
Tzimiropoulos, Georgios and Medina, Joan Alabort and 
Zafeiriou, Stefanos and Pantic, Maja (2014) Active 
orientation models for face alignment in-the-wild. IEEE 
Transactions on Information Forensics and Security, 9 
(12). pp. 2024-2034. ISSN 1556-6013 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/31437/1/tzimiroTIFS14.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to 

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham 

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title 
and full bibliographic details are credited, a hyperlink and/or URL is given for the 
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf 

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk


1556-6013 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIFS.2014.2361018, IEEE Transactions on Information Forensics and Security

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 1

Active Orientation Models
Georgios Tzimiropoulos, Joan Alabort-i-Medina, Student Member, IEEE, Stefanos Zafeiriou Member, IEEE,

and Maja Pantic Fellow, IEEE

Abstract—We present Active Orientation Models, generative
models of facial shape and appearance, which extend the well-
known paradigm of Active Appearance Models (AAMs) for the
case of generic face alignment under unconstrained conditions.
Robustness stems from the fact that the proposed AOMs employ
a statistically robust appearance model based on the principal
components of image gradient orientations. We show that when
incorporated within standard optimization frameworks for AAM
learning and fitting, this kernel PCA results in robust algorithms
for model fitting. At the same time, the resulting optimization
problems maintain the same computational cost. As a result
the main similarity of AOMs with AAMs is computational
complexity. In particular, the project-out version of AOMs is
as computationally efficient as the standard project-out inverse
compositional algorithm which is admittedly one of the fastest
algorithms for fitting AAMs. We verify experimentally that (i)
AOMs generalize well to unseen variations and (ii) outperform
all other state-of-the-art AAM methods considered by a large
margin. This performance improvement brings AOMs at least in
par with other contemporary methods for face alignment. Finally,
we provide Matlab code at http://ibug.doc.ic.ac.uk/resources.

Index Terms—Active Orientation Models, Active Appearance
Models, Face alignment.

I. INTRODUCTION

BECAUSE of their numerous applications in HCI, face

analysis/recognition and medical imaging, the problems

of learning and fitting deformable models have been the focus

of cutting edge research in computer vision and machine

learning for more than two decades. Put in simple terms,

these problems can be summarized as follows: Learning a

deformable model consists of (a) annotating (typically man-

ually) a set of points (or landmarks) over a set of training

images capturing an object of interest (e.g. faces), (b) learning

a shape model (or point distribution model) which effectively

represents the structure and variations among the annotated

points and (c) learning appearance models from the image

texture associated with the learned shape. Fitting a deformable

model utilizes the learned shape and appearance models to

detect the location of landmarks in new images; this can be

done using regression, classification or could be formulated as

a non-linear optimization problem.

Depending on the application and/or approach many terms

have been used to coin this research: deformable model fitting,

Active Shape Models (ASMs) [1], Constrained Local Models

(CLMs) [2], [3] landmark localization, point detection, and

Active Appearance Models (AAMs) [4], [5] to name a few.

The latter approach and the problem of deformable face

alignment are of particular interest to this work along with the

seminal work [5] for fitting AAMs to face images. AAMs are

generative models of shape and appearance typically learned

by applying Principal Component Analysis to both shape and

(a) (b)

(c) (d)

Fig. 1. (a) The aim of this work is to detect a set of facial features like
the corners of the mouth and the tip of the nose in facial images captured
in unconstrained conditions. This problem is known as face alignment in-
the-wild. (b) To this end, we propose Active Orientation Models (AOMs),
generative deformable models that utilize a statistically robust appearance
model based on image gradient orientations. (c) The localization of the facial
features is performed in the space of image gradient orientations via a robust
algorithm for model fitting and parameter estimation. The obtained fitting
result is shown in (d).

texture. In [5], fitting was formulated as a non-linear minimiza-

tion problem which consists of minimizing the error between

the model instance and the given image with respect to the

model parameters which control the shape and appearance

variation of faces. This problem was solved using the project-

out inverse compositional algorithm, which decouples shape

from appearance and results in a computationally efficient

algorithm. Owing to its efficiency and accuracy, the algorithm

for fitting AAMs proposed in [5] has become the de facto

choice for building and fitting person-specific AAMs (i.e.

AAMs trained to fit face images of a specific subject which

is known in advance).

Despite their efficiency and accuracy, AAMs in general,

and the project-out algorithm of [5] in particular, have been

criticized for their inability to generalize well to unseen varia-

tions of illumination, expression and identity. Like AAMs, the

proposed AOMs are generative models which however better

address all the aforementioned limitations. Our motivation

to pursue a generative AAM-based approach to generic face

alignment is two fold. (a) For specific scenarios of interest

[6], generative models have been shown to model sufficiently
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accurately unseen variations, i.e. it is the fitting algorithm

which fails to fit the model to unseen images. (b) New tools

and insights on how to solve (a) have been recently suggested

in [7], [8].

Main results. (a) Models: We propose Active Orientation

Model, a generative deformable model that uses a statistically

robust appearance model based on the principal components of

image gradient orientations (see Fig. 1). We show how to use

gradient decent in order to minimize the distance between this

non-linear appearance model and a new image with respect to

the model parameters. (b) Complexity: Similarly to the AAM

formulation of [5], we show that AOMs can be optimized

using the project-out inverse compositional algorithm which is

admittedly one of the fastest algorithms for fitting deformable

models in images. (c) Robustness/Accuracy: To the best of

our knowledge, we demonstrate for the first time that this

algorithm can be used to fit the learned models to faces not

seen in the training set. (d) Comparison to previous work:

We conducted a large number of experiments on many popular

in-the-wild databases, in which all algorithms were trained,

initialized and tested in the same way. We show that the

proposed AOM largely outperforms all other state-of-the-art

AAM methods considered as well as an enhanced version of

a state-of-the-art CLM method [9], and our version of the

SDM method of [10]. In the context of our experiments, we

also propose a new method: we developed an AAM variant

based on least-squares optimization and the appearance model

of [11] which is based on similar features. One of the main

contributions in our work is to show that the kernel PCA

implied by the appearance model of AOMs also outperforms

this AAM variant. (d) Code: Similarly to [12], [9], [13], we

provide Matlab code at http://ibug.doc.ic.ac.uk/resources.

II. RELATED WORK

A. State-of-the-art.

Because of the inability of AAMs to generalize well to

unseen variations, recent research has suggested the use of

simpler (often local) and thus easier to optimize models and

the application of discriminative methods for model fitting.

The family of methods termed ASM-CLMs combine patch-

based image representations, discriminatively trained point

detectors and global shape constraints to localize landmarks in

unseen images [2], [14], [3], [15]. A recent notable example of

ASMs is the component-based model of [16] which produces

good results on the difficult Helen data set introduced in the

same work. Another recent approach that combines the output

of SVM-based local detectors with a non-parametric set of

global models has been shown to produce excellent results

on unconstrained images in [17]. Finally, because sliding-

window landmark detectors may be slow, regression-based

techniques have been proposed to learn a mapping between

local patches and landmarks [17], [12], [18], [19]. Not only do

these methods enjoy a high degree of computational efficiency,

but also they have been shown to achieve state-of-the-art per-

formance for difficult experiments with unconstrained images.

In particular, the results presented in the shape regression

method of [18] and the supervised decent method of [10] are

impressive and considered state-of-the-art for the difficult data

set of LPFW [17]. Finally, a radically different approach to

face alignment is the globally optimized part-based model of

[13]. Our experiments have shown that [13] is better able to

detect faces rather than accurately locating facial landmarks

[20].

B. AAMs.

Discriminative methods have been shown to improve the

ability of AAMs to fit new faces in [21], [22], [23], [24].

One of the first attempts is the AAM of Cootes and Taylor

[11] which is based on regression and features similar to the

ones employed by AOMs. Please see [25] for a review on the

effect of different texture representations on the performance

of regression-based approaches to AAM fitting. Note that no

matter the texture representation used, regression methods as

proposed in [11] have been reported to produce limited fitting

accuracy and robustness (please see [10] for a recent example).

One of the main contributions of the proposed work is to

illustrate that the kernel PCA implied by the appearance model

of AOMs when combined with analytic gradient descent (as

opposed to regression) and trained in-the-wild produce results

comparable (if not superior) to state-of-the-art methods. Other

generic AAMs learn a fitting function through maximizing

the score of a two-class classifier (aligned or not aligned) or

ranking [21], [22]. Boosting a huge number of Haar features is

very inefficient, and results are reported only for low resolution

images. This immediately rules out the possibility of accurate

landmark localization in high resolution images and it is

clearly unsatisfactory. Other discriminative approaches include

learning non-linear regressors from features to model param-

eters through boosting and simulation [23], [24]. However, all

these approaches seem to produce inferior results compared

to the family of methods coined CLMs [2], [14], [3], which

build upon the Active Shape Model [1]. Finally, a notable

example of generative AAMs is the Fourier-Gabor AAMs of

[26]. However, as it is mentioned by the authors, Fourier-

Gabor AAMs appear to be more suitable for person-specific

face alignment for the case of unseen illumination rather than

generic face alignment.

III. ACTIVE APPEARANCE MODELS

A. Shape and appearance models

An AAM is defined by the shape, appearance and motion

models. The shape model is typically learned by annotating

N fiducial points on the object (e.g. a face) of training image

Ii. These points are said to define the shape of each object.

Next, Procrustes analysis is applied to remove similarity trans-

formations from the original shapes. Finally, PCA is applied

on the similarity-free shapes si = [x1, y1, x2, y2, . . . xN , yN ].
The resulting model {ΦS,0,ΦS ∈ R2N×p} can be used to

represent a test shape sy as

ŝy = ΦS,0 +ΦSp, p = ΦT
S (sy −ΦS,0). (1)

The eigenvectors of ΦS represent pose, expression and identity

variation. The appearance model of an AAM is learned by first

warping each of the training images Ii(x) to the canonical
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reference frame defined by the mean shape using the motion

model W(x;p) and then applying PCA on the shape-free

textures. We choose piecewise affine warps as the motion

model in this work. The resulting model {ΦA,0,ΦA ∈ RK×q}
can be used to represent a shape-free test texture ay as

ây = ΦA,0 +ΦAc, c = ΦT
A(ay −ΦA,0). (2)

Finally, a model instance is synthesized to represent test object

y by warping ay from the mean shape s̄ to ŝy using piecewise

affine warp.

B. Model fitting

Given a new image I, inference in AAMs entails estimating

p and c assuming “reasonable” initialization of the fitting

process. This initialization is typically performed by placing

the mean shape according to the output of an object (in this

work, face) detector. Note that only p needs to be estimated

for deformable model fitting. Estimating c is a by-product of

the fitting algorithm. Various algorithms and cost functions

have been proposed to estimate p and c including regression,

classification and non-linear optimization methods. The latter

approach is of particular interest in this work. It minimizes

the ℓ2-norm of the error between the model instance and the

given image with respect to the model parameters as follows

{po, co} = arg min
{p,c}

||I[p]−ΦA,0 −ΦAc||2, (3)

where for notational convenience we write I[p](k) to denote

the pixel intensity I(W(xk;p)), and I[p] to denote image

I(W(x;p)) re-arranged as a K × 1 vector. In a series of

seminal papers [27], [5], Baker and Matthews illustrated that

problem (3) can be solved using an optimization framework

based on the Lukas-Kanade (LK) algorithm [28]. LK algorithm

is an image alignment method. Suppose for the time being that

an oracle provides co so that c is fixed. Then, (3) becomes

an image alignment problem. In this case, and according to

[28], the resulting optimization problem can be solved using

Gauss-Newton: First, I[p] is linearized with respect to p and

then a solution for a ∆p is computed from the set of the

derived normal equations obtained by setting the derivative

of (3) with respect to ∆p to 0. Finally, p is updated in an

additive fashion p← p+∆p. We refer the interested reader

to [27] for an excellent coverage of the LK algorithm.

Inverse Compositional. As illustrated in [27], [5], problem

(3) can be solved in two coordinate frames. The forward

case is the standard LK algorithm, as summarized above. In

general, forward algorithms are slow because the Jacobian and

its inverse must be re-evaluated at each iteration. Fortunately,

computationally efficient algorithms can be derived by solving

(3) using the inverse compositional framework. Let us drop A

from ΦA for notational convenience and let Φi represent the

i−th column (eigenvector) of Φ. In inverse algorithms, each

eigenvector Φi is linearized around p = 0. By additionally

linearizing with respect to c (3) becomes

arg min
∆p,∆c

||I[p]−Φ0+J0∆p−
m∑

i=1

(ci+∆ci)(Φi+Ji∆p)||2,

(4)

where Ji is the K × p matrix each row of which contains the

1×p vector [Φi,x[p](k) Φi,y[p](k)]
∂W(xk;p)

∂p
. Φi,x[p](k) and

Φi,y[p](k) are the x and y gradients of Φi for the k−th pixel

and
∂W(xk;p)

∂p
∈ R2×p is the Jacobian of the piecewise affine

warp. Please see [5] for calculating and implementing ∂W
∂p

.

All these terms are defined in the model coordinate frame for

p = 0 and can be pre-computed. An update for ∆c and ∆p

can be obtained in closed form only after second order terms

are omitted as follows

arg min
∆p,∆c

||I[p]−Φ0 −Φc−Φ∆c− J∆p)||2, (5)

where J = J0 +
∑q

i=1 ciJi. In [27], the update was derived

as

[∆p; ∆c] = H−1
s JT

s (I[p]−Φ0 −Φc), (6)

where Js = [Φ;J] ∈ RK×(p+q) and Hs = JT
s Js. Once ∆p

is computed, p is updated in a compositional fashion p ←
p ◦ ∆p−1, where ◦ denotes the composition of two warps.

(Please see [5] for a principled way of applying the inverse

composition to AAMs). This is the well-known simultaneous

algorithm.

The simultaneous algorithm is slow because the Jacobian

Js, the Hessian Hs and its inverse must be re-computed at

each iteration. One can easily show that the cost for the

Hessian computation is O((p + q)2K). Nonetheless, more

efficient ways to optimize (5) exist. Let us define the projection

operator P = E−ΦΦT , where E is the identity matrix. Then,

a number of works [29], [30], [31] have shown that one can

update the appearance and shape parameters in an alternating

fashion from

∆c = ΦT (I[p]−Φ0 −Φc− J∆p) (7)

∆p = H−1
a JT

a (I[p]−Φ0), (8)

where the projected-out Jacobian and Hessian are given by

Ja = PJ and Ha = JT
a Ja, respectively. As shown in [30],

the above update rules result in an algorithm with complexity

per iteration O(pqK+p2K+p3) which can be readily handled

by current systems.

By far the most efficient algorithm for fitting AAMs is the

so-called project-out inverse compositional algorithm, which

in essence is a LK algorithm. This algorithm decouples shape

and appearance by solving (5) in the subspace orthogonal to

Φ. Observe that ||I[p]−Φ0−Φc||2P = ||I[p]−Φ0||2P 1. Hence

an update for ∆p can be computed by optimizing

argmin
∆p
||I[p]−Φ0 − J0∆p)||2P. (9)

The solution to the above problem is given by

∆p = H−1
p JT

p (I[p]−Φ0), (10)

where the projected-out Jacobian Jp = PJ0 and Hessian

Hp = JT
p Jp, can be both pre-computed. This reduces the

cost per iteration to O(pK), only [5], which is the cost of the

inverse compositional LK algorithm [27]. This algorithm has

been shown to track faces at 300 fps [6].

1For a vector x, we use the notation ||x||2
P

to denote the weighted norm

x
T
Px.
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IV. ACTIVE ORIENTATION MODELS

The deformable model fitting framework of the previous

section and especially the project-out inverse compositional

algorithm has been highly criticized as difficult to optimize

mainly due to the high-dimensional parameter space and the

existence of numerous undesirable local minima in the derived

cost functions. Therefore, the problem in hand is how to

avoid these local minima during optimization. We propose

to address this problem by using a kernel PCA based on

a similarity criterion robust to outliers. In particular, AOMs

employ a statistically robust appearance model based on the

principal components of images gradient orientations. As we

show below both shape and texture models can be optimized

in a standard least-squares framework which results in com-

putationally efficient algorithms.

A. Appearance Model

At the heart of the appearance model of AOMs there exists a

robust kernel for measuring similarity. We define outliers to be

anything that the learned appearance model cannot reconstruct

because (a) it was not seen in the training set (e.g. appearance

variation due to different identity, expression or illumination)

(b) it does not belong to the face space at all (e.g. glasses) and

(c) it was excluded from ΦA as noise because in any case the

number of principal components in ΦA should be kept as small

as possible so that the model is easier to optimize and cannot

generate appearance which is unrelated to faces. Note that as

it was shown in [6] for some cases of interest (e.g. appearance

variation in frontal views), a very compact appearance space,

learned from a training set with a few persons only, in general,

results in relatively small reconstruction errors of unseen faces.

This illustrates that a generative model is not an unreasonable

choice for generic deformable model fitting. All that is needed

is a robust cost function to fit this model.

A general framework for robust estimation is weighted least

squares [32]. Let us define e = I[p]−ā−ΦAc. Then, weighted

least squares methods optimize

{po, co} = arg min
{p,c}

eTQe, (11)

where Q ∈ R{K,K} is a diagonal weighting matrix which

down-weighs pixels corrupted by outliers. An ideal case would

be Qk = 0 if pixel k is an outlier and Qk = 1 otherwise. The

estimation of Q along with the optimal model parameters have

been extensively studied in the literature of robust statistics

(please see [32] for a review). However, none of these out-of-

the-box approaches has been proven successful so far in AAM

fitting because (a) the noise model for outliers in our case is

very hard to define and (b) the estimation process is also very

prone to local minima.

We propose to address this problem in AAMs by using a

robust similarity criterion based on image gradient orientations

[7], [8]. Suppose that we wish to measure the similarity

between two images Ii, i = 1, 2. For each image, we extract

image gradients gi,x,gi,y and the corresponding estimates of

gradient orientation φi. Let us denote by zi the the so-called

normalized gradients

zi =
1√
K

[cos(φi)
T , sin(φi)

T ]T , (12)

where cos(φi) = [cos(φi(1)), . . . , cos(φi(K))]T and sin(φi)
is similarly defined. Then, the following kernel can be used

to measure image similarity

s = zT1 z2

=
1

K

∑

k∈Ω

cos(φ1(k)− φ2(k)), (13)

where Ω denotes the image support.

Let us also denote by Ω1 the image support that is outlier-

free and Ω2 the image support that is corrupted by outliers

(Ω = Ω1 ∪ Ω2). Then, as it was shown in [8], under some

assumptions, it holds
∑

k∈Ω2

cos(φ1(k)− φ2(k)) ≈ 0. (14)

Note that (a) in contrary to [27], no assumption about the

structure of outliers is made and (b) no actual knowledge of

Ω is required. Based on (14), we can re-write (13) as follows

s =
∑

k∈Ω1

cos(φ1(k)− φ2(k)) +
∑

k∈Ω2

cos(φ1(k)− φ2(k))

=
∑

k∈Ω1

1· cos(φ1(k)− φ2(k)) +
∑

k∈Ω2

ǫ· cos(φ1(k)− φ2(k))

≈ zT1 Qidealz2, (15)

where ǫ→ 0 and Qideal is the “ideal” weighting matrix defined

above. Note that Qideal in (15) is never calculated explicitly.

We can write (15) only because outliers are approximately

“canceled out” when the above kernel is used to measure

image similarity.

The robust kernel of (13) can be used to define a kernel

PCA [8]. The appearance model in AOMs is learned using

this robust PCA. Note that the kernel can be written using

the explicit mapping of (12) and therefore no pre-image

computation is required. Suppose that for each training image

Ii, i = 1, . . . h we extract the shape-free normalized gradients

of each training face zi, and then we form the data matrix

Z ∈ R2K×h the columns of which contain zi. Then we apply

PCA on Z. We denote by

ΦZ = [Φx;Φy] ∈ ℜ2K×q (16)

the learned appearance model, where Φx and Φy ∈ ℜK×q

are the parts corresponding to the cosine and sine terms,

respectively. Note that to preserve the kernel properties no

subtraction of the “mean” normalized gradient is needed and

the first eigenvector is treated as the mean where it is required.

B. Shape Model

The shape model of AOMs is the same as the one used

in AAMs. This implies that all calculations required for the

Jacobian of the piecewise affine warp and the update of the

parameters in the inverse compositional fashion remain the

same.
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C. Inference

We perform inference in AOMs by minimizing the error

between a test image and a model instance

{po, co} = arg max
{p,c}

||z[p]−ΦZc||2, (17)

where z[p](k) denotes the normalized gradient of

I(W(xk;p)). Our optimization strategies are summarized

below:

Simultaneous. The simultaneous AOM minimizes (17) with

respect to both {p, c}. This requires the computation of the

Hessian (O((p+ q)22K)) and its inverse (O((p+ q)3)) and is

very slow. For this reason, we did not look into this algorithm

further.

Alternating. The minimization of (17) can be also per-

formed in an alternating fashion. Because the “mean” nor-

malized gradient is the first eigenvector of our kernel PCA,

we write

J =

q∑

i=0

ciJiJi = [Ji,x;Ji,y], (18)

where Ji,x and Ji,y are the Jacobians computed from

Φi,x and Φi,y respectively. As before let us drop the depen-

dency of notation from Z and define the projection operator

P = E−ΦΦT . Let us also define the projected-out Jacobian

and Hessian

Ja = PJHa = JT
a Ja. (19)

Then, the updates for the appearance and shape parameters

are given by

∆c = ΦT (z[p]−Φc− J∆p) (20)

∆p = H−1
a JT

a z[p]. (21)

For completeness, we derive the update rules for ∆c and ∆p

in the Appendix. Notice that in the above update for ∆p, the

“error image” is implicitly calculated because

JT
a z[p] = JTPT z[p] = JT (z[p]−Φc), (22)

which shows that the error is simply the difference between the

normalized gradient and its reconstruction from the appearance

subspace. The steps of the algorithm are summarized in

Algorithm 1.

Algorithm 1 AOM - Alternating Optimization

Given: Models {ΦS,0,ΦS} and ΦZ , and current estimates for

c and p

Pre-compute: Jacobian Ji for each appearance eigenvector

1: repeat

2: Compute warped image I[p] and extract normalized

gradients z[p]
3: Calculate J and Ja from (18) and (19)

4: Calculate Ha and H−1
a from (19)

5: Calculate ∆c and ∆p from (20) and (21)

6: Update from c← c+∆c and p← p ◦∆p−1

7: until convergence

The main cost of the above algorithm is in steps 3-5. In

particular, the complexity of calculating J and Ja is O(q2K)
and O(pq2K), respectively. The complexity of calculating Ha

and H−1
a is O(p22K) and O(p3). Finally, the complexity of

calculating ∆c and ∆p is O(q2K) and O(p2K).
Project-out. To derive the project-out AOM fitting algo-

rithm we treat the first eigenvector Φ0 as the “mean normal-

ized gradient”, and then perform a first order Taylor on it

Φ0 = Φ0[0] + J0∆p. Then, we write

||z[p]−Φ0 − J0∆p||2P = ||z[p]− J0∆p||2P, (23)

and hence the update for ∆p can be readily derived as

∆p = H−1
p JT

p z[p], (24)

where ,

Jp = PJ0,Hp = JT
p Jp (25)

can be both pre-computed. Overall, the steps of the algorithm

are summarized in Algorithm 2.

Algorithm 2 AOM - Project-Out

Given: Models {ΦS,0,ΦS} and ΦZ , and current estimates for

c and p

Pre-compute: R = H−1
p JT

p from (25)

1: repeat

2: Compute warped image I[p] and extract normalized

gradients z[p]
3: Calculate ∆p = Rz[p]
4: Update from p← p ◦∆p−1

5: until convergence

The main cost of the above algorithm is in step 2. In

particular, calculating ∆p takes O(q2K) only, and hence this

algorithm is extremely fast.

V. RESULTS

Evaluating and comparing different methods for deformable

object and face alignment is difficult, because when training

and fitting codes are not publicly available, various implemen-

tation aspects including training and initialization can be very

different, and this in turn possibly results in very different

performance. Hence, for the sake of a fair comparison, in

our experiments we did not attempt to directly compare our

results with the ones reported in previously published methods.

Instead, the main focus of our experiments was to compare

the proposed AOMs with methods for which we have in-

house implementations and hence comparison is fairer. In

particular, we compare AOMs with: (a) an AAM based on

pixel intensities (PI) [30], (b) a state-of-the-art Gabor-Fourier

(GF) AAM [26], (c) an AAM using the edge structure gradient

features of [11] (ES), (d) the CLM method of [9] using

discriminatively trained HOG features for local detectors 2 and

(e) our version of the SDM method of [10]. Both CLM and

SDM are trained on the same data as our AAMs. All variants

of AAMs were fitted using both alternating and project-out

2Our version performs significantly better than the pre-trained model
provided by the authors of [9].
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inverse compositional algorithms implemented in a multi-scale

(pyramid) fashion with 15 shape parameters at the highest

level. Note that the the edge structure gradient features of

[11] are similar to the normalized gradients of AOMs, with the

main difference being that [11] uses the gradient magnitude

to normalize the gradients which is less robust to outliers

[7]. We further note that these features have been employed

only in regression-based approaches to AAM fitting, and hence

their combination with non-linear optimization (alternating or

project-out) is a method that is also proposed for the first time

(to the best of our knowledge) in this work. Similarly to our

previous work [7], we evaluate these features because they are

similar to the normalized gradients of the appearance model

of AOMs.

For our experiments we used the training set of LFPW [17]

to train all aforementioned methods. For testing, we used the

test set of LFPW, as well as the test set of Helen [16] and AFW

[13]. Although all databases are in-the-wild, LPFW mainly

contain images of celebrities with posed smiles while the faces

of Helen and AFW seem to be much more natural, with much

more shape and appearance variation, and hence are even more

challenging to fit. For all databases, we used the landmark

annotations of the 300-W challenge [33], [34]. In order to

assess performance, we used the same average (computed over

all 68 points) point-to-point Euclidean error normalized by the

face size as the one used in [13]. Similarly to [13], for this error

measure, we produced the cumulative curve corresponding to

the percentage of test images for which the error was less

than a specific value. In all cases, fitting was initialized by the

bounding box of the detector proposed in [13].

Our comparisons/results are summarized in Fig. 2 and Ta-

bles 1-6. The quality of fittings produced by AOM alternating

and project-out optimization can be visually compared in

Fig. 3. As we may observe, AOM alternating optimization

produces better fitting results especially with regards to the

face boundary. Additional fitting results obtained with AOM

alternating optimization and SDM on selected challenging

images from the AFW database can be seen in Fig. 4. Each row

of Fig. 4 highlights a different source of facial variation: age,

pose, illumination, expression, occlusion and low resolution or

blur. Overall, AOMs are able to fit some difficult cases of faces

from Helen and AFW data sets with shape and appearance

variation quite different from that seen during training on

LPFW. From the presented results we conclude the following:

Alternating optimization.(a) AOM alternating optimization

algorithm performs the best among all algorithms, with ES-

AAMs achieving similar performance. (b) All AAMs when

trained in-the-wild and optimized using alternating optimiza-

tion perform notably well. These results are not so surprising

and should be attributed to the appearance model of the AAM

which for all variants was trained in-the-wild. We refer the

reader to [30] for a detailed discussion. (c) All AAMs when

trained in-the-wild and optimized using alternating optimiza-

tion largely outperform the state-of-the-art CLM method. (d)

For errors greater than 0.05, SDM is the most robust method.

Project-out.(a) AOM project-out is by far the most robust

project-out algorithm, outperforming both ES-AAMs and GF-

AAMs. Notably, its fitting accuracy is similar to that of PI-

Pt-Pt error < 0.02 < 0.03 < 0.05

AOMs - A 0.33 0.78 0.93

PI-AAMs - A 0.2 0.62 0.91

ES-AAMs - A 0.35 0.74 0.92

GF-AAMs - A 0.10 0.56 0.84

CLMs 0.00 0.05 0.80

SDM 0.14 0.67 0.98

TABLE I
FITTING PERFORMANCE ON LPFW USING ALTERNATING OPTIMIZATION:
PROPORTION OF IMAGES THAT WERE FITTED WITH PT-PT ERROR < 0.02,

< 0.03 AND < 0.05.

Pt-Pt error < 0.02 < 0.03 < 0.05

AOMs - A 0.21 0.66 0.88

PI-AAMs - A 0.10 0.50 0.82

ES-AAMs - A 0.20 0.66 0.87

GF-AAMs - A 0.02 0.37 0.84

CLMs 0.00 0.04 0.74

SDM 0.05 0.49 0.94

TABLE II
FITTING PERFORMANCE ON HELEN USING ALTERNATING OPTIMIZATION:
PROPORTION OF IMAGES THAT WERE FITTED WITH PT-PT ERROR < 0.02,

< 0.03 AND < 0.05.

AAM when optimized using alternating optimization. This is

a notable result given that AOM project-out is significantly

faster. These results also clearly illustrate the robustness of

the proposed AOM: the project-out algorithm is literally a

LK algorithm the goal of which is to align the test image

with the mean image of the appearance subspace. Because

the appearance model is not employed to compensate for

large discrepancies in appearance between the test image

and the mean (as opposed to alternating optimization), a

robust algorithm is required to perform the alignment. As

the presented results clearly illustrate, AOM project-out is the

most robust alignment algorithm. We note that these results

are in accordance with the ones presented in our previous

work [7] which have shown that the kernel of AOMs performs

by far the best for LK-based image-to-image alignment. (b)

AOM project-out largely outperforms the state-of-the-art CLM

method. This is an important result because AOM project-out

is also faster than the CLM method which relies on filtering

the image with HOG filters.

Cross-database experiments. As expected, for these ex-

periments performance drops for all methods but the rela-

tive difference in performance is the similar. Again, AOM

outperforms all other algorithms considered. The drop in

performance should be also attributed to the less accurate

initialization provided by the face detector.

VI. CONCLUSIONS

We introduced Active Orientation Models, generative mod-

els for deformable face alignment that generalize well to un-

seen faces and variations. AOMs employ a statistically robust

appearance model based on the principal components of image
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Fig. 2. Fitting performance on LPFW (first row), HELEN (second row) and AFW (third row). Left column: Alternating optimization. Right column: Project-out
optimization. In all figures the point-to-point error normalized by the face size vs the percentage of test images is plotted.

Pt-Pt error < 0.02 < 0.03 < 0.05

AOMs - A 0.11 0.43 0.72

PI-AAMs - A 0.05 0.29 0.66

ES-AAMs - A 0.11 0.40 0.71

GF-AAMs - A 0.00 0.18 0.66

CLMs 0.01 0.01 0.61

SDM 0.04 0.38 0.85

TABLE III
FITTING PERFORMANCE ON AFW USING ALTERNATING OPTIMIZATION:

PROPORTION OF IMAGES THAT WERE FITTED WITH PT-PT ERROR < 0.02,
< 0.03 AND < 0.05.

Pt-Pt error < 0.02 < 0.03 < 0.05

AOMs - PO 0.17 0.47 0.81

PI-AAMs - PO 0.08 0.28 0.61

ES-AAMs - PO 0.10 0.39 0.71

GF-AAMs - PO 0.00 0.09 0.45

CLMs 0.00 0.05 0.79

SDM 0.14 0.67 0.98

TABLE IV
FITTING PERFORMANCE ON LPFW USING PROJECT-OUT ALGORITHM:

PROPORTION OF IMAGES THAT WERE FITTED WITH PT-PT ERROR < 0.02,
< 0.03 AND < 0.05.
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Fig. 3. Comparison between AOM Alternating and Project-Out Optimization on HELEN. Odd rows: Alternating optimization. Even rows: project-out
optimization. Although our system was trained on LPFW which primarily contains celebrity faces with posed smiles, it is able to fit some difficult faces from
Helen with shape and appearance variation quite different from the faces of LPFW. Alternating optimization fits the face boundary better.

Pt-Pt error < 0.02 < 0.03 < 0.05

AOMs - PO 0.12 0.41 0.72

PI-AAMs - PO 0.05 0.20 0.49

ES-AAMs - PO 0.07 0.31 0.61

GF-AAMs - PO 0.00 0.07 0.40

CLMs 0.00 0.04 0.74

SDM 0.05 0.49 0.94

TABLE V
FITTING PERFORMANCE ON HELEN USING PROJECT-OUT ALGORITHM:

PROPORTION OF IMAGES THAT WERE FITTED WITH PT-PT ERROR < 0.02,
< 0.03 AND < 0.05.

Pt-Pt error < 0.02 < 0.03 < 0.05

AOMs - PO 0.03 0.27 0.56

PI-AAMs - PO 0.01 0.11 0.38

ES-AAMs - PO 0.02 0.17 0.47

GF-AAMs - PO 0.00 0.02 0.20

CLMs 0.00 0.01 0.60

SDM 0.04 0.38 0.85

TABLE VI
FITTING PERFORMANCE ON AFW USING PROJECT-OUT ALGORITHM:

PROPORTION OF IMAGES THAT WERE FITTED WITH PT-PT ERROR < 0.02,
< 0.03 AND < 0.05.

gradient orientations. We demonstrated that when incorporated

within standard optimization frameworks for AAM learning

and fitting, this kernel PCA results in robust and efficient

algorithms for model fitting. Finally, we showed that the

proposed AOM largely outperforms all other state-of-the-art

AAM methods considered as well as a state-of-the-art CLM

method, when all methods are trained on the same training

set and initialized in the same way. Future work includes

combining AOMs with the Gauss-Newton Deformable Part

Model which by-passes the complicated motion model of

AAMs [35].
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APPENDIX

In this section we will derive (20) and (21). After lineariza-

tion of (17), we obtain the following optimization problem

arg min
∆p,∆c

||z[p]−ΦZc−Φ∆c− J∆p)||2. (26)

To solve the above problem our strategy is to optimize (26)

first with respect to ∆c, and then plug in the solution back

to (26). Then, we can optimize (26) with respect to ∆p. In

particular, let us denote by C1 = z[p]−Φ∆c− J∆p. Then,

we have

argmin
∆c

(C1 −ΦZc)
T (C1 −Φc). (27)

By setting the derivative of the above with respect to ∆c to

0, we readily obtain (20)

∆c = ΦT
ZC1 = ΦT

Z(z[p]−Φ∆c− J∆p). (28)

Plugging the above to (26) and, after some straightforward

mathematical manipulations, we get the following optimiza-

tion problem for ∆p

argmin
∆p

(z[p]− J∆p)TP(z[p]− J∆p), (29)

where P = E−ΦZΦ
T
Z . By setting the derivative of the above

with respect to ∆p to 0, we readily obtain (21).
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Fig. 4. Fitting results obtained with our method and SDM on selected images from the AFW database. Different rows highlight a different source of facial
variation: age, pose, illumination, expression, occlusion and low resolution or blur. Odd rows: AOMs. Even rows: SDM
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