
n

Karathanasopoulos, A., Sermpinis, G., Laws, J., and Dunis, C. (2014) Modelling
and trading the Greek stock market with gene expression and genetic programing
algorithms. Journal of Forecasting, 33(8), pp. 596-610.

There may be differences between this version and the published version. You are
advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/97980/

Deposited on: 16 February 2016

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

Modelling and Trading the Greek Stock Market with
Gene Expression and Genetic Programing Algorithms

by
Andreas Karatahansopoulos*

Georgios Sermpinis**
Jason Laws***

Christian Dunis****

October 2013

Abstract

This paper presents an application of the gene expression programming
(GEP) and integrated genetic programming (GP) algorithms to the modelling
of ASE 20 Greek index. GEP and GP are robust evolutionary algorithms that
evolve computer programs in forms of mathematical expressions, decision
trees or logical expressions. The results indicate that GEP and GP produce
significant trading performance when applied to the ASE 20 and outperform
the well-known existing methods. The trading performance of the derived
models is further enhanced by applying a leverage filter.

Keywords

Gene Expression Programming Algorithm, Leverage, Quantitative Trading
Strategies, Genetic Programming, Evolutionary Algorithms.

Andreas Karathanasopoulos Royal Docklands Business School, University of East London,
(E-mail:a.karathanasopoulos@uel.ac.uk)
Georgios Sermpinis University of Glasgow Business School, University of Glasgow, Adam
Smith Business School (Email: georgios.sermpinis@glasgow.ac.uk)
Christian Dunis Horus Partners Wealth Management Group SA, Genève, Suisse and
Liverpool Business School, JMU, John Foster Building , Liverpool L3 5UZ (E-mail:
christian.dunis@hpwmg.com)
Jason Laws University of Liverpool Management School, The University of Liverpool,
Chatham Street, Liverpool, L69 7ZH (E-mail: J.Laws@liverpool.ac.uk)

1. INTRODUCTION

Developing highly accurate techniques for predicting financial time series is a
crucial problem for economists and financial researchers. The traditional
statistical methods seem to fail to capture the discontinuities, the
nonlinearities and the high complexity of datasets such as financial time
series. Evolutionary algorithms have the desirable characteristic of learning
capacity and are hence more likely to capture the complex non-linear models
which are dominant in the financial markets (see Chen (2002)). However their
limitations, such as the bloat effect, and contradictory empirical evidence
surrounding their pattern recognition capabilities often create scepticism about
their use among practitioners.

Genetic programming (GP) and gene expression (GEP) algorithms are
domain-independent problem-solving techniques that are run in various
environments. GP and GEP can be categorized in the forecasting bracket
known in the finance world as ‘Evolutionary Algorithms’. These environments
are structured in a manner which approximates problems in order to produce
forecasts at a high degree of accuracy. The basis for this type of problem
solving techniques derives from the Darwinian principle of reproduction and
survival of the fittest. Additionally, they can be considered similar to the
biological genetic operations such as crossover recombination and mutation.
These algorithms have been successfully applied to many real world
problems (Divsalar et al. 2011, 2012; Yang et al. 2012; Gandomi et al. 2013;
Gandomi and Alavi 2011; Alavi and Gandomi 2011; Zargari et al. 2012;
Gandomi et al. 2011; Alavi et al. 2011; Yaghouby et al. 2010). It can be
argued that the GEP proves to be superior to GP due to the mere fact that it
clearly distinguishes the differences between the genotype1 and the
phenotype2 of individuals within a population. For instance, whilst a traditional
Genetic Algorithm (GA) classifies individuals as symbolic strings of fixed size
(i.e. chromosomes) and GP classifies its individuals as non-linear comprising
of different shapes and sizes (tree like structures); the GEP encompasses a
combination of both. Hence, Ferreira (2001) stresses that GEP represents not
only an individual’s genotype, in the form of chromosomes, but also its
phenotype as a tree like structure of expressions in order to establish fitness.
Compared to Neural Networks (NNs), GEP eradicate the risk of getting
trapped in a local optima and seem able to reach the optimal solution faster.

The motivation for this paper is to investigate the financial forecasting
performance of a GEP and an integrated GP environment, using only
autoregressive terms as inputs. This is achieved by benchmarking their
trading performance, with an application to forecasting the one day ahead
return of the Greek stock market index, with a Multi-Layer Perceptron (MLP)
of NNs, an autoregressive moving average (ARMA), a moving average model
(MACD) and a naïve trading strategy. Furthermore, the paper explores
whether the application of a simple leverage strategy can improve the trading
performance of the proposed models. The variable being forecast in this
paper is the one day ahead forecast for the Athens Stock Exchange (ASE)
market return. The ability to successfully generate such forecasts suggests
that it should be possible to implement a simple trading strategies where a
trader would buy (or sell) the market depending on whether a positive (or
negative) forecast is generated. The development of derivative securities,
such as stock index futures, greatly facilitates such strategy and has reduced
transaction costs. Leverage is then applied to exploit the high information
ratios of our model and further improve the trading performance of our
models. Our findings support this view as the results show that in a simple
trading simulation exercise on the Athens stock exchange, the GEP algorithm
outperforms all other models.

The remainder of the paper is organised as follows. Section 2 presents some
of the existing literature relevant to stock market prediction. Section 3
provides an overview of the GEP and GP algorithms. Section 4 describes the

dataset used for this research and its characteristics while Section 5
discusses the details and the model development for GEP and GP algorithms
along with our benchmarks. Section 6 displays the empirical results of all the
models considered and investigates the possibility of improving their
performance with the application of leverage. Section 7 provides some
concluding remarks.

2. LITERATURE REVIEW

Stock market prediction has been the focus of researchers, decision makers
and economists for almost a century. In his seminal paper Cowles (1933)
constructs a portfolio using Dow Jones industrial average (DJIA) market index
forecasts and assess its performance. Since then practitioners and
researchers have produced hundreds of mathematical models in an effort to
replicate the stock markets patterns. The focus of this research over the last
years has moved towards artificial intelligence models, such as GP and
Neural Networks (NNs). The motivation of this paper is to apply a GEP
algorithm to the task of forecasting and trading the ASE 20 stock market
index. Although there have been several applications of NNs and GP in
financial forecasting, the empirical evidence around GEP is limited. This can
partly be explained by the complexity of the GEP algorithm compared to other
artificial intelligence models (see Ferreira (2001)). Nevertheless, GEP has
provided promising empirical evidence in other fields of science such as
computing and mining. See, for example, Lopez and Weinert (2004), Margny
and El-Semman (2005) and Dehuri and Cho (2008).

Donaldson and Kamstra (1996) used Neural Network’s to combine volatility
forecasts of the US, Canadian, Japanese and UK stock markets. Their results
demonstrate the superiority of Neural Network’s over traditional linear models
More recently, Kaboudan (2000) applied successfully GP in predicting the
daily highest and lowest stock prices of six US stocks (Citigroup, Compaq
Computers, General Electric, Pepsi, Sears and Microsoft). They find that the
return from investment (ROI) from trading decisions based on GP forecasting
is greater than ROI from investment decisions based on NNs forecasting in
five of the six stocks, though they do not consider risk adjusted returns, such
as an information ratio, as this paper does. In addition Nag and Mitra (2002)
combined Neural Networks with GP to forecast several exchange rates with
impressive results. Likewise Kwon and Moon (2003) combined NNs and GP
to trade successfully 36 stocks over a 9 year period. Grosan et. al. (2005) and
Grosan and Abraham (2006) compared a Genetic multi-expression
programming algorithm with NNs and Support Vector Machine models in two
forecasting exercises over several stock indices. The results of both studies
strongly supported the use of a genetic model. Alvarez-Diaz and Alvarez
(2005) forecast the GBP/USD and JPY/USD with a GP and NNs models with,
unfortunately, ambiguous results. Almanza and Tsang (2007) used GP to
accurately detect the stock price movements and Chiu and Chen (2009)
combined Support Vector Machines with GP to estimate Taiwanese stock and
futures prices. More recently, Lee and Tong (2011) combined GP with NNs
and an ARMA model to accurately forecast the US GDP while Sermpinis et.

al. (2012) traded successfully the EUR/USD exchange with several different
artificial intelligence models.

Other recent literature in the area includes Matias and Reboredo (2012) who
forecast the S&P 500 intraday stock market returns with a range of linear
(simple autoregressive and random walk models) and non linear models
(such as smooth transition, Markov switching, NNs, nonparametric kernel
regression and support vector machine) models. Their results indicate the
superiority of the non linear models in both statistical and economic terms. In
addition Bekiros and Georgoutsos (2008) utilise Recurrent NNs to forecast
and trade successfully the directional change of NASDAQ index with RNN.

3. Genetic Programming and Genetic Expression Framework

3.1 The Genetic Programming Framework

For the purpose of our research, the GP application is coded and
implemented to evolve tree based structures that present models (sub-trees)
of input – output. In the design phase of our GP application the primary focus
is on execution time optimization, as well as limiting the ‘bloat effect’. The
bloat effect is similar to the issue of overfitting experienced in neural networks.
However with the GP application there is a significant risk of continuously
increasing and expanding the tree size. This algorithm is run in a steady state
in that a single member of the population is replaced at a time. Furthermore,
our GP application reproduces newer models replacing the weaker ones in
the population according to their fitness. The reasoning behind the decision to
use a steady state algorithm is justified as they hold a greater selection
strength and genetic drift over other algorithms such as a typical generational
GA.

In our application of the genetic programming formulas are utilized to evolve
algebraic expressions that enable the analysis / optimization of results in a
‘tree like structure’. This genetic tree structure consists of nodes (depicted as
circles in the diagram below) which are essentially functions that perform
actions within this structure. Furthermore, these functions are in place to
generate output signals. On the other hand, the squares in the tree signify
terminal functions representing the end of a function, once the most superior
sub tree (model) is achieved. For example, the below tree structure (model) in
figure 1, is characterized by the algebraic expression 4.0/x1(t-1) + ln(x2(t-2)).
In this case there is one output and the terminal nodes are constant at 4.
Additionally, the outputs are expressed by x1(t-1) and x2(t-2). In the execution
of the genetic algorithm it has to be understood that each individual in the
population correspond to a single sub tree structure. Each of these sub trees
are limited by the predefined maximum tree size set to 6 in our application.

Fig. 1: Example of a tree structure

Koza (1998) summarises the functionality aspect of the GP algorithm in the
following steps:

(1) The generation of an initial population of randomly constructed models is

developed with each model being represented in a tree like structure as
discussed previously. Additionally, the evolutionary algorithm represents
each chromosome of the population as a tree of variable length (i.e. total
number of functions and terminals) or a maximum depth of the model tree.
The process of randomly reproducing each variable of the population is
completed once all of these functions of the tree are terminal symbols.
However, until the process is halted by these ‘terminal symbols’ then the
tree like structure of chromosomes continues to multiply (grow) with each
generation as the population expands to not only include the parents but
also their offspring. This is achieved by crossover and mutation operators.
In the majority of these models produced in the initial population are
unsatisfactory when tested for their performance with some individual
models ‘fitting’ better than others. However, one of the virtues offered by
Genetic Programming is that they exploit and manipulate these
differences until the best fitting models, in terms of mean squared error,
are produced.

(2) Following this initial generation of randomly selected models a random

subset (sub tree) of the population is then selected for a tournament.
Hence this process is known as the tournament selection phase. This
process (tournament procedure) is essentially a selection mechanism to
decipher which individuals from the population are to be selected for
reproduction to develop the next generation.

(3) An evaluation of the members of this subset is then carried out and

assigned a fitness value. As stated by Koza (1998) the fitness cases are
either selected at random or in some structured manner (e.g. at regular
intervals). In our application, as mentioned briefly in the first step, the
fitness value is defined as the mean squared error (MSE) with the lowest
MSE being targeted as the best. Furthermore, the fitness may be
measured in terms of the sum of the absolute value of the differences

between the output produced by the model and/or the desired output (i.e.
the Minkowski distance) or, alternatively, the square root of the sum of the
squared errors (i.e. the Euclidean distance).

(4) Following the establishment of fitness values the tournament winners are

then determined based on minimising the mean squared error (MSE).

(5) Having identified the tournament winners in the previous step the

algorithm then proceeds by exposing the models to two genetic operators
known as mutations and crossovers. Both operators are discussed in
more detail below:

Mutation: This is the creation of a new model that is mutated randomly from
an existing one as circled in the diagram below (1*). This one mutation point is
indiscriminately chosen as an independent point and the resulting sub-tree is
generated. From this resulting sub-tree, another new sub-tree (2*) is then
reproduced using the same procedure that was initially implemented to create
the original random population. A mutation tree structure example is
presented in figure 5 below.

Fig. 2: Mutation tree structure example

Crossover: This operator creates two new models from existing models by
genetically recombining randomly chosen parts of them. This is achieved by
using the crossover operation applied at a randomly chosen crossover point
within each model. Due to the fact that entire sub-trees are swapped (from
point 1* to point 2* and from points 3* to 4*), the crossover operation
produces models as offsprings. Furthermore, the models are selected based
on their fitness and the crossover allocates future trials to regions of the
search space whose models contain parts from superior models. The reader
is directed to Koza (1992) for more details of this procedure. Figure 6
presents a crossover family tree like structure example.

Fig. 3: Crossover family tree like structure example

(6) The population is then altered with the tournament losers being replaced

by the winners (superior) offspring.
(7) Provided the termination criterion (depicted as the symbol ‘?’ in the

following flow of stages) is not reached, the algorithm returns to step 2
and these steps are repeated until the predefined termination criterion for
genetic programming is satisfied. In this paper the termination criterion is
set to 100,000 at which point the cycles are stopped and forecasted
results can be obtained.

(8) This procedure ultimately produces the best individual (model) of the
population as a result.

A summary of the methodology described above is depicted in figure 7 below.

*note: the symbol ‘?’ is the termination criterion which either iterates or
terminates the procedure of GP.

Fig. 4: The architecture of Genetic Programming Algorithm

3.2 The Gene Expression Programming Framework

As mentioned before the models in GEP are symbolic strings of fixed length
representing an organism’s genome (chromosome/genotype), but these
simple entities are encoded as non linear entities of different sizes and
shapes determining an organism’s fitness (expression trees/phenotype). GEP
chromosomes are made up of multiple genes spanning equal lengths across
the structure of the chromosome. Each gene is comprised of a head (detailing
symbols specific to functions and terminals) and a tail (which only includes
terminals). For a mathematical representation please refer to equation [1]
below:

1)1(+−= hnt [1]

Where:
h = the head length of the gene.
t = the tail length of the gene.

The generation of an
initial population

Evaluation

Selection

Reproduction

New Generation

 *?

End

Crossover Mutation

yes

No

n = total number of arguments within the function3 (maximum arity)

The set of terminals included within both the heads and tails of the
chromosomes contain constants as well as case specific variables. In
addition, regardless of the fact that each of the genes is equal and fixed in
size they hold the same capacity to code for multiple and varied expression
trees (ET). For example, the structure of GEP is able to cope in
circumstances when the first element of a gene is terminal producing a single
node as well as when multiple nodes (‘sub-trees’ reproduced by functions) are
produced in search for eventual terminality. In contrast with its predecessors,
GEP does not require the rejection of invalid individuals from the population,
as valid ETs are always generated. Thus, each gene encodes an ET and in
situations where multiple generation arise, GEP codes for sub ETs with
interlinking functions to enable reproduction of generations. Furthermore, the
expression of each ET is enabled by an Open Reading Frame (ORF) which
assists in the decoding process. Additionally, while the ORF is initiated at the
beginning of each gene it has to be understood that the eventual terminal
points are not always determined to be located at the end of the gene.

Although it is crucial to understand the workings of a GEP it is also just as
important to understand the step by step process of evolution. This is depicted
in figure 8 below.

Fig. 5: Flow chart of Gene Expression Algorithm

3 This is determined by the user. In most cases a function will either be a Boolean function or
another mathematical function that is suited to a specific problem.

The different steps of the algorithm from the above diagram are explained in
more detail as follows:

1. Creation of Initial Population
Similar to other evolutionary algorithms, GEP randomly generates an initial
population from populations of individuals and all succeeding populations are
spawned from this initial population. In the spawning of new generations
genetic operators evolve each of the individuals by ‘mating’ them with other
individuals in the population. These genetic operators are deciphered by the
nature of the problem which one wants to solve. Genetic operators may
include (but are not limited to) ‘+’, ‘-‘, ‘*’ and ‘/’ symbols for mathematical
models and ‘And’, ‘Or’, ‘Nand’, ‘Nor’, ‘Xor’, ‘Nxor’, ‘<’, ‘>’, ‘< or =’, and ‘> or =’
for logical expressions as explained by Ferreira (2001). Therefore, the
terminals and functions (symbols) may vary from problem to problem. Other
characteristics such as gene size also have to be specified by the user at this
stage.

2. Express chromosomes
In this step the model progresses by developing expression trees from our
chromosomes. The structure of each ET is in such a way that the root or the
first node corresponds with beginning of each gene. The resulting offspring
evolved from the first node is dependent on the number of arguments. In this
process of evolution the functions may have numerous arguments however
the terminals have a parity of zero. Each of the resulting offspring’s
characteristics is populated in nodes ordered from left to right. This process is
concluded once terminal nodes are established.

3. Execute each program
The next step of the algorithm is to generate the initial population and develop
resulting ETs. This process is explained further in Ferreira (2001).

4. Evaluate fitness
In order to create an accurate model suited to our forecasting requirements it
is imperative that a function which minimizes error and improves accuracy is
used. In our application, as with the GP algorithm, the fitness value is defined
as the MSE with the lowest MSE being targeted as the best.

5. Keep best Program
In our GEP model the main principal during the process of evolution is the
generation of offspring from two superior individuals to achieve ‘elitism’. As a
consequence the best individuals from the parent generation produce
offsprings in future generations with the most desirable traits whilst the
individuals with less desirable traits are removed. On this basis our model
minimizes error and maintains superior forecasting abilities. As explained in
greater detail by Ferreira (2001), elitism is the cloning of the best
chromosome(s)/individual(s) to the next population (also called generation).
Furthermore, the role of ‘elitism’ enables the selection of fitter individuals
without eliminating the entire population.

6. Selection

The selection of individuals based on their ‘fitness’ is carried out during the
‘tournament’ selection for reproduction and modification. This process selects
the individuals at random with the superior ones being chosen for genetic
modification in order to create new generations. The intensity of competition is
dictated by the tournament size which is adjusted and set by the practitioner.
The greater the tournament size then the more competitive the selection
process and therefore weaker individuals are less likely to compete.

7. Reproduction
In the reproduction of future generations to the algorithm considers the types
of genetic operators which make this ‘evolution’ possible. Specifically, genetic
operators, known as mutation and recombination, are applied. These are
explained below.

Mutation: This is the creation of a new model that is mutated randomly from
an existing one. Firstly a parent is randomly selected with a probability related
to its fitness. Then the mutation point on the parent’s chromosome is
indiscriminately chosen as an independent point. Afterwards the mutation
randomly changes one or more genes representing part of the solution it
encodes and the new mutated individual is added to the population. This
procedure is described in detail in Ferreira (2006).

Recombination: in contrast to our mutation operator this process is not
executed at random. Instead the parent chromosomes are matched and split
up or ‘spliced’ at identical points in order to determine recombination points.
The subsequent spliced parts of each of the genes are then exchanged
between the two selected chromosomes on the basis of probability. This
results in two new individuals as a result of genetic engineering. Note that
during reproduction it is the chromosomes of the individuals, not the
expression trees that are reproduced with modification and passed onto the
next generation.

8. Prepare new programs of the next generation
At this step, the algorithm replaces the tournament losers with the new
individuals created by reproduction in the population.

9. Termination criterion
At this point a check is made to determine whether the termination criterion is
fulfilled, if it is not we return to step 2. As a termination criterion we used a
maximum number of 100,000 generations during which the GEP was left to
run.

10. Results
As a result the model returns the best individual found during the evolution
process.

4. THE ASE 20 GREEK INDEX AND RELATED FINANCIAL DATA

For futures on the ASE 20 that are traded in derivatives markets, the
underlying asset is the blue chip index ASE-20. The ASE-20 index is based
on the 20 largest ASE stocks. It was developed in 1997 by the partnership of
ASE with FTSE International and is already an established benchmark. It
represents over 50% of the ASE's total market capitalisation and as with many
modern stock indexes has a heavier weighting on banking, telecommunication
and energy stocks.

The FTSE/ASE 20 index is traded as a futures contract that is cash settled
upon maturity of the contract with the value of the index. The cash settlement
of this index is simply determined by calculating the difference between the
traded price and the closing price of the index on the expiration day of the
contract. Whilst the futures contract is traded in index points, as with all stock
index futures the monetary value of the contract is calculated by multiplying
the futures price by the value of each index point which for the FTSE/ASE20
index is 5 EUR per point. For example, a contract trading at 1,400 points is
valued at 7,000 EUR.

This paper examines the ASE 20 since its first trading day on 21 January
2001 (Greece’s entrance in the European Monetary Zone), and until 31
December 2008, using the continuous data available from Datastream. Table
1 presents illustrates how the dataset is divided:

Name of Period Trading
Days Beginning End

Total Dataset 2087 21 January
2001

31 December
2008

Training Dataset 1719 29 January
2001 30 August 2007

Out- of- sample Dataset(Validation
Set) 349 31 August

2007
31 December

2008
Table 1: The ASE 20 dataset

Figure 2 depicts the ASE 20 series for the period under consideration and
illustrates that this period has largely consisted of three significant trends: A
downtrend from 01/01 to 04.03, followed by a long up-trend from 04/03 to
11/07, with a number of significant market corrections, followed by a
downtrend from 11/07 to 12/08.

Fig. 6: ASE 20 fixing prices (total dataset).

The observed ASE 20 time series is non-normal (Jarque-Bera statistics
confirms this at the 99% confidence level) containing slight skewness and
high kurtosis. It is also non-stationary and hence the data was transformed
into a stationary daily series of rates of arithmetic return4.

The summary statistics of the ASE 20 returns series are presented in Figure 3
below. In this paper it is this return series that will be forecasted from our
models.

0

100

200

300

400

500

600

700

800

-0.10 -0.05 -0.00 0.05 0.10

Series: RETURNS
Sample 1 2087
Observations 2087

Mean -0.000240
Median 0.000000
Maximum 0.108214
Minimum -0.093318
Std. Dev. 0.015088
Skewness -0.036670
Kurtosis 9.514666

Jarque-Bera 3691.056
Probability 0.000000

Fig. 7: ASE 20 returns summary statistics (total dataset).

The inputs to our GP, GEP and MLP algorithms are based on the
autocorrelation function and some ARMA experiments. The outcome of this
selection process is a set of autoregressive and moving average terms of the

4 Confirmation of its stationary property is obtained at the 1% significance level by both the
Augmented Dickey Fuller (ADF) and Phillips-Perron (PP) test statistics.

ASE 20 returns and the 1-day Riskmetrics volatility series5. This set is
detailed in table 2 below.

Number Variable Lag
1 Athens Composite all share return 1
2 Athens Composite all share return 3
3 Athens Composite all share return 6
4 Athens Composite all share return 8
5 Athens Composite all share return 10
6 Athens Composite all share return 13
7 Athens Composite all share return 14
8 Moving Average of the Athens Composite all share return 15
9 Athens Composite all share return 16

10 Athens Composite all share return 18
11 Moving Average of the Athens Composite all share return 19

Table 2: Explanatory variables GEP and GP

In order to train our MLP algorithm the dataset was further divided as detailed
in Table 3 below:

Name of Period Trading
Days

Beginning End

Total Dataset 2087 21 January
2001

31 December
2008

Training Dataset 1373 29 January
2001

03 May2006

Test Dataset 346 04 May 2006 30 August 2007
Out-of- sample Dataset (Validation
Set)

349 31 August 2007 31 December
2008

Table 3: The neural networks datasets

5. FORECASTING MODELS

In order to benchmark the trading performance of our GP and GEP models
tree standard benchmarks (a naïve strategy, a moving average cross over
and divergence model and an ARMA model) are utilised. In addition we
utilised a standard MLP model. The performance of each strategy is
evaluated in terms of trading performance via a simulated trading strategy.
The section below presents the technical characteristics of our GP and GEP
algorithms along with our benchmarks.

5.1 Naïve strategy

The naïve strategy simply takes the most recent period change as the best
prediction of the future change.

5.2 MACD

In order to implement the MACD strategy two moving average series are
created with different moving average lengths. The decision rule for taking
positions in the market is as follows:

5 The RiskMetrics volatility model was developed by JP Morgan in 1989 and is used
extensively in the literature to benchmark trading performance.

- Positions are taken if the moving averages intersect. If the short-term
moving average intersects the long-term moving average from below a
‘long’ position is taken. Conversely, if the long-term moving average is
intersected from above a ‘short’ position is taken6.

A number of differing moving average lengths combinations were considered
and the best pairing was retained for out-of-sample evaluation. The model
selected was a combination of the ASE 20 and its 7-day moving average,
namely n = 1 and 7 respectively or a (1, 7) combination.

5.3 ARMA Model
Autoregressive moving average models (ARMA) assume that the value of a
time series depends on its previous values (the autoregressive component)
and on previous residual values (the moving average component)7.

Using as a guide the correlogram in the training and the test sub periods a
restricted ARMA (7, 7) model was selected. All of its coefficients are
significant at the 99% confidence interval. The null hypothesis that all
coefficients (except the constant) are not significantly different from zero is
rejected at the 99% confidence interval (see Appendix A.1).

The selected ARMA model takes the form:

tY = 2.90 · 10-4 + 0.376 1−tY - 0.245Yt-3 - 0.679Yt-7 + 0.374µt-1 - 0.270µt-3 -
0.677µt-7 [2]

5.4 The MLP Model Architecture

NNs exist in several forms in the literature. The most popular architecture is
the Multi-Layer Perceptron (MLP).

A standard neural network has at least three layers. The first layer is called
the input layer (the number of nodes in this layer corresponds to the number
of explanatory variables). The last layer is called the output layer (the number
of nodes in this layer corresponds to the number of response variables). An
intermediary layer of nodes, the hidden layer, separates the input from the
output layer (the number of nodes in this layer defines the amount of
complexity the model is capable of fitting). In addition, the input and hidden
layer contain an extra node called the bias node. This node has a fixed value
of one and has the same function as the intercept in traditional regression
models. Normally, each node of one layer has connections to all the other
nodes of the next layer.

The network processes information as follows: the input nodes contain the
value of the explanatory variables. Since each node connection represents a
weight factor, the information reaches a single hidden layer node as the
weighted sum of its inputs. Each node of the hidden layer passes the

6A ‘long’ ASE 20 position means buying the index at the current price, while a ‘short’ position
means selling the index at the current price.
7 For a full discussion on the procedure, refer to Box et al. (1994).

information through a nonlinear activation function and passes it on to the
output layer if the calculated value is above a threshold.

The training of the network (which is the adjustment of its weights in the way
that the network maps the input value of the training data to the corresponding
output value) starts with randomly chosen weights and proceeds by applying
a learning algorithm called backpropagation of errors8 (Shapiro (2000)). The
learning algorithm simply tries to find those weights which minimize an error
function (the sum of all squared differences between target and actual
values). Since networks with sufficient hidden nodes are able to learn the
training data (as well as their outliers and their noise) by heart, it is crucial to
stop the training procedure at the right time to prevent overfitting (this is called
‘early stopping’). This is usually achieved in the literature by dividing the
dataset into 3 subsets respectively called the training and test sets used for
simulating the data currently available to fit and tune the model and the
validation set used for simulating future values. The network parameters are
then estimated by fitting the training data using the above mentioned iterative
procedure (backpropagation of errors). The iteration length is optimised by
maximising a fitness function in the test dataset. Finally, the predictive value
of the model is evaluated applying it to the validation dataset (out-of-sample
dataset).

The parameters setting and architecture was optimized through a sensitivity
analysis in the in sample period. The set of parameters that provided the
higher trading performance in the test sub-period was then selected.

The network architecture of a ‘standard’ MLP looks as presented in figure 49:

Fig. 8: A single output, fully connected MLP model

Where:

8 Backpropagation networks are the most common multi-layer networks and are the most
commonly used type in financial time series forecasting (Kaastra and Boyd (1996)).
9 The bias nodes are not shown here for the sake of simplicity.

MLP

][k
tx][j

th

jku

jw

ty~

][n
tx ()1,,2,1 += kn  are the model inputs (including the input bias node) at

time t

][m
th ()1,...,2,1 += jm are the hidden nodes outputs (including the hidden bias

node)

ty~ is the MLP model output

jku and jw are the network weights

is the transfer sigmoid function: ()
xe

xS −+
=

1

1
, [3]

 is a linear function: () ∑=

i
ixxF [4]

The error function to be minimised is:

() ()()∑
=

−=
T

t
jjkttjjk wuyy

T
wuE

1

2,~1
, , with ty being the target value [5]

A summary of our MLP algorithm is presented in table 4 below.

Table 4: MLP Characteristics

The MLP was programmed using Java. A simple execution of a MLP
algorithm for modeling and trading a financial index, using 10 years of
historical data, does not require more than one 20 minutes using a HP
Pavilion p6-2175ea Desktop PC.

5.5 Genetic Programming and Genetic Expression Experimental Design

The GP and the GEP codes were written in Java. Both models were run 40
times with random seeds and the best models were selected based on their in
sample performance in terms of Mean Squared Error (MSE). The
characteristics of our GP and GEP algorithms and a description of the model
development are provided in the two sections below.

5.5.1 The GP Model Architecture

 Parameters

MLP

 Learning algorithm Gradient descent
 Learning rate 0.001
 Momentum 0.003
 Iteration steps 10000
 Initialisation of weights N(0,1)
 Input nodes 11
 Hidden nodes (1 layer) 7
 Output node 1

The parameters used for the optimization of our individual models are
presented in table 5 below.

Population Size: 200
Max tree depth: 6
Constants’ range: [-3, 3]
Function Set: +, -, *, /, ^, ^2, ^3, ^1/2, ^1/3, Exp,

If,sin, cos, tan
Fitness evaluation
function:

Mean Squared Error

Tournament Size: 4
Crossover trials: 1
Mutation Probability: 0,75

Table 5: Genetic Programming Characteristics

We wrote the GP code in Java. We ran the model 40 times with random
seeds and selected our best model based on their in sample performance.The
time needed for each run was approximately 15 minutes using a standard HP
Pavilion p6-2175ea Desktop PC. Equation [6] below presents our best model:

output=cos((x7) / ((-2.862)^(((1.0119) - (((((x11+x8)^(x1)) * (exp(((-2.8624) +
(exp(((((-1.9846) / ((0.8175) * (1.2320))) + (1.2320)) - ((x2+x9) * ((-2.8624) +
((x4) * (((-2.3000) / ((-1.9846) * ((x5)^1/2))) + (tan(x3+x7)))))))^1/2))) * ((-
2.3000)^2))))^3) / (tan(x9+x7)))) * (x6+x10)))) [6]

where xi (i=1…11) are the model inputs and the output is our model forecast.
It is recognised that the functions tan, cos and exp dominate our proposed
forecasting equation. Unfortunately standard significance tests on equation [6]
are not possible due to the non-linear nature of our GP algorithm (see Chen
(2002)).

5.5.2 The GEP Model Architecture

A summary of the characteristics of our GEP algorithm is presented in table 6
below.

Population Size: 1000
Head length: 6
Constants’ range: [-3, 3]
Function Set: +, -, *, /, ^, ^2, ^3, ^1/2, ^1/3, Exp,

If,sin, cos, tan
Fitness evaluation
function:

Mean Squared Error

Tournament Size: 20
Type of recombination: Two point
Mutation Probability: 0,75

Table 6: Gene Expression Programming Characteristics

We wrote the GEP code in Java. We ran the model 40 times with random
seeds and selected our best model based on their in sample performance.The
average time required for each run was approximately 18 minutes using a
standard HP Pavilion p6-2175ea Desktop PC. Equation [7] below presents
our best model:

output=tan(((exp(((x1+x2)^1/2) + ((cos(0.9395))^3))) / (exp(((2.2580)^3) *
(((((x6)^2) / (sin((x11) * (tan(exp((-0.6441)^((((x7) / (x4)) - (sin(((tan((-
0.9604)^((cos(cos(x7))) / (x5+x8)))) + (1.9056)) –
((x3)^1/3))))^2)))))))^1/2)^2)))) * (x7)) [7]

where xi (i=1…11) are the model inputs and the output is our model forecast.
Again application of standard significance tests on equation [7] is prohibited
by the non linear nature of our GEP algorithm.

6 EMPIRICAL TRADING SIMULATION RESULTS

6.1 Trading Performance
Our trading strategy applied is simple and identical for all the models. That is,
go or stay long when the forecast return is above zero and go or stay short
when the forecast return is below zero. Transaction costs of 0.14% per
position are assumed.10.

The trading performance measures, and their calculation description, are
presented in Appendix A.2. Table 7 below presents the trading performance
of our models in the in-sample period.

10 According to the Athens Stock Exchange, transaction costs for financial institutions and
fund managers dealing a minimum of 143 contracts or 1 million Euros is 10 Euros per
contract (round trip). Dividing this transaction cost of the 143 contracts by the average deal
size (1 million Euros) gives us an average transaction cost for large “players” of 14 basis
points or 0.14% per position.

Table 7: Trading performance results – In-Sample

From the table above, we note that all our models present a positive trading
performance after transaction costs. Our Gene Expression algorithm
produces the more profitable forecasts in the in-sample period with an
annualised return of 37.91% after transaction costs. The GP presents the
second best performance with a 35.24% annualised return. On the other
hand, the performance of our third non linear model, the MLP, is disappointing
as it produce lower annualised return than our linear MACD and ARMA
strategies. In table 8 below we present the trading performance of our models
in the out-of-sample period.

Table 8: Trading performance results – Out-of-Sample

We can see that, after transaction costs, the GEP model continues to
outperform all the other strategies based on the annualized return of 34.22%.
It is closely followed by the GP Algorithm strategy with a 29.93% annualized
return. What is more remarkable is the extent to which they outperform the
traditional MLP which has an annualized return of 9.35% after transaction
costs. On the other hand, the naïve strategy and the ARMA model produce

NAIVE

MACD

ARMA

 MLP

GP Algorithm

Gene Expression

Information Ratio
 (excluding costs)

1.55 1.24 1.24 0.60 2.19 2.34

Annualised Volatility
 (excluding costs)

19.32% 19.49% 19.83% 38.11% 19.33% 19.31%

Annualised Return
 (excluding costs)

29.86% 24.29% 24.66% 22.99% 42.24% 45.19%

Maximum Drawdown
 (excluding costs)

-23.39% -25.42% -26.70% -36.26% -31.23% -28.07%

Positions Taken
 (annualised)

114 34 50 61 50 52

Transaction costs 15.96% 4.76% 7.00% 8.54% 7.00% 7.28%
Annualised Return
 (including costs) 3.36% 19.53% 17.66% 14.45% 35.24% 37.91%

NAIVE

MACD

ARMA MLP

GP

Algorithm

Gene

Expression

Information Ratio
 (excluding costs)

0.32 0.46 0.20 0.60 1.03 1.16

Annualised Volatility
 (excluding costs)

36.70% 38.12% 38.13% 38.11% 38.04% 38.01%

Annualised Return
 (excluding costs)

11.42% 17.63% 7.68% 22.99% 39.33% 44.16%

Maximum Drawdown
 (excluding costs)

-49.41% -50.63% -36.50% -36.26% -29.45% -28.20%

Positions Taken
 (annualised)

119 38 72 105 67 71

Transaction costs 15.47% 4.94% 9.36% 13.65% 9.40% 9.94%
Annualised Return
 (including costs)

-4.05% 12.69% -1.68% 9.35% 29.93% 34.22%

negative results after transaction costs are taken into account. It is also worth
noting the impressive performance of our linear MACD strategy with the third
more profitable forecasts in both in-sample and out-of-sample periods. This is
not surprising given the trending nature of our dataset.

6.2 Leverage to exploit high Information Ratios

In order to further improve the trading performance of our models we
introduce a “level of confidence” to our forecasts, i.e. a leverage based on the
test sub-period. For the naïve and the ARMA models, which presents a
negative return we do not apply leverage. The leverage factors applied are
calculated in such a way that each model has a common volatility of 20%11 on
the test data set.

The transaction costs are calculated by taking 0.14% per position into
account, while the cost of leverage (interest payments for the additional
capital) is calculated at 4% p.a. (that is 0.016% per trading day12). Our final
results are presented in table 9 below.

 NAIVE MACD ARMA MLP
GP

Algorithm
Gene

Expression
Information Ratio
(excluding costs) 0.32 0.70 0.20 0.60 1.03 1.16

Annualised Volatility
(excluding costs) 36.70% 40.03% 38.13% 40.28% 41.84% 39.15%

Annualised Return
(excluding costs) 11.42% 18.51% 7.68% 24.30% 43.26% 45.48%

Maximum Drawdown
(excluding costs) -49.41% -53.16% -36.50% -38.32% -31.02% -29.04%

Leverage Factor - 1.050 - 1.057 1.1 1.03
Positions Taken
(annualised) 119 38 72 105 67 71

Transaction and
leverage costs 15.47% 4.94% 9.36% 13.65% 9.95% 10.11%

Annualised Return
(including costs) -4.05% 13.57% -1.68% 10.65% 33.31% 35.37%

Table 9: Trading performance - Final results

As can be seen from table 9, the GEP model continues to demonstrate a
superior trading performance despite a significant high maximum drawdown.
The GP strategy also performs well and presents the second highest
annualised returns after transaction and leverage costs are considered. In
general, the results show that leverage is marginally able to improve
annualised return across all models. A further note worthy point relating to this

11 Since most of the models have an in-sample volatility of about 20% this has been chosen
as our target level. The leverage factors retained are given in table 6.
12 The interest costs are calculated by considering a 4% interest rate p.a. divided by 252
trading days. In reality, leverage costs also apply during non-trading days. Hence in reality,
inorder to calculate the interest costs 360 days per year should be utilised. But for the sake of
simplicity, 252 trading days is utilised inorder to spread the leverage costs of non-trading days
equally over the trading days. This approximation prevents us from keeping track of how
many non-trading days we hold a position.

significant trading performance is that the time required to train the GEP and
the GP is only 15 minutes on a modern desktop personal computer.

7. CONCLUDING REMARKS

This paper applies the GEP and GP algorithms to generating a one-day-
ahead forecast of the ASE 20 fixing series, using only autoregressive terms
as inputs. In addition, as benchmarks, a MACD, an ARMA and a MLP model
are utilised benchmarks. The in-sample period under consideration is January
2001 - August 2007 and the models out-of-sample trading efficiency is
evaluated over the period September 2007 to December 2008.

The GEP algorithm demonstrates a higher trading performance when
measured using annualised return and information ratio (before transaction
costs). When refined trading strategies are applied, and transaction costs are
considered, the GEP algorithm continues to outperform all other models
achieving the highest annualised return. The GP algorithm model also
performs well and provides profitable forecasts even though only
autoregressive series are only used as inputs. The results show that both
models are able to capture the nonlinearities and the high complexity of the
ASE 20 fixing series. This can be attributed to their unique architecture and
their ability to address and quantify complex issues. Based on this ability, it
can be argued that the GP and GEP algorithms would excel in any pattern
recognition exercise irrespective the nature of the series under study and to
provide more accurate forecasts compared to traditional linear statistical
models, such as ARMA.

It is also important to note that the GP and GEP algorithms which present the
best performance needs around 15 minutes training time with a modern
personal computer making them usable in a real-life quantitative investment
and trading environment. Consequently, our results should go some way
towards convincing a growing number of quantitative fund managers to
experiment beyond the bounds of traditional statistical models and GAs.

APPENDIX

A.1 ARMA Model

The output of the ARMA model used in this paper is presented in figure 9
below.

Dependent Variable: RETURNS
Method: Least Squares
Date: 03/17/09 Time: 22:18
Sample (adjusted): 8 1738
Included observations: 1731 after adjustments
Convergence achieved after 37 iterations
Backcast: 1 7

 Variable Coefficient Std. Error t-Statistic Prob.

 C 0.000290 0.000303 0.956602 0.3389

AR(1) 0.375505 0.052705 7.124626 0.0000
AR(3) -0.244662 0.024991 -9.789999 0.0000
AR(7) -0.678906 0.044902 -15.11958 0.0000
MA(1) -0.374290 0.053055 -7.054702 0.0000
MA(3) 0.269470 0.026409 10.20353 0.0000
MA(7) 0.677169 0.044295 15.28785 0.0000

R-squared 0.026582 Mean dependent var 0.000288
Adjusted R-squared 0.023194 S.D. dependent var 0.012549
S.E. of regression 0.012403 Akaike info criterion -5.937710
Sum squared resid 0.265213 Schwarz criterion -5.915645
Log likelihood 5146.088 F-statistic 7.846483
Durbin-Watson stat 1.856760 Prob(F-statistic) 0.000000

 Inverted AR Roots .89-.44i .89+.44i .31-.92i .31+.92i
 -.54+.70i -.54-.70i -.93

Inverted MA Roots .88-.45i .88+.45i .31-.92i .31+.92i
 -.54+.70i -.54-.70i -.94

 Fig. 9: The ARMA model

A.2 Performance Measures

The performance measures are calculated as in table 10:

 Performance
Measure

Description

Annualised Return ∑

=

=
N

t
t

A R
N

R
1

1
*252 [8]

 with tR being the daily return

Cumulative Return ∑

=

=
N

t
t

C RR
1

 [9]

Annualised

Volatility
()∑

=

−
−

=
N

t
t

A RR
N 1

2
*

1
1

*252σ [10]

Information Ratio

A

AR
IR

σ
= [11]

Maximum
Drawdown

Maximum negative value of ()∑ tR over the period









= ∑

===

t

ij
j

Ntti
RMinMD

,,1;,,1 

[12]

Table 10: Trading simulation performance measures

REFERENCES

Alavi A.H., Aminian P., Gandomi A.H., Arab Esmaeili M.,(2011), ‘Genetic-
Based Modeling of Uplift Capacity of Suction Caissons’, Expert Systems With
Applications, 38, 10, 12608-12618.

Alavi A.H., Gandomi A.H.,(2011), ‘A Robust Data Mining Approach for
Formulation of Geotechnical Engineering Systems’, Engineering
Computations, 28, 3, 242-274
.
Almanza, A. and Tsang, E. (2007), ‘Detection of stock price movements using
chance discovery and genetic programming’, International Journal of
Knowledge-Based and Intelligent Engineering Systems, 11, 5, 329-344.

Alvarez-Díaz, M. and Alvarez, A. (2005), ‘Genetic multi-model composite
forecast for non-linear prediction of exchange rates’, Empirical Economics, 30,
3, 643-663.

Bekiros, S. D. and Georgoutsos, D. A. (2008), ‘Direction-of-change
Forecasting Using a Volatility-Based Recurrent Neural Network’, Journal of
Forecasting, 27, 407–417.

Box, G., Jenkins, G. and Gregory, G. (1994), Time Series Analysis:
Forecasting and Control, Prentice-Hall, New Jersey.

Chen, S. (2002), Genetic Algorithms and Genetic Programming in
Computational Finance, Kluwer Academic Publishers, Amsterdam.

Chiu, D. and Chen, P. (2009), ‘Dynamically exploring internal mechanism of
stock market by fuzzy-based support vector machines with high dimension
input space and genetic algorithm’, Expert System with Application, 1240-
1248.

Cowles, A. (1933), ‘Can stock market forecasters forecast?’, Econometrica, 1,
309–324.

Dehuri, S. and Cho S. B., (2008), ‘Multi-Objective Classification Rule Mining
Using Gene Expression’, Third International Conference on Convergence and
Hybrid Information.

Donaldson, R. G. and Kamstra, M. (1996), ‘Forecast Combining with Neural
Networks’, Journal of Forecasting, 15, 49–61.

Divsalar M, Firouzabadi AK, Sadeghi M, Behrooz AH, Alavi AH.,(2011), ‘
Towards the prediction of business failure via computational intelligence
techniques’, Expert Systems 28, 3, 209-226

Divsalar M, Roodsaz H, Vahdatinia F, Norouzzadeh G, Behrooz AH., (2012),
‘A Robust Data-Mining Approach to Bankruptcy Prediction’, Journal of
Forecasting, 31, 504–523.

Ferreira, C., (2001), ‘Gene Expression Programming: A New Adaptive
Algorithm for Solving Problems’, Complex Systems, 13, 87-129.

Ferreira, C. (2006), Gene Expression Programming: Mathematical Modelling
by an Artificial Intelligence, Springer, 2nd edition, San Francisco.

Gandomi A.H., Yang X.S., Talatahari S., Alavi A.H.,(2013), ‘Metaheuristic
Applications in Structures and Infrastructures’, Elsevier,Waltham, MA, USA.

Gandomi A.H., Alavi A.H.,(2011), ‘Multi-Stage Genetic Programming: A New
Strategy to Nonlinear System Modeling’, Information Sciences, 181, 23, 5227-
5239.

Gandomi A.H., Alavi A.H., Mirzahosseini M.R., Moghadas Nejad F.,(2011),
‘Nonlinear Genetic-Based Models for Prediction of Flow Number of Asphalt
Mixtures’, Journal of Materials in Civil Engineering, ASCE, 23, 3, 248–263.
Grosan, C., Abraham A. (2006), ‘Stock Market Modeling Using Genetic
Programming Ensembles’, Genetic Systems Programming, 13, 131-146.

Grosan, C., Abraham A., Han S. Y., and Ramos V., (2005) ‘Stock market
prediction using multi expression programming,’ in Portuguese Conference on
Artificial Intelligence, Workshop on Artificial Life and Evolutionary Algorithms
(A. C. C. Bento and G. Dias, eds.), vol. 13 of Studies in Computational
Intelligence, pp. 73–78, IEEE Press.

Kaastra, I. and Boyd, M. (1996), ‘Designing a Neural Network for Forecasting
Financial and Economic Time Series’, Neurocomputing, 10, 215-236.

Kaboudan, M. A., (2000), ‘Genetic Programming Prediction of Stock Prices’,
Computational Economics, 16, 207-236.

Koza, J.R. (1992), Genetic Programming: On the Programming of Computers
by Means of Natural Selection, Cambridge MIT Press

Koza J.R. (1998), ‘Genetic Programming’, In Williams, J. G. and Kent, A.,
(eds.), Encyclopedia of Computer Science and Technology. New York, NY:
Marcel-Dekker. 39, (Supplement 24), 29–43.

Kwon, Y., and Moon, B. (2003), ‘Daily Stock Prediction Using Neuro-genetic
Hybrids’, Genetic and Evolutionary Computation, 2203- 2214.

Lee, Y. and Tong, L. (2011) ‘Forecasting time series using a methodology
based on autoregressive integrated moving average and genetic
programming’, Knowledge-Based Systems, 24, 1, 66-72.

Lopez, H. S. and Weinert, W. R. (2004), ‘An Enhanced Gene Expression
Programming Approach for Symbolic Regression Problems’, International
Journal of Applied Mathematics in Computer Science, 14, 375-384.

Margny, M. H. and El-Semman I. E., (2005), ‘Extracting Logical Classification
Rules with Expression Programming: Micro Array Case Study’, AIML 05 ,
Conference 19-21 December , Cairo, Egypt.

Matias, J. M. and Reboredo, J. C. (2012), ‘Forecasting Performance of
Nonlinear Models for Intraday Stock Returns’, Journal of Forecasting,
31, 172–188.

Nag, A. and Mitra, A. (2002), ‘Forecasting Daily Foreign Exchange Rates
Using Genetically Optimized Neural Networks’, Journal of Forecasting, 21, 7,
501-511.

Shapiro, A. F. (2000), ‘A Hitchhiker’s Guide to the Techniques of Adaptive
Nonlinear Models’, Insurance, Mathematics and Economics, 26, 2, 119-132.

Sermpinis G., Laws, J., Karathanasopoulos, A, and Dunis, C., (2012),
‘Forecasting and Trading the EUR/USD Exchange Rate with Gene
Expression and Psi Sigma Neural Networks’, Expert Systems with
Applications, 8865-8877.

Yaghouby F, Ayatollahi A, Bahramali R, Yaghouby M, Alavi AH., (2010),
‘Towards automatic detection of atrial fibrillation: A hybrid computational
approach’, Computers in Biology and Medicine 40, 11, 919-930

Yang X.S., Gandomi A.H., Talatahari S., Alavi A.H.,(2012), ‘Metaheuristics in
Water Resources, Geotechnical and Transportation Engineering’,
Elsevier,Waltham, MA, USA.

Zargari S.A., Zabihi S., Alavi A.H., Gandomi A.H., (2012), ‘A Computational
Intelligence Based Approach for Short-Term Traffic Flow Prediction’, Expert
Systems, 29, 2, 124–142.

	1. INTRODUCTION
	2. LITERATURE REVIEW
	3. Genetic Programming and Genetic Expression Framework
	3.1 The Genetic Programming Framework
	2. Express chromosomes
	3. Execute each program
	4. Evaluate fitness
	5. Keep best Program
	In our GEP model the main principal during the process of evolution is the generation of offspring from two superior individuals to achieve ‘elitism’. As a consequence the best individuals from the parent generation produce offsprings in future genera...
	6. Selection
	7. Reproduction
	8. Prepare new programs of the next generation
	9. Termination criterion
	10. Results
	4. THE ASE 20 GREEK INDEX AND RELATED FINANCIAL DATA
	5. FORECASTING MODELS
	5.4 The MLP Model Architecture

	 Parameters
	5.5 Genetic Programming and Genetic Expression Experimental Design
	6.2 Leverage to exploit high Information Ratios
	7. CONCLUDING REMARKS
	A.2 Performance Measures

	Lopez, H. S. and Weinert, W. R. (2004), ‘An Enhanced Gene Expression Programming Approach for Symbolic Regression Problems’, International Journal of Applied Mathematics in Computer Science, 14, 375-384.

