performance of EAs. In general, existing DOP generators can be classified into two

categories: 1.) The first category of dynamic benchmark generators, constructs

dynamic environments by modifying a predefined fitness landscape. An example
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is the moving peaks benchmark problem which consists of a multi-dimensional

landscape with several peaks, where the position, width and height of each peak

is altered every time a dynamic change occurs (Branke, 1999; Li et al., 2008; Li

and Yang, 2008; Li et al., 2011). 2.) The second category of dynamic benchmark

generators, switches between several states of a static optimisation problem. A

good example of the later is the travelling salesman problem where the number

of cities, locations and distance changes over time i.e. switches between static

instances (Cobb and Grefenstette, 1993; Mavrovouniotis et al., 2012). In addition,

DOP generators in this category are characterised by how fast the environment

changes.

In this section, the XOR DOP generator and two popular dynamic benchmark

problems are described, and used to evaluate the performance of the amcGA.

4.1.1 XOR DOP generator

This dynamic generator has been used by several researchers to evaluate the per-

formance of dynamic optimisation algorithms with modifications (Yang and Yao,

2008; Yang, 2008). The XOR DOP proposed by Yang (2003) is the only known

benchmark generator for combinatorial space that constructs a dynamic environ-

ment from any binary-encoded static optimisation problem. The XOR DOP sim-

ply shifts the population of solutions into a different location in a fitness landscape.

Given a static optimisation problem f(x) (x ∈ {0, 1}l) where l is the length of a

binary string, a dynamic environment is generated by applying a binary XOR

mask
−→
M to each candidate solution before evaluating at every τ generations.

f(x, t) = f(x⊕
−→
M(k)) (4.1)

where f(x, t) represents the fitness value of a candidate solution x, k = t/τ is the

index of the time of change, t is the current count of generations and
−→
M(k) is

a binary mask of environment period k. The bitwise exclusive-or operator ⊕ is

applied to the x and M(k) according to the following principle:

xi ⊕ xj =

{
0 if xi = xj, (4.2a)

1 otherwise. (4.2b)

−→
M(k) is incrementally generated as follows:

−→
M(k) =

−→
M(k − 1)⊕

−→
T (k) (4.3)
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where
−→
T (k) ∈ {0, 1.0}l is a binary template randomly generated for environment

period b.
−→
T (k) is made up of ρ× l 1s, where ρ controls the intensity or magnitude

of change.
−→
M(k) is initially set to all zeros to indicate no dynamic change. If ρ

= 0, the environment is considered stationary since
−→
T will contain only 0s and

no change will occur. On the other hand, when p = 1 results in a high degree of

change (or high change severity). Also a small τ means faster environment change

while a large τ means slow environment change.

It is important to note that by default environmental changes in the XOR DOP

generator occur in a random pattern. Also in this thesis experiments were carried

out in 2 additional dynamic environments; cyclic and cyclic with noise dynamic

environments. Using the XOP DOP generator, a cyclic dynamic environment is

generated as follows: a 2K XORing mask is randomly generated as the base states

in the search space. This way the environment can cycle among the base states

in a fixed logical cyclic order. Suppose an environment change occurs periodically

every τ generations, then individuals at generation t are evaluated as follows:

f(−→x , t) = f(−→x ⊕
−→
M(It)) = f(−→x ⊕

−→
M(k%(2K))) (4.4)

where k = b t
τ
c is the index of the current environmental period and It = k%(2K)

is the index of the base state the environment is in at generation t (please refer to

Yang (2005b) for a detailed explanation).

The cyclic with noise environment used follows a deterministic approach as de-

scribed in Yang and Yao (2008). Each time the environment is about to move

from one base state to another (i.e
−→
M(i)), a noise template

−→
T (n) with a small

portion of 1s is randomly created and integrated into
−→
M
′
(i) i.e:

−→
M
′
(i) =

−→
M(i)⊕

−→
T (n) (4.5)

where
−→
M
′
(i) is the next new base state. The number of 1s in

−→
T (n) is set to be

linear with the Hamming distance between base states i.e γ× ρ× l, γ ∈ (0.0, 1.0).

In the next section, two popular benchmark problems are introduced to test the

amcGA performance in dynamic environments. The benchmark problems are:

1.) Dynamic decomposable unitation-based functions and 2.) Dynamic knapsack

problems.
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4.1.1.1 Decomposable unitation-based functions (DUFs)

The decomposable unitation-based functions have been used as benchmark prob-

lems by the EA community in an attempt to study what creates difficult optimi-

sation problems for EAs (Kaedi et al., 2013; Peng et al., 2011; Tinós and Yang,

2007a). This type of function return the total number of 1s in a binary string (i.e.

unitation function of binary string). Three DUFs, denoted as DUF1, DUF2 and

DUF3, are used as static problems to construct dynamic test environments, to

evaluate the performance of algorithms discussed in chapter 3 and are described

below:

DUF1:

DUF1 is a OneMax problem that simply aims to maximise the number of 1s in a

binary string. The fitness of a binary string of length l is the total number of 1s

contained in the string.

fDUF1 = u(x) (4.6)

where u(x) is the unitation function.

DUF2:

The DUF2 evaluates the performance of an EA on the level of building blocks (BB)

interaction. The DUF2 consists of 4 bit BB, where an optimal solution consists

of four sub-optimal solutions and the remaining solutions form a wide plateau

with fitness value of zero. This property inherent in the DUF2 makes it a difficult

problems for EAs (Fernandes et al., 2009; Kaedi et al., 2013).

fDUF2 =


4 if u(x) = 4, (4.7a)

2 if u(x) = 3, (4.7b)

0 otherwise (4.7c)

DUF3:

The DUF3 is a fully deceptive function, which is considered a hard optimisation

problem for EAs. This is because the low-order BBs within the function do not

combine to form a high-order BB, rather the low-order BBs combine to form a

deceptive sub-optimal BB (Fernandes et al., 2009; Peng et al., 2011).

fDUF3 =

{
3− u(x) if u(x) <4 (4.8a)

4 otherwise (4.8b)
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Figure 4.1: The building blocks used for the three DUFs

It is important to note that each DUF made up of 25 copies of 4-bit BB. Each

BB contributes a maximum value of 4 to the total fitness value. Fig. 4.1 shows

the BB of the selected DUFs based on Eq.( 4.6),( 4.7) and( 4.8). Using the XOR

DOP generator discussed, dynamic test environments are constructed based on

the DUFs and are denoted as DDUF1, DDUF2 and DDUF3.

4.1.1.2 Dynamic knapsack problem (DKP)

The knapsack problem is a classic NP-complete optimisation problem that has

been rigorously studied by the EA community in the last few decades (Puchinger

et al., 2010; Li and Yang, 2008). The main aim of this problem is to fill a knapsack

with the best subset of items among a larger set so as to maximize the value of

contents in the knapsack without exceeding the knapsack capacity. This bench-

mark problem has been studied in both static (e.g. Puchinger et al. (2010); Zou

et al. (2011)) and dynamic environments (e.g. Ben-Romdhane et al. (2013); Li and

Yang (2008)) with different modifications. The dynamic property of the knapsack

problem is achieved when the problem parameters (such as item weight, value and

knapsack capacity) are time dependent and subject to variation.

Given n items, each of which has a weight wi(t) and a value vi(t) and a knapsack

of capacity C. The main goal of the knapsack problem is to load the items that

guarantees maximum value without exceeding the knapsack capacity C. A dy-

namic test environment is constructed for the knapsack problem and is denoted
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as DKP. Mathematically DKP can be defined as follows:

Maximize f(x, t) =
n∑
i=1

pi(t)xi(t) (4.9)

s.t.


n∑
i=1

wi(t)xi(t) ≤ C (4.10a)

xi(t) ∈ {0, 1}, i = 1, ..., n (4.10b)

where xi is the binary decision variable used to indicate if item i is included or

discarded. In this thesis, all values and weights are positive, and all weights are

less than the knapsack capacity C.

C = 0.45×
n∑
i=1

wi (4.11)

From Eq.( 4.11), the knapsack capacity C of n items was set to 45% of the sum

of all item weight. The test instance generator by Pisinger (1999) was used to

generate the parameters of static K. Table 4.1 shows the global optima for the

static phase of the K instances. In this thesis, optimality of the K is defined as

the max fitness value obtained by an objective function without exceeding the

constraint capacity.

Table 4.1: Knapsack problem instance and optimal fitness value

n-items Total weight Total profit

100 1646 1946

A knapsack problem with n items using randomly generated data was constructed

as follows:

wi = random integer[2, 20] (4.12)

pi = random integer[1, 30] (4.13)

The total profit of items selected is the fitness of a candidate solution if the total

item weight is within the knapsack capacity. However, if a candidate solution

selects many items such that the total weight is more than the knapsack capacity,

then a penalty function is used to judge how much the candidate solution exceeds
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the knapsack capacity. The penalty is calculated as:

f(x, t) =


n∑
i=1

pixi
n∑
i=1

wixi ≤ C (4.14a)

fp else (4.14b)

where fp = 10−7×
(

n∑
i=1

wi −
n∑
i=1

wixi

)
, similar to the penalty function used in Yang

and Yao (2005). This penalty function ensures that any solution that exceeds C

will not be competitive with solutions that do not.

4.1.1.3 Comparison of dynamic benchmark problems

These dynamic test problems have been chosen to evaluate the performance of the

amcGA (and competing algorithms) under different dynamic scenarios. Specif-

ically the DDUFs and DKP are academic combinatorial problems suitable for

evaluating dynamic (binary-encoded) optimisation algorithms. The DDUFs has

an increasing difficulty for the amcGA in the order from DDUF1 to DDUF2 to

DDUF3. This is due to the deceptive property inherent in DDUF2 and DDUF3

which makes it a difficult problem for dynamic EAs. The DKP is another difficult

problem, because the profit and weight of each item selected changes over time

based on the XOR mask (i.e
−→
M in XOR DOP generator).

4.1.2 Parameter settings and performance measures

The XOR DOP generator is governed by different dynamic components, which may

interact in a very complex way. The characteristics of the XOR DOP generator, the

DDUFs & DKP, the change ratio ρ, the rate of change τ as well as the total number

of runs, are all components which affect the behaviour of a dynamic optimisation

algorithm. In order to cover a wide range of possible environment dynamics,

different settings for each of these components have been considered so as to assess

how well the amcGA performs.

Experiments were carried out on the selected DOPs in order to evaluate the effect

of the change detection, change trend and mutation schemes on the performance

of the amcGA. An additional experiment was carried out to compare the amcGA

with a cGA with hypermutation denoted as mcGA, a GA with hypermutation

denoted as GAm and a probability based incremental learning algorithm with

hypermutation denoted as PBILm (Yang and Richter, 2009).
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The GAm (Cobb (1990); Cobb and Grefenstette (1993)) makes use of an alter-

native mutation strategy (i.e. hypermutation) as a means of increasing diversity

in order to track the optimum of a changing environment. The hypermutation in

GAm, increases the probability of mutation whenever there is a degradation in

the performance of elite solutions or timed-average best performance.

The PBILm is an estimation of distribution algorithm (EDA) that combines the

mechanisms of the generational genetic algorithm with competitive learning. The

hypermutation scheme within PBILm aims to maintain diversity. The mutation

operation always alters and shifts the probability vector towards the central point

in the search space (Yang and Richter, 2009). After a mutation process, solutions

are sampled using the mutated probability vector and this mutation operation is

repeated for a defined number of generations.

For all algorithms some common parameters have been obtained from Yang and

Richter (2009); Tinós and Yang (2010) and some from preliminary experiments.

The population size n = 100, speed of change τ = 20, 60 and 100, and change ratio

ρ = 0.1, 0.2, 0.5 and 1.0. The sensitivity level for detecting change is ∆f > 0 for

the amcGA described in Chapter 3, so as to detect any change since most of the

DOPs ( DDUF1-3) involves the maximization of 1s in a binary string (candidate

solution).The probability of mutation for PBILm pm = 0.05 with mutation shift δ

= 0.05, same as Yang and Richter (2009).

All algorithms use the elitism approach (in the case of PBILm an elite of size 1 was

used). For the mcGA, GAm and PBILm the probability of mutation was set to a

base level plm = 0.05 and a high value phm = 0.3 when the hypermutation scheme

is triggered due to change in environment (i.e. drop in fitness of an elite solution)

and this lasts for 5 generations (ghm = 5). However, due to the DOP properties,

these parameter settings may result in better or less performance. This is because

the DDUFs and DKP have different optimal values and there is no rule that can

be applied to find out the optimal parameter settings for a general problem. Best-

of-generation fitness (see Eq.( 2.2)) and modified offline performance were used as

performance measures for all algorithms.
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4.2 Torsional mass spring damper system

(TMSDS)

A torsional mass-spring damper system (TMSDS) platform in a dynamic environ-

ment as shown in Fig. 4.2 was used to evaluate the amcGA described in chapter 3.

The TMSDS is described in detail in this section to ensure understanding and

reproducibility of the experiments and results.

The control of the mass-spring system is a classic control problem which is widely

used as a testbench for testing different control and optimisation algorithms. There

are many examples of the mass-spring damper system in practical real-world appli-

cations such as, tuned mass dampers in tall buildings, bridges and car suspension

system which absorbs and prevents vibration from being transmitted to the car.

Figure 4.2: Experimental set-up

From Fig. 4.2 and 4.3, the TMSDS variables are: T = torque applied to the

system, θ = angular position of the mass, k = spring constant, c = damping due

to moving parts, I = moment of inertia of the mass, θ̇ = angular speed and θ̈

= angular acceleration. Applying Newton’s second law of rotation and Laplace
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Figure 4.3: Diagram of TMSDS.
The spring is regarded linear although it has little non-linear properties

Table 4.2: Actual values of the TMSDS properties

Component Value

Mass M1 0.15 kg
Mass M2 0.2062 kg
Rod length 0.3 m
Spring torque 310.805 Nmm
Spring constant, k 0.0989 Nm/rads
Spring max deflection 180°

transform assuming zero initial conditions. The transfer function of the TMSDS

can be deduced as:
θ(s)

Ti(s)
=

1

Is2 + cs+ k
(4.15)

where Ti(s) is the system input and θ(s) is the system output.
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Figure 4.4: Overall structure of the TMSDS

4.2.1 TMSDS structure

The TMSDS provides a rotational oscillation. One end of a torsion spring is

attached to a mass and the other end to a DC motor which acts as an actuator.

An oscillatory behaviour is given through a mass that consists of two cylindrical

blocks attached at opposite ends of a rod. Whenever the mass is displaced a

certain angle, an optical encoder records the position and direction of rotation.

Information from the optical encoder is sent to a micro-controller which processes

the information and provides a calculated output to the actuator. The active

damping required to dampen the oscillations of the TMSDS is provided by the

actuator (i.e. DC motor). The micro-controller sends the telemetry to a host

computer for further performance analysis (see Table 4.4). It is important to state

that in this thesis all control actions and optimisation process are carried out using

the micro-controller only so as to demonstrate the efficiency of the amcGA.

A strong magnet is used to cause interference which disrupts the mass-spring

system from reaching a desired setpoint. This addition to the TMSDS, creates

a dynamic problem (scenario). The magnet is placed exactly 1.5cm away from

the mass to avoid sticking to the mass (see Fig. 4.2). This way the respective

dynamic algorithm is expected to detect any change (the presence of the magnet)
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and respond accordingly. The actual values of the properties of the TMSDS are

shown in Table 4.2

4.2.2 TMSDS components

The TMSDS embedded system consists of individual parts which are: an optical

encoder (sensor) and a micro-controller with a software implemented feedback

controller. This section describes these components:

4.2.2.1 Optical encoder (sensor input)

The TMSDS makes use of an optical encoder as an input source to measure the

position of the mass while the system is active. The encoder is an incremental

optical encoder which belongs to the HEDS-5700 series, specifically the HEDS-

5700 C10 (see Fig. 4.5). The HEDS-5700 C10 has two 90°phase shifted channels

to provide direction and position information at 100 counts per revolution. Also,

the sensor is a high performance, low cost optical encoder with mounted bushings

and shafts. The HEDS-5700 C10 contains a special detection circuit that permits

high resolution, encoding performance, reliability and long rotational life.

Figure 4.5: HEDS-5700 C10 optical encoder

4.2.2.2 Micro-controller

The micro-controller is an integral part of the TMSDS that processes information

received from sensor and provides a calculated output to the actuator. All control
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actions and optimisation process run only on the micro-controller. The micro-

controller used for all experiments is the Arduino Uno (see Fig. 4.6) which is an

open-source, low cost electronics prototyping platform based on an ATmega328,

clocked at 16MHz, powered at 5V and contains 32KB of flash memory of which

0.5KB is used by the boot-loader. This micro-controller was chosen to identify

possible limitations of the amcGA and to serve as a proof that the amcGA is

capable of solving real-time, real-world DOPs.

Figure 4.6: Arduino Uno micro-controller

4.2.2.3 Actuator (DC motor)

An EGM30 12V DC motor was used as an actuator to dampen the oscillation of

the TMSDS (see Fig. 4.7). This DC motor is made up of a 30:1 reduction gearbox

and an encoder. The actuator has standard noise suppression capacitor across the

motor windings (see Gonçalves et al. (2013)). The encoder within the actuator

was not used in this application although it can be used to determine the position

of the DC motor.

4.2.2.4 Controller

There exists different feedback control techniques but the most common among

all is the Proportional Integral Derivative (PID) controller. Despite having been

around for a long time, majority of the industrial applications still use PID con-

trollers because of its simplicity and ease of use.

PID controllers continue to survive the evolution of technology, starting from pneu-

matics and mechanic to microprocessors. Over the past decades, implementations
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Figure 4.7: EMG30 12V DC motor

on microprocessors continues to increase and this has given opportunities to pro-

vide additional features like continuous adaptation, auto-tuning and gain schedul-

ing. The PID control is an active feedback method that is implemented using a

combination of Proportional, Integral and Derivative controllers (see Fig.4.8 and

Table 4.2.1).

Combinations of these controllers are frequently used as proportional derivative

(PD) controller e.g. Gao et al. (2014) and proportional integral (PI) controller

e.g. Roy et al. (2012). Below are equations describing the PID control system:

Proportional = kpe(t) (4.16)

Integral = ki

∫ t

0

e(t)dt (4.17)

Derivative = kd
de(t)

dt
(4.18)

u(t) = kpe(t) + ki

∫ t

0

e(t)dt+ kd
de(t)

dt
(4.19)

where kp, ki and kd are the proportional, integral and derivative gain respectively,

and

e(t) = pvt − sp (4.20)

where e(t) is the measure of error at time t, pvt is the processes measurement at

time t and sp is a desired setpoint. PID functionalities can be summarized as

follows:
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� The proportional controller (P) responds to an error by adjusting the overall

control action proportional to the error.

� The integral controller (I) reduces steady-state error taking into account the

duration of the error.

� The derivative controller (D) generates a response using the change in error

from a previous error value.

P kpe(t)

I ki
∫
e(t)dt

D kd
e(t)
dt

∑∑
System

Sensor

e(t)Setpoint + ++

+

Input Output

FeedbackMeasured output

Figure 4.8: Overview of the Proportional-Integral-Derivative (PID) Controller

For a PID controller to work in the right way, it is important that its gains are

tuned properly. Tuning PID controllers has been an active area in the research

community (e.g. Caraffini et al. (2013); Passow and Gongora (2008)). Great

effort have been made to develop methods to reduce the time spent on optimising

the choice of PID parameters. There are various types of techniques applied for

PID tuning which are broadly classified as classical (such as Ziegler-Nichols) and

computational techniques such as EAs (Iruthayarajan and Baskar, 2009; Passow

et al., 2008). However, one disadvantage of the classical method is the necessary

prior knowledge of the process and once tuned the controller performs good but

optimum system response is not always achieved.

Experiments were carried out using the TMSDS to evaluate the performance of

the amcGA on the optimisation of an integral-state PID controller. The integral-

state PID controller is a variant of the PID controller that limits the integral state

variable to a lower (Il) and upper (Iu) bound values (Wescott, 2000). The bound

values permits the mitigation of undesired overshoots from integral windup (if the

bound values are properly selected).
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Algorithm 4.2.1: Intergral-state PID controller (setpoint, process)

integral error ← 0
previous error ← 0
while process active

do



error ← setpoint − process

integral error ← integral error + error
if integral error > integral max

then
{
integral error ← integral max

if integral error < integral min
then

{
integral error ← integral min

derivative error ← error − previous error

P out ← error × proportional gain
I out ← integral error × integral gain
D out ← derivative error × derivative gain

output ← P out + I out + D out
previous error ← error

Table 4.3: Pseudo-code of integral-state PID controller

4.2.3 Parameter settings and performance measures

Based on preliminary experiments, parameters of the amcGA (for all experiments)

were set as follows: the population size s = 100, speed of change τ = 20, binary

string length l of candidate solution = 24bits and the sensitivity level (or threshold)

for detecting change was ∆f > 1.0 for the change detection scheme described in

Chapter 3. All candidate solutions are created with chromosomes within the range

specified in Table 4.4 and the summary of parameter configuration are shown in

Table 4.5. Also a block illustrating the dynamic evolutionary controller is shown

in Fig. 4.9.

4.2.3.1 Solution encoding and decoding

The amcGA candidate solutions represents the control parameters. The control

parameter consists of the P,I and D gain parameters. Each candidate solution is
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encoded as a binary string of length l = n×m. Where n = 3 is the total number

of variables, m = 8bits is the binary string length of each variable.

Mapping of the binary string to a real value x is realised in two steps:

� Convert the binary representation b of each parameter from base 2 to base

10:

x
′
=

(
m∑
i=0

bi × 2i

)
10

(4.21)

� Solve for the corresponding real value based on domain by using the equation

below:

x = xl + x
′ ×
(

xh
2m − 1

)
(4.22)

where xl and xh represent domain boundaries of each gain parameter (see

Table 4.4).

∑
Integral-state PID

Evolutionary algorithm

System

Dynamic environment

Input

Sensor

Setpoint +

Gains

Error Output

Feedback

−

Measured output

Figure 4.9: Overview of the dynamic evolutionary feedback controller loop

Table 4.4: PID parameter value range (in continuous domain)

Parameter Domain

Proportional gain 0 - 10.00
Integral gain 0 - 10.00
Integral state max 100
Integral state min -100
Derivative gain 0 - 4.00

The rotation of the torsional mass-spring system was restricted to turn between

−40 and 40 degrees from its middle position 0. The evaluation of each candidate

solution took approximately 20 seconds. Each solution was tested by perturbing
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Table 4.5: Summary of configuration of parameters of the competing algo-
rithms

amcGA1-5 mcGA r-rcGA r-cDE

Encoding scheme Binary Binary Real-valued Real-valued
Population size 100 100 100 100
Dynamic strategy Adaptive mutation Hyper-mutation Restart Restart

the mass to each side and analysing the controller’s reaction to reach a setpoint

(−20 and 20). The setpoint of the torsional mass-spring system is initially set

to −20 degrees, at this point the controller takes over and tries to maintain the

setpoint. After 500 control cycles, the setpoint of the system is set to 20 degrees

for another 500 control cycles while the controller continues to maintain the new

setpoint. This set-up enables the automatic implementation and evaluation of

candidate solutions on the testbench while the amcGA monitors the environment

for any changes.

Each candidate solution generated by the amcGA is evaluated using the dynamic

testbench described rather than in a simulated environment. An additional exper-

iment was carried out to compare the performance of the amcGA schemes with a

real-valued cGA with a restart scheme (and the elitism method) denoted as r-rcGA

where the probability vector is re-initialized whenever the environment changes, a

compact differential evolution with a restart scheme and elitism method denoted

as r-cDE and a cGA with a hypermutation scheme denoted as mcGA. For the

mcGA , the probability of mutation was set to a base level plm = 0.01 for normal

generations and a high phm = 0.3 for interim generations when the hypermutation

scheme is triggered due to change in environment (which lasts for 5 generations).

It is important to state that in this thesis, the amcGA is compared to the above

mentioned compact optimisation algorithm in order to evaluate memory consump-

tion and performance in a dynamic environment. Others have compared the cGA

with the GA and proved that the cGA is computationally more efficient (in terms

of memory requirements) than the GA and suitable for memory constrained ap-

plications (please refer to Ahn and Ramakrishna (2003); Mininno et al. (2008)).

For each experimental run, the root mean square error (RMSE) associated with

the respective algorithm is calculated. This gives a measure of the dynamic tuning

of the PID controller for that particular run. The variation in the RMSE gives

a measure of the consistency of the evolved controller performance. Therefore,

the following two performance measures were used to assess the properties of each

dynamically tuned controller performance:
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� RMSE. The ability to maintain the setpoint which is defined as:

RMSE =

√∑t
i=0 e(t)

2

t
(4.23)

e(t) = pvt − sp (4.24)

where t is the control cycle, e(t) is the measure of error at control cycle t,

pvt is the angle of the mass at control cycle t and sp is the setpoint. From

the above equation, it can be observed that this is a minimisation problem.

� Best-of-generation performance measure (Eq. 2.2) was evaluated every gen-

eration as well as the overall performance of all algorithms. For each ex-

periment using all algorithms on the testbench, 30 independent runs were

executed and for each run 10 dynamic changes were permitted which is equiv-

alent to 200 generations. Parameters of Eq. 2.2 were set as follows: FBOGij

expresses the fitness value of the best solution at generation i of run j and

G = 20 x τ (i.e. τ = 10) is the total number of generation for each run.

4.3 Summary

This chapter presented and discussed the set-up scene for all experiments includ-

ing a control optimisation problem in a dynamic environment using a physical

system i.e. the TMSDS. These test problems were chosen to verify the impact

of the schemes described in chapter 3 on the performance of the amcGA i.e. the

efficiency of the change detection scheme in regulating the mutation rate of the

amcGA. More specifically, these tests were chosen to verify if a dynamic opti-

misation algorithm would take advantage of simulation discrepancies to achieve

unrealistic performance and if the same algorithm would show similar performance

when evaluated using a physical system (such as TMSDS).

It is important to state that experiments using the TMSDS were carried out using

only the Arduino micro-controller. All software implementation of the PID con-

troller, competing dynamic optimisation algorithms and control of TMSDS were

written in C programming language using the Arduino IDE and uploaded onto the

Arduino micro-controller through a serial port. Experiments using the XOR DOP

generator, DOPs and competing dynamic optimisation algorithms were written in

C language and simulation carried out using a desktop PC.
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The results obtained from all experiments are presented, analysed and discussed

in the next chapter.



Chapter 5

Analysis and Discussion

5.1 Analysis of XOR DOP experiments

The experimental and statistical test results on the DOPs described in Section 4.1.1

are shown in Figures 5.1- 5.6 and Tables 5.1- 5.4 respectively. In general, evolu-

tionary algorithms act as a stochastic process which yields a solution expected to

be as close as possible to an optimal solution. Therefore it is important to provide a

thorough analysis of the algorithms performance statistically. The Kruskal-Wallis

tests followed by pairwise comparisons using Wilcoxon rank-sum tests with the

Bonferroni correction was used to test for the null hypothesis whether or not there

are significant differences in the ability of the dynamic algorithms to tackle the

XOR DOPs. The statistical test results at 0.05 level of significance are shown

in Tables 5.1 - 5.4. Performance of all algorithms are analysed based on overall

performance and behaviour on the selected XOR DOPs.

5.1.1 Experimental study regarding overall performance

From all figures and tables in this section, several behaviours can be observed:

First, GAm and PBILm show a constant performance across all DOPs regardless

of the dynamics of the environment. This is because PBILm and GAm evaluate 100

candidate solutions every generation and have a greater chance of finding better

solutions than the mcGA and amcGAs, which only evaluate 2 candidate solutions

every generation. With the increasing of τ , GAm and PBILm has more time to

search for solutions with higher fitness values before the next dynamic change.

However, in environment with a high change ratio ρ, PBILm was outperformed by

75
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the amcGA (variants) as can be observed from Fig. 5.1-5.3. This is as a result of the

lack of information transfer from the last environment of the last dynamic change.

Also, PBILm applies the mutation scheme to the current working
−→
P which has no

information of the previous environment, this means PBILm is focused more on

preventing premature convergence of
−→
P . Therefore, it is important to state that

this comparison was carried out in order to see which of the competing compact

dynamic algorithm was less behind the PBILm and GAm in terms of the overall

performance.

Second, mcGA outperforms some of the amcGA variants in some of the DOPs.

This is due to the fact that whenever a change occurs, mcGA tries to find a better

solution for the current environment (which is the effect of rapid increase in the

probability of mutation pm) but does not ensure diversity as seen in Fig. 5.1(a).

Also for some dynamic settings, mcGA shows similar performance to some of the

amcGA variants. Given a value of τ when the environment changes with respect

to the change ratio, the performance of the algorithms can be considered similar

(see Figs. 5.1(b)- 5.2(c)).

Third, among the five variants of the amcGA, amcGA1 and amcGA3 exhibit high

performance. From Fig. 5.1(a)- 5.6, amcGA3 shows stable performance across

different environment dynamics. This is as a result of how the mutation scheme

within both algorithms alter
−−→
mP . The amcGA3 mutation scheme either increase

or decrease
−−→
mP at a reduced scale (see Eq. 3.7), while amcGA1 is a randomised

mutation based on the current values of elements of
−−→
mP and the degree of change

cd (see Eq. 3.5). Performance of all amcGA variants based on FBOG is shown

on Figs. 5.1(a)-5.3(c) for different environment dynamics. Although Figs. 5.1(a)-

5.3(c) shows general performance of all algorithms, it is difficult to draw out con-

clusions about the final result of the compared algorithms by just visual inspection

of the performance curves. Using the Wilcoxon rank-sum test, it can be observed

that the performance of the amcGA1 and amcGA3 achieved higher fitness than

that of the mcGA. In addition to this when the change ratio ρ 1 is set to high

i.e 1.0 (see Fig. 5.5) and speed of change τ is set to low and medium in some

environments, most of the amcGA variant outperformed both mcGA and PBILm.

This behaviour is a result of how the amcGA handles
−→
P .

1From the description of the XOR DOP in chapter 4, it can be observed that XOR DOP
generator creates stationary environments when ρ = 0.0. However, when ρ = 1.0, respective
DOPs shifts between two environments. This implies that the intermediate binary template−→
T (Eq. 4.3) is randomly generated and for each

−→
T generated the environment is different (i.e.

for 0.0<ρ<1.0). This property is common amongst all DOPs generated using the XOR DOP
generator.
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The amcGA maintains a moderate convergence rate as it explores the search space.

This can be considered as an advantage over the hypermutation scheme since the

amcGA not only carries information from one stage of the problem to the next

stage but also retains this information in the form of
−−→
mP , which represents prop-

erties and dynamics of a particular environment. Since the mutation scheme is

only applied to
−−→
mP , it ensures that the current working

−→
P maintains its diversity

unless a solution generated by the mutated
−−→
mP (whenever a change is detected)

outperforms the current best solution generated by
−→
P , therefore replacing

−→
P with

−−→
mP . This can be considered as an advantage over the hypermutation scheme. The
−→
P in mcGA is mainly updated based on the solutions sampled from it. This im-

plies that genetic diversity is encouraged at an individual level since the mutation

scheme is applied directly to a candidate solution to create another for selection.

Finally, the performance of the amcGA4 and amcGA5 in the cyclic environ-

ment is similar to that of the mcGA on the DDUF1, DDUF2 and DKP (see

Figs. 5.1(c), 5.2(b) and 5.4(a)). This behaviour is the result of the change trend

scheme within the algorithm. Although this scheme does not make use of any ex-

ternal training data, it has a positive effect on the performance of the amcGA4 and

amcGA5. The change trend scheme ensures that the amcGA retains information

about past environments (i.e.
−−→
mP ) while searching for promising region (using

−→
P ) in the search space of a new environment. This can be observed when τ = 100

and ρ is between 0.1 and 0.5 (see Table 5.1- 5.4), the algorithms are given more

time to explore the search space before the next dynamic change, but experience

slow convergence rate.

On the other hand, convergence deprives mcGA of the adaptability to changing

environments because the
−→
P within mcGA learns from the best hyper-mutated

solution whenever a change occurs. However, the mutation mechanism and change

trend scheme embedded in amcGA4 and amcGA5 grants more diversity than

mcGA (and PBILm), thus better adaptability to dynamic changes changes (see

Fig. 5.4(a)-(c)). The change trend scheme within amcGA4 and amcGA5 makes

use of change patterns exhibited by the current working probability vector (i.e.
−→
P ) to alter

−−→
mP . This way, both amcGA4 and amcGA5 responds to dynamic

changes based on how often new elites are obtained.
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5.1.2 Analysis of algorithms’ behaviour on selected DOPs

In order to have a clear understanding of the experimental results, we need to look

further into the dynamic behaviour of all algorithms. The dynamic behaviour of

all algorithms on the selected DOPs are shown in Figs. 5.5- 5.6, where the data

were averaged over 30 runs, τ is set to 60 and ρ = 0.1, 0.2, 0.5 and 1.0. Several

behaviours can be observed when analysing the effect of the dynamic environments

on the performance of the competing algorithms.

From Figs. 5.5- 5.6, it can be observed that for a fixed τ with increasing value

of ρ, PBILm and GAm outperform other algorithms on several cases and main-

tains almost the same performance across the four DOPs. The behaviour is a

result of the high adaptability brought in by the hypermutation scheme (and

population-based structure) within PBILm. However, the performance of GAm

and PBILm decreases on the cyclic DDUF2, cyclic DDUF3, random DDUF2 and

random DDUF3. This is due to the fact that when a dynamic change occurs,

the deceptive BBs inside DDUF2 and DDUF3 draws the population into the new

environment slowly. This is because the deceptive attractors are suboptimal with

relatively high fitness (Fernandes et al., 2009).

An interesting behaviour is that on DDUF1, the performance of the amcGA vari-

ants drops when ρ is between 0.1 and 0.5 but soon stabilizes. This is because

when ρ = 1.0, the environment changes between two landscapes. This makes it

difficult for the algorithm to converge well since the algorithm may wait during

one environment state. Also, among the amcGA variants, the amcGA3 shows high

performance in DDUF1. The reason for this lies in the way the mutation scheme

operates within amcGA, it ensures that the amcGA3 adapts to the changing en-

vironment regardless of the change severity. The mutation scheme only increases

(or decreases)
−−→
mP by

(
r − pm

2

)
which is determined by a random number r unlike

the mutation scheme in PBILm which is determined by the probabilities in
−→
P .
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Figure 5.1: Dynamic performance of all algorithms on DDUF1 when τ =
60 and ρ = 0.2 in three different dynamic environments. Best fitness values
achieved each generation are shown in the figure, where the optimum is 100.
Please refer to Appendix C for the individual dynamic behaviour of competing

algorithms.
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Figure 5.2: Dynamic performance of all algorithms on DDUF2 when τ =
60 and ρ = 0.2 in a three different dynamic environments. Best fitness values
achieved each generation are shown in the figure, where the optimum is 100.
Please refer to Appendix C for the individual dynamic behaviour of competing

algorithms.
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Figure 5.3: Dynamic performance of all algorithms on DDUF3 when τ =
60 and ρ = 0.2 in a three different dynamic environments. Best fitness values
achieved each generation are shown in the figure, where the optimum is 100.
Please refer to Appendix C for the individual dynamic behaviour of competing

algorithms.
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Figure 5.4: Dynamic performance of all algorithms on DKP when τ = 60 and
ρ = 0.2 in a three different dynamic environments. Best fitness values achieved
each generation are shown in the figure, where the optimum is 1000. Please refer
to Appendix C for the individual dynamic behaviour of competing algorithms.
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Table 5.1: Statistical results regarding the offline performance of the amcGA variants against other algorithms on the DDUFs in a
cyclic environment. ”+”, ”−” and ”∼” indicates that Algorithm 1 is better than, worse than or statistically equivalent to Algorithm 2

(Algorithm 1 − Algorithm 2).

Algorithms and DOPs DDUF1 DDUF2 DDUF3

Environment dynamics τ = 20 τ = 60 τ = 100 τ = 20 τ = 60 τ = 100 τ = 20 τ = 60 τ = 100

Cyclic, ρ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0

amcGA1 - GAm − − − − − ∼ − − − − − ∼ − − − − − − − ∼ − − − ∼ ∼ − − − − ∼ − − − ∼ − −

amcGA1 - mcGA + + ∼ ∼ + + ∼ ∼ + + + ∼ + + + ∼ + + + + ∼ ∼ + + ∼ ∼ ∼ + ∼ ∼ − + + ∼ ∼ ∼

amcGA1 - PBILm − − − − ∼ − − − ∼ − − − − − − − − − − − − − − − − − ∼ + ∼ − ∼ + ∼ − ∼ +

amcGA2 - GAm − − − − − − − − − − − − − − − − − − − − − − − − − − − ∼ − − − − − − ∼ −

amcGA2 - mcGA + ∼ ∼ ∼ + + ∼ ∼ + + ∼ ∼ + + + ∼ ∼ ∼ ∼ + ∼ ∼ ∼ ∼ ∼ ∼ ∼ + − ∼ ∼ + ∼ ∼ ∼ ∼

amcGA2 - PBILm − − − − ∼ − − − − − − − − − − ∼ − − − − − ∼ − − − − ∼ + − − ∼ + − − + +

amcGA3 - GAm − − ∼ − − − ∼ − − − − − − − − − − − − − − − − − − − − − − − − − − − − −

amcGA3 - mcGA ∼ ∼ ∼ ∼ + + ∼ + + + + + + + + + + + + + + + + + − − − ∼ ∼ ∼ − − ∼ ∼ − −

amcGA3 - PBILm − − − − − − − − − − − − − ∼ − − ∼ − − − ∼ − − − − − − + ∼ − − + − − − +

amcGA4 - GAm − − − − − − − − − − − − − − − − ∼ − − − − − − − − − − ∼ − − − − − − − −

amcGA4 - mcGA + ∼ ∼ − + + ∼ ∼ + + − − + ∼ ∼ + ∼ + ∼ ∼ + + ∼ + ∼ ∼ ∼ + ∼ ∼ ∼ + ∼ ∼ ∼ ∼

amcGA4 - PBILm − − − − − − − − − − − − − − − − − − − − − − − − − − ∼ + − − ∼ + − − ∼ +

amcGA5 - GAm − − − − − − − − − − − − − − − − − − − − − − − − − − + − − ∼ − − − − − ∼

amcGA5 - mcGA + ∼ ∼ − + + ∼ ∼ + + − − + + ∼ ∼ ∼ + ∼ ∼ + − ∼ + ∼ ∼ ∼ + ∼ ∼ ∼ + ∼ ∼ ∼ ∼

amcGA5 - PBILm − − − − − − − − − − − − − − ∼ − − − − − − − − − − ∼ − + − − ∼ + − − ∼ +
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Table 5.2: Statistical results regarding the offline performance of the amcGA variants against other algorithms on the DDUFs in a
cyclic with noise environment. ”+”, ”−” and ”∼” indicates that Algorithm 1 is better than, worse than or statistically equivalent to

Algorithm 2 (Algorithm 1 − Algorithm 2).

Algorithms and DOPs DDUF1 DDUF2 DDUF3

Environment dynamics τ = 20 τ = 60 τ = 100 τ = 20 τ = 60 τ = 100 τ = 20 τ = 60 τ = 100

Cyclic with noise, ρ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0

amcGA1 - GAm − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −

amcGA1 - mcGA + + ∼ − + + + ∼ + + + + + ∼ ∼ ∼ ∼ ∼ − + ∼ ∼ ∼ ∼ ∼ ∼ ∼ − + ∼ ∼ + + + + +

amcGA1 - PBILm − − − − − − − − ∼ ∼ − − − − − − − − − − − − − − − − − − − − − − − − − −

amcGA2 - GAm − − − − − ∼ − − − − ∼ − − − − − − − − − − − − − − − − − − − − − − − − −

amcGA2 - mcGA + + ∼ − + ∼ ∼ ∼ + ∼ ∼ ∼ ∼ + ∼ + − − ∼ + − ∼ ∼ − − ∼ ∼ − ∼ ∼ ∼ + + ∼ ∼ ∼

amcGA2 - PBILm − − − − − − − − ∼ − − − − − − − − − − − − − − − − − − − − − − − − − − −

amcGA3 - GAm − − − − − − − − − − − − − − − − − − − − − − − − − − − ∼ − − − − − − ∼ −

amcGA3 - mcGA ∼ ∼ ∼ − + + + + + + + + ∼ + + ∼ ∼ ∼ + + ∼ ∼ + + ∼ − ∼ − − − − − − + + +

amcGA3 - PBILm − − − − − − − − − − − − − − − − − − − − − − − − − − − + − − − − − − − −

amcGA4 - GAm − − − − − − − − − − − − − − − − − − − − − − − − − − − ∼ − − − − − − − −

amcGA4 - mcGA ∼ ∼ − − ∼ ∼ ∼ ∼ + ∼ ∼ ∼ ∼ ∼ ∼ − − − ∼ + ∼ ∼ ∼ + ∼ ∼ ∼ + ∼ ∼ ∼ + ∼ ∼ ∼ ∼

amcGA4 - PBILm − − − − − − − − − − − − − − − − − − − − − − − − − − ∼ + − − ∼ + − − ∼ +

amcGA5 - GAm − − − − − − − − − − − − − ∼ − − ∼ − − − − − ∼ − − − − − − − − − − − − −

amcGA5 - mcGA ∼ ∼ − − ∼ ∼ ∼ ∼ + ∼ ∼ ∼ + + ∼ ∼ ∼ + ∼ ∼ ∼ + + + − − − − − − − − − − − ∼

amcGA5 - PBILm − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
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Table 5.3: Statistical results regarding the offline performance of the amcGA variants against other algorithms on the DDUFs in a
random environment. ”+”, ”−” and ”∼” indicates that Algorithm 1 is better than, worse than or statistically equivalent to Algorithm

2 (Algorithm 1 − Algorithm 2).

Algorithms and DOPs DDUF1 DDUF2 DDUF3

Environment dynamics τ = 20 τ = 60 τ = 100 τ = 20 τ = 60 τ = 100 τ = 20 τ = 60 τ = 100

Random, ρ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0

amcGA1 - GAm − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −

amcGA1 - mcGA − ∼ ∼ ∼ + + + − + + + + + ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ + − ∼ ∼ ∼ ∼ + + + ∼ + + + + ∼

amcGA1 - PBILm − − − − ∼ − − − + ∼ ∼ − − − − − − − − − − − − − − − − + − − − + − − − +

amcGA2 - GAm − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −

amcGA2 - mcGA − − ∼ ∼ ∼ ∼ − − ∼ + + + ∼ ∼ ∼ ∼ ∼ ∼ + + + + ∼ ∼ ∼ − ∼ + ∼ − − + ∼ ∼ − ∼

amcGA2 - PBILm − − − − − − − − − − − − − − − − − − − − − − − − − − − + − − − + − − − +

amcGA3 - GAm − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −

amcGA3 - mcGA − ∼ ∼ ∼ + + + ∼ + + + + + + + + ∼ + ∼ + + + + + + ∼ − ∼ + ∼ ∼ ∼ + + + −

amcGA3 - PBILm − − − − ∼ − − − + − − − − − − − − − − − − − − − − − − + − − − + − − − +

amcGA4 - GAm − − − − − − − − − − − − − − − − − − − − − − − − − − − − − + − − − ∼ − −

amcGA4 - mcGA + ∼ ∼ − + + ∼ ∼ + + − − + ∼ ∼ ∼ ∼ + − ∼ − + + ∼ ∼ ∼ ∼ + ∼ ∼ ∼ + ∼ ∼ ∼ ∼

amcGA4 - PBILm − − − − − − − − − − − − − − − − − − − − − − − − − − ∼ + − − ∼ + − − ∼ +

amcGA5 - GAm − − − − − − − − − − − − − − − − − − − − − − − − − − − − − ∼ − − − − − +

amcGA5 - mcGA − − − − ∼ − − − ∼ ∼ ∼ + ∼ ∼ ∼ ∼ ∼ + − ∼ ∼ ∼ + ∼ ∼ − − + ∼ − − + ∼ − − −

amcGA5 - PBILm − − − − − − − − − − − − − − − − − − − − − − − − − − − + − − − + − − − −
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Table 5.4: Statistical results regarding the offline performance of the amcGA variants against other algorithms on the DKP in
different environments. ”+”, ”−” and ”∼” indicates that Algorithm 1 is better than, worse than or statistically equivalent to Algorithm

2 (Algorithm 1 − Algorithm 2).

Algorithms and DOPs Cyclic DKP Cyclic with noise DKP Random DKP

Environment dynamics τ = 20 τ = 60 τ = 100 τ = 20 τ = 60 τ = 100 τ = 20 τ = 60 τ = 100

ρ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0

amcGA1 - GAm − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −

amcGA1 - mcGA − − − + + ∼ − − + + + − − ∼ − − + + + − + + + − − − − − ∼ ∼ + − + ∼ + −

amcGA1 - PBILm − − − − ∼ ∼ − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −

amcGA2 - GAm − − − − − ∼ − − − − ∼ − − − − − − − − − − − − − − − − − − − − − − − − −

amcGA2 - mcGA − − − − ∼ ∼ − − + + + − − − − − + + ∼ − + + + − − − − − ∼ ∼ + − + − + −

amcGA2 - PBILm − − − − − − − − ∼ − − − − − − − − − − − − − − − − − − − − − − − − − − −

amcGA3 - GAm − − − − − − − − − − − − − − − − − − − − − − − − − − − ∼ − − − − − − ∼ −

amcGA3 - mcGA + − + ∼ + + + + + + + + ∼ + + ∼ + + + + + + + + ∼ ∼ ∼ ∼ − ∼ + + + ∼ + +

amcGA3 - PBILm − − − − − − − − − − − − − − − − − − − − − − − − − − − + − − − − − − − −

amcGA4 - GAm − − − − − − − − − − − − − − − − − − − − − − − − − − − ∼ − − − − − − − −

amcGA4 - mcGA − − − − ∼ ∼ − − + + + − − ∼ ∼ − + + ∼ − ∼ + + − − − − − − − + − + − + −

amcGA4 - PBILm − − − − − − − − − − − − − − − − − − − − − − − − − − ∼ + − − ∼ + − − ∼ +

amcGA5 - GAm − − − − − − − − − − − − − ∼ − − ∼ − − − − − ∼ − − − − − − − − − − − − −

amcGA5 - mcGA − − − − ∼ ∼ − − + + + ∼ − ∼ − − + + ∼ − ∼ + + − − − − − − − + − + − + ∼

amcGA5 - PBILm − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
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Figure 5.5: This figure shows the best offline performance of each algorithm
under different change ratios and environments (i.e. Cyclic, Cyclic with noise
and Random) with τ = 60. Since the DDUFs are maximisation problems, it

can be observed that for all DDUFs the optimum value is 100.

In Figs. 5.2 and 5.3, it can be observed that on the cyclic DDUF2 and cyclic

DDUF3 (with and without noise), all amcGA variants show low performance when

ρ= 0.1 to 0.5 but exhibit rapid increase in performance when ρ=1.0. This is due

to the deceptive nature of DDUF2 and DDUF3, since a low-order BBs within

the function do not clearly lead to a high-order BBs and the amcGAs seems to

be sensitive to low ρ. However, all amcGA variants cope well with high ρ (1.0)

because the environment shifts between two states which in turn gives more time
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Figure 5.6: This figure shows the best offline performance of each algorithm
under different change ratios and environments (Cyclic, Cyclic with noise and
Random) with τ = 60. Since the DKP is a maximization problem, it can be

observed that for all environments the optimum value is 1000.

for the algorithm to obtain a better solution suitable for the environment before

the next change occurs.

Looking at DKP in Figs. 5.4, it can be observed that for all dynamic environments,

the performance of all variants of the amcGA reduces as ρ increases. This can be

considered normal, since an increase in ρ implies more severe environment changes.

When the nature of the dynamic environment increases from cyclic to cyclic with

noise, the performance of all amcGA variant and mcGA increases slightly. Despite

the fact that a cyclic environment with noise is generally more difficult to deal with

than a cyclic environment, the amcGA variants showed better performance. But in

the random environment, the performance of some of the amcGA variants dropped

(when ρ = 0.5 and 1.0). This implies that even though the existence of noise in a

cyclic environment may over weigh randomness (in terms of difficulty), it favours

the performance of all amcGA variants.

Finally, from Fig. 5.1(a) - 5.6, it can be observed that the amcGA variants (i.e.

amcGA1 to amcGA5) performed better on the DDUF2 and DDUF3 problem,

especially when τ is large (see Table 5.1 - 5.4). This implies that the performance

of the amcGA not only depends on the dynamics of the environment, but also on

the DOP being considered. Overall, the experimental results indicate the amcGA

variants can be considered as the best compact approach (among the tested) when

solving DOPs with deceptive properties2.

2These are functions where there exists low-order building blocks that do not combine to
form the higher-order building blocks. Instead, low-order building blocks may lead astray an
optimisation algorithm towards local optima (Fernandes et al., 2009)
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5.1.3 Discussion

The effect of change trend and different mutation schemes on the performance of

the amcGA in dynamic environments was studied in this section. From experi-

mental results, several conclusions can be drawn on the overall performance of the

algorithms:

� First, the mutation scheme has a positive effect on the performance of

the amcGA. Information about an environment (before or after a dynamic

change) is retained and reprocessed whenever a dynamic change occurs (in-

stead of storing individual solutions in a dedicated memory or using training

data).

� Second, statistical results highlight that variants of the amcGA display best

performance on a number of DOPs (with respect to environment dynamics)

when compared with GAm, mcGA and PBILm. In several cases, the change

in environment had minimal effect on the performance of the amcGA variants

while the algorithms tries to find a suitable solution. The interaction between

the change trend and mutation depends on the DOP (see Figs. 5.1- 5.6 and

Table 5.1- 5.4).

� Third, the addition of a change trend scheme to the amcGA improves the

algorithms performance in dynamic environments. The change trend scheme

ensures that the amcGA responds to dynamic changes based on the change

pattern exhibited by the current working probability. This allows the algo-

rithm to update its mutation strategy using the change pattern. However,

the observed effect of these in the experiments, although not conclusive,

seems to have less of an effect than the hypermutation on the performance

of the GAm and PBILm.

� Finally, the mutation scheme embedded within all amcGA variants encour-

ages diversity in dynamic environments. It ensures that the algorithm main-

tains its population diversity while tackling a DOP and gradually moves

towards the optimal solution (see Appendix C for individual performance

plots).
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5.2 Analysis of TMSDS experiments

The algorithms presented in Chapter 3 were used for tuning an integral-state PID

controller in order to evaluate the performance of each algorithm in the dynamic

environment described in Chapter 4. All algorithms were evaluated using the

TMSDS platform without the need for any manual (or human) intervention. Each

algorithm starts with a randomly generated initial solution ( chromosome) and

default position (zero initial position of the TMSDS). The respective results are

presented and discussed below.

As mentioned earlier, the amcGAs and competing algorithms makes use of the

elitism approach to copy the best individual of every generation into the next

generation. Each algorithm evaluates 2 candidate solutions every generation and

runs for 200 generations (i.e. 10 dynamic changes × 20 generation). Each solu-

tion requires about 20 seconds for evaluation plus an additional 5 seconds for the

TMSDS to reset to the initial position before the next evaluation. The overall time

for each algorithm to complete a run is about 10000 seconds. The experimental

results of all algorithms based on RMSE (i.e. Eq. 4.23), mean, standard deviation

and Best-of-generation performance using Eq. 2.2 are shown in Table 5.6 and 5.7.

A summary of the memory requirements of each algorithm on the TMSDS are

shown in Table 5.5.

5.2.1 Analysis regarding overall performance of the am-

cGA

From Table 5.6 and 5.7, it can be observed that all amcGA variants outperforms

the mcGA, r-rcGA and r-cDE. The reason for this behaviour is because the restart

scheme mainly resets the algorithm (i.e. re-initializing
−→
P ) whenever a change is

detected so as to distribute the search force. This method only increases the diver-

sity in the population at the beginning of each new environment. But restarting

an algorithm whenever a change occurs does not assure finding the optimum solu-

tion in a reasonable time frame. Also, r-rcGA and r-cDE do not exploit any useful

information from old environments and the frequent restart sacrifices its evolving

capability.

The effect of the hypermutation in mcGA is only noticed at the start of a new

environment. While tuning the controller using mcGA, it was observed that the
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Figure 5.7: The figure shows the performance of all competing algorithms us-
ing the TMSDS in 3 different runs. Best-or-generation fitness (based on RMSE)
achieved each generation is shown. The main objective is to minimize error (i.e
the TMSDS is a minimization problem). Please refer to Appendix C for the

individual step response of competing algorithms.
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probability vector converged faster than the other algorithms. This is because,

the
−→
P updates based on the best hyper-mutated solution which makes

−→
P loose

its diversity (the hypermutation scheme on its own does not encourage genetic

diversity and can lead to early convergence). Since the mcGA requires that a

base and high level mutation rate be picked a priori, introducing a proper level

of diversity becomes difficult to achieve. This can be considered as one of the

disadvantages of the hypermutation scheme.

The dynamic behaviour of all algorithms (based on Eq. 2.2) are shown in Fig. 5.7

for the number of environmental changes with respect to best-of-generation fitness

(i.e. elite fitness RMSE) against the number of generations. From Figs. 5.7,

several behaviours can be observed. The spikes in the graph signifies a change

in environment which is when the magnet is placed in front of the mass. The

amcGA tries to find a solution suitable for both environments (i.e in the presence

of a magnet and when away from the magnet) unlike the r-rcGA, r-cDE and mcGA

which exhibits unstable performance (see Fig. 5.7).

5.2.1.1 Memory consumption

In order to have a clear indication of the memory requirements in the TMSDS

problem, the memory footprint of the competing algorithms were evaluated. The

embedded software excluding the compact dynamic optimisation algorithms con-

sumes 6386 byte, which is 19% of the total flash memory. The Arduino Uno

contains 32KB of flash memory of which 0.5KB is used by the boot-loader. The

addition of each algorithm results to an increase in memory. For the mcGA and

r-rcGA, the additional increase in memory is 16% and 20% respectively while the

rcDE requires an additional 21% of total flash memory. The r-cDE requires more

memory due to the solution sampling mechanism within the algorithm (please

refer to Mininno et al. (2011)).

From Table 5.5, it is clear that the amcGA is not computationally expensive, in

terms of memory. The amcGA1-3 takes 19% of the flash memory, while amcGA4

and amcGA5 takes 21%. In the amcGA4 and amcGA5, the 2% additional in-

crease in memory is as result of the addition of the change trend scheme to the

adaptive mutation scheme. From Table 5.5, it can be observed that the amcGAs

are more memory efficient than the competing algorithms. The addition of the

adaptive mutation, change detection and trend scheme do not result to increased

memory requirement. This implies that the amcGA is significantly better than
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the competing compact algorithms because integrating similar dynamic techniques

into the competing algorithms would make them computationally expensive and

unsuitable for applications using memory constrained devices.

Table 5.5: Summary of memory requirements on the TMSDS. This table shows
the size of each algorithm (without the integral-state PID controller) in the
Arduino memory. This is expressed as size (byte) in Flash memory, the SRAM
usage which is a combination of initialized data (data) and non-initialized data

(bss) SRAM = data + bss.

Algorithms Flash (byte) data (byte) bss (byte) SRAM (byte) Total memory (%)

mcGA 4916 28 509 537 16
r-cDE 6706 22 347 369 21
r-rcGA 6402 22 275 297 20
amcGA1 5868 28 658 686 19
amcGA2 5952 28 658 686 19
amcGA3 6096 28 658 686 19
amcGA4 6304 29 754 783 21
amcGA5 6278 29 754 783 21

5.2.2 Statistical Analysis of TMSDS Experiment

The first step in the analysis of the data is to test for the null hypothesis whether

or not there are significant differences in the ability of the evolutionary PID con-

troller to maintain the setpoint in the dynamic environment. To achieve this, a

parametric statistic test such as the t-test can be used to accept or reject the null

hypothesis. Parametric statistics assumes that all populations have equal stan-

dard deviations and normal distribution of values. However, it is important to

test normality so as to confirm these assumptions. Therefore a histogram of each

results from the evolved PID controller (using the respective compact algorithms)

is depicted in Fig. 5.8. It can be observed that results obtained do not show a

normal distribution. Also, from Table 5.6, it is clear that the standard deviations

are not equal. In addition, the Shapiro-Wilk normality test was used to further

analyse the results for normality. This test confirmed that all results were from a

non-normal distribution.

Since the data does not show a normal distribution and equal standard deviations,

a non-parametric statistic, the Wilcoxon Rank-Sum statistic test with 0.05 level

of significance was used to verify the null hypothesis h0 (h0 : A = B) against the

alternative hypothesis ha (ha : A 6= B). More precisely, the null hypothesis is

rejected if the p-value is smaller than 0.05.
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(a) amcGA1. (b) amcGA2.

(c) amcGA3. (d) amcGA4.

(e) amcGA5. (f) mcGA.

(g) r-cDE. (h) r-rcGA.

Figure 5.8: Histogram of the best PID performance observed over all 30 test
runs using the respective compact dynamic algorithm
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With the amcGA variants set as reference, the statistic test led to the null hy-

pothesis being rejected except when amcGA1 was compared with amcGA5. The

test indicated that there are significant differences between the compact dynamic

optimisation tuning techniques. Results of these comparisons are shown in Ta-

ble 5.7. From Table 5.7, the Wilcoxon Rank-Sum test do give information as to

where the difference are amongst the algorithms:

� amcGA1 outperformed r-cGA, r-cDE, mcGA and amcGA2

� amcGA2 outperformed r-cGA, r-cDE and mcGA

� amcGA3 outperformed all competing algorithms

� amcGA4 outperformed r-cGA, r-cDE, mcGA and amcGA5

� amcGA5 outperformed r-cGA, r-cDE and mcGA. Also amcGA5 is statisti-

cally equivalent to amcGA1.

From all results shown in this section, the amcGA3 exhibited the best performance

amongst the amcGA variants, showing low RMSE, Mean, Stdev, FBOG and closely

tracked the changing environment (please refer to Figs C.13- C.20 in Appendix C).

This can be considered a significant finding since it demonstrates that the amcGA

variants outperform the competing compact dynamic algorithms.

Table 5.6: Experimental results of all algorithms with respect to total RMSE,

overall mean, standard deviation and performance based on FBOG

Algorithms RMSE Mean Stdev FBOG

amcGA1 54236.26 1807.87 65.19 50.24
amcGA2 55107.04 1836.90 67.14 50.49
amcGA3 52238.19 1807.94 29.74 45.58
amcGA4 54543.86 1818.12 61.25 50.14
amcGA5 54492.58 1816.08 65.85 50.15
mcGA 58103.11 1936.77 120.27 53.62
r-cDE 82589.42 2105.98 150.58 74.76
r-rcGA 79880.14 2662.67 168.67 72.30
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Table 5.7: Statistical results regarding the overall performance of the amcGA
variants on the TMSDS. The table shows the statistical results of the Wilcoxon
rank-sum test at 0.05 level of significance. The results of Algorithm 1 (in rows)
and Algorithm 2 (in columns) are shown as ”+”, ”−” and ”∼” when Algorithm

1 is better than, worse than or statistically equivalent to Algorithm 2.

Algorithms r-rcGA r-cDE mcGA amcGA5 amcGA4 amcGA3 amcGA2

amcGA1 + + + ∼ − − +
amcGA2 + + + − − −
amcGA3 + + + + +
amcGA4 + + + +
amcGA5 + + +
mcGA + +
r-cDE ∼

5.2.3 Discussion

In this section the amcGA and competing algorithms were used for tuning the

gains of an integral-state PID controller for the TMSDS in a dynamic environ-

ment. Performance of the algorithms were evaluated using an actual system in-

stead of an artificial benchmark problem. This made any system identification

that would create an approximate but imperfect model of the actual real-world

system implicit.

From experimental results shown, several conclusions can be drawn on the overall

performance of the amcGA:

� The amcGA can be an effective means to perform self-tuning function for

control algorithms in dynamic environments.

� The amcGA maintains the small footprint of the conventional cGA which

allows direct implementation on the same processor running the control al-

gorithm, thus overcoming the limitations related to typical population-based

dynamic optimisation algorithms (see Table 5.5).

� The schemes within the amcGAs encourages diversity in a dynamic envi-

ronment. It ensures that the algorithm maintains population diversity when

tackling the DOP instead of a random-walk like the r-rcGA and r-cDE.

� Instead of searching for an optimal solution for a particular environment,

the amcGA tries to find a solution suitable for both environments i.e. with

respect to the position of the magnet (please refer to Fig. C.13 - C.20 in

Appendix C).
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5.3 Summary

This chapter evaluated the performance of the amcGA using an artificial dynamic

benchmark problem and a physical system in a dynamic environment. Overall,

from all experiments presented, as stated earlier, it can be observed that some

of the competing dynamic algorithms exploit artificial simulation discrepancies in

an opportunistic manner to achieve high fitness values with deceitful performance

(please see mcGA performance in both benchmark problems in Section 5.1 and

5.2).

In general, when designing a dynamic optimisation algorithm it is important to

achieve a proper balance between exploration and exploitation. Controlling explo-

ration and exploitation of an optimisation algorithm is difficult since these abilities

are implicit. Also, there is a trade off between exploration and exploitation of a

search space. Higher selection pressure means more exploitation while lower se-

lection pressure means more exploration. This implies that maintaining a good

balance between exploration and exploitation is highly significant because inad-

equate choice of parameter values can limit the ability of a dynamic algorithm

to locate the optimum. This is evident in the performance of mcGA, when the

mutation rate increases due to a dynamic change, much of the search space is

explored. However, the mcGA loses promising solution and in some cases experi-

ences difficulty converging to an optimum due to insufficient exploitation. It was

noticed that this behaviour in some dynamic environment settings led to early

convergence of
−→
P .

On the other hand, all amcGA variants explore the defined search space before a

dynamic change occurred. After a dynamic change, the amcGA variants exploit

the search based on information from previous environments (for a defined num-

ber of generations) so as to adapt quickly in the new environment before further

exploration. This behaviour comes from the schemes embedded with the amcGA.

The level of diversity applied to the algorithm after a dynamic change depends on

the degree of change. This means that the exploration ability of the amcGA (to an

extent) is directly proportional to degree of change, whilst the exploitation ability

of the algorithm to an extent, depends on information from previous environments

(based on
−→
P and

−−→
mP ).

From the experiments carried out, it can be affirmed that the amcGA3 performed

best in both benchmark problems. This is because the mutation scheme embedded

in the amcGA3 ensures that
−−→
mP is altered at a reduced rate in order to reflect
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the degree of dynamic change. This implies that the amcGA3 has better evolving

capability and fast response to dynamic changes (see Appendix C for individual

performance plots).

However, it was observed that the schemes presented in Chapter 3 are problem

dependent. For example, the amcGA4 and amcGA5 are suitable for reoccurring

(cyclic and cyclic with noise) dynamic changes. This is because the change trend

scheme embedded in amcGA4 and amcGA5 keeps track of the change pattern

in a dynamic environment so as to enable the algorithm to learn and adapt to

similar subsequent dynamic changes. On the other hand, amcGA1 and amcGA2

are suitable for applications that have no time constraints as they require more

time to adapt properly. Also, the amcGA1 can be used to access/determine which

of the other variants are suitable for a particular DOP.



Chapter 6

Conclusions and Future Work

Despite the steady increase in high performance computational devices, there are

applications where it is required to solve optimisation problems in memory con-

strained embedded systems. For example, the optimization of parameters for un-

manned aerial vehicles and robotic systems, where cost and size of the embedded

system being used is very important. In such situations, the amcGA presented in

this thesis is considered suitable. This is because the algorithmic structure of the

amcGA permits direct implementation on a memory constrained embedded hard-

ware system without a significant increase in memory. Also the amcGA can be

seen as an advancement in developing a compact dynamic optimization algorithm

suitable for memory constrained devices and applications. This way the existing

gap between academic research and real-world dynamic application reduces.

Therefore, this chapter concludes this thesis by summarizing the results, re-evaluates

their utility, and discussing key points of the research. Contribution to knowledge

are presented and an outlook at future improvements and topics that will be the

focus of future research in the field will be given.

6.1 Concluding remarks

The main outcome of this thesis is the novel variant of the compact genetic algo-

rithm suitable for solving DOPs. More specifically, an adaptive-mutation compact

genetic algorithm (amcGA) was created and presented. This is a significant step

for tackling DOPs using a compact dynamic optimisation algorithm. Furthermore

the amcGA has been compared to other compact and population-based dynamic

99
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optimisation algorithms. This research was assessed against the research hypoth-

esis stated in sections 1.2 and 3.1.2.

Initially, a literature survey in chapter 2 identified limitations of existing dynamic

optimisation algorithms and control optimisation techniques. Most dynamic op-

timisation algorithms are evaluated using artificial benchmark problems which in

some cases do not relate to a real world problem sufficiently. There have been

studies on the use of data originating from real world scenarios. Although, the

algorithms used are capable of solving DOPs, the complex structure of the al-

gorithms limit their application in small-scale embedded hardware systems with

limited memory. These predecessors are the basis for the development of the

amcGA.

This thesis developed and presented a novel compact dynamic optimisation algo-

rithm suitable for solving artificial DOPs and direct implementation on embedded

hardware with limited memory (see chapter 3). In order to evaluate the perfor-

mance of the algorithm, dynamic test problems were introduced and used (see

chapter 4). Two different types of DOPs, an artificial DOP and a DOP based on

a physical system were used, primarily because of their relevance in verifying the

research hypothesis. The XOR-DBG is a synthetic dynamic benchmark generator

that constructs dynamic environments for any binary encoded static optimisation

problem. The TMSDS is a physical system operating in a dynamic environment.

Experimental analysis was used to support the verification of the research hypoth-

esis. The limitation of existing dynamic optimisation algorithm and techniques i.e.

hypermutation and restart schemes discussed in this thesis instigated a novel com-

pact approach. The resulting compact dynamic optimisation algorithm is suitable

for direct implementation on small scale embedded system with limited memory

(see table 5.5) as well as simulations using a desktop PC.

The novel algorithm developed and presented in this thesis is based on the idea of

maintaining population diversity at a population-level by applying an intelligent

adaptive mutation and effective change detection schemes. It was demonstrated

that these techniques support extracting and transferring of key information from

one environment to another and that this can effectively minimize the exploration

exploitation dilemma commonly faced by most dynamic optimisation algorithms.
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6.2 Contributions

Contributions of this thesis in the field of cGA and dynamic optimisation covers

the development of techniques that: enhance the adaptation capabilities of the

cGA in dynamic environments, encourage diversity within the cGA i.e preventing

premature convergence of the probability vector
−→
P and allow knowledge transfer

without using a dedicated memory storage.

Specifically, the main technical contributions of this research can be summarized

as follows:

� The development of a novel change detection scheme that measures the de-

gree of change in a dynamic environments. The change detection scheme

also tracks the performance of an elite solution in a dynamic environment.

This was confirmed through experimentation and analysis carried out in

chapter 5.

� The development of a novel adaptive mutation scheme that operates on a

population level (based on the degree of change), such that a high degree of

change results to a high mutation rate so as to diversify solutions sampled

from the probability vector. This way, exploration and exploitation prop-

erties are implicitly regulated by the algorithm. This can be observed in

chapter 5.

� The development of a novel change trend scheme that tracks and monitors

change pattern exhibited by the algorithm. This way the algorithm adapts

quickly after a dynamic change. The change trend scheme can be applied to

combinatorial DOPs and real-valued DOPs with some increase in memory

requirements. In chapter 3, two change trend schemes were presented; btchg

and rtchg. The btchg was applied to the XOR-DOPs since this is a combinato-

rial problem while the TMSDS DOP made use of rtchg. Candidate solutions

were generated as binary strings for easy manipulation of individual bits.

This is a substantial contribution since results of experiments presented in

chapter 5 confirms that these schemes are computationally efficient (see ta-

ble 5.5).

� The novel algorithm developed in this thesis has been evaluated using a

synthetic dynamic benchmark generator and a physical system. These tests

were used to verify the research hypothesis. Others have confirmed that most
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dynamic optimisation algorithms exploit simulation discrepancies to achieve

performance that are unrealistic. Competing algorithms showed stable per-

formance when evaluated using the synthetic dynamic benchmark problem.

However, this is not the case when evaluated using the TMSDS (please re-

fer to the performance of mcGA on both test problems in chapter 5 and

Appendix C).

� The schemes developed in this thesis have been studied in different dynamic

test scenes. The amcGA shows overall better performance when compared

to the hypermutation scheme applied to a cGA (mcGA).

6.3 Future research directions

For DOPs, locating and tracking an optimum in a defined search space is an

effective method for dynamic evolutionary algorithms. Experimental results con-

firm that the main objective of optimisation algorithms in dynamic environments

should be to find an optimum as quickly as possible before further exploration.

The work presented here provides an effective platform for pursuing future avenues

of research. The key areas of further research are listed and discussed below:

Scheme extension:

It would be interesting to integrate the schemes developed in this thesis into

other compact and non-compact optimisation algorithms to further improve

performance when solving dynamic optimisation problems. For example, the

mutation factor in the cDE has an impact on the overall performance of the

algorithm. Further research will be carried out to look at self-adaptation or

adaptation of the mutation factor and diversity of the cDE to adapt them

based on the dynamics of a DOP. Extending the schemes used in amcGA

to the rcGA may also be valuable to improve performance when solving

DOPs. This would encourage the use of memory efficient compact optimi-

sation algorithms for DOPs. Also, studying the efficiency and suitability of

the amcGAs in different types of real-world applications will be a pursuit in

further research.
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Compact intelligence:

At this point one can imagine that a true intelligent dynamic optimisation

algorithm can self-evolve according to the dynamic nature of a given problem.

This implies that the algorithm should be able to learn, store and re-use any

relevant information about a dynamic environment in order to adapt quickly

to subsequent dynamic changes. Although there will be challenges on the

way to realise such algorithms, further research will look at what constitutes

a true intelligent self-evolving dynamic optimisation algorithm based on a

compact structure.

Dynamic parameter updates:

It is notable that the change threshold cThres and standard deviation σ

(Eq 3.2) of the amcGA are fixed (see chapter 3) during an optimisation

process. Since these parameters determine how sensitive the amcGA is to

dynamic changes, further research will look at the dynamic control of these

parameters during an optimisation process. This means updating these pa-

rameters in real-time according to the level of dynamism of physical test-

bench or artificial benchmark problems.
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Table B.1: Statistical results regarding the offline performance of the amcGA
variants on the DDUF1. ”+”, ”−” and ”∼” indicates that Algorithm 1 is better
than, worse than or statistically equivalent to Algorithm 2 (i.e. Algorithm 1 −

Algorithm 2 ).
Algorithms and DOPs DDUF1
Environment dynamics τ = 20 τ = 60 τ = 100

Cyclic ρ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
amcGA1 - amcGA2 + + + + + ∼ ∼ + + + + +
amcGA1 - amcGA3 - - - - - - - - - ∼ - -
amcGA1 - amcGA4 + - - + + - - - - + - ∼
amcGA1 - amcGA5 - + ∼ - + - + - + ∼ - +
amcGA2 - amcGA3 - - - - - - ∼ - - - - -
amcGA2 - amcGA4 - ∼ - + ∼ - ∼ ∼ - ∼ ∼ +
amcGA2 - amcGA5 + - - - - - ∼ - - + - -
amcGA3 - amcGA4 + + + + + + + + + + + ∼
amcGA3 - amcGA5 + + ∼ + + + ∼ + + + + +
amcGA4 - amcGA5 ∼ ∼ ∼ + ∼ + ∼ + ∼ ∼ ∼ -
Cyclic with noise, ρ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
amcGA1 - amcGA2 - + + - + - + - + + ∼ +
amcGA1 - amcGA3 - - - - - - - - - - - -
amcGA1 - amcGA4 - + - ∼ + - + - + - ∼ -
amcGA1 - amcGA5 + + ∼ - ∼ - ∼ - + - - -
amcGA2 - amcGA3 - - - - - - - - - - ∼ -
amcGA2 - amcGA4 - ∼ ∼ - - - - - - - - -
amcGA2 - amcGA5 ∼ - - - - - - ∼ + - ∼ -
amcGA3 - amcGA4 + + + + + + + + + + + +
amcGA3 - amcGA5 + + - + + + - ∼ + + ∼ +
amcGA4 - amcGA5 - ∼ ∼ - - ∼ - - - ∼ - -

Random, ρ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
amcGA1 - amcGA2 + + + + + - + ∼ + - + +
amcGA1 - amcGA3 - - - - - - - ∼ - - ∼ -
amcGA1 - amcGA4 + - - - - ∼ - - ∼ + + +
amcGA1 - amcGA5 ∼ - - ∼ - - - ∼ - ∼ - -
amcGA2 - amcGA3 - - - ∼ - - - - - - - -
amcGA2 - amcGA4 - ∼ - - - - - ∼ - - - ∼
amcGA2 - amcGA5 - - - - ∼ - - - ∼ - ∼ -
amcGA3 - amcGA4 + - ∼ + + - + + + ∼ + +
amcGA3 - amcGA5 + + + + + + ∼ ∼ + + ∼ +
amcGA4 - amcGA5 + - + + - - - + - - - +

Statistical results on the DDUF2
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Table B.2: Statistical results regarding the offline performance of the amcGA
variants on the DDUF2. ”+”, ”−” and ”∼” indicates that Algorithm 1 is better
than, worse than or statistically equivalent to Algorithm 2 (i.e. Algorithm 1 −

Algorithm 2 ).
Algorithms and DOPs DDUF2
Environment dynamics τ = 20 τ = 60 τ = 100

Cyclic ρ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
amcGA1 - amcGA2 ∼ + + + + ∼ ∼ + ∼ ∼ + +
amcGA1 - amcGA3 - - - - - - - - - - - -
amcGA1 - amcGA4 - - - + + - - ∼ - + ∼ ∼
amcGA1 - amcGA5 - - ∼ - + - ∼ - + ∼ - ∼
amcGA2 - amcGA3 - - - - - - - - - - - -
amcGA2 - amcGA4 - - - + ∼ - + - - - ∼ +
amcGA2 - amcGA5 - - - ∼ - - ∼ - - + - -
amcGA3 - amcGA4 + + + ∼ + + ∼ + ∼ + + ∼
amcGA3 - amcGA5 ∼ + + + + ∼ + + + + + +
amcGA4 - amcGA5 + ∼ - + ∼ + + + ∼ - ∼ -
Cyclic with noise, ρ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
amcGA1 - amcGA2 ∼ + ∼ - + - + ∼ + + - +
amcGA1 - amcGA3 - - - - - - - - - - - -
amcGA1 - amcGA4 ∼ + ∼ ∼ + + - - + - ∼ ∼
amcGA1 - amcGA5 + + ∼ - - - ∼ - + + - -
amcGA2 - amcGA3 - - - - - - - - - - - -
amcGA2 - amcGA4 - - - - - - ∼ - ∼ - - ∼
amcGA2 - amcGA5 - - - ∼ - - ∼ - + - ∼ -
amcGA3 - amcGA4 + + + + + + + + + + + +
amcGA3 - amcGA5 + + - + + + + ∼ ∼ + + +
amcGA4 - amcGA5 ∼ + - - - ∼ - + + ∼ - -

Random, ρ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
amcGA1 - amcGA2 + + + + + - + ∼ + - + +
amcGA1 - amcGA3 - - - - - - - - - - - -
amcGA1 - amcGA4 - - - - - ∼ ∼ - - - - -
amcGA1 - amcGA5 - - - - - - - - - - ∼ ∼
amcGA2 - amcGA3 - - - - - - - - - - - -
amcGA2 - amcGA4 - - - - - - ∼ - ∼ - - -
amcGA2 - amcGA5 ∼ - - - - - ∼ - - - ∼ -
amcGA3 - amcGA4 + + + + + - + ∼ + + ∼ ∼
amcGA3 - amcGA5 + ∼ + + + + ∼ + + + + +
amcGA4 - amcGA5 ∼ - + + ∼ - - ∼ - ∼ ∼ +

Statistical results on the DDUF3
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Table B.3: Statistical results regarding the offline performance of the amcGA
variants on the DDUF3. ”+”, ”−” and ”∼” indicates that Algorithm 1 is better
than, worse than or statistically equivalent to Algorithm 2 (i.e. Algorithm 1 −

Algorithm 2 ).
Algorithms and DOPs DDUF3
Environment dynamics τ = 20 τ = 60 τ = 100

Cyclic ρ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
amcGA1 - amcGA2 ∼ + + - - ∼ + + + - + +
amcGA1 - amcGA3 - - - ∼ - - - ∼ - - - -
amcGA1 - amcGA4 + ∼ - + - + - + - ∼ ∼ +
amcGA1 - amcGA5 + - - + + - + + + - + -
amcGA2 - amcGA3 - - - - - ∼ - - - - - -
amcGA2 - amcGA4 ∼ ∼ + - - - - + - + - -
amcGA2 - amcGA5 ∼ - - - ∼ - - + - ∼ - +
amcGA3 - amcGA4 + + + ∼ ∼ + + ∼ - ∼ + +
amcGA3 - amcGA5 + + ∼ + + + ∼ + + + + ∼
amcGA4 - amcGA5 ∼ + ∼ + + - + + ∼ + ∼ +
Cyclic with noise, ρ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
amcGA1 - amcGA2 + ∼ ∼ + + + ∼ - + + + +
amcGA1 - amcGA3 - - - - - - - - - - - -
amcGA1 - amcGA4 ∼ - + - ∼ - - + + ∼ ∼ ∼
amcGA1 - amcGA5 + - - - + - - + - ∼ ∼ -
amcGA2 - amcGA3 - - - - - - - - - - - -
amcGA2 - amcGA4 - ∼ ∼ - - - - - - - - -
amcGA2 - amcGA5 - ∼ ∼ - - ∼ - - - - ∼ -
amcGA3 - amcGA4 + - ∼ - + - ∼ - - ∼ - +
amcGA3 - amcGA5 ∼ + + - + ∼ + ∼ + ∼ ∼ -
amcGA4 - amcGA5 - - - - - ∼ - - - - ∼ -

Random, ρ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
amcGA1 - amcGA2 + + ∼ + + - - + + - + +
amcGA1 - amcGA3 - - - - - ∼ - - - ∼ - -
amcGA1 - amcGA4 + + ∼ - + - - + + ∼ + ∼
amcGA1 - amcGA5 ∼ - - + - - - ∼ + - ∼ -
amcGA2 - amcGA3 - - - - - - - - - - - -
amcGA2 - amcGA4 - - - - - - - - - - - -
amcGA2 - amcGA5 - - - ∼ - - - ∼ - - - ∼
amcGA3 - amcGA4 + + + ∼ + + + ∼ + + + -
amcGA3 - amcGA5 ∼ + + + ∼ + + + ∼ + ∼ +
amcGA4 - amcGA5 - + + + - - + + + + - ∼

Statistical results on the DKP
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Table B.4: Statistical results regarding the offline performance of the amcGA
variants on the DKP. ”+”, ”−” and ”∼” indicates that Algorithm 1 is better
than, worse than or statistically equivalent to Algorithm 2 (i.e. Algorithm 1 −

Algorithm 2 ).
Algorithms and DOPs DKP
Environment dynamics τ = 20 τ = 60 τ = 100

Cyclic ρ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
amcGA1 - amcGA2 + + + + + + - + + + + +
amcGA1 - amcGA3 - - - - - ∼ - - - - ∼ -
amcGA1 - amcGA4 + ∼ ∼ - ∼ ∼ - - + - - +
amcGA1 - amcGA5 - ∼ ∼ - + - ∼ - + + ∼ ∼
amcGA2 - amcGA3 - - - - - - - - - - - -
amcGA2 - amcGA4 - + - - - ∼ - - ∼ ∼ - -
amcGA2 - amcGA5 - ∼ ∼ - ∼ + - - + - ∼ -
amcGA3 - amcGA4 + + + ∼ + + + + ∼ + + +
amcGA3 - amcGA5 + + + ∼ ∼ + + + + + + ∼
amcGA4 - amcGA5 + + + ∼ ∼ ∼ ∼ + + ∼ ∼ +
Cyclic with noise, ρ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
amcGA1 - amcGA2 + ∼ + + + + + ∼ - + + -
amcGA1 - amcGA3 - - - - ∼ - - - - ∼ - -
amcGA1 - amcGA4 + - ∼ + + - ∼ ∼ + ∼ + ∼
amcGA1 - amcGA5 ∼ - - ∼ + - ∼ ∼ + - + -
amcGA2 - amcGA3 - - - - - - - - - - - -
amcGA2 - amcGA4 - - - - - - - - - - - -
amcGA2 - amcGA5 - - - - - - ∼ - ∼ - - -
amcGA3 - amcGA4 - ∼ + + - ∼ + + - + ∼ ∼
amcGA3 - amcGA5 + + ∼ - ∼ + ∼ + ∼ - + ∼
amcGA4 - amcGA5 - - - - - ∼ - - - ∼ - -

Random, ρ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
amcGA1 - amcGA2 + + ∼ ∼ + + - ∼ + + + -
amcGA1 - amcGA3 - - - - - - - - - - - -
amcGA1 - amcGA4 - ∼ + - - ∼ + - + - + -
amcGA1 - amcGA5 - ∼ - - ∼ ∼ - - - - ∼ ∼
amcGA2 - amcGA3 - - - - ∼ - - - - ∼ - -
amcGA2 - amcGA4 - - ∼ - - - ∼ - - ∼ - -
amcGA2 - amcGA5 - - - - - - ∼ - ∼ - ∼ -
amcGA3 - amcGA4 + ∼ + + + + ∼ + + + + +
amcGA3 - amcGA5 + + + + + + + ∼ + ∼ + +
amcGA4 - amcGA5 + - - ∼ - ∼ + ∼ + - ∼ ∼



Appendix C

Additional performance plots

Individual plots of competing algorithm on the

XOR DOP experiments

125



Appendix C Additional performance plots 126

0 200 400 600 800 1,000 1,200
0

50

100

Generation

Be
st

-o
f-

ge
ne

ra
ti

on
fit

ne
ss

GAm

(a)

0 200 400 600 800 1,000 1,200
0

50

100

Generation

Be
st

-o
f-

ge
ne

ra
ti

on
fit

ne
ss

mcGA

(b)

0 200 400 600 800 1,000 1,200
0

50

100

Generation

Be
st

-o
f-

ge
ne

ra
ti

on
fit

ne
ss

PBILm

(c)

0 200 400 600 800 1,000 1,200
0

50

100

Generation

Be
st

-o
f-

ge
ne

ra
ti

on
fit

ne
ss

amcGA1

(d)

0 200 400 600 800 1,000 1,200
0

50

100

Generation

Be
st

-o
f-

ge
ne

ra
ti

on
fit

ne
ss

amcGA2

(e)

0 200 400 600 800 1,000 1,200
0

50

100

Generation

Be
st

-o
f-

ge
ne

ra
ti

on
fit

ne
ss

amcGA3

(f)

0 200 400 600 800 1,000 1,200
0

50

100

Generation

Be
st

-o
f-

ge
ne

ra
ti

on
fit

ne
ss

amcGA4

(g)

0 200 400 600 800 1,000 1,200
0

50

100

Generation

Be
st

-o
f-

ge
ne

ra
ti

on
fit

ne
ss

amcGA5

(h)

Figure C.1: Individual dynamic behaviour of competing algorithms on
DDUF1 with τ = 60 and ρ = 0.2 in a cyclic environment. Best fitness val-
ues achieved each generation are shown in the figure, where the optimum is

100.



Appendix C Additional performance plots 127

0 200 400 600 800 1,000 1,200
0

50

100

Generation

Be
st

-o
f-

ge
ne

ra
ti

on
fit

ne
ss

GAm

(a)

0 200 400 600 800 1,000 1,200
0

50

100

Generation

Be
st

-o
f-

ge
ne

ra
ti

on
fit

ne
ss

mcGA

(b)

0 200 400 600 800 1,000 1,200
0

50

100

Generation

Be
st

-o
f-

ge
ne

ra
ti

on
fit

ne
ss

PBILm

(c)

0 200 400 600 800 1,000 1,200
0

50

100

Generation

Be
st

-o
f-

ge
ne

ra
ti

on
fit

ne
ss

amcGA1

(d)

0 200 400 600 800 1,000 1,200
0

50

100

Generation

Be
st

-o
f-

ge
ne

ra
ti

on
fit

ne
ss

amcGA2

(e)

0 200 400 600 800 1,000 1,200
0

50

100

Generation

Be
st

-o
f-

ge
ne

ra
ti

on
fit

ne
ss

amcGA3

(f)

0 200 400 600 800 1,000 1,200
0

50

100

Generation

Be
st

-o
f-

ge
ne

ra
ti

on
fit

ne
ss

amcGA4

(g)

0 200 400 600 800 1,000 1,200
0

50

100

Generation

Be
st

-o
f-

ge
ne

ra
ti

on
fit

ne
ss

amcGA5

(h)

Figure C.2: Individual dynamic behaviour of competing algorithms on
DDUF1 with τ = 60 and ρ = 0.2 in a noisy cyclic environment. Best fitness
values achieved each generation are shown in the figure, where the optimum is

100.
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Figure C.3: Individual dynamic behaviour of competing algorithms on
DDUF1 with τ = 60 and ρ = 0.2 in a random environment. Best fitness values
achieved each generation are shown in the figure, where the optimum is 100.
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Figure C.4: Individual dynamic behaviour of competing algorithms on
DDUF2 with τ = 60 and ρ = 0.2 in a cyclic environment. Best fitness val-
ues achieved each generation are shown in the figure, where the optimum is

100.
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Figure C.5: Individual dynamic behaviour of competing algorithms on
DDUF2 with τ = 60 and ρ = 0.2 in a noisy cyclic environment. Best fitness
values achieved each generation are shown in the figure, where the optimum is

100.
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Figure C.6: Individual dynamic behaviour of competing algorithms on
DDUF2 with τ = 60 and ρ = 0.2 in a random environment. Best fitness values
achieved each generation are shown in the figure, where the optimum is 100.
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Figure C.7: Individual dynamic behaviour of competing algorithms on
DDUF3 with τ = 60 and ρ = 0.2 in a cyclic environment. Best fitness val-
ues achieved each generation are shown in the figure, where the optimum is

100.
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Figure C.8: Individual dynamic behaviour of competing algorithms on
DDUF3 with τ = 60 and ρ = 0.2 in a noisy cyclic environment. Best fitness
values achieved each generation are shown in the figure, where the optimum is

100.
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Figure C.9: Individual dynamic behaviour of competing algorithms on
DDUF3 with τ = 60 and ρ = 0.2 in a random environment. Best fitness values
achieved each generation are shown in the figure, where the optimum is 100.
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Figure C.10: Individual dynamic behaviour of competing algorithms on DKP
with τ = 60 and ρ = 0.2 in a cyclic environment. Best fitness values achieved

each generation are shown in the figure, where the optimum is 1000.
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Figure C.11: Individual dynamic behaviour of competing algorithms on DKP
with τ = 60 and ρ = 0.2 in a noisy cyclic environment. Best fitness values
achieved each generation are shown in the figure, where the optimum is 1000.
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Figure C.12: Individual dynamic behaviour of competing algorithms on DKP
with τ = 60 and ρ = 0.2 in a random environment. Best fitness values achieved

each generation are shown in the figure, where the optimum is 1000.
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Best of all step-response of all compact dynamic

algorithms on TMSDS experiment
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Figure C.13: Best control response of the amcGA1: away from magnet (left),
close to magnet (right)

0 200 400 600 800 1,000
−40

−20

0

20

40

Time(control cycle)

P
os
it
io
n
/a
n
gl
e

amcGA2
Setpoint

(a)

0 200 400 600 800 1,000
−40

−20

0

20

40

Time(control cycle)

P
os
it
io
n
/a
n
gl
e

amcGA2
Setpoint

(b)

Figure C.14: Best control response of the amcGA2: away from magnet (left),
close to magnet (right)
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Figure C.15: Best control response of the amcGA3: away from magnet (left),
close to magnet (right)
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Figure C.16: Best control response of the amcGA4: away from magnet (left),
close to magnet (right)
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Figure C.17: Best control response of the amcGA5: away from magnet (left),
close to magnet (right)
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Figure C.18: Best control response of the mcGA: away from magnet (left),
close to magnet (right)
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Figure C.19: Best control response of the r-cDE: away from magnet (left),
close to magnet (right)
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Figure C.20: Best control response of the r-rcGA: away from magnet (left),
close to magnet (right)
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