23 research outputs found

    Face analysis using curve edge maps

    Get PDF
    This paper proposes an automatic and real-time system for face analysis, usable in visual communication applications. In this approach, faces are represented with Curve Edge Maps, which are collections of polynomial segments with a convex region. The segments are extracted from edge pixels using an adaptive incremental linear-time fitting algorithm, which is based on constructive polynomial fitting. The face analysis system considers face tracking, face recognition and facial feature detection, using Curve Edge Maps driven by histograms of intensities and histograms of relative positions. When applied to different face databases and video sequences, the average face recognition rate is 95.51%, the average facial feature detection rate is 91.92% and the accuracy in location of the facial features is 2.18% in terms of the size of the face, which is comparable with or better than the results in literature. However, our method has the advantages of simplicity, real-time performance and extensibility to the different aspects of face analysis, such as recognition of facial expressions and talking

    Face Alignment Using Boosting and Evolutionary Search

    Get PDF
    In this paper, we present a face alignment approach using granular features, boosting, and an evolutionary search algorithm. Active Appearance Models (AAM) integrate a shape-texture-combined morphable face model into an efficient fitting strategy, then Boosting Appearance Models (BAM) consider the face alignment problem as a process of maximizing the response from a boosting classifier. Enlightened by AAM and BAM, we present a framework which implements improved boosting classifiers based on more discriminative features and exhaustive search strategies. In this paper, we utilize granular features to replace the conventional rectangular Haar-like features, to improve discriminability, computational efficiency, and a larger search space. At the same time, we adopt the evolutionary search process to solve the deficiency of searching in the large feature space. Finally, we test our approach on a series of challenging data sets, to show the accuracy and efficiency on versatile face images

    Quality-Aware Estimation of Facial Landmarks in Video Sequences

    Get PDF

    Active orientation models for face alignment in-the-wild

    Get PDF
    We present Active Orientation Models (AOMs), generative models of facial shape and appearance, which extend the well-known paradigm of Active Appearance Models (AAMs) for the case of generic face alignment under unconstrained conditions. Robustness stems from the fact that the proposed AOMs employ a statistically robust appearance model based on the principal components of image gradient orientations. We show that when incorporated within standard optimization frameworks for AAM learning and fitting, this kernel Principal Component Analysis results in robust algorithms for model fitting. At the same time, the resulting optimization problems maintain the same computational cost. As a result, the main similarity of AOMs with AAMs is the computational complexity. In particular, the project-out version of AOMs is as computationally efficient as the standard project-out inverse compositional algorithm, which is admittedly one of the fastest algorithms for fitting AAMs. We verify experimentally that: 1) AOMs generalize well to unseen variations and 2) outperform all other state-of-the-art AAM methods considered by a large margin. This performance improvement brings AOMs at least in par with other contemporary methods for face alignment. Finally, we provide MATLAB code at http://ibug.doc.ic.ac.uk/resources

    From pixels to response maps: discriminative image filtering for face alignment in the wild

    Get PDF
    We propose a face alignment framework that relies on the texture model generated by the responses of discriminatively trained part-based filters. Unlike standard texture models built from pixel intensities or responses generated by generic filters (e.g. Gabor), our framework has two important advantages. Firstly, by virtue of discriminative training, invariance to external variations (like identity, pose, illumination and expression) is achieved. Secondly, we show that the responses generated by discriminatively trained filters (or patch-experts) are sparse and can be modeled using a very small number of parameters. As a result, the optimization methods based on the proposed texture model can better cope with unseen variations. We illustrate this point by formulating both part-based and holistic approaches for generic face alignment and show that our framework outperforms the state-of-the-art on multiple ”wild” databases. The code and dataset annotations are available for research purposes from http://ibug.doc.ic.ac.uk/resources

    Structured Landmark Detection via Topology-Adapting Deep Graph Learning

    Full text link
    Image landmark detection aims to automatically identify the locations of predefined fiducial points. Despite recent success in this field, higher-ordered structural modeling to capture implicit or explicit relationships among anatomical landmarks has not been adequately exploited. In this work, we present a new topology-adapting deep graph learning approach for accurate anatomical facial and medical (e.g., hand, pelvis) landmark detection. The proposed method constructs graph signals leveraging both local image features and global shape features. The adaptive graph topology naturally explores and lands on task-specific structures which are learned end-to-end with two Graph Convolutional Networks (GCNs). Extensive experiments are conducted on three public facial image datasets (WFLW, 300W, and COFW-68) as well as three real-world X-ray medical datasets (Cephalometric (public), Hand and Pelvis). Quantitative results comparing with the previous state-of-the-art approaches across all studied datasets indicating the superior performance in both robustness and accuracy. Qualitative visualizations of the learned graph topologies demonstrate a physically plausible connectivity laying behind the landmarks.Comment: Accepted to ECCV-20. Camera-ready with supplementary materia

    Shape-appearance-correlated active appearance model

    Full text link
    © 2016 Elsevier Ltd Among the challenges faced by current active shape or appearance models, facial-feature localization in the wild, with occlusion in a novel face image, i.e. in a generic environment, is regarded as one of the most difficult computer-vision tasks. In this paper, we propose an Active Appearance Model (AAM) to tackle the problem of generic environment. Firstly, a fast face-model initialization scheme is proposed, based on the idea that the local appearance of feature points can be accurately approximated with locality constraints. Nearest neighbors, which have similar poses and textures to a test face, are retrieved from a training set for constructing the initial face model. To further improve the fitting of the initial model to the test face, an orthogonal CCA (oCCA) is employed to increase the correlation between shape features and appearance features represented by Principal Component Analysis (PCA). With these two contributions, we propose a novel AAM, namely the shape-appearance-correlated AAM (SAC-AAM), and the optimization is solved by using the recently proposed fast simultaneous inverse compositional (Fast-SIC) algorithm. Experiment results demonstrate a 5–10% improvement on controlled and semi-controlled datasets, and with around 10% improvement on wild face datasets in terms of fitting accuracy compared to other state-of-the-art AAM models

    Automatic facial landmark labeling with minimal supervision.

    Get PDF
    Abstract Landmark labeling of training images is essential for many learning tasks in computer vision, such as object detection, tracking, an

    Studies on Imaging System and Machine Learning: 3D Halftoning and Human Facial Landmark Localization

    Get PDF
    In this dissertation, studies on digital halftoning and human facial landmark localization will be discussed. 3D printing is becoming increasingly popular around the world today. By utilizing 3D printing technology, customized products can be manufactured much more quickly and efficiently with much less cost. However, 3D printing still suffers from low-quality surface reproduction compared with 2D printing. One approach to improve it is to develop an advanced halftoning algorithm for 3D printing. In this presentation, we will describe a novel method to 3D halftoning that can cooperate with 3D printing technology in order to generate a high-quality surface reproduction. In the second part of this report, a new method named direct element swap to create a threshold matrix for halftoning is proposed. This method directly swaps the elements in a threshold matrix to find the best element arrangement by minimizing a designated perceived error metric. Through experimental results, the new method yields halftone quality that is competitive with the conventional level-by-level matrix design method. Besides, by using direct element swap method, for the first time, threshold matrix can be designed through being trained with real images. In the second part of the dissertation, a novel facial landmark detection system is presented. Facial landmark detection plays a critical role in many face analysis tasks. However, it still remains a very challenging problem. The challenges come from the large variations of face appearance caused by different illuminations, different facial expressions, different yaw, pitch and roll angles of heads and different image qualities. To tackle this problem, a novel coarse-to-fine cascaded convolutional neural network system for robust facial landmark detection of faces in the wild is presented. The experiment result shows our method outperforms other state-of-the-art methods on public test datasets. Besides, a frontal and profile landmark localization system is proposed and designed. By using a frontal/profile face classifier, either frontal landmark configuration or profile landmark configuration is employed in the facial landmark prediction based on the input face yaw angle
    corecore