19,249 research outputs found

    Explorations in Evolutionary Design of Online Auction Market Mechanisms

    No full text
    This paper describes the use of a genetic algorithm (GA) to find optimal parameter-values for trading agents that operate in virtual online auction “e-marketplaces”, where the rules of those marketplaces are also under simultaneous control of the GA. The aim is to use the GA to automatically design new mechanisms for agent-based e-marketplaces that are more efficient than online markets designed by (or populated by) humans. The space of possible auction-types explored by the GA includes the Continuous Double Auction (CDA) mechanism (as used in most of the world’s financial exchanges), and also two purely one-sided mechanisms. Surprisingly, the GA did not always settle on the CDA as an optimum. Instead, novel hybrid auction mechanisms were evolved, which are unlike any existing market mechanisms. In this paper we show that, when the market supply and demand schedules undergo sudden “shock” changes partway through the evaluation process, two-sided hybrid market mechanisms can evolve which may be unlike any human-designed auction and yet may also be significantly more efficient than any human designed market mechanism

    Modelling and trading the Greek stock market with gene expression and genetic programing algorithms

    Get PDF
    This paper presents an application of the gene expression programming (GEP) and integrated genetic programming (GP) algorithms to the modelling of ASE 20 Greek index. GEP and GP are robust evolutionary algorithms that evolve computer programs in the form of mathematical expressions, decision trees or logical expressions. The results indicate that GEP and GP produce significant trading performance when applied to ASE 20 and outperform the well-known existing methods. The trading performance of the derived models is further enhanced by applying a leverage filter

    Evolutionary Optimization of ZIP60: A Controlled Explosion in Hyperspace

    No full text
    The “ZIP” adaptive trading algorithm has been demonstrated to out-perform human traders in experimental studies of continuous double auction (CDA) markets. The original ZIP algorithm requires the values of eight control parameters to be set correctly. A new extension of the ZIP algorithm, called ZIP60, requires the values of 60 parameters to be set correctly. ZIP60 is shown here to produce significantly better results than the original ZIP (called “ZIP8” hereafter), for negligable additional computational costs. A genetic algorithm (GA) is used to search the 60-dimensional ZIP60 parameter space, and it finds parameter vectors that yield ZIP60 traders with mean scores significantly better than those of ZIP8s. This paper shows that the optimizing evolutionary search works best when the GA itself controls the dimensionality of the search-space, so that the search commences in an 8-d space and thereafter the dimensionality of the search-space is gradually increased by the GA until it is exploring a 60-d space. Furthermore, the results from ZIP60 cast some doubt on prior ZIP8 results concerning the evolution of new ‘hybrid’ auction mechanisms that appeared to be better than the CDA

    Do Moving Average Rules Make Profits? A Study Using The Madrid Stock Market

    Get PDF
    (WP 03/04 Clave pdf) Previous studies have reported mixed results with regard to the success of technical trading rules.Studies that provide positive evidence are [Brock et al (1992), Karjalainen (1994), Bessembinder et al (1995),Mills (1997), and Fernandez et al (1999)]. Studies rejecting the utility of technical trading rules are [Hudson et al (1996) or Allen et al (1999)]. A recent body of work has applied evolutionary algorithms to the design of trading rules [see Karjalainen (1994), Allen et al (1999), Fernandez et al (2001) and Nuñez (2002)].This paper uses genetic algorithms to tests the forecastability of the moving average in the MSE.We report the lack of utility of this indicator.Genetic algorithms, Madrid Stock Exchange, Moving average, Trading rules

    Evolutionary rule-based system for IPO underpricing prediction

    Get PDF
    Genetic And Evolutionary Computation Conference. Washington DC, USA, 25-29 June 2005Academic literature has documented for a long time the existence of important price gains in the first trading day of initial public offerings (IPOs).Most of the empirical analysis that has been carried out to date to explain underpricing through the offering structure is based on multiple linear regression. The alternative that we suggest is a rule-based system defined by a genetic algorithm using a Michigan approach. The system offers significant advantages in two areas, 1) a higher predictive performance, and 2) robustness to outlier patterns. The importance of the latter should be emphasized since the non-trivial task of selecting the patterns to be excluded from the training sample severely affects the results.We compare the predictions provided by the algorithm to those obtained from linear models frequently used in the IPO literature. The predictions are based on seven classic variables. The results suggest that there is a clear correlation between the selected variables and the initial return, therefore making possible to predict, to a certain extent, the closing price.This article has been financed by the Spanish founded research MCyT project TRACER, Ref: TIC2002-04498-C05-04M

    An Investigation Report on Auction Mechanism Design

    Full text link
    Auctions are markets with strict regulations governing the information available to traders in the market and the possible actions they can take. Since well designed auctions achieve desirable economic outcomes, they have been widely used in solving real-world optimization problems, and in structuring stock or futures exchanges. Auctions also provide a very valuable testing-ground for economic theory, and they play an important role in computer-based control systems. Auction mechanism design aims to manipulate the rules of an auction in order to achieve specific goals. Economists traditionally use mathematical methods, mainly game theory, to analyze auctions and design new auction forms. However, due to the high complexity of auctions, the mathematical models are typically simplified to obtain results, and this makes it difficult to apply results derived from such models to market environments in the real world. As a result, researchers are turning to empirical approaches. This report aims to survey the theoretical and empirical approaches to designing auction mechanisms and trading strategies with more weights on empirical ones, and build the foundation for further research in the field

    Agent-Based Models and Human Subject Experiments

    Get PDF
    This paper considers the relationship between agent-based modeling and economic decision-making experiments with human subjects. Both approaches exploit controlled ``laboratory'' conditions as a means of isolating the sources of aggregate phenomena. Research findings from laboratory studies of human subject behavior have inspired studies using artificial agents in ``computational laboratories'' and vice versa. In certain cases, both methods have been used to examine the same phenomenon. The focus of this paper is on the empirical validity of agent-based modeling approaches in terms of explaining data from human subject experiments. We also point out synergies between the two methodologies that have been exploited as well as promising new possibilities.agent-based models, human subject experiments, zero- intelligence agents, learning, evolutionary algorithms

    Born to trade: a genetically evolved keyword bidder for sponsored search

    Get PDF
    In sponsored search auctions, advertisers choose a set of keywords based on products they wish to market. They bid for advertising slots that will be displayed on the search results page when a user submits a query containing the keywords that the advertiser selected. Deciding how much to bid is a real challenge: if the bid is too low with respect to the bids of other advertisers, the ad might not get displayed in a favorable position; a bid that is too high on the other hand might not be profitable either, since the attracted number of conversions might not be enough to compensate for the high cost per click. In this paper we propose a genetically evolved keyword bidding strategy that decides how much to bid for each query based on historical data such as the position obtained on the previous day. In light of the fact that our approach does not implement any particular expert knowledge on keyword auctions, it did remarkably well in the Trading Agent Competition at IJCAI2009
    • 

    corecore