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Abstract 

This paper presents an application of the gene expression programming 
(GEP) and integrated genetic programming (GP) algorithms to the modelling 
of ASE 20 Greek index. GEP and GP are robust evolutionary algorithms that 
evolve computer programs in forms of mathematical expressions, decision 
trees or logical expressions. The results indicate that GEP and GP produce 
significant trading performance when applied to the ASE 20 and outperform 
the well-known existing methods. The trading performance of the derived 
models is further enhanced by applying a leverage filter.  
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1. INTRODUCTION 

 
Developing highly accurate techniques for predicting financial time series is a 
crucial problem for economists and financial researchers. The traditional 
statistical methods seem to fail to capture the discontinuities, the 
nonlinearities and the high complexity of datasets such as financial time 
series. Evolutionary algorithms have the desirable characteristic of learning 
capacity and are hence more likely to capture the complex non-linear models 
which are dominant in the financial markets (see Chen (2002)). However their 
limitations, such as the bloat effect, and contradictory empirical evidence 
surrounding their pattern recognition capabilities often create scepticism about 
their use among practitioners.  



 
 
Genetic programming (GP) and gene expression (GEP) algorithms are 
domain-independent problem-solving techniques that are run in various 
environments. GP and GEP can be categorized in the forecasting bracket 
known in the finance world as ‘Evolutionary Algorithms’. These environments 
are structured in a manner which approximates problems in order to produce 
forecasts at a high degree of accuracy. The basis for this type of problem 
solving techniques derives from the Darwinian principle of reproduction and 
survival of the fittest. Additionally, they can be considered similar to the 
biological genetic operations such as crossover recombination and mutation. 
These algorithms have been successfully applied to many real world 
problems (Divsalar et al. 2011, 2012; Yang et al. 2012; Gandomi et al. 2013; 
Gandomi and Alavi 2011; Alavi and Gandomi 2011; Zargari et al. 2012; 
Gandomi et al. 2011; Alavi et al. 2011; Yaghouby et al. 2010). It can be 
argued that the GEP proves to be superior to GP due to the mere fact that it 
clearly distinguishes the differences between the genotype1 and the 
phenotype2 of individuals within a population. For instance, whilst a traditional 
Genetic Algorithm (GA) classifies individuals as symbolic strings of fixed size 
(i.e. chromosomes) and GP classifies its individuals as non-linear comprising 
of different shapes and sizes (tree like structures); the GEP encompasses a 
combination of both. Hence, Ferreira (2001) stresses that GEP represents not 
only an individual’s genotype, in the form of chromosomes, but also its 
phenotype as a tree like structure of expressions in order to establish fitness. 
Compared to Neural Networks (NNs), GEP eradicate the risk of getting 
trapped in a local optima and seem able to reach the optimal solution faster.  
 
The motivation for this paper is to investigate the financial forecasting 
performance of a GEP and an integrated GP environment, using only 
autoregressive terms as inputs. This is achieved by benchmarking their 
trading performance, with an application to forecasting the one day ahead 
return of the Greek stock market index, with a Multi-Layer Perceptron (MLP) 
of NNs, an autoregressive moving average (ARMA), a moving average model 
(MACD) and a naïve trading strategy. Furthermore, the paper explores 
whether the application of a simple leverage strategy can improve the trading 
performance of the proposed models. The variable being forecast in this 
paper is the one day ahead forecast for the Athens Stock Exchange (ASE) 
market return. The ability to successfully generate such forecasts suggests 
that it should be possible to implement a simple trading strategies where a 
trader would buy (or sell) the market depending on whether a positive (or 
negative) forecast is generated. The development of derivative securities, 
such as stock index futures, greatly facilitates such strategy and has reduced 
transaction costs. Leverage is then applied to exploit the high information 
ratios of our model and further improve the trading performance of our 
models.  Our findings support this view as the results show that in a simple 
trading simulation exercise on the Athens stock exchange, the GEP algorithm 
outperforms all other models. 

The remainder of the paper is organised as follows. Section 2 presents some 
of the existing literature relevant to stock market prediction. Section 3 
provides an overview of the GEP and GP algorithms. Section 4 describes the 



dataset used for this research and its characteristics while Section 5 
discusses the details and the model development for GEP and GP algorithms 
along with our benchmarks. Section 6 displays the empirical results of all the 
models considered and investigates the possibility of improving their 
performance with the application of leverage.  Section 7 provides some 
concluding remarks. 
 
2. LITERATURE REVIEW 

Stock market prediction has been the focus of researchers, decision makers 
and economists for almost a century. In his seminal paper Cowles (1933) 
constructs a portfolio using Dow Jones industrial average (DJIA) market index 
forecasts and assess its performance. Since then practitioners and 
researchers have produced hundreds of mathematical models in an effort to 
replicate the stock markets patterns. The focus of this research over the last 
years has moved towards artificial intelligence models, such as GP and 
Neural Networks (NNs). The motivation of this paper is to apply a GEP 
algorithm to the task of forecasting and trading the ASE 20 stock market 
index.  Although there have been several applications of NNs and GP in 
financial forecasting, the empirical evidence around GEP is limited. This can 
partly be explained by the complexity of the GEP algorithm compared to other 
artificial intelligence models (see Ferreira (2001)). Nevertheless, GEP has 
provided promising empirical evidence in other fields of science such as 
computing and mining. See, for example, Lopez and Weinert (2004), Margny 
and El-Semman (2005) and Dehuri and Cho (2008). 

 

Donaldson and Kamstra (1996) used Neural Network’s to combine volatility 
forecasts of the US, Canadian, Japanese and UK stock markets. Their results 
demonstrate the superiority of Neural Network’s over traditional linear models 
More recently, Kaboudan (2000) applied successfully GP in predicting the 
daily highest and lowest stock prices of six US stocks (Citigroup, Compaq 
Computers, General Electric, Pepsi, Sears and Microsoft). They find that the 
return from investment (ROI) from trading decisions based on GP forecasting 
is greater than ROI from investment decisions based on NNs forecasting in 
five of the six stocks, though they do not consider risk adjusted returns, such 
as an information ratio, as this paper does. In addition Nag and Mitra (2002) 
combined Neural Networks with GP to forecast several exchange rates with 
impressive results. Likewise Kwon and Moon (2003) combined NNs and GP 
to trade successfully 36 stocks over a 9 year period. Grosan et. al. (2005) and 
Grosan and Abraham (2006) compared a Genetic multi-expression 
programming algorithm with NNs and  Support Vector Machine models in two 
forecasting exercises over several stock indices. The results of both studies 
strongly supported the use of a genetic model. Alvarez-Diaz and Alvarez 
(2005) forecast the GBP/USD and JPY/USD with a GP and NNs models with, 
unfortunately, ambiguous results. Almanza and Tsang (2007) used GP to 
accurately detect the stock price movements and Chiu and Chen (2009) 
combined Support Vector Machines with GP to estimate Taiwanese stock and 
futures prices. More recently, Lee and Tong (2011) combined GP with NNs 
and an ARMA model to accurately forecast the US GDP while Sermpinis et. 



al. (2012) traded successfully the EUR/USD exchange with several different 
artificial intelligence models.  
 
Other recent literature in the area includes Matias and Reboredo (2012) who 
forecast the S&P 500 intraday stock market returns with  a range of linear 
(simple autoregressive and random walk models) and non linear models 
(such as smooth transition, Markov switching, NNs, nonparametric kernel 
regression and support vector machine) models.  Their results indicate the 
superiority of the non linear models in both statistical and economic terms.  In 
addition Bekiros and Georgoutsos (2008) utilise Recurrent NNs to forecast 
and trade successfully the directional change of NASDAQ index with RNN. 
 
 
3. Genetic Programming and Genetic Expression Framework 

3.1   The Genetic Programming Framework 

 
For the purpose of our research, the GP application is coded and 
implemented to evolve tree based structures that present models (sub-trees) 
of input – output. In the design phase of our GP application the primary focus 
is on execution time optimization, as well as limiting the ‘bloat effect’. The 
bloat effect is similar to the issue of overfitting experienced in neural networks. 
However with the GP application there is a significant risk of continuously 
increasing and expanding the tree size. This algorithm is run in a steady state 
in that a single member of the population is replaced at a time. Furthermore, 
our GP application reproduces newer models replacing the weaker ones in 
the population according to their fitness. The reasoning behind the decision to 
use a steady state algorithm is justified as they hold a greater selection 
strength and genetic drift over other algorithms such as a typical generational 
GA. 
 
In our application of the genetic programming formulas are utilized to evolve 
algebraic expressions that enable the analysis / optimization of results in a 
‘tree like structure’. This genetic tree structure consists of nodes (depicted as 
circles in the diagram below) which are essentially functions that perform 
actions within this structure. Furthermore, these functions are in place to 
generate output signals. On the other hand, the squares in the tree signify 
terminal functions representing the end of a function, once the most superior 
sub tree (model) is achieved. For example, the below tree structure (model) in 
figure 1, is characterized by the algebraic expression 4.0/x1(t-1) + ln(x2(t-2)). 
In this case there is one output and the terminal nodes are constant at 4. 
Additionally, the outputs are expressed by x1(t-1) and x2(t-2). In the execution 
of the genetic algorithm it has to be understood that each individual in the 
population correspond to a single sub tree structure. Each of these sub trees 
are limited by the predefined maximum tree size set to 6 in our application.   
 



 
Fig. 1: Example of a tree structure 

Koza (1998) summarises the functionality aspect of the GP algorithm in the 
following steps:  
 
(1) The generation of an initial population of randomly constructed models is 

developed with each model being represented in a tree like structure as 
discussed previously. Additionally, the evolutionary algorithm represents 
each chromosome of the population as a tree of variable length (i.e. total 
number of functions and terminals) or a maximum depth of the model tree. 
The process of randomly reproducing each variable of the population is 
completed once all of these functions of the tree are terminal symbols. 
However, until the process is halted by these ‘terminal symbols’ then the 
tree like structure of chromosomes continues to multiply (grow) with each 
generation as the population expands to not only include the parents but 
also their offspring. This is achieved by crossover and mutation operators. 
In the majority of these models produced in the initial population are 
unsatisfactory when tested for their performance with some individual 
models ‘fitting’ better than others. However, one of the virtues offered by 
Genetic Programming is that they exploit and manipulate these 
differences until the best fitting models, in terms of mean squared error, 
are produced.  

 
(2) Following this initial generation of randomly selected models a random 

subset (sub tree) of the population is then selected for a tournament. 
Hence this process is known as the tournament selection phase. This 
process (tournament procedure) is essentially a selection mechanism to 
decipher which individuals from the population are to be selected for 
reproduction to develop the next generation.     

 
(3) An evaluation of the members of this subset is then carried out and 

assigned a fitness value. As stated by Koza (1998) the fitness cases are 
either selected at random or in some structured manner (e.g. at regular 
intervals). In our application, as mentioned briefly in the first step, the 
fitness value is defined as the mean squared error (MSE) with the lowest 
MSE being targeted as the best.  Furthermore, the fitness may be 
measured in terms of the sum of the absolute value of the differences 



between the output produced by the model and/or the desired output (i.e. 
the Minkowski distance) or, alternatively, the square root of the sum of the 
squared errors (i.e. the Euclidean distance).  

 
(4) Following the establishment of fitness values the tournament winners are 

then determined based on minimising the mean squared error (MSE). 
 
(5) Having identified the tournament winners in the previous step the 

algorithm then proceeds by exposing the models to two genetic operators 
known as mutations and crossovers. Both operators are discussed in 
more detail below: 

 
Mutation: This is the creation of a new model that is mutated randomly from 
an existing one as circled in the diagram below (1*). This one mutation point is 
indiscriminately chosen as an independent point and the resulting sub-tree is 
generated. From this resulting sub-tree, another new sub-tree (2*) is then 
reproduced using the same procedure that was initially implemented to create 
the original random population. A mutation tree structure example is 
presented in figure 5 below. 
 

 
Fig. 2: Mutation tree structure example 

 
 
Crossover: This operator creates two new models from existing models by 
genetically recombining randomly chosen parts of them. This is achieved by 
using the crossover operation applied at a randomly chosen crossover point 
within each model. Due to the fact that entire sub-trees are swapped (from 
point 1* to point 2* and from points 3* to 4*), the crossover operation 
produces models as offsprings.  Furthermore, the models are selected based 
on their fitness and the crossover allocates future trials to regions of the 
search space whose models contain parts from superior models. The reader 
is directed to Koza (1992) for more details of this procedure. Figure 6 
presents a crossover family tree like structure example. 
  



 
 

Fig. 3: Crossover family tree like structure example 
 
 
(6) The population is then altered with the tournament losers being replaced 

by the winners (superior) offspring. 
(7) Provided the termination criterion (depicted as the symbol ‘?’ in the 

following flow of stages) is not reached, the algorithm returns to step 2 
and these steps are repeated until the predefined termination criterion for 
genetic programming is satisfied. In this paper the termination criterion is 
set to 100,000 at which point the cycles are stopped and forecasted 
results can be obtained. 

(8) This procedure ultimately produces the best individual (model) of the 
population as a result. 

 
A summary of the methodology described above is depicted in figure 7 below. 



 
 
*note: the symbol ‘?’ is the termination criterion which either iterates or 
terminates the procedure of GP. 
 

Fig. 4: The architecture of Genetic Programming Algorithm 
 
3.2 The Gene Expression Programming Framework 
 
As mentioned before the models in GEP are symbolic strings of fixed length 
representing an organism’s genome (chromosome/genotype), but these 
simple entities are encoded as non linear entities of different sizes and 
shapes determining an organism’s fitness (expression trees/phenotype). GEP 
chromosomes are made up of multiple genes spanning equal lengths across 
the structure of the chromosome. Each gene is comprised of a head (detailing 
symbols specific to functions and terminals) and a tail (which only includes 
terminals). For a mathematical representation please refer to equation [1] 
below: 
 

1)1( +−= hnt  [1] 

 
Where: 
h = the head length of the gene. 
t = the tail length of the gene. 

The generation of an 
initial population 
 

Evaluation 
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New Generation 

         *? 

End 

Crossover Mutation 

yes 
 

No 
  



n = total number of arguments within the function3 (maximum arity) 
 

The set of terminals included within both the heads and tails of the 
chromosomes contain constants as well as case specific variables. In 
addition, regardless of the fact that each of the genes is equal and fixed in 
size they hold the same capacity to code for multiple and varied expression 
trees (ET). For example, the structure of GEP is able to cope in 
circumstances when the first element of a gene is terminal producing a single 
node as well as when multiple nodes (‘sub-trees’ reproduced by functions) are 
produced in search for eventual terminality. In contrast with its predecessors, 
GEP does not require the rejection of invalid individuals from the population, 
as valid ETs are always generated. Thus, each gene encodes an ET and in 
situations where multiple generation arise, GEP codes for sub ETs with 
interlinking functions to enable reproduction of generations. Furthermore, the 
expression of each ET is enabled by an Open Reading Frame (ORF) which 
assists in the decoding process. Additionally, while the ORF is initiated at the 
beginning of each gene it has to be understood that the eventual terminal 
points are not always determined to be located at the end of the gene. 
 
Although it is crucial to understand the workings of a GEP it is also just as 
important to understand the step by step process of evolution. This is depicted 
in figure 8 below.   

 
Fig. 5: Flow chart of Gene Expression Algorithm 

 

                                                 
3 This is determined by the user. In most cases a function will either be a Boolean function or 
another mathematical function that is suited to a specific problem.  



The different steps of the algorithm from the above diagram are explained in 
more detail as follows: 
 
1. Creation of Initial Population  
Similar to other evolutionary algorithms, GEP randomly generates an initial 
population from populations of individuals and all succeeding populations are 
spawned from this initial population. In the spawning of new generations 
genetic operators evolve each of the individuals by ‘mating’ them with other 
individuals in the population. These genetic operators are deciphered by the 
nature of the problem which one wants to solve. Genetic operators may 
include (but are not limited to) ‘+’, ‘-‘, ‘*’ and ‘/’ symbols for mathematical 
models and ‘And’, ‘Or’, ‘Nand’, ‘Nor’, ‘Xor’, ‘Nxor’, ‘<’, ‘>’, ‘< or =’, and ‘> or =’ 
for logical expressions as explained by Ferreira (2001). Therefore, the 
terminals and functions (symbols) may vary from problem to problem. Other 
characteristics such as gene size also have to be specified by the user at this 
stage.  
 
2. Express chromosomes 
In this step the model progresses by developing expression trees from our 
chromosomes. The structure of each ET is in such a way that the root or the 
first node corresponds with beginning of each gene. The resulting offspring 
evolved from the first node is dependent on the number of arguments. In this 
process of evolution the functions may have numerous arguments however 
the terminals have a parity of zero. Each of the resulting offspring’s 
characteristics is populated in nodes ordered from left to right. This process is 
concluded once terminal nodes are established. 
 
3. Execute each program 
The next step of the algorithm is to generate the initial population and develop 
resulting ETs. This process is explained further in Ferreira (2001).  
 
4. Evaluate fitness 
In order to create an accurate model suited to our forecasting requirements it 
is imperative that a function which minimizes error and improves accuracy is 
used. In our application, as with the GP algorithm, the fitness value is defined 
as the MSE with the lowest MSE being targeted as the best. 
 
5. Keep best Program 
In our GEP model the main principal during the process of evolution is the 
generation of offspring from two superior individuals to achieve ‘elitism’. As a 
consequence the best individuals from the parent generation produce 
offsprings in future generations with the most desirable traits whilst the 
individuals with less desirable traits are removed. On this basis our model   
minimizes error and maintains superior forecasting abilities. As explained in 
greater detail by Ferreira (2001), elitism is the cloning of the best 
chromosome(s)/individual(s) to the next population (also called generation). 
Furthermore, the role of ‘elitism’ enables the selection of fitter individuals 
without eliminating the entire population.   
 
6. Selection 



The selection of individuals based on their ‘fitness’ is carried out during the 
‘tournament’ selection for reproduction and modification. This process selects 
the individuals at random with the superior ones being chosen for genetic 
modification in order to create new generations. The intensity of competition is 
dictated by the tournament size which is adjusted and set by the practitioner. 
The greater the tournament size then the more competitive the selection 
process and therefore weaker individuals are less likely to compete. 
 
7. Reproduction 
In the reproduction of future generations to the algorithm considers the types 
of genetic operators which make this ‘evolution’ possible. Specifically, genetic 
operators, known as mutation and recombination, are applied. These are 
explained below. 
 

Mutation: This is the creation of a new model that is mutated randomly from 
an existing one. Firstly a parent is randomly selected with a probability related 
to its fitness. Then the mutation point on the parent’s chromosome is 
indiscriminately chosen as an independent point. Afterwards the mutation 
randomly changes one or more genes representing part of the solution it 
encodes and the new mutated individual is added to the population. This 
procedure is described in detail in Ferreira (2006). 
 

Recombination: in contrast to our mutation operator this process is not 
executed at random. Instead the parent chromosomes are matched and split 
up or ‘spliced’ at identical points in order to determine recombination points. 
The subsequent spliced parts of each of the genes are then exchanged 
between the two selected chromosomes on the basis of probability. This 
results in two new individuals as a result of genetic engineering. Note that 
during reproduction it is the chromosomes of the individuals, not the 
expression trees that are reproduced with modification and passed onto the 
next generation. 

 
8. Prepare new programs of the next generation 
At this step, the algorithm replaces the tournament losers with the new 
individuals created by reproduction in the population. 
 
9. Termination criterion 
At this point a check is made to determine whether the termination criterion is 
fulfilled, if it is not we return to step 2.  As a termination criterion we used a 
maximum number of 100,000 generations during which the GEP was left to 
run. 
 
10. Results 
As a result the model returns the best individual found during the evolution 
process. 
 



 
4. THE ASE 20 GREEK INDEX AND RELATED FINANCIAL DATA 

For futures on the ASE 20 that are traded in derivatives markets, the 
underlying asset is the blue chip index ASE-20. The ASE-20 index is based 
on the 20 largest ASE stocks. It was developed in 1997 by the partnership of 
ASE with FTSE International and is already an established benchmark. It 
represents over 50% of the ASE's total market capitalisation and as with many 
modern stock indexes has a heavier weighting on banking, telecommunication 
and energy stocks. 
 
The FTSE/ASE 20 index is traded as a futures contract that is cash settled 
upon maturity of the contract with the value of the index. The cash settlement 
of this index is simply determined by calculating the difference between the 
traded price and the closing price of the index on the expiration day of the 
contract. Whilst the futures contract is traded in index points, as with all stock 
index futures the monetary value of the contract is calculated by multiplying 
the futures price by the value of each index point which for the FTSE/ASE20 
index is 5 EUR per point. For example, a contract trading at 1,400 points is 
valued at 7,000 EUR. 
 
This paper examines the ASE 20 since its first trading day on 21 January 
2001 (Greece’s entrance in the European Monetary Zone), and until 31 
December 2008, using the continuous data available from Datastream. Table 
1 presents illustrates how the dataset is divided:  
 
 

Name of Period Trading 
Days Beginning End 

Total Dataset 2087 21 January 
2001 

31 December 
2008 

Training Dataset 1719 29 January 
2001 30 August 2007 

Out- of- sample Dataset(Validation 
Set) 349 31 August  

2007 
31 December 

2008 
Table 1:  The ASE 20 dataset 

Figure 2 depicts the ASE 20 series for the period under consideration and 
illustrates that this period has largely consisted of three significant trends: A 
downtrend from 01/01 to 04.03, followed by a long up-trend from 04/03 to 
11/07, with a number of significant market corrections, followed by a 
downtrend from 11/07 to 12/08. 
 

 



Fig. 6: ASE 20 fixing prices (total dataset). 

The observed ASE 20 time series is non-normal (Jarque-Bera statistics 
confirms this at the 99% confidence level) containing slight skewness and 
high kurtosis. It is also non-stationary and hence the data was transformed 
into a stationary daily series of rates of arithmetic return4. 

The summary statistics of the ASE 20 returns series are presented in Figure 3 
below. In this paper it is this return series that will be forecasted from our 
models.  
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Fig. 7: ASE 20 returns summary statistics (total dataset). 

The inputs to our GP, GEP and MLP algorithms are based on the 
autocorrelation function and some ARMA experiments. The outcome of this 
selection process is a set of autoregressive and moving average terms of the 

                                                 
4 Confirmation of its stationary property is obtained at the 1% significance level by both the 
Augmented Dickey Fuller (ADF) and Phillips-Perron (PP) test statistics. 



ASE 20 returns and the 1-day Riskmetrics volatility series5. This set is 
detailed in table 2 below. 

Number Variable  Lag 
1 Athens Composite all share return 1 
2 Athens Composite all share return 3 
3 Athens Composite all share return 6 
4 Athens Composite all share return 8 
5 Athens Composite all share return 10 
6 Athens Composite all share return 13 
7 Athens Composite all share return 14 
8 Moving Average of the Athens Composite all share return 15 
9 Athens Composite all share return 16 

10 Athens Composite all share return 18 
11 Moving Average of the Athens Composite all share return 19 

Table 2: Explanatory variables GEP and GP  

In order to train our MLP algorithm the dataset was further divided as detailed 
in Table 3 below: 

 

Name of Period Trading 
Days 

Beginning End 

Total Dataset 2087 21 January 
2001 

31 December 
2008 

Training Dataset 1373 29 January 
2001 

03 May2006 

Test Dataset 346 04 May 2006 30 August 2007 
Out-of- sample Dataset (Validation 
Set) 

349 31 August 2007 31 December 
2008 

Table 3: The neural networks datasets 

5. FORECASTING MODELS 

In order to benchmark the trading performance of our GP and GEP models 
tree standard benchmarks (a naïve strategy, a moving average cross over 
and divergence model and an ARMA model) are utilised. In addition we 
utilised a standard MLP model.  The performance of each strategy is 
evaluated in terms of trading performance via a simulated trading strategy. 
The section below presents the technical characteristics of our GP and GEP 
algorithms along with our benchmarks. 
 
5.1 Naïve strategy 
 
The naïve strategy simply takes the most recent period change as the best 
prediction of the future change.   

 

5.2 MACD 
 
In order to implement the MACD strategy two moving average series are 
created with different moving average lengths. The decision rule for taking 
positions in the market is as follows: 
                                                 
5 The RiskMetrics volatility model was developed by JP Morgan in 1989 and is used 
extensively in the literature to benchmark trading performance.  



- Positions are taken if the moving averages intersect. If the short-term 
moving average intersects the long-term moving average from below a 
‘long’ position is taken. Conversely, if the long-term moving average is 
intersected from above a ‘short’ position is taken6. 

A number of differing moving average lengths combinations were considered 
and the best pairing was retained for out-of-sample evaluation. The model 
selected was a combination of the ASE 20 and its 7-day moving average, 
namely n = 1 and 7 respectively or a (1, 7) combination.  
 
5.3 ARMA Model 
Autoregressive moving average models (ARMA) assume that the value of a 
time series depends on its previous values (the autoregressive component) 
and on previous residual values (the moving average component)7.   

Using as a guide the correlogram in the training and the test sub periods a 
restricted ARMA (7, 7) model was selected. All of its coefficients are 
significant at the 99% confidence interval. The null hypothesis that all 
coefficients (except the constant) are not significantly different from zero is 
rejected at the 99% confidence interval (see Appendix A.1).  

The selected ARMA model takes the form: 

 

tY = 2.90 · 10-4 + 0.376 1−tY  - 0.245Yt-3  - 0.679Yt-7  +  0.374µt-1  - 0.270µt-3  -
0.677µt-7      [2] 

5.4 The MLP Model Architecture 

NNs exist in several forms in the literature. The most popular architecture is 
the Multi-Layer Perceptron (MLP). 
 
A standard neural network has at least three layers. The first layer is called 
the input layer (the number of nodes in this layer corresponds to the number 
of explanatory variables). The last layer is called the output layer (the number 
of nodes in this layer corresponds to the number of response variables). An 
intermediary layer of nodes, the hidden layer, separates the input from the 
output layer (the number of nodes in this layer defines the amount of 
complexity the model is capable of fitting). In addition, the input and hidden 
layer contain an extra node called the bias node. This node has a fixed value 
of one and has the same function as the intercept in traditional regression 
models. Normally, each node of one layer has connections to all the other 
nodes of the next layer.   
 
The network processes information as follows: the input nodes contain the 
value of the explanatory variables. Since each node connection represents a 
weight factor, the information reaches a single hidden layer node as the 
weighted sum of its inputs. Each node of the hidden layer passes the 

                                                 
6A ‘long’ ASE 20 position means buying the index at the current price, while a ‘short’ position 
means selling the index at the current price. 
7 For a full discussion on the procedure, refer to Box et al. (1994). 



information through a nonlinear activation function and passes it on to the 
output layer if the calculated value is above a threshold.  
 
The training of the network (which is the adjustment of its weights in the way 
that the network maps the input value of the training data to the corresponding 
output value) starts with randomly chosen weights and proceeds by applying 
a learning algorithm called backpropagation of errors8 (Shapiro (2000)). The 
learning algorithm simply tries to find those weights which minimize an error 
function (the sum of all squared differences between target and actual 
values). Since networks with sufficient hidden nodes are able to learn the 
training data (as well as their outliers and their noise) by heart, it is crucial to 
stop the training procedure at the right time to prevent overfitting (this is called 
‘early stopping’). This is usually achieved in the literature by dividing the 
dataset into 3 subsets respectively called the training and test sets used for 
simulating the data currently available to fit and tune the model and the 
validation set used for simulating future values. The network parameters are 
then estimated by fitting the training data using the above mentioned iterative 
procedure (backpropagation of errors). The iteration length is optimised by 
maximising a fitness function in the test dataset. Finally, the predictive value 
of the model is evaluated applying it to the validation dataset (out-of-sample 
dataset). 
 
The parameters setting and architecture was optimized through a sensitivity 
analysis in the in sample period. The set of parameters that provided the 
higher trading performance in the test sub-period was then selected.  
 
The network architecture of a ‘standard’ MLP looks as presented in figure 49:  
 
 
 

 

 

 

 

 

 

 

Fig. 8: A single output, fully connected MLP model 

 

Where: 

                                                 
8 Backpropagation networks are the most common multi-layer networks and are the most 
commonly used type in financial time series forecasting (Kaastra and Boyd (1996)). 
9 The bias nodes are not shown here for the sake of simplicity. 
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A summary of our MLP algorithm is presented in table 4 below. 
 

Table 4: MLP Characteristics 

 

The MLP was programmed using Java. A simple execution of a MLP 
algorithm for modeling and trading a financial index, using 10 years of 
historical data, does not require more than one 20 minutes using a HP 
Pavilion p6-2175ea Desktop PC. 

5.5 Genetic Programming and Genetic Expression Experimental Design 

The GP and the GEP codes were written in Java. Both models were run 40 
times with random seeds and the best models were selected based on their in 
sample performance in terms of Mean Squared Error (MSE). The 
characteristics of our GP and GEP algorithms and a description of the model 
development are provided in the two sections below. 
 
5.5.1 The GP Model Architecture 

             Parameters 
 

MLP 

 Learning algorithm Gradient descent 
 Learning rate 0.001 
 Momentum 0.003 
 Iteration steps 10000 
 Initialisation of weights N(0,1) 
 Input nodes 11 
 Hidden nodes (1 layer) 7 
 Output node 1 



 
 
The parameters used for the optimization of our individual models are 
presented in table 5 below. 

Population Size: 200 
Max tree depth: 6 
Constants’ range: [-3, 3] 
Function Set: +, -, *, /, ^, ^2, ^3, ^1/2, ^1/3, Exp, 

If,sin, cos, tan 
Fitness evaluation 
function: 

Mean Squared Error 

Tournament Size: 4 
Crossover trials: 1 
Mutation Probability: 0,75 

Table 5: Genetic Programming Characteristics 

 
 
We wrote the GP code in Java. We ran the model  40 times with random 
seeds and selected our best model based on their in sample performance.The 
time needed for each run was approximately 15 minutes using a standard HP 
Pavilion p6-2175ea Desktop PC. Equation [6] below presents our best model: 
 
output=cos((x7) / ((-2.862)^(((1.0119) - (((((x11+x8)^(x1)) * (exp(((-2.8624) + 
(exp(((((-1.9846) / ((0.8175) * (1.2320))) + (1.2320)) - ((x2+x9) * ((-2.8624) + 
((x4) * (((-2.3000) / ((-1.9846) * ((x5)^1/2))) + (tan(x3+x7)))))))^1/2))) * ((-
2.3000)^2))))^3) / (tan(x9+x7)))) * (x6+x10))))                                      [6] 
 
where xi (i=1…11) are the model inputs and the output is our model forecast. 
It is recognised that the functions tan, cos and exp dominate our proposed 
forecasting equation. Unfortunately standard significance tests on equation [6] 
are not possible due to the non-linear nature of our GP algorithm (see Chen 
(2002)). 
 
5.5.2 The GEP Model Architecture  
 
 
A summary of the characteristics of our GEP algorithm is presented in table 6 
below. 
 

Population Size: 1000 
Head length: 6 
Constants’ range: [-3, 3] 
Function Set: +, -, *, /, ^, ^2, ^3, ^1/2, ^1/3, Exp, 

If,sin, cos, tan 
Fitness evaluation 
function: 

Mean Squared Error 

Tournament Size: 20 
Type of recombination: Two point 
Mutation Probability: 0,75 



Table 6: Gene Expression Programming Characteristics 

 
 
 
We wrote the GEP code in Java. We ran the model 40 times with random 
seeds and selected our best model based on their in sample performance.The 
average time required for each run was approximately 18 minutes using a 
standard HP Pavilion p6-2175ea Desktop PC. Equation [7] below presents 
our best model: 
 
output=tan(((exp(((x1+x2)^1/2) + ((cos(0.9395))^3))) / (exp(((2.2580)^3) * 
(((((x6)^2) / (sin((x11) * (tan(exp((-0.6441)^((((x7) / (x4)) - (sin(((tan((-
0.9604)^((cos(cos(x7))) / (x5+x8)))) + (1.9056)) – 
((x3)^1/3))))^2)))))))^1/2)^2)))) * (x7))                                                    [7] 
 
where xi (i=1…11) are the model inputs and the output is our model forecast. 
Again application of standard significance tests on equation [7] is prohibited 
by the non linear nature of our GEP algorithm. 
 
 
6 EMPIRICAL TRADING SIMULATION RESULTS 
 
6.1 Trading Performance 
Our trading strategy applied is simple and identical for all the models. That is, 
go or stay long when the forecast return is above zero and go or stay short 
when the forecast return is below zero. Transaction costs of 0.14% per 
position are assumed.10. 
 
The trading performance measures, and their calculation description, are 
presented in Appendix A.2. Table 7 below presents the trading performance 
of our models in the in-sample period. 
 

                                                 
10 According to the Athens Stock Exchange, transaction costs for financial institutions and 
fund managers dealing a minimum of 143 contracts or 1 million Euros is 10 Euros per 
contract (round trip). Dividing this transaction cost of the 143 contracts by the average deal 
size (1 million Euros) gives us an average transaction cost for large “players” of 14 basis 
points or 0.14% per position. 



 

Table 7: Trading performance results – In-Sample 
 
From the table above, we note that all our models present a positive trading 
performance after transaction costs. Our Gene Expression algorithm 
produces the more profitable forecasts in the in-sample period with an 
annualised return of 37.91% after transaction costs. The GP presents the 
second best performance with a 35.24% annualised return. On the other 
hand, the performance of our third non linear model, the MLP, is disappointing 
as it produce lower annualised return than our linear MACD and ARMA 
strategies. In table 8 below we present the trading performance of our models 
in the out-of-sample period.  
 

Table 8: Trading performance results – Out-of-Sample 

We can see that, after transaction costs, the GEP model continues to 
outperform all the other strategies based on the annualized return of 34.22%. 
It is closely followed by the GP Algorithm strategy with a 29.93% annualized 
return. What is more remarkable is the extent to which they outperform the 
traditional MLP which has an annualized return of 9.35% after transaction 
costs. On the other hand, the naïve strategy and the ARMA model produce 

  
NAIVE 

 
MACD 

 
ARMA 

             MLP 
 

GP  Algorithm 
 

Gene Expression 

Information Ratio   
 (excluding costs) 

1.55 1.24 1.24 0.60 2.19 2.34 

Annualised Volatility
 (excluding costs) 

19.32% 19.49% 19.83% 38.11% 19.33% 19.31% 

Annualised Return
 (excluding costs) 

29.86% 24.29% 24.66% 22.99% 42.24% 45.19% 

Maximum Drawdown
 (excluding costs) 

-23.39% -25.42% -26.70% -36.26% -31.23% -28.07% 

Positions Taken 
 (annualised) 

114 34 50 61 50 52 

Transaction costs 15.96% 4.76%      7.00% 8.54% 7.00% 7.28% 
Annualised Return
 (including costs) 3.36% 19.53% 17.66% 14.45% 35.24% 37.91% 

  
NAIVE 

 
MACD 

 
ARMA              MLP 

 
GP  

Algorithm 

 
Gene 

Expression 

Information Ratio   
 (excluding costs) 

0.32 0.46 0.20 0.60 1.03 1.16 

Annualised Volatility
 (excluding costs) 

36.70% 38.12% 38.13% 38.11% 38.04% 38.01% 

Annualised Return
 (excluding costs) 

11.42% 17.63% 7.68% 22.99% 39.33% 44.16% 

Maximum Drawdown
 (excluding costs) 

-49.41% -50.63% -36.50% -36.26% -29.45% -28.20% 

Positions Taken 
 (annualised) 

119 38 72 105 67 71 

Transaction costs 15.47% 4.94%      9.36% 13.65% 9.40% 9.94% 
Annualised Return
 (including costs) 

-4.05% 12.69% -1.68% 9.35% 29.93% 34.22% 



negative results after transaction costs are taken into account. It is also worth 
noting the impressive performance of our linear MACD strategy with the third 
more profitable forecasts in both in-sample and out-of-sample periods. This is 
not surprising given the trending nature of our dataset.  

6.2 Leverage to exploit high Information Ratios 

In order to further improve the trading performance of our models we 
introduce a “level of confidence” to our forecasts, i.e. a leverage based on the 
test sub-period. For the naïve and the ARMA models, which presents a 
negative return we do not apply leverage. The leverage factors applied are 
calculated in such a way that each model has a common volatility of 20%11 on 
the test data set. 

The transaction costs are calculated by taking 0.14% per position into 
account, while the cost of leverage (interest payments for the additional 
capital) is calculated at 4% p.a. (that is 0.016% per trading day12). Our final 
results are presented in table 9 below. 

 NAIVE MACD ARMA        MLP 
GP 

Algorithm 
Gene 

Expression 
Information Ratio          
(excluding costs) 0.32 0.70 0.20 0.60 1.03 1.16 

Annualised Volatility     
(excluding costs) 36.70% 40.03% 38.13% 40.28% 41.84% 39.15% 

Annualised Return       
(excluding costs) 11.42% 18.51% 7.68% 24.30% 43.26% 45.48% 

Maximum Drawdown    
(excluding costs) -49.41% -53.16% -36.50% -38.32% -31.02% -29.04% 

Leverage Factor        - 1.050 - 1.057 1.1 1.03 
Positions Taken           
(annualised) 119 38 72 105 67 71 

Transaction and 
leverage costs 15.47% 4.94%      9.36% 13.65% 9.95% 10.11% 

Annualised Return     
(including costs) -4.05% 13.57% -1.68% 10.65% 33.31% 35.37% 

Table 9: Trading performance - Final results 

As can be seen from table 9, the GEP model continues to demonstrate a 
superior trading performance despite a significant high maximum drawdown. 
The GP strategy also performs well and presents the second highest 
annualised returns after transaction and leverage costs are considered. In 
general, the results show that leverage is marginally able to improve 
annualised return across all models. A further note worthy point relating to this 

                                                 
11 Since most of the models have an in-sample volatility of about 20% this has been chosen 
as our target level. The leverage factors retained are given in table 6. 
12 The interest costs are calculated by considering a 4% interest rate p.a. divided by 252 
trading days. In reality, leverage costs also apply during non-trading days. Hence in reality, 
inorder to calculate the interest costs 360 days per year should be utilised. But for the sake of 
simplicity, 252 trading days is utilised inorder to spread the leverage costs of non-trading days 
equally over the trading days. This approximation prevents us from keeping track of how 
many non-trading days we hold a position. 



significant trading performance is that the time required to train the GEP and 
the GP is only 15 minutes on a modern desktop personal computer.  
 
 
7. CONCLUDING REMARKS 

This paper applies the GEP and GP algorithms to generating a one-day-
ahead forecast of the ASE 20 fixing series, using only autoregressive terms 
as inputs. In addition, as benchmarks, a MACD, an ARMA and a MLP model 
are utilised benchmarks. The in-sample period under consideration is January 
2001 - August 2007 and the models out-of-sample trading efficiency is 
evaluated over the period September 2007 to December 2008.  

The GEP algorithm demonstrates a higher trading performance when 
measured using annualised return and information ratio (before transaction 
costs). When refined trading strategies are applied, and transaction costs are 
considered, the GEP algorithm continues to outperform all other models 
achieving the highest annualised return. The GP algorithm model also 
performs well and provides profitable forecasts even though only 
autoregressive series are only used as inputs. The results show that both 
models are able to capture the nonlinearities and the high complexity of the 
ASE 20 fixing series. This can be attributed to their unique architecture and 
their ability to address and quantify complex issues. Based on this ability, it 
can be argued that the GP and GEP algorithms would excel in any pattern 
recognition exercise irrespective the nature of the series under study and to 
provide more accurate forecasts compared to traditional linear statistical 
models, such as ARMA. 

It is also important to note that the GP and GEP algorithms which present the 
best performance needs around 15 minutes training time with a modern 
personal computer making them usable in a real-life quantitative investment 
and trading environment. Consequently, our results should go some way 
towards convincing a growing number of quantitative fund managers to 
experiment beyond the bounds of traditional statistical models and GAs.  

 

 

 

 

 

 

 

APPENDIX 
 



 

A.1 ARMA Model 

The output of the ARMA model used in this paper is presented in figure 9 
below. 

 
Dependent Variable: RETURNS   
Method: Least Squares   
Date: 03/17/09   Time: 22:18   
Sample (adjusted): 8 1738   
Included observations: 1731 after adjustments 
Convergence achieved after 37 iterations  
Backcast: 1 7   

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.000290 0.000303 0.956602 0.3389 

AR(1) 0.375505 0.052705 7.124626 0.0000 
AR(3) -0.244662 0.024991 -9.789999 0.0000 
AR(7) -0.678906 0.044902 -15.11958 0.0000 
MA(1) -0.374290 0.053055 -7.054702 0.0000 
MA(3) 0.269470 0.026409 10.20353 0.0000 
MA(7) 0.677169 0.044295 15.28785 0.0000 

     
     

R-squared 0.026582     Mean dependent var 0.000288 
Adjusted R-squared 0.023194     S.D. dependent var 0.012549 
S.E. of regression 0.012403     Akaike info criterion -5.937710 
Sum squared resid 0.265213     Schwarz criterion -5.915645 
Log likelihood 5146.088     F-statistic 7.846483 
Durbin-Watson stat 1.856760     Prob(F-statistic) 0.000000 

     
     Inverted AR Roots  .89-.44i      .89+.44i    .31-.92i  .31+.92i 
 -.54+.70i     -.54-.70i        -.93 

Inverted MA Roots  .88-.45i      .88+.45i    .31-.92i  .31+.92i 
 -.54+.70i     -.54-.70i        -.94 
     
     Fig. 9: The ARMA model  

 
 

 

 
 
 
 
 

A.2 Performance Measures 

The performance measures are calculated as in table 10:  



 

 Performance 
Measure 

Description 
 

 
Annualised Return ∑

=

=
N

t
t

A R
N

R
1

1
*252  [8] 

  with tR being the daily return  

 
Cumulative Return ∑

=

=
N

t
t

C RR
1

 [9] 

 
Annualised 

Volatility 
( )∑

=

−
−

=
N

t
t

A RR
N 1

2
*

1
1

*252σ  [10] 

 
Information Ratio 

A

AR
IR

σ
=  [11] 

 

Maximum 
Drawdown 

Maximum negative value of ( )∑ tR  over the period 









= ∑

===

t

ij
j

Ntti
RMinMD

,,1;,,1 
 

[12] 

Table 10: Trading simulation performance measures 
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