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The increasing number of imaging studies and the prevailing application of positron emission tomography (PET) in clinical
oncology have led to a real need for efficient PET volume handling and the development of new volume analysis approaches to aid
the clinicians in the clinical diagnosis, planning of treatment, and assessment of response to therapy. A novel automated system for
oncological PET volume analysis is proposed in this work. The proposed intelligent system deploys two types of artificial neural
networks (ANNs) for classifying PET volumes. The first methodology is a competitive neural network (CNN), whereas the second
one is based on learning vector quantisation neural network (LVQNN). Furthermore, Bayesian information criterion (BIC) is used
in this system to assess the optimal number of classes for each PET data set and assist the ANN blocks to achieve accurate analysis
by providing the best number of classes. The system evaluation was carried out using experimental phantom studies (NEMA IEC
image quality body phantom), simulated PET studies using the Zubal phantom, and clinical studies representative of nonsmall
cell lung cancer and pharyngolaryngeal squamous cell carcinoma. The proposed analysis methodology of clinical oncological PET
data has shown promising results and can successfully classify and quantify malignant lesions.

1. Introduction

Positron emission tomography (PET) volume analysis is vital
for various clinical applications including artefact reduction
and removal, tumour quantification in staging, a process
which analyses the development of tumours over time, and
to aid in radiotherapy treatment planning [1, 2]. PET has
been progressively incorporated into the management of
patients. Results of clinical studies using fluorodeoxyglucose
(FDG)-PET have demonstrated its added value in the
diagnosis, staging, and evaluation of response to therapy [3–
5]. The utilisation of advanced high performance analysis
approaches will be useful in aiding clinicians in diagnosis
and radiotherapy planning. Although the task of medical

volume analysis appears simple, the reality is that an indepth
knowledge of the anatomy and physiology is required to
perform such task on clinical medical images. Essentially,
the expert observes a particular slice, determines borders
between regions, and classifies each region. This is commonly
completed slice by slice for a 3D volume and requires a
reslicing of data into the transaxial, sagittal, and coronal
planes. In addition to this, identifying smaller slice features
and contrast modifications are often required. Although, for
a typical 3D data set, the entire expert manual analysis can
take several hours to complete, this approach is perhaps
the most reliable and accurate method of medical volume
analysis. This is due to the immense complexity of the human
visual system, a system well suited to this task [6–9].
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The main challenges associated with PET are the statisti-
cal noise and the low resolution which results in a significant
partial volume effect. This effect should be reduced to the
minimum level so that the required information can be
precisely extracted from the analysed volume. Analysing
and extracting the proper information from PET volumes
can be performed by utilising analysis and classification
approaches which provide rich information compared to
what can be extracted from visual interpretation of the
PET volumes alone. The need for accurate and fast analysis
approaches of imaging data motivated the exploitation
of artificial intelligence (AI) technologies. Artificial neural
network (ANN) is one of the powerful AI techniques that has
the capability to learn from a set of data and construct weight
matrices to represent the learning patterns. The ANN is a
mathematical model which emulates the activity of biological
neural networks in the human brain.

ANNs had great success in many applications including
pattern classification, decision making, forecasting, and
adaptive control [10]. Competitive neural networks with
wavelet invariant moments have been used in [11] to detect
the arbitrary pose of the face and verify the candidate face
regions. In this work, the user selects some wavelet invariant
moments and feed them into the neural network. There is
just one active output out of three outputs of the network
which correspond to frontal face, nonface, and profile face.
Therefore there is no full classification for the whole image
since it is just restricted to some selected features. Supervised
competitive learning algorithm has been used to train com-
petitive learning neural network with the extracted features
set for handwritten Chinese character recognition [12]. A
number of research studies has been carried out in the
medical field utilising ANN for image segmentation and
classification using various medical imaging modalities.
Multilayer perceptron (MLP) neural network have been
used in [13] to identify breast nodule malignancy using
sonographic images. A multiple classifier system using five
types of ANNs and five sets of texture features extraction for
the characterisation of hepatic tissue from CT images was
presented in [14]. Kohonen self-organising neural network
for segmentation and a multilayer backpropagation neural
network for classifying multispectral MR images have been
used in [15]. Kohonen ANN was also used for image segmen-
tation in [16]. Computer-aided diagnostic (CAD) scheme to
detect nodules in lung using multiresolution massive training
artificial neural network (MTANN) is presented in [17].

Many other approaches were used for medical image
segmentation. A fuzzy locally adaptive Bayesian (FLAB)
segmentation for automatic lesion volume delineation has
been proposed in [18]. The FLAB approach was compared
with a threshold approach as well as fuzzy hidden Markov
chains (FHMCs) and the fuzzy C-Means (FCM) algorithms.
In this comparison, phantom data sets were used to validate
the performance of the proposed algorithm. A new fuzzy
segmentation technique adapted to typical PET data was
also recently proposed [19]. First, PET images smoothed
using a nonlinear anisotropic diffusion filter are added as a
second input to the FCM algorithm to incorporate spatial
information. Thereafter, a methodology was developed to

integrate the a trous wavelet transform in the standard
FCM algorithm to allow handling of heterogeneous lesions’
uptake. An unsupervised MRI segmentation method based
on self-organising feature map has been reported in [20]. An
extra spatial information about a pixel region was obtained
using a Markov random field (MRF) model. The utilisation
of MRF term improves the segmentation results without
extra data samples in the training set. The cooperation of
MRF into SOFM has shown its great potentials as MRF term
models the smoothness of the segmented regions. It verifies
that the neighboring pixels should have similar segmentation
assignment unless they are on the boundary of two distinct
regions. However, it is not clear how the proposed approach
is able to differentiate between two regions.

This paper aims to develop a robust PET volume analysis
system using ANN combined with Bayesian information
criterion (BIC). The initial investigation of this system was
published in [21]. Two methodologies have been investigated
using the competitive neural network (CNN) and the
learning vector quantisation neural network (LVQNN) for
classifying PET volumes. BIC has been used in this system to
select the optimal number of classes for each PET data set and
feed it into the ANN blocks. The CNN and LVQNN outputs
have been evaluated using two PET phantom data sets, a
clinical PET volume of nonsmall cell lung cancer patient, and
PET volumes from seven patients with laryngeal tumours.

This paper is organised as follows. Section 2 presents
theoretical background for the main system components
including BIC, CNN, and LVQNN. The proposed medical
volume analysis system is described in Section 3. Results and
analysis are illustrated in Section 4, and finally conclusions
are presented in Section 5.

2. Theoretical Background

2.1. Bayesian Information Criterion. Bayesian information
criterion (BIC) is employed to approximate the Bayes factor
which is consequently used to compare a series of rival
theories. BIC is one hypothesis testing approach which
uses Bayesian inference. BIC has gained notoriety as a
significant approach for model selection and has been used
in contexts varying from image processing and analysis [22],
to biological and sociological research [23, 24]. Although the
BIC does not allow for spatial correlations between voxels
to be considered, it does provide a useful strategy for the
comparison of contesting models. The model which applied
to the data set is denoted by MK and is defined from the
Gaussian distribution utilised and its associated parameters
θK , where K is a prior number of classes. To compare
two competing hypotheses MK and MK ′ , the posterior
probability of each model with voxel labelling Y is computed
as follows [23]:

p(MK | Y) = p(Y |MK )p(MK )
∑K

l=1 p(Y |Ml)p(Ml)
, (1)
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p(MK ) is the prior probability of model MK , and in this case
the number of classes considered is taken to be equally likely
a priori, therefore,

p(MK ) = 1
Kmax

(K = 1, 2, . . . ,Kmax). (2)

The ratio of posteriors, p(Y | MK )/p(YML), is com-
monly referred to as the Bayes factor for model MK versus
model ML. This factor equates to the posterior odds of one
hypothesis when the prior probabilities of the two hypothe-
ses are likely to be equal. This also provides a measure of
evidential weight provided for the data or against the null
hypothesis. p(Y | MK ) represents the integrated likelihood
of model MK rather than the maximised likelihood and is
given by:

p(Y |MK ) =
∫

p(Y | θK ,MK )p(θK )dθK , (3)

p(Y | θK ,MK ) is the usual likelihood, and p(θK ) is the
prior assumed to be equally probable for all MK . Evaluating
this integral is combinatorially difficult; however, a good
approximation to the integrated likelihood is given by the
BIC:

BIC = 2 log p
(
Y | θ̂K ,MK

)
−DK logN , (4)

where θ̂K is the maximum likelihood estimator of θK
obtained from Gaussian mixture fitting:

p
(
Y | θ̂K ,MK

)
=

N∏

i=1

K∑

j=1

P̂ jΦ j

(
Yi | θ̂ j

)
, (5)

where N is the dimensionality of the data vectors, and DK

is the cardinality of the parameter set employed. The Bayes
factor shown in (6) can be approximated by computing the
difference of BIC terms, which are the results of model fitting
for different numbers of classes, K and L [23]:

2 log
p(Y |MK )
p(Y |ML)

≈ BIC(K)− BIC(L). (6)

Although the absolute value of the BIC is not individually
informative due to comparison with the null hypothesis, the
disparity between BIC values for competing models provides
evidence specifying the use of one model against another.

Expectation maximisation (EM) algorithm is used to find
the maximum likelihood estimation for each class in the
processed PET volume. The maximum likelihood estimation
of X (MLE) based on the incomplete observed data Y can be
defined as follows:

MLE = argmax
{

log p(Y | X)
}

, (7)

where log p(Y | X) is the log likelihood of Y given X .
The maximum likelihood estimation is calculated first based
on Gaussian distribution, which is a continuous probability
distribution that is often used as a first approximation to

describe real-valued random variables that tend to classify
around a single mean value:

f (x) = 1
σ
√

2π
e−(x−μ)2/2σ2

, (8)

where μ is the mean for each class, and σ is the standard
deviation.

The maximum likelihood estimation for each segment
is finally obtained utilising this probability beside the
histogram of each level in the processed slice. The mean
and standard deviation, for each class are also calculated
based on histogram calculation, and according to these
statistical details mthe signal-to-noise ratio (SNR) for each
class is obtained as well to evaluate the level of the signal in
each segment [25]. SNR can be calculated according to the
following equation:

SNR = μ

σ
. (9)

2.2. Competitive Neural Network. Competitive neural net-
works can learn to detect regularities and correlations in
their input and adapt their future responses to that input
accordingly. The neurons of competitive networks learn to
recognise groups of similar input vectors. Self-organising
maps learn to recognise groups of similar input vectors in
such a way that neurons physically near each other in the
neuron layer respond to similar input vectors.

CNN consists of a single layer, the N neurons in this
competitive layer distribute themselves to recognise fre-
quently presented input vector. The weights are applied to
the input vector using negative Euclidean distance approach.
The layer’s net input is calculated by combining its weighted
inputs and biases. CNN is trained using two approaches:
the first one is sequential order incremental training which
trains the network with weight and bias learning rules with
sequential updates. The other approach is random order
incremental training which trains a network with weight
and bias learning rules with incremental updates after each
presentation of an input. Where in this type of neural
network inputs are presented in random order [26].

2.2.1. Competitive Learning. The learning rule used for CNN
is based on Kohonen rule [27, 28], the neuron, whose weight
vector was closest to the input vector I , is updated to be
even closer. The result is that the winning neuron is more
likely to win the competition the next time a similar vector is
presented, and less likely to win when a very different input
vector is presented. As more and more inputs are presented,
each neuron in the layer closest to a group of input vectors
soon adjusts its weight vector toward those input vectors.
Eventually, if there are enough neurons, every class of similar
input vectors will have a neuron that outputs 1 when a vector
in the class is presented, while outputting a 0 at all other
times. Thus, the competitive network learns to categorise the
input vectors it sees each time. The weight Wi of a neuron i
at iteration q is adjusted as follows:

Wi
(
q
) =Wi

(
q − 1

)
+ α
(
I
(
q
)−Wi

(
q − 1

))
, (10)
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Figure 1: Proposed system for oncological PET volume analysis.

where the learning rate α is set in the proposed PET appli-
cation to 0.6. This value has been chosen by experiment, as
the learning rate value near zero results in slow learning,
however, values near one result in faster learning, but the
weight vector stays unstable. To solve the problem of the
number of classes in the CNN, BIC has been utilised to
determine the optimal number of classes for each type of the
processed data set.

2.3. Learning Vector Quantisation Neural Network. Learning
vector quantisation neural network is a hybrid network,
it uses unsupervised and supervised learning to form the
classification. LVQNN has two layers: the first layer calculates
weighted inputs using negative Euclidean distance approach.
The second layer has neurons with pure-line activation
function and calculates weighted input using dot product
weight approach. There are no biases used in LVQNN.
LVQ learning in the competitive layer is based on a set of
input/target pairs. Each target vector has a single 1, and the
rest of its elements are 0. The 1 tells the right classification of
the associated input.

LVQNN is more efficient than CNN in case of large
number of inputs. The optimisation procedure implicitly in
this network yields the class means by estimating optimised
assignment for each class [29].

2.3.1. LVQ Learning Rule. The learning rule in LVQNN
combines competitive learning with supervised learning
approach [30, 31], which requires a set of examples of the
suitable network behavior as follows:

{I1, t1}, {I2, t2}, . . . ,
{
IQ, tQ

}
. (11)

Each of these target vectors should contain all zeros except
for a single 1. This 1 indicates the class to which the assigned
input vector belongs. At each iteration, an input vector I is

presented to the LVQNN, and the distance from I to each
prototype vector is calculated. After competition, one neuron
wins, and the ith element of the competition outputs vector is
set to 1, then this outputs are multiplied by the weight matrix
to get the final output, which has one nonzero element
indicating the vector class. Kohonen rule is used as a learning
rule; so if the input vector I is classified correctly, then the
weight of the winning neuron needs to be moved toward I as
follows:

Wi
(
q
) =Wi

(
q − 1

)
+ α
(
I
(
q
)−Wi

(
q − 1

))
, (12)

however, if I is classified incorrectly then the weight of the
winning neuron needs to be moved away from I as follows:

Wi
(
q
) =Wi

(
q − 1

)− α
(
I
(
q
)−Wi

(
q − 1

))
. (13)

3. The Proposed System

The proposed medical volume analysis system is illustrated
in Figure 1. The 3D PET volume acquired from PET scanner
goes through the preprocessing block, where thresholding,
histogram equalisation, and median filter are utilised to
remove external artefacts and enhance the quality of each
slice features. The EM algorithm is then used to find
the maximum likelihood estimation for each class in the
enhanced volume. The normal Gaussian density is then
calculated according to (8) for the values 0–255 of each class.
The mean standard deviation and the class probability (CP)
for each generated class are also calculated, according to these
statistical details, the SNR for each class is also obtained. The
classes probabilities must add up to one. The BIC values
are calculated and plotted against different values of K to
determine the optimal number of classes for each processed
slice. This number is fed to CNN and LVQNN, where the
processed volume can be then classified. The outputs of
these approaches are compared in the next step, and the best
classified outputs are selected and displayed.
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Table 1: Statistical information about the best class number for
experimental phantom data set.

CN μ σ SNR CP

1 1.000986 0.250000 4.003944 0.469466

2 3.528585 1.602465 2.201973 0.240734

3 13.024477 7.048304 1.847888 0.247406

4 57.982584 45.253936 1.281271 0.042394

4. Results and Analysis

4.1. Phantom Studies

4.1.1. Experimental Phantom Studies. The first data set used
in this study is obtained using the NEMA IEC image quality
body phantom which consists of an elliptical water filled
cavity with six spherical inserts suspended by plastic rods
of volumes 0.5, 1.2, 2.6, 5.6, 11.5, and 26.5 mL. The inner
diameters of these spheres are 10, 13, 17, 22, 28, and
37 mm. The PET image volume consists of 168 × 168 × 66
voxels, each voxel has dimensions of 4.07 mm × 4.07 mm
× 5 mm corresponding to voxel volume of 0.0828 mL. This
phantom was extensively used in the literature for the
assessment of image quality and validation of quantitative
procedures [32–35]. Other variants of the multisphere phan-
toms have also been suggested [36]. The PET scanner used
for acquiring the data is the Biograph 16 PET/CT scanner
(Siemens Healthcare, Erlangen, Germany) operating in 3D
mode [37]. Following Fourier rebinning and model-based
scatter correction, PET images were reconstructed using
two-dimensional iterative normalised attenuation-weighted
ordered subsets expectation maximisation (NAW-OSEM).
CT-based attenuation correction was used to reconstruct
the PET emission data. The default parameters used were
ordered OSEM iterative reconstruction with four iterations
and eight subsets followed by a postprocessing Gaussian filter
(kernel full-with half-maximal height, 5 mm).

To choose the optimal number of classes for each slice
in the processed PET phantom volume, different values of K
have been used. For the proposed application, BIC values are
calculated incrementally increasing from K = 2 to K = 8.
K is not further increased, as in this medical application,
any additional separation is unnecessary. BIC values tend to
increase indefinitely as the number of components increases.
An increase in BIC value indicates improved model fit;
however, these values typically stabilise on an approximate
curve plateau, the beginning of which is usually taken to
indicate the optimal K value. The plot of BIC values with
K for experimental phantom data set shows that the best K
value can be obtained at 4, as illustrated in Figure 2.

The mean standard deviation, SNR, and class probability
(CP) for each slice have been calculated to analyse all the
recommended classes in each slice. Table 1 presents these
values for the optimal class number (CN) for experimental
phantom data set.
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Figure 2: Plot of BIC values for experimental phantom data set,
scaled by a factor of 1000.

Table 2: Tumours characteristics for the second data set with 2
types of voxels.

Tumours
Isotropic voxels Nonisotropic voxels

Position Size Position Size

1 Slice 68 2 voxels Slice 142 2 voxels

2 Slice 57 3 voxels Slice 119 3 voxels

3 Slice 74 2 voxels Slice 155 2 voxels

4.1.2. Simulated Phantom Studies. The second data set con-
sists of Monte Carlo simulations of the Zubal anthropomor-
phic model where two volumes were generated. The first
volume contains a matrix with isotropic voxels, the size of
this volume is 128 × 128 × 180 voxels. The second volume
contains the same matrix of the first one but without
isotropic voxels, it has a size of 128 × 128 × 375 voxels.
The voxel size in both volumes is 5.0625 mm × 5.0625 mm
× 2.4250 mm. The second data volume has 3 tumours in the
lungs whose characteristics are given in Table 2 [38].

For isotropic voxels in simulated phantom data set, the
optimal class number obtained from BIC plot is 5 classes,
as shown in Figure 3. The plot of BIC values flattens to an
approximate plateau at K = 5, and for this reason, this
statistical model selection test determines 5 to be the most
appropriate number of labels for classifying this data set.
The optimal number of classes is the same for tumours 1, 2,
and 3. For volume with nonisotropic voxels in the simulated
phantom data set, the optimal number of classes obtained
from BIC plot is also 5 classes for all the three tumours.

Table 3 shows the statistical information about the best
number of classes for simulated phantom data set, tumour
1, with isotropic voxels. While the statistical details about
tumour 2 are presented in Table 4.

Analysing the statistical details about tumour 3 shows
that there is a small difference between the SNR values
calculated for classes 2, 3, 4, and 5, as presented in Table 5.
Similar analysis has been performed for the simulated
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Figure 3: Plot of BIC values for isotropic phantom data set, scaled
by a factor of 1000.

Table 3: Statistical information about the best class number for the
simulated phantom data set, tumour 1.

CN μ σ SNR CP

1 1.003849 0.250000 4.015396 0.409114

2 16.288944 6.399162 2.545480 0.247941

3 26.890255 9.694972 2.773628 0.197655

4 48.774962 18.579216 2.625243 0.120429

5 137.468019 57.911212 2.373772 0.024862

Table 4: Statistical information about the best class number for the
simulated phantom data set, tumour 2.

CN μ σ SNR CP

1 1.003102 0.250000 4.012408 0.399154

2 14.181862 6.814574 2.081107 0.207690

3 26.481251 9.468495 2.796775 0.227157

4 51.409594 19.963755 2.575146 0.142332

5 133.638905 56.426063 2.368389 0.023667

Table 5: Statistical information about the best class number for the
simulated phantom data set, tumour 3.

CN μ σ SNR CP

1 1.002889 0.250000 4.011556 0.407105

2 14.616784 6.508255 2.245883 0.207151

3 25.914234 8.984076 2.884462 0.223710

4 47.367310 18.536074 2.555412 0.136315

5 141.792551 60.934125 2.326980 0.025720

phantom data set with nonisotropic voxels. Table 6 compares
the SNR and class probability for tumours 1, 2, and 3 with
nonisotropic voxels.

The optimum chosen class number is fed to both CNN
and LVQNN, where both have clearly classified all spheres
in experimental phantom data set, as illustrated in Figure 4.
Clear classes have been also obtained for the simulated phan-
tom data set with isotropic and nonisotropic voxels. For

example, Figure 5 presents the original and classified slice
for the simulated phantom data set with isotropic voxels and
tumour 1.

Better performance has been achieved using LVQNN
rather than CNN; however, the required time for classifying
each slice in the processed volume using LVQNN is higher
than the time required for processing each slice using CNN.

Two performance metrics have been employed to eval-
uate the performance of the proposed ANNs. A confusion
matrix is a visualisation tool typically used in supervised and
unsupervised learning approaches. Each row of the matrix
represents the instances in a predicted class, while each col-
umn represents the instances in an actual class. One benefit
of a confusion matrix is that it is easy to see if the system
is confusing two classes: (the tumour and the remaining
tissues in case of clinical PET data sets). The other perfor-
mance metric approach is receiver-operating characteristic
(ROC). This approach can be represented by plotting the
fraction of true positives rate (TPR) versus the fraction of
false positives rate (FPR), where the perfect point in the ROC
curve is the point (0,1) [39]. Both ANNs have performed well
in classifying both experimental and simulated data sets.

4.2. Clinical PET Volume

4.2.1. Clinical Data Set 1. Clinical PET volume of patient
with histologically proven NSCLC (clinical Stage Ib-IIIb)
who has undertaken a diagnostic whole-body PET/CT scan
was used for assessment of the proposed classification
technique. Patient fasted not less than 6 hours before PET/CT
scanning. The standard protocol involved intravenous injec-
tion of 18F-FDG followed by a physiologic saline (10 mL).
The injected FDG activity was adjusted according to patient’s
weight using the following formula:

A
(
MBq

) = weight∗ 4 + 20, (14)

where MBq (megabecquerel) is the international system
of units for radioactivity. As One Bq is defined as the
activity of a quantity of radioactive material in which one
nucleus decays per second. After 45 min uptake time, free-
breathing PET and CT images were acquired. The data were
reconstructed using the same procedure described for the
phantom studies. The maximal tumour diameters measured
from the macroscopic examination of the surgical specimen
served as ground truth for comparison with the maximum
diameter estimated by the proposed classification technique.

The optimal number of classes obtained from BIC plot
for clinical PET volume of nonsmall cell lung cancer patient
is 5 classes, as illustrated in Figure 6. While Table 7 shows
the statistical information about these classes. A subjective
evaluation based on the clinician knowledge has been carried
out for the output of the proposed approaches. The classified
slice using the proposed approaches has clear detection of the
region of interest (ROI) as illustrated in Figure 7.

4.2.2. Clinical Data Set 2. The second clinical data set used
in this study is PET volumes from seven patients with
T3-T4 laryngeal squamous cell carcinoma. Prior to treat-
ment, each patient underwent an FDG-PET study. Patients
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(a) (b)

Figure 4: Experimental phantom data set: (a) original PET image and (b) classified image.

(a) (b)

Figure 5: Simulated phantom data set (tumour 1): (a) original PET and (b) classified image.
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Figure 6: Plot of BIC values for clinical PET volumes of nonsmall
cell lung cancer patient, scaled by a factor of 1000.

were immobilised with a customised thermoplastic mask
(Sinmed, Reeuwijk, The Netherlands) fixed to a flat table-
top to prevent complex neck movements. First, a 10 min
transmission scan was obtained on the Siemens Exact HR
camera (CTI, Knoxville, USA). Immediately after intra-
venous injection of 185–370 MBq (5–10 mCi) of FDG, a 1h
dynamic 3D emission scan was performed. It consisted of
eight frames with variable duration ranging from 90 to 600 s.

Table 6: SNR and CP for tumours 1, 2 and 3 in the simulated
phantom data set with nonisotropic voxels.

CN
Tumour 1 Tumour 2 Tumour 3

SNR CP SNR CP SNR CP

1 4.016184 0.407899 4.013160 0.402693 4.012848 0.396036

2 2.504101 0.239490 2.110565 0.190559 1.962133 0.176196

3 2.814225 0.205216 2.846712 0.222405 2.965170 0.237096

4 2.671825 0.123275 2.557056 0.158497 2.515199 0.161232

5 2.488246 0.024121 2.286361 0.025846 2.224181 0.029441

Table 7: Statistical information about the best class number for
clinical PET volume of nonsmall cell lung cancer patient.

CN μ σ SNR CP

1 1.000840 0.250000 4.003360 0.509741

2 2.911473 1.142062 2.549312 0.163043

3 9.035780 4.213254 2.144608 0.146897

4 32.665878 16.455158 1.985145 0.078470

5 167.509276 52.633532 3.182558 0.101848

All images were corrected for dead time, random, scatter
attenuation and decay and then reconstructed using a 3D
OSEM algorithm, as used in the clinics for patients with
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(a) (b)

Figure 7: Clinical PET data: (a) original PET image and (b) classified image.
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Figure 8: Plot of BIC values for clinical PET data set 2, scaled by a
factor of 1000.

head and neck tumours [40–42]. The size of this data set is
128× 128× 47 voxels for each patient.

In the case of clinical data set, the plot of BIC values
flattens to an approximate plateau at K = 5, and for this
reason, this statistical model selection test determines 5 to be
the most appropriate number of labels for the classification
of this data set. For the data set in question, the K determined
by the BIC plot corresponds precisely to the number of clas-
sification levels recommended by clinicians specifically for
tumour quantification. The BIC provides a useful objective
methodology for classification level selection. In particular,
the BIC works efficiently for tumour quantification in
oncological PET data and can be computed very rapidly.
In the case of a volume with dimensionality 128 × 128 ×
47 voxels, histogram computation takes approximately 1.9
seconds, and thereafter, one BIC value associated with a
specific value of K can be calculated every 1.2 seconds. The
total BIC model selection procedure takes approximately 8.4
seconds (for K = 2, . . . , 8). The model timings are obtained
using a single processor, 2.66 GHz, with 3 GB of RAM.

Using the proposed approach the optimum CN for
each patient has been chosen. According to Figure 8 which
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Figure 9: Clinical PET data set 2: the μ values for classes one to five.

illustrates the BIC values for different K values (from 2–8),
the best CN for this data set is 5 classes. This CN is fed to
both CNN and LVQNN to do the classification for each slice
in the processed clinical data set.

All the statistical information about each class in this
data set has been calculated, Figure 9 illustrates the μ values
for each class of clinical data set 2 from patient number
one to patient number seven. The calculated SNR was
important to refer to the class which contains the ROI. A
subjective evaluation based on the clinician knowledge has
been carried out for the output of the proposed approach.
The classified volumes using the proposed approaches have
a clear detection of ROI. Laryngeal tumours from seven
patients were clearly classified, Figure 10 illustrates the
original and classified slice for patient 1 data set.
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(a) (b)

Figure 10: Clinical PET data set 2 (patient 1): (a) original PET (128× 128) and (b) classified slice (128× 128).

5. Conclusion

An artificial intelligent statistical approach based on CNN
and LVQNN was proposed for 3D oncological PET volume
analysis. Experimental, simulated, and clinical PET studies of
nonsmall cell lung cancer and pharyngolaryngeal squamous
cell carcinoma were used to evaluate the performance of the
proposed system. BIC and EM approaches were deployed
to obtain the optimal number of classes, which was used
by CNN and LVQNN to classify each slice in the processed
PET volume. The mean, standard deviation, signal-to-noise
ratio, and class probability were also calculated for each
class. A detailed objective assessment together with subjective
evaluation based on clinical knowledge was performed to
characterise the performance of the proposed approach.
Promising results were obtained, and the system appears
to successfully classify and quantify lesions from clinical
oncological PET studies.
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“A gradient-based method for segmenting FDG-PET images:
methodology and validation,” European Journal of Nuclear
Medicine and Molecular Imaging, vol. 34, no. 9, pp. 1427–1438,
2007.


