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Abstract. This paper proposes an automatic and real-time system for face anal-
ysis, usable in visual communication applications. In this approach, faces are
represented with Curve Edge Maps, which are collections of polynomial seg-
ments with a convex region. The segments are extracted from edge pixels using an
adaptive incremental linear-time fitting algorithm, which is based on constructive
polynomial fitting. The face analysis system considers face tracking, face recog-
nition and facial feature detection, using Curve Edge Maps driven by histograms
of intensities and histograms of relative positions. When applied to different face
databases and video sequences, the average face recognition rate is 95.51%, the
average facial feature detection rate is 91.92% and the accuracy in location of the
facial features is 2.18% in terms of the size of the face, which is comparable with
or better than the results in literature. However, our method has the advantages of
simplicity, real-time performance and extensibility to the different aspects of face
analysis, such as recognition of facial expressions and talking.

Keywords: geometric features, shape modeling, shape matching, face recogni-
tion, face tracking, facial feature detection.

1 Introduction

Automatic, reliable and fast face analysis is becoming an area of growing interest in
computer vision research. This paper presents an automatic and real-time system for
face analysis, which includes face recognition, face tracking and facial feature detec-
tion, and may be used in visual communication applications, such as video conferenc-
ing, virtual reality, human machine interaction, surveillance, etc.

The task of facial analysis has generally been addressed by algorithms that use
shape and texture modelling. The Active Shape Model (ASM), proposed by Cootes et.
al. [1], is one of the early approaches that attempts to fit the data with a model that can
deform in ways consistent with a training set. The Active Appearance Model (AAM)
[2] is a popular extension of the ASM. AAM is an integrated statistical model which
combines a model of shape variation with a model of the appearance variations in a
shape-normalized frame. The recently proposed Boosted Appearance Model (BAM),
proposed by Liu et. al. [3,4], uses a shape representation similar to AAM, whereas
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the appearance is given by a set of discriminative features, trained to form a boosted
classifier, able to distinguish between correct and incorrect face alignment. Liang et.
al. [5] proposed a component-based discriminative approach for face alignment with-
out requiring initialization. A set of learned direction classifiers guide the search of the
configurations of facial components among multiple detected modes of facial compo-
nents. Many of the methods mentioned are complex, dependent from initialization and
not always capable to handle the different aspects of face analysis.

We propose face analysis with a compact feature, the Curve Edge Map (CEM),
which describes polynomial segments with a convex region in an edge map. The face
CEM is a simple and natural description, which still preserves sufficient information
about the facial position and expression. In fact, many curve segments correspond to
physically meaningful features such as eyebrows, cheekbones or lips. The CEM ap-
proach not only has the advantages of geometric feature-based approaches, such as low
memory requirements, but also has the advantage of high recognition performance of
template matching.

In this paper, we employ non-local matching of curve segments in different CEMs
to find corresponding curve segments. For matching, the curve segments do not have to
be in each others neighbourhood. The technique differs from the matching technique in
[6], where a local matching technique is described using distance and intensity charac-
teristics. The latter technique requires that CEMs are aligned. The matching technique
we propose here, is more general and does not require that the CEMs are aligned. It
considers three characteristics of the curve segments.

– The first characteristic is the orientation of the main axis of the curve segment to
make a first binary classification.

– The second characteristic is the intensity difference between the inner and outer
side of the curve segment. Each curve segment defines a convex region, so that
it makes sense to distinguish curve segments from facial features with intensity
histograms between the inner and outer side.

– The third characteristic is the relative position of the curve segment in the face
CEM, found by the characteristic positions of the the curve segments from the facial
features in the face CEMs. This topology is modeled by a histogram of relative
positions in log-polar space, which is based on the work of shape contexts from
Belongie et. al. [7].

The three characteristics classify an individual curve segment in the face CEM, which
is useful for facial feature detection.

We give a brief overview of three tasks handled in our face analysis system, which
will be explained in the following sections:

– Face tracking: The face CEMs in consecutive frames are matched using the non-
local matching technique as mentioned above. The motion vectors from the corre-
sponding curve segment pairs are constructed as described in [9], in which vehicles
are succesfully tracked with parabola segments. Note that faces are first detected
using the cascade-based face detection algorithm of Viola and Jones [8].

– Face recognition: The input face CEM is matched with the face CEMs from a
database using the non-local matching technique. From the matching curve segment
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pairs, a global matching cost is computed. A face is recognized when the global
matching cost reaches a minimum.

– Facial feature detection: The curve segments from facial features, such as the eye-
brows, the eyes, the nose and the lips, are detected in frontal face images, by match-
ing the face CEMs with curve segment models. These curve segment models are
built for each facial feature by a training proces and consist of the three character-
istics as mentioned above.

Our method performs well when evaluated over different databases and video se-
quences, considering variations in scale, lighting, facial expressions and pose. The
considered public available databases are the Georgia Tech Face Database [10], the
Database of Faces [11], the Bern University Face Database [12], the AR Face Database
[13], the Yale University Face Database [14] and the BioID Database [15] with ground
truth marker points.

We achieve an average face recognition rate of 95.51%, which is better than the
results for the technique described in [6]. Furthermore, we gain the advantage of facial
feature detection, which automatically involves facial action recognition, such as recog-
nition of facial expressions, talking and head movement. When applied to different test
databases, the average facial feature detection rate is 91.92%. In this paper, we compare
our results with the work of Cristinacce et. al. [16], in which they use a Constrained Lo-
cal Model (CLM) to locate a set of feature points, initialized by facial feature locations
found by applying the Viola and Jones face detector [8].

The accuracy in location of our facial features is computed for the BioID Database
by comparing the ground truth marker points with the facial features detected. When
using the mean euclidean distance as the basic error measurement, the mean location
error is 6.53 pixels with standard deviation 1.15 pixels, which is 2.18% in terms of the
size of the face. In this paper, we compare our results to the work of Ding et. al. [17], in
which they achieve facial feature detection by learning the textural information and the
context of the facial feature to be detected.

The face analysis results are comparable with or better than existing methods, when
taking into account the limitations of image scale and lighting. However, the advantages
of our method are simplicity, real-time properties and many face analysis tasks are
handled by the same approach.

This paper is organized as follows. First, we briefly indicate how to compute a CEM
for a gray level image in Section 2. In the following Section 3, we present the basic parts
for matching the curve segments. Section 4 describes in detail the different applications
of the face CEM. In Section 5 we show the results when testing our face analysis system
on different databases and video sequences. Finally, we conclude our paper in Section
6.

2 Curve segmentation

The basic step of our method is the interpretation and description of an image edge
map by geometric primitives. Our feature representation, the Curve Edge Map (CEM),
integrates structural information and spatial information by grouping pixels of an edge
map into curve segments. In [6,18], it is shown that the approximation of edge maps by
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second order polynomials or parabola segments is a useful and elegant representation
for both non-rigid and rigid structures.

(a) (b) (c)

Fig. 1. Curve segmentation: Images (a), (b)
and (c) show the input image, the edge map
and the face CEM, respectively.
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Fig. 2. Histograms of intensities and rela-
tive positions: On the left are shown the in-
tensity histograms from the inner and outer
side of the curve segment, which describes
the left eyebrow. On the right is plotted the
log-polar histogram of relative positions from
the curve segment, which describes the right
eyebrow.

The edge map is computed with the Canny edge detector [19], a frequently used
edge detector when considering edge information in faces [20], resulting in thin edges
of one pixel thickness. Digitized curves are obtained from the edge map by a simple
boundary scan algorithm. To fit curve segments, we use an adaptive incremental linear-
time fitting algorithm for curve segmentation which is based on constructive polynomial
fitting [21,18]. The output of the fitting algorithm is a list of curve segments that ap-
proximates the edge map with an L∞ user-specified threshold. In practice, we represent
the curve segments as parabola segments, represented by three parameters, which have
their main axes in x or y direction, depending on which direction yields the smallest
fitting cost. The restriction of allowing only two orientations is based on the many verti-
cal and horizontal orientations of the facial features in a face. Figures 1 (a), (b) and (c)
show the input image, the edge map and the CEM for a face from the Bern University
Face Database [12], respectively.

3 Curve Edge Map matching

3.1 Curve coefficients classification

The orientations of the curve axes are used to make a first binary classification, by which
we mean that the curve segments will only match when their main axes have the same
orientation. For example for the lips and the eyebrows the alignment of the curve axes
are vertical, while for the nose the alignment of the curve axis is horizontal. In practice,
we consider the axes of symmetry of the parabola segments, which are in the x or the y
direction.
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3.2 Curve intensity histograms

One of the discriminative properties in our system is the difference in intensity between
the inner and outer side of the curve segment. For each side we construct a normalized
intensity histogram.

When estimating a histogram from one side of the curve segment, the region of
interest for intensities is in the area between the original curve segment and a duplicate
which is translated parallel to the main axis of the curve segment.The distance d over
which the duplicate is translated results in a robust face recognition rate R, when d is
between 0.02 and 0.09 of the square root of the face surface A, where A is the rectangle
produced by face detector. This optimization is done for the AR Face Database [13].

Figure 2 shows on the left two intensity histograms from the inner and outer side
from the curve segment of the left eyebrow for a face from the Bern University Face
Database [12]. The histogram representing the upper side has its intensities on the bright
side, while the histogram representing the lower side has its intensities on the dark side.

To match the intensity histograms from one side of two different curve segments,
we use the Bhattacharyya distance metric or B-distance measure, which measures the
similarity of two probability distributions and is a value between 0 and 1. This mea-
sure is chosen for its good classification properties [22]. The B-distance between two
intensity histograms f and g is

B(f, g) = 1−
L∑

l=0

√
f(l)g(l), (1)

where L is the number of bins in the histograms, L = 255 for gray images. The match-
ing of intensity histograms is done for the inner and outer side of the curve segments,
resulting in Bin and Bout.

3.3 Histograms of relative positions in CEM

A curve segment in the CEM is characterized by its relative position and becomes im-
portant when classifying individual facial features, for example to distinguish between
curve segments from the eyebrow and the upper lip, which have similar transitions in
intensities between inner and outer side. In our work, the topology of the face CEM
is modeled using shape contexts. In the original shape context approach [7], a shape
is represented by a discrete set of sampled points P = p1, p2, . . . , pn. For each point
pi ∈ P , a coarse histogram hi is computed to define the local shape context of p i. To
ensure that the local descriptor is sensitive to nearby points, the local histogram is com-
puted in a log-polar space. In our case, a histogram is computed for the center point of
the curve segment in the face CEM. When considering such a center point, the sampled
points P are the discretized points on the other curve segments in the face CEM. An
example of a histogram of relative positions is shown in Figure 2, on the right is plotted
the log-polar histogram from the curve segment of the right eyebrow. In practice the
circle template covers the entire face.

Assume that pi and qj are the center points of the curve segments of two different
faces. The shape context approach defines the cost of matching the two curve segments
by the following χ2 test statistic:
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C(pi, qj) =
1

2

K∑

k=1

[hi(k)− hj(k)]
2

hi(k) + hj(k)
(2)

where hi(k) and hj(k) denote the K-bin normalized histograms of relative positions of
pi and qj , respectively.

4 Applications with face CEM

4.1 Face tracking

The face CEMs in consecutive frames are matched using the technique as described
in Section 3. While the orientations of the curve axes are used to make a first binary
classification, the costs for matching intensity histograms and matching histograms of
relative positions are linearly combined for reasons of simplicity. Experiments show that
for a pair m of matching curve segments, the linearly combined cost Dm = a(Bin +
Bout)/2 + bC, where Bin and Bout are costs for matching intensity histograms and C
is the cost for matching histograms of relative positions, has a maximized recognition
rate when a = 0.83 and b = 0.17.

We look for a one-to-one match for each of the curve segments in the current frame
by a minimization of the linearly combined cost Dm. For the construction of motion
vectors we use similar techniques as proposed in [9]. A motion vector of a unique curve
correspondence pair is defined by the center points of two curve segments.

4.2 Face recognition

The input face CEM is matched with the face CEMs in a database using the technique
described in Section 3. From the pairs of matching curve segments, a global length

weighted matching cost E is computed, with E =

M∑

m=1

Dmlm/

M∑

m=1

lm, whereM is the

number of unique pairs of curve segments and lm is the average length of the matching
curve segment pairm. Then, a face is recognized when the global matching cost reaches
a minimum.

4.3 Facial feature detection

Facial features such as the eyebrows, the eyes, the nose and the lips, are detected using
the face CEMs.

Firstly, curve segments from the facial features of interest have been modeled by a
training proces on a database, consisting of 100 faces, considering small variations in
pose, variations in lighting conditions and variations in facial expressions. The curve
segment model of a facial feature consists of an orientation of the axis of the curve
segment, two intensity histograms from the inner and outer side of the curve segment
and a log-polar histogram describing the relative positions in the face CEM.
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Secondly, the curve segment models are matched with the input face CEM. The
coefficients of the curve segments make a first binary classification. For the lips and the
eyebrows the alignment of the curve segment axes are vertical, while for the nose the
alignment of the curve segment axis is horizontal. Next, the histograms of intensities
and the histograms of relative positions are compared. E.g. for the upper curve segment
of a left eyebrow we expect a transition in intensity from bright to dark and with a
relative position in the left upper corner in the face CEM. In this manner, we classify
the curve segments from the left and right eyebrow, the left and right eye, the left and
right side of the nasal bone and the upper and the lower lip.

5 Results

Our system applications as described in Section 4 are evaluated on different face databases,
namely the Georgia Tech Face Database [10], the Database of Faces [11], the Bern
University Face Database [12], the AR Face Database [13], the Yale University Face
Database [14] and the BioID Database [15] with ground truth marker points.

To show the real-time properties of our system, we give in Table 1 an overview of
the computational performance of our face analysis system. The system is implemented
in C++ as a webcam application, running on a 2.80 GHz processor, 4.00 GB RAM and
64-bit operating system. We average computational time over 1000 frames for the face
detection, the CEM construction and the CEM matching, considering different frame
and face sizes.

The CEM matching is evaluated by the application of face recognition as described
in section 4.2. The face recognition rates are given in Table 3. A distinction is made
between the matching technique described in [6], matching using histograms of relative
positions, matching using intensity histograms and matching using an optimal linear
combination of the latter two. In the results, the correct match is only counted when the
best matched face from a model is the correct person. We test face recognition under
controlled condition and size variation, under varying lighting condition, under varying
facial expression and under varying pose. As we expect, the matching of histograms
with relative positions is more sensitive to varying pose and varying facial expressions,
while the matching of histograms is more sensitive to varying lighting conditions. The
average face recognition for the linearly combined cost is 95.51%. When compared to
the results described for the matching technique in [6], the average face recognition
rate increases with 2.21%. Furthermore, we gain the advantage of facial feature detec-
tion, which involves facial action recognition, such as recognition of facial expressions,
talking and head movement.

The facial feature detection as described in Section 4.3 is evaluated on the test
databases by veryfying whether or not the curve segment models classify the correct
curve segments in the faces. We classify the curve segments from the left and the right
eyebrow, the left and the right eye, the left and the right side of the nasal bone and the
upper and the lower lip, as shown in Figures 3 (a) and (b). The results for facial fea-
ture detection, as presented in Table 2, show that the developed system can detect on
average the individual facial features successfully in 91.92% cases, when applied to the
test databases. As a comparison, our average facial feature detection rate for the BioID
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Frame size 320x240 640x480 1280x960
Face detection (ms) 48.85 52.27 102.93
Face size 100x100 200x200 400x400
CEM construction (ms) 16.35 37.88 61.38
CEM matching (ms) 9.16 26.36 43.38
Total (ms) 74.36 116.51 207.69
fps 13.45 8.58 4.81

Table 1. Computational performance: Av-
erage computational time for face detection,
CEM construction and CEM matching, con-
sidering different frame and face sizes.

(%) YFD BERN AR GTFD ATT BioID
Left eyebrow 100.00 90.00 87.91 96.00 92.50 93.12
Right eyebrow 100.00 80.00 90.47 94.00 90.00 94.65
Left eye 93.33 90.00 86.20 86.00 85.00 91.39
Right eye 93.33 93.33 87.91 88.00 87.50 90.94
Left nose 100.00 90.00 88.03 96.00 92.50 94.10
Right nose 100.00 96.67 87.18 90.00 95.00 92.94
Upper lip 93.33 90.00 89.20 86.00 97.50 95.51
Lower lip 100.00 96.67 90.60 86.00 92.50 93.77
Average 97.50 90.46 88.44 90.25 91.56 93.30

Table 2. Results for facial feature detec-
tion: The detection rates for the left and the
right eyebrow, the left and the right eye, the
left and the right side of the nasal bone and
the upper and lower lip.

(%) Old Hist. of Intensity Lin.
[6] rel. pos. hist. comb.

Controlled condition
GTFD [10] 98.00 82.00 98.00 100.00
ATT [11] 100.00 77.50 95.00 98.50
YFD [14] NA 86.66 100.00 100.00
BERN [12] 100.00 93.33 96.67 100.00
AR [13] 98.00 78.65 96.02 98.44
Varying pose
BERN Right 93.34 70.33 87.00 91.33
BERN Left 86.67 70.67 88.33 91.67
BERN Up 86.67 72.00 86.67 90.33
BERN Down 73.34 69.00 80.33 83.67
Size variation
AR with size variation 90.21 77.83 89.20 94.35
Varying lighting condition
AR with left light on 96.34 73.53 91.89 96.60
AR with right light on 94.84 73.43 89.16 95.63
AR with both lights on 92.10 75.15 90.63 96.38
Varying facial expression
AR with smiling expr. 96.53 71.13 93.70 97.13
AR with angry expr. 97.30 71.59 94.14 97.46
AR with screaming expr. 96.21 72.08 91.40 96.65
Average 93.30 76.18 91.76 95.51

Table 3. Results for face recognition: The
second, third, fourth and fifth columns show
the recognition rates for the matching tech-
nique described in [6], matching using his-
tograms of relative positions, matching using
intensity histograms and matching using an
optimal linear combination of both, respec-
tively.

Database is 93.30%, which is comparable with the facial feature detection rate by ap-
plying the Viola and Jones face detector [8]. The Viola and Jones face detector finds
95% of facial feature points within 20% of the inter-ocular separation on the BIOID
Database [16]. However, experiments show that our approach has the advantages of
low computational cost and large invariance for variations in facial expressions.

The accuracy in position of the facial features with the curve segments is deter-
mined by the accuracy in position of the edges delivered by the canny edge detector and
the fitting cost allowed during segmentation. We compute this accuracy on the BioID
Database, by comparing the available ground truth marker points with the locations of
the facial features detected. In Figure 3 (a), the ground truth marker points are indi-
cated with red crosses. The criteria for the accuracy is the distance of the points on the
curved segments closest to the ground truth markers. When using the mean euclidean
distance as the basic error measurement, the mean detection error is 6.53 pixels with a
standard deviation of 1.15 pixels, which is 2.18% in terms of the size of the face. We
compare to the work of Ding et. al. [17], in which they compute the average accuracy
on the AR Face Database and the XM2VT Face Database. The mean detection error
for SubAdaBoost is 9.0 pixels with a standard deviation of 1.3 pixels, which is 2.8% in
terms of the size of the face.

As a result for face tracking, Figures 4 (a), (b), (c) and (d) show the tracking of a
face, which is looking left, right, up and down, respectively. From the motion vectors
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(a) (b)

Fig. 3. Detection of facial features: Image
(a) shows the curve segments of the eye-
brows, the eyes, the nose and the lips detected
in a face from the BioID Database [15]. The
ground truth marker points are indicated with
red crosses. Image (b) shows the facial fea-
ture detection in a face from a webcam video
sequence.

(a) (b)

(c) (d)

Fig. 4. Results for face tracking: Image (a),
(b), (c) and (d) show a face from a webcam
video sequence, which is looking left, right,
up and down, respectively.

of the matching parabola segment pairs, an average motion vector makes an estimation
about the head movement. In future work, facial action recognition, such as facial ex-
pression recognition, head movement recognition and talking recognition will be further
explored.

6 Conclusion

This paper proposes an alternative way to the analysis of faces. Our method models
faces with Curve Edge Maps, which is a natural description for the many edges in a face
and correspond to physically meaningful features, such as the eyebrows, the eyes, the
nose and the lips. We presented a novel matching technique, which uses the orientation
of the axes of the curve segments, intensity histograms and histograms of relative posi-
tions. We demonstrated that the CEM approach is useful for many face analysis tasks,
such as face tracking, face recognition and facial feature detection. Applied to different
databases, good performance for these applications is achieved, which is comparable
with or better than the results in literature. However, our method provides simplicity,
real-time performance and extensibility to the different aspects of face analysis.
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