2,148 research outputs found

    AUTOMATIC BRAIN TUMOR SEGMENTATION WITH K-MEANS, FUZZY C-MEANS, SELF-ORGANIZING MAP AND OTSU METHODS

    Get PDF
    AutomatIc BraIn Tumor SegmentatIon wIth K-Means, Fuzzy C-Means, Self-Organizing Map and Otsu MethodsAbstractThe human brain is an amazing organ of the human nervous system and controls all functions of our body. Brain tumors emerge from a mass of abnormal cells in the brain, and catching tumors early often allows for more treatment options. For diagnosing brain tumors, it has been benefited mostly from magnetic resonance images. In this study, we have developed the segmentation systems using the methods as K-Means, Fuzzy C-Means, Self-Organizing Map, Otsu, and the hybrid method of them, and evaluated the methods according to their success rates of segmentation. The developed systems, which take the brain image of MRI as input, perform skull stripping, preprocessing, and segmentation is performed using the clustering algorithms as K-Means, Fuzzy C-Means, Self-Organizing Map and Otsu Methods. Before preprocessing, the skull region is removed from the images in the MRI brain image data set. In preprocessing, the quality of the brain images is enhanced and the noise of the images is removed by some various filtering and morphological techniques. Finally, with the clustering and thresholding techniques, the tumor area of the brain is detected, and then the systems of the segmentation have been evaluated and compared with each other according to accuracy, true positive rate, and true negative rate.Keywords: Brain Tumor Segmentation, Medical Imaging, Fuzzy C-Means, K-Means, Self-Organizing Map, Otsu MethodBulanık C-Ortalamalar, K-Ortalamalar, Özdüzenlemelİ Ağ VE Otsu Metot İLE BEYİN TÜMÖRÜ SEGMENTASYONU Özetİnsan beyni, insan sinir sisteminin en önemli organıdır ve vücudumuzun tamamını kontrol eder. Beyin tümörleri beyindeki normal olmayan hücrelerden oluşur ve tümörleri erken tespit etmek birçok tedavi seçeneklerinin uygulanmasına olanak sağlar. Beyin tümörlerinin teşhisi için çoğunlukla manyetik rezonans görüntülerinden yararlanılmıştır. Bu çalışmada, Bulanık C-Ortalamalar, K-Ortalamalar, Özdüzenlemeli Ağ, Otsu Metot ve bu metotların birleşiminden oluşan hibrid metotlar kullanılarak beyin tümör segmentasyon sistemleri geliştirilmiştir. Bu metotların segmentasyon başarı oranları tespit edilmiş ve birbirleriyle karşılaştırılmıştır. Geliştirilen sistemlerde, ilk olarak MRI beyin görüntülerini girdi olarak alınır, sonra kafatası bölgesinin görüntüden ayrılması, önişleme ve Bulanık C-Ortalamalar, K-Ortalamalar, Özdüzenlemeli Ağ, Otsu metot gibi algoritmalarla segmentasyon işlemleri uygulanır. Önişlemden önce, kafatası bölgesi, MRI beyin görüntüsü veri setindeki görüntülerden çıkarılır. Ön işlemede, beyin görüntülerinin kalitesi iyileştirilir ve görüntülerin gürültüsü, çeşitli filtreleme ve morfolojik tekniklerle kaldırılır. Son olarak, kümeleme ve eşikleme teknikleri ile beynin tümör bölgesi tespit edildi. Daha sonra, segmentasyon sistemleri değerlendirildi ve doğruluk, gerçek pozitif oranı ve gerçek negatif oranına göre birbirleriyle karşılaştırıldı.Anahtar Kelimeler: Beyin Tümörü Segmentasyonu, Tıbbi Görüntüleme, Bulanık C-Ortalamalar, K-Ortalamalar, Özdüzenlemeli Ağ, Otsu Meto

    Gray Image extraction using Fuzzy Logic

    Full text link
    Fuzzy systems concern fundamental methodology to represent and process uncertainty and imprecision in the linguistic information. The fuzzy systems that use fuzzy rules to represent the domain knowledge of the problem are known as Fuzzy Rule Base Systems (FRBS). On the other hand image segmentation and subsequent extraction from a noise-affected background, with the help of various soft computing methods, are relatively new and quite popular due to various reasons. These methods include various Artificial Neural Network (ANN) models (primarily supervised in nature), Genetic Algorithm (GA) based techniques, intensity histogram based methods etc. providing an extraction solution working in unsupervised mode happens to be even more interesting problem. Literature suggests that effort in this respect appears to be quite rudimentary. In the present article, we propose a fuzzy rule guided novel technique that is functional devoid of any external intervention during execution. Experimental results suggest that this approach is an efficient one in comparison to different other techniques extensively addressed in literature. In order to justify the supremacy of performance of our proposed technique in respect of its competitors, we take recourse to effective metrics like Mean Squared Error (MSE), Mean Absolute Error (MAE), Peak Signal to Noise Ratio (PSNR).Comment: 8 pages, 5 figures, Fuzzy Rule Base, Image Extraction, Fuzzy Inference System (FIS), Membership Functions, Membership values,Image coding and Processing, Soft Computing, Computer Vision Accepted and published in IEEE. arXiv admin note: text overlap with arXiv:1206.363

    Segmentation of images by color features: a survey

    Get PDF
    En este articulo se hace la revisión del estado del arte sobre la segmentación de imagenes de colorImage segmentation is an important stage for object recognition. Many methods have been proposed in the last few years for grayscale and color images. In this paper, we present a deep review of the state of the art on color image segmentation methods; through this paper, we explain the techniques based on edge detection, thresholding, histogram-thresholding, region, feature clustering and neural networks. Because color spaces play a key role in the methods reviewed, we also explain in detail the most commonly color spaces to represent and process colors. In addition, we present some important applications that use the methods of image segmentation reviewed. Finally, a set of metrics frequently used to evaluate quantitatively the segmented images is shown

    An improved fast scanning algorithm based on distance measure and threshold function in region image segmentation

    Get PDF
    Segmentation is an essential and important process that separates an image into regions that have similar characteristics or features. This will transform the image for a better image analysis and evaluation. An important benefit of segmentation is the identification of region of interest in a particular image. Various algorithms have been proposed for image segmentation and this includes the Fast Scanning algorithm which has been employed on food, sport and medical image segmentation. The clustering process in Fast Scanning algorithm is performed by merging pixels with similar neighbor based on an identified threshold and the use of Euclidean Distance as distance measure. Such an approach leads to a weak reliability and shape matching of the produced segments. Hence, this study proposes an Improved Fast Scanning algorithm that is based on Sorensen distance measure and adaptive threshold function. The proposed adaptive threshold function is based on the grey value in an image’s pixels and variance. The proposed Improved Fast Scanning algorithm is realized on two datasets which contains images of cars and nature. Evaluation is made by calculating the Peak Signal to Noise Ratio (PSNR) for the Improved Fast Scanning and standard Fast Scanning algorithm. Experimental results showed that proposed algorithm produced higher PSNR compared to the standard Fast Scanning. Such a result indicate that the proposed Improved Fast Scanning algorithm is useful in image segmentation and later contribute in identifying region of interesting in pattern recognition

    Artificial neural network-statistical approach for PET volume analysis and classification

    Get PDF
    Copyright © 2012 The Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.The increasing number of imaging studies and the prevailing application of positron emission tomography (PET) in clinical oncology have led to a real need for efficient PET volume handling and the development of new volume analysis approaches to aid the clinicians in the clinical diagnosis, planning of treatment, and assessment of response to therapy. A novel automated system for oncological PET volume analysis is proposed in this work. The proposed intelligent system deploys two types of artificial neural networks (ANNs) for classifying PET volumes. The first methodology is a competitive neural network (CNN), whereas the second one is based on learning vector quantisation neural network (LVQNN). Furthermore, Bayesian information criterion (BIC) is used in this system to assess the optimal number of classes for each PET data set and assist the ANN blocks to achieve accurate analysis by providing the best number of classes. The system evaluation was carried out using experimental phantom studies (NEMA IEC image quality body phantom), simulated PET studies using the Zubal phantom, and clinical studies representative of nonsmall cell lung cancer and pharyngolaryngeal squamous cell carcinoma. The proposed analysis methodology of clinical oncological PET data has shown promising results and can successfully classify and quantify malignant lesions.This study was supported by the Swiss National Science Foundation under Grant SNSF 31003A-125246, Geneva Cancer League, and the Indo Swiss Joint Research Programme ISJRP 138866. This article is made available through the Brunel Open Access Publishing Fund

    Intelligent Image Retrieval Techniques: A Survey

    Get PDF
    AbstractIn the current era of digital communication, the use of digital images has increased for expressing, sharing and interpreting information. While working with digital images, quite often it is necessary to search for a specific image for a particular situation based on the visual contents of the image. This task looks easy if you are dealing with tens of images but it gets more difficult when the number of images goes from tens to hundreds and thousands, and the same content-based searching task becomes extremely complex when the number of images is in the millions. To deal with the situation, some intelligent way of content-based searching is required to fulfill the searching request with right visual contents in a reasonable amount of time. There are some really smart techniques proposed by researchers for efficient and robust content-based image retrieval. In this research, the aim is to highlight the efforts of researchers who conducted some brilliant work and to provide a proof of concept for intelligent content-based image retrieval techniques
    corecore