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From Pixels to Response Maps: Discriminative Image

Filtering for Face Alignment in the Wild

Akshay Asthana, Stefanos Zafeiriou, Georgios Tzimiropou-

los, Shiyang Cheng and Maja Pantic

Abstract—We propose a face alignment framework that relies on

the texture model generated by the responses of discriminatively

trained part-based filters. Unlike standard texture models built from

pixel intensities or responses generated by generic filters (e.g. Gabor),

our framework has two important advantages. Firstly, by virtue of

discriminative training, invariance to external variations (like identity,

pose, illumination and expression) is achieved. Secondly, we show

that the responses generated by discriminatively trained filters (or

patch-experts) are sparse and can be modeled using a very small

number of parameters. As a result, the optimization methods based

on the proposed texture model can better cope with unseen variations.

We illustrate this point by formulating both part-based and holistic

approaches for generic face alignment and show that our framework

outperforms the state-of-the-art on multiple ”wild” databases. The

code and dataset annotations are available for research purposes from

http://ibug.doc.ic.ac.uk/resources.

Index Terms—Face alignment, facial landmark detection, active

appearance models, constrained local models.

I. INTRODUCTION

The problem of non-rigid face alignment under controlled

laboratory settings has been studied for decades and has produced

a number of solutions with varying degrees of success. Essentially,

the problem is one of getting a facial landmark localization

that can describe the face in sufficient detail. These include

methods such as Active Shape Model [7], Active Appearance

Model [12] and Constrained Local Model [9], [25]. Alternatively,

some methods [16] perform global face alignment using Markov

Random Fields without explicitly relying on facial landmark lo-

calization. However, the performance of these methods [16] under

uncontrolled natural settings have not been explored. In contrast,

the facial landmark localization based methods for uncontrolled

natural settings (referred to as “in the wild”) have started to

receive some attention [5], [29], [8], [4].

Broadly speaking, there are two major lines of work on non-

rigid face alignment, namely, Active Appearance Model (AAM)

[12] and Constrained Local Model (CLM) [25]. AAMs are gener-

ative models of shape and texture learned by employing Principal

Component Analysis (PCA) to a training set of annotated face

images. Baker et al. [2] proposed several generative optimization

methods for fitting an AAM, some capable of real-time face track-

ing [20]. Recently, several discriminative optimization methods for

AAMs have been proposed [18], [22], [23], [24], [21] that directly

learn a fixed update model. However, the overall performance of

these methods have been shown to deteriorate significantly for

cross-database experiments [24], [21].

Compared to the AAM framework, the CLM framework is

relatively more capable of handling unseen variations of pose,
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(d) Overview of Response Map Based Texture Model. After comput-

ing HOG features for test image in (a), we convolve them with the

discriminatively pre-trained filters (P1, . . . , P5) for each landmark.

The responses are then normalized using a simple logistic function

so that the values lie between 0 and 1. These normalized responses

form the bases for the proposed response map based texture model.

Fig. 1: Background and overview of the proposed response map

based texture model. In the following Section II, we will show that

these normalized response maps can be modeled and reconstructed

accurately using a very small number of parameters.

illumination and expressions. In essence, the standard CLM frame-

work follows a part-based approach in that the face is represented

by a set of cropped image patches. A local detector (referred to

as the ’patch-expert’) is trained for each landmark, using an off-

the-shelf linear SVM and a large number of positive and negative

patches [26]. Now, given a new face image, these patch-experts

are used to perform an exhaustive local search around the initial

shape estimate. As a result, a response map for each landmark

point is generated which provides a likelihood of that landmark

point being at a particular position in the given image. These

response maps are then efficiently used to drive a simple Gauss-

Newton method based optimization [25].

Although the use of response maps has undoubtedly given the

CLM framework ability to perform generic face alignment, we

believe that their full representative power has not been exploited

so far. In particular, the main motivation behind this work is the

realization that these response maps tend to be sparse, by virtue of
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the discriminative training procedure of the patch-experts, and can

themselves be represented by a small set of parameters. Hence,

in this work, we propose to construct a novel texture model for

robust face alignment based on these response maps. In prior

work in computer vision, texture models are typically constructed

by filtering the image using a set of pre-defined generic filters

(e.g. difference of Gaussian, generative filters [11] or Gabor

filters [19]1). Instead, we propose to construct a texture model

by filtering the image with a set of filters, each of which have

been discriminatively trained to localize a particular landmark

point. The output of this filtering process is a sparse response map

which can be then used to construct a robust texture model (to

the best of our knowledge, this is the first time that the response

maps generated via discriminatively learned filters are used to

construct a texture model). In Figure 1, we give the overview of

the proposed texture model. Within this proposed discriminative

image filtering framework:

• We formulate a part-based approach and propose a discrimi-

native face alignment technique which uses the response map

based texture model.

• We formulate a holistic approach by combining the proposed

discriminative image filtering with generative deformable

face models (i.e. AAM). This results in a hybrid discrimina-

tive/generative face alignment framework in that the actual

texture model is discriminative and the alignment method is

generative in nature.

• We show that the proposed framework outperforms state-

of-the-art methods (the CLM based RLMS [25] and the

tree-based method [29]) convincingly. We release our code

(See Supplementary Material) and the pre-trained models for

research purposes.

II. MOTIVATION FOR DISCRIMINATIVE IMAGE FILTERING

As stated earlier in Section I, the main advantage of the standard

CLM framework [25] over the AAMs [2] is the use of response

maps to drive its optimization procedure, thereby decoupling

the optimization procedure from the variations in facial texture

induced by changes in identity, expressions, pose and illumination.

Therefore, unlike the AAM optimization methods that suffer from

the problem of lack of generalizability, mainly due to the texture

model they use, the CLM optimization methods easily bypass

these problems by working with the response maps instead of

the actual facial appearance. However, one of the shortcomings

of the standard CLM framework is that it does not fully exploit

the true representative power of the response maps. In particular,

in the CLM fitting objective function of [25], the optimization is

performed over only the shape model parameters, and the response

maps are used only indirectly in computing the weights for the

non-parametric Gaussian mixture model that governs the possible

landmark locations.

Therefore, in this paper, we make a case for a more direct

use of the information provided by the response maps in the

fitting procedure. This is motivated mainly due to the realization

that: Firstly, each of these discriminatively trained filters (i.e.

the patch experts) is tailored for a particular landmark point

and can provide sparse filter response (or confidence) maps.

Secondly, since invariance to external elements (like identity, pose,

illumination and expressions that makes generic face fitting a very

challenging task) is intrinsic to the response maps, a dictionary

of response maps (controlled by a small set of parameters) can

1The experiments in [19] show that the methodology is only suitable
for person-specific scenario for the case of unseen illumination.

be easily created and used very accurately to reconstruct unseen

response maps. As a result, a dictionary of response maps can be

very efficiently used to replace the raw pixel value based texture

model. This results in a non-rigid face alignment framework

capable of handling the challenging in the wild scenario.

In this section, we empirically test the generalization capability

of the proposed response map based texture model and compare

it to the standard facial appearance based (i.e. pixel value based)

texture model. For this purpose, we train two separate texture

models based on the pixel values and the response map values,

respectively, using the images from Multi-PIE database [14] only.

We then reconstruct instances from unseen test images belonging

to the Multi-PIE [14] and LFPW [4] databases. This highlight

some highly desirable properties of the response maps and its

texture model which include: distinct signature of some landmark

points, sparsity, compactness and generalization capability.

See Appendix A in the supplementary material for details

on the experimental setup. For training the pixel value based

texture model, all the training images were similarity normal-

ized [26], [25] and 31×31 patches were extracted around each

landmark point. Let us assume we have a training set of image

patches {Ai
j}

T
j=1 for each landmark point i. A simple way to

model the appearance of the patches for the ith landmark is

to vectorize the training set of patches, stack them in a matrix

Xi = [vec(Ai
1), . . . , vec(Ai

T )] and use PCA to decompose into

Xi ≈ ZiHi +Mi where Zi is the matrix that contains the PCA

bases, Mi = [mi . . .mi] =
1
N
Xi11

T is a matrix that contains

the mean vector mi in each column, and Hi = ZT
i (Xi−Mi) are

the parameters for the training set of patches (i.e., the projection to

the bases). Now, given a testing sample (i.e. a new unseen patch),

it can be reconstructed by a small set of parameters htest that are

computed by a simple projections on the PCA basis Zi.

For training the response map based texture model, all the

31×31 training patches (extracted above around each landmark

point) were convolved with respective patch-experts (learned using

the mentioned Multi-PIE training set) to generate training set of

31×31 response maps. Following the similar modeling procedure

as above, each of the response maps were vectorized, stacked

in a matrix and PCA was applied to compute the PCA basis.

Now, given a testing sample (i.e. a new unseen response map),

it can be reconstructed by a small set of parameters by just a

simple projections on the response map PCA basis. An illustrative

example on how effectively a response map can be reconstructed,

as compared to the pixel value based image patch, by a very

small number of PCA components (for example, the top 5 PCA

components in this case) is shown in Figure 2.

Figure 3(a) shows the average reconstruction error for the patch

around the left eye corner (i.e. landmark number 5 in Figure 2)

for Multi-PIE and in-the-wild LFPW test set using up to the

top 20 PCA components of both the pixel value based and the

response map based texture model. The average reconstruction

error is computed as the mean-squared error between the ground-

truth and the reconstructed patch. Further, in Figure 3(b), we show

average reconstruction error for the patch around all 66 landmark

points for both the testing sets using top 5 PCA components of

both the texture models.

Overall, these results clearly show the superiority of the re-

sponse map based texture model over the traditional pixel value

based texture model. The empirical evidence suggests that the re-

sponse maps extracted for certain landmark points have a distinct

signature (for example, boundary points have a distinct elongated

response, the eyes points have a very compact circular response).

Moreover, the sparsity of the response maps is highly desirable
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(a) Sample LFPW Test Image
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(b) Pixel Value Based Texture Model
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(c) Response Map Based Texture Model

Fig. 2: Pixel Value based vs. Response Map based texture model: (a) Sample test image from LFPW with relevant landmarks

labelled 1–8. (b) For landmarks 1–8: First row shows the extracted image patches. Second row shows the reconstructed image patches

generated by the top 5 PCA components of each landmark’s pixel value based texture model. (c) For landmarks 1–8: First row shows

the extracted response maps. Second row shows the reconstructed response maps generated by the top 5 PCA components of each

landmark’s response map based texture model.
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Fig. 3: Pixel Value based (P-Model) vs. Response Map based

texture model (R-Model). (a) For the patch around Left Eye

Corner, using upto top 20 PCA components. (b) For all landmark

points, using top 5 PCA components.

quality as it drastically reduces the candidate locations for each

landmark point. Having said that, the two most important qualities

of the response map based texture model are its generalization

capability and compactness. Notice the quality of reconstructed

response maps for the Multi-PIE test set, but more importantly for

the LFPW test set. The response map based texture model is able

to generalize easily to the unseen response maps obtained from

the LFPW test set, across all the landmark points. On the other-

hand, we see a sharp rise in the reconstruction error for the LFPW

test set obtained by the pixel value based texture model. Also, the

excellent level of generalization obtained by the response map

based texture model comes hand-in-hand with its compactness. As

shown in Figure 3(a), a stable reconstruction accuracy is obtained

by using as few as the top 5 PCA components making the response

map based texture model highly suitable for fast and accurate

face alignment optimization strategies. Therefore, in the following

sections, we propose the part-based and the holistic approaches

that use the novel response map based texture model efficiently

for generic face alignment under uncontrolled natural settings.

III. THE PART-BASED APPROACH

A. Background

In the part-based model representation, the model setup is M =
{S,D} where S is the shape model and D is the set of patch-

experts. The 3D shape model of CLMs can be described as:

s(p) = sR(s0 +Φsq) + t, (1)

parameterized by p = [s,R, t,q], where s, R (computed via

pitch rx, yaw ry and roll rz) and t = [tx; ty; 0] control the rigid

scale, 3D rotation and translation respectively, while q controls

the non-rigid variations of the shape. D is a set of patch-experts

for detection of n parts and is represented as D = {wi, bi}
n
i=1,

where wi, bi is the linear filter for the ith landmark point of the

face (e.g., eye-corner detector).

The probability of alignment of a particular landmark point at

a specific location xi in the given image I can be modeled by

using a simple logistic function [26], [25], [3]:

p(li = 1 | x, I) =
1

1 + e[dCi(x;I)+c]
, (2)

where c is the logistic function intercept and d is the regression

coefficient. The classifier Ci(x; I) distinguishes between the align-

ment/misalignment for a landmark location xi. We use Linear

SVM for training the patch experts as:

Ci(x; I) = w
⊺

iP(F (x; I)) + bi (3)

where wi stands for gain and bi indicates bias, F (xi; I) is the

vectorized feature vector extracted from the image patch centered

at xi, and the function P performs normalization so that the result

will have the property of zero mean and unit variance.

In the CLMs, the objective is to create a shape model from the

parameters p such that the positions of the created model on the

image correspond to well-aligned parts. In probabilistic terms, we

want to find the shape s(p) by solving the following:

p = argmax
p

p(s(p) | {l1 = 1, . . . , ln = 1}, I)

= argmax
p

p(p)p({l1 = 1, . . . , ln = 1} | s(p), I)

= argmax
p

p(p)
n
∏

i=1

p(li = 1 | xi(p), I).

(4)

In [25], in order to solve the optimization problem of (4), a

non-parametric estimate of the response map is made in the form

of a homoscedastic isotropic Gaussian kernel density estimate.

The resulting optimization problem was solved in [25] using an

Expectation-Maximization (EM) algorithm. This method is known

as Regularized Landmark Mean-Shift (RLMS) [25] and has been

shown to produce state-of-the-art results.



0162-8828 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2014.2362142, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

B. Discriminative Fitting of Response Maps (DFRM)

Instead of maximizing the probability of a reconstructed shape

[25], the alignment objective of the proposed part-based approach

is to directly find shape model parameters that maximize the

probability of all the landmark points being aligned. For this

purpose, we propose to follow a discriminative regression based

approach for estimating the required shape model parameters p.

That is, we propose to find a mapping from the response map

estimate of shape perturbations to shape parameter updates.

In particular, let us assume that in the training set we introduce

a perturbation ∆p and compute the response map in a w×w win-

dow centered around each of the perturbed landmark points, repre-

sented by Ai(∆p) = [p(li = 1 | x+ xi(∆p)]. Then, from these

responses obtained from the perturbed shapes {Ai(∆p)}ni=1, we

want to learn a function f such that f({Ai(∆p)}ni=1) = ∆p.

We call this method Discriminative Fitting of Response Maps

(DFRM). Overall, the training procedure for the DFRM method

has two main steps. In the first step, the goal is to train a

dictionary for response map approximations. The second step

involves iteratively learning the parameter update model which

is achieved by a modified boosting procedure.

1) Training Part-Based Response Map Model: In this section,

the goal is to build a part-based response map texture model, i.e. a

dictionary of response maps, that can be used for representing any

instance of an unseen response map. We aim to train a separate

dictionary for the response maps obtained from each of the dis-

criminatively trained patch-experts in D (3). In other words, each

part-based response map texture model represents Ai(∆p) using

a small number of parameters. Let us assume we have a training

set of response maps {Ai(∆pj)}
T
j=1 for each landmark point i

with various perturbations (including no perturbation, as well).

The simplest way to learn the dictionary for the i-th landmark

point is to vectorize the training set of response maps and arrange

them in a matrix Xi = [vec(Ai(∆p1)), . . . , vec(Ai(∆pT ))]. As

we motivated in Section II, we decompose Xi ≈ ZiHi + Mi,

where Hi = [hi(∆p1) . . .hi(∆pT )]. Then, instead of finding a

regression function from the perturbed responses {Ai(∆p)}ni=1,

we aim at finding a function from the low-dimensional weight

vectors {hi(∆p)}ni=1 to the update of the 3D shape model

parameters ∆p.

As we motivated in Section II, extraction of the corresponding

weight vector hi can be performed efficiently by a simple projec-

tion on the PCA basis. An illustrative example of how effectively

a response map can be reconstructed by a small number of PCA

components (for example, top 5 PCA components) is shown in

Figure 2. We refer to this dictionary as the Part-Based Response

Map Model represented by:

RP = {M,V} : M = {mi}
n
i=1 and V = {Zi}

n
i=1 (5)

where, mi and Zi are the mean vector and PCA basis, respec-

tively, obtained for each of the n landmark points.

2) Training DFRM Update Model: Given a set of N training

images I and the set of corresponding shapes S, the goal is to iter-

atively model the relationship between the joint low-dimensional

projection of the response maps, obtained from the part-based

response map model RP , and the shape model parameters update

(∆p). For this, we propose to use a modified boosting procedure

in that we uniformly sample the 3D shape model parameter

space, which controls all of the landmark positions simultaneously,

within a pre-defined range around the ground truth parameters

pg (1), and iteratively model the relationship between the joint

low-dimensional projection of the response maps at the current

sampled shape (represented by tth sampled shape parameter pt)

and the shape model parameter update ∆p (∆p = pg −pt). For

the experiments in this paper, the predefined range is set to ±15
pixels for translation, ±10◦ for rotation, ±0.1 for scaling and 1.5
standard deviation (based on the available training set) for the

non-rigid parameters (q). The step-by-step training procedure is

as follow:

Algorithm 1: Training DFRM Update Model

Require: PDM (1), I, S, RP (5).

Get initial shape parameters sample set P(1) (6).1

Get initial joint low-dimensional projection set χ(1) (7).2

Generate training set for first iteration T (1).3

for i = 1→ η do4

Compute the weak learner F(i) using T (i).5

Propagate T (i) through F(i) to generate T
(i)
new .6

Eliminate converged samples in T
(i)
new to generate T (i+1).7

if T (i+1) is empty then8

All training samples converged. Stop Training.9

else10

Get new shape parameters sample set (6) from images11

whose samples are eliminated in Step 7.
Get new joint low-dimensional projection set (7) for the12

samples generated in Step 11.

Generate new replacement training set T
(i)
rep.13

for j = 1→ (i− 1) do14

Propagate T
(i)
rep through F(j).15

Eliminate converged samples in T
(i)
rep.16

Update T (i+1) ← {T (i+1), T
(i)
rep}17

Output : DFRM Update Model U (10)

Let T be the number of shape parameters sampled from the

shapes in S, such that the initial sampled shape parameter set is

represented by P(1):

P(1) = {p
(1)
j }

T
j=1 and ψ

(1) = {∆p
(1)
j }

T
j=1 (6)

‘1’ in the superscript represents the initial set (first iteration).

Next, extract the response maps for the shape represented by

each of the sampled shape parameters in P(1) and compute

the low-dimensional projection using RP . Then, concatenate the

projections to generate a joint low-dimensional projection vector

c(∆p
(1)
j ) = [hT

1 (∆p
(1)
j ), . . . ,hT

n (∆p
(1)
j )]T , one per sampled

shape, such that:

χ
(1) = {c(∆p

(1)
j )}Tj=1 (7)

where, χ(1) represents the initial set of joint low-dimensional

projections obtained from the training set. Now, with the training

set T (1) = {χ(1), ψ(1)}, we learn the parameter update function

for the first iteration i.e. a weak learner F (1):

F (1) : ψ(1) ← χ
(1)

(8)

For this, any regression method can be employed in our frame-

work. In this paper, we have chosen a simple Linear Support

Vector Regression (SVR) [15] for each of the shape parameters.

In total, we used 16 shape parameters : 6 global shape parameters

(representing the six degrees of freedom corresponding to the

3D rigid transformation), and the top 10 local shape parameters

(represented by q(1) corresponding to the 3D non-rigid shape

variations). Structured regression based approaches can also be

employed but we opted to show the power of our method with a

simple regression framework.

Next, after learning F (1), we propagate all the samples from

T (1) through F (1) to generate T 1
new and eliminate the converged

samples in T
(1)
new to generate T (2) for the second iteration. Here,

convergence means that the shape root mean square error between
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the predicted shape and the ground truth shape is less than a

threshold (for example, set to 2 pixels in this paper).

Now, in order to replace these eliminated converged samples,

we generate a new set of samples (6)(7) from the same images in I
whose samples converged in the first iteration. We propagate this

new sample set through F1 and eliminate the converged samples

to generate an additional replacement training set for the second

iteration T
(2)
rep . The training set for the second iteration is updated:

T (2) ← {T (2)
, T (2)

rep} (9)

and the parameter update function for the second iteration is

learned i.e. a weak learner F (2). The sample elimination and

replacement procedure for every iteration has two-fold benefits.

Firstly, it plays an important role in insuring that the progressive

parameter update functions are trained on the tougher samples

that have not converged in the previous iterations. And secondly,

it helps in regularizing the learning procedure by correcting the

samples that diverged in the previous iterations due to overfitting.

The above training procedure is repeated iteratively until all

the training samples have converged or the maximum number of

desired training iterations (η) have been reached. The resulting

DFRM update model U is a set of weak learners:

U = {F (1)
, . . . ,F (η)} (10)

The training procedure is outlined in Algorithm 1.

3) Alignment Procedure: Given the test image Itest, the param-

eter update model U is used to compute the additive parameter

update ∆p iteratively. The efficacy of alignment is measured as

the alignment score that is computed for each iteration by simply

adding the responses (i.e. the probability values) at the landmark

locations estimated by the current shape estimate of that iteration.

The final aligned shape is the shape with the highest alignment

score. The alignment procedure is outlined in Algorithm 2.

Algorithm 2: DFRM Alignment Procedure

Require: Itest and sinitial

Compute ptest (1) from sinitial1

Best = 0;2

for i = 1→ η do3

Extract response maps for ptest and compute the joint4

low-dimensional projection (ctest)
∆p = F i(ctest)5

ptest ← ptest +∆p6

Compute Score for ptest7

if Score > Best then8

pfinal = ptest9

Best = Score10

Compute stest from pfinal (Eqn. 1)11

Output : Final Shape (stest)

IV. THE HOLISTIC APPROACH

A. Background

The most well known generative holistic non-rigid face align-

ment method is the Active Appearance Model [6], [2]. An AAM

is fully defined by the triplet A = {S, T ,W (x;ps)} where

S = {s0,Φs} and T = {t0,Φt} are the shape and texture

models, while W is a function that defines the motion model (e.g.

piece-wise affine warps or thin-plate splines [2], [1]). The problem

of fitting the modelA to a vectorized test image t (originated from

an image I) is formulated as:

{po, co} = argmin
p,c

∥

∥t(W (x;p))− t0 −Φtc
∥

∥

2
. (11)

Gauss-Newton gradient descent is the standard choice for solving

(11). Please see [2] for details.

Mean Shape Warped Filter Responses

Filter Responses

Fig. 4: The Holistic Response Map Based Texture Model.

B. Generative Fitting of Response Maps (GFRM)

The proposed holistic approach that relies on the response map

based texture model is akin to the AAM framework [6], [2] in

that it uses the 2D shape model and the motion model defined

via warping function W . However, unlike the AAM framework

that uses the facial appearance to drive the alignment procedure,

the proposed holistic approach uses the response maps obtained

from the discriminatively trained patch-experts. Here, the motion

model defines how, given the shape, the corresponding response

maps should be warped into the canonical reference frame (i.e. the

mean shape). In this paper, we use the Piecewise Affine Warping

[6], [2] method to generate these shape-free response maps.

The model setup for the holistic approach is {D,S,W}, where

D is a set of patch-experts, S is the 2D shape model and W is

the motion model. The 2D shape model S is parameterized by

p = [s, r, tx, ty,q], where, s, r, tx and ty are the global scaling,

rotation and translations respectively, and

s = s0 +Φsq (12)

where, s0 is the mean shape and Φs is the shape basis learned

from a set of training shapes by applying PCA, and q is the non-

rigid shape parameter vector.

Let us assume we have a training image I and the corresponding

2D shape s, we compute the response maps {A1, . . . ,An} where

N is the number of landmark points. Next, we generate the shape-

free response maps
{

Ai(W (x;p))
}n

i=1
i.e. warp the response

maps to the mean shape. The response map based texture vector

tI is generated by vectorizing the shape-free response maps and

stacking them together i.e.

tI =
[

vec(A1(W (x;p))); . . . ; vec(An(W (x;p)))
]

(13)

The whole procedure is summarized in Figure 4. Let us assume

we have M training images, then the holistic response map texture

model is obtained by simply applying PCA to a set of shape-free

response map based texture vectors
{

ti
}M

i=1
as

t = t0 +Φtc (14)

where RH = {t0,Φt} is the holistically trained response map

texture model, t0 is the mean shape-free response map texture

vector and Φt = [Φ1 . . .ΦK ] is the texture basis matrix repre-

sented by a set of K known response map texture variations Φ.

As a result, the complete model setup for the proposed holistic

approach is {S,D,W,RH}.
The goal of the Generative Fitting of Response Maps (GFRM)

is to infer the shape model parameters p (12) and the response

map based texture model parameters c (14). Given a test image

I, the alignment objective is to minimize the ℓ2-norm of the

error between the shape-free response maps generated by applying
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patch-experts D (3) to I, represented by tI (13), and the response

maps approximations synthesized via holistic response map tex-

ture model RH with respect to the model parameters:
{

pI, cI

}

= argmin
p,c
||tI − t0 −Φtc||

2
. (15)

This optimization can be solved very efficiently using the inverse

compositional algorithms [2] which is a variation of the Gauss-

Newton optimization procedure. Within this framework, we focus

mainly on the project-out algorithm and its alternating extension

for the sake of computational efficiency.

1) Project-out method: In the project-out method, the optimiza-

tion is formulated such that the shape model parameters p are

found by the non-linear optimization in the subspace orthogonal

to the texture basis Φt, thereby, ignoring the texture variation. In

particular, the following optimization problem is solved:

{po} = argmin
p

∥

∥tI − t0
∥

∥

2

span(Φt)⊥
. (16)

See Appendix B in the supplementary material for details.

2) Alternating method: The project-out optimization procedure

described above is extremely fast, but has been shown to not be

robust especially for the case of considerable texture variation

[13]. Unfortunately, texture variation coincides with the in-the-

wild setting assumed in this work. An alternative would be to

simultaneously optimize shape and texture but this is extremely

slow [13]. Fortunately, an alternative option exists via optimizing

using an alternating optimization strategy. Suppose that the shape

parameters are fixed. Then an update for the response map based

texture model parameters can be readily obtained from ∆c =
ΦT

t (tI−t0) and c← c+∆c. Once c has been updated, one can

compute the reconstructed response maps from trec = t0 +Φtc.

The shape parameters can be updated by solving the following

Lukas-Kanade problem:

pI = argmin
p
||tI − trec||

2
. (17)

See Appendix B in the supplementary material for details.

V. EXPERIMENTS AND DISCUSSION

We conducted generic non-rigid face alignment experiments

on the controlled and the uncontrolled (a.k.a. wild) databases.

For controlled settings, we use Multi-PIE [14] database. For

uncontrolled settings, we use LFPW [4], Helen [17] and AFW [29]

databases. For all experiments, we consider the independent model

(p1050) of the tree-based method [29], released by the authors,

as the baseline for comparison. For the multi-view variant of the

proposed approach, the pose range of ±30◦ in yaw direction is

divided into three view-based models, with each covering −30◦

to −15◦, −15◦ to 15◦, and 15◦ to 30◦ in yaw directions. Other

non-frontal poses have been excluded for the lack of ground-truth

annotations. See Appendix C in the supplementary material for a

step-by-step description to train robust patch-experts used for the

following experiments.

A. Overview of Results

We test the performance of the proposed DFRM (Section

III-B), GFRM-PO (Section IV-B) and GFRM-Alternating (Section

IV-B) methods against the existing state-of-the-art RLMS [25]

method and the tree-based method [29]. Since the main focus

of this paper is on in-the-wild generic face alignment, we also

compare the performance of the proposed framework with the

very recently proposed Supervised Descent Method (SDM) [27]

on three very challenging in-the-wild databases. Note that [25]

[27] have not released their training code. Therefore, in order to

perform a fair comparison with RLMS and SDM, we developed

our own implementations and trained our own models using

exactly the same data as the other methods proposed in this paper.

Furthermore, thanks to the authors of [29] who made both the

training and testing code available for their algorithm, we used

their code for training the tree-based models. We have to highlight

once more that all the algorithms have been trained and tested on

the same data and using the same features. Finally, even though

we experimented with methodologies such as [19] that use generic

filters, these methodologies did not work well in generic alignment

scenarios, which is in line to the findings of [19].

• The Multi-PIE experiment focuses on accessing the perfor-

mance with combined identity, pose, expression and illumi-

nation variation. Overall, the GFRM-Alternating method and

the DFRM method show equally promising results over the

state-of-the-arts RLMS [25] and the tree-based method [29].

• LFPW, Helen and AFW experiments further verify the gen-

eralization capability of the proposed response map texture

model based framework to handle challenging uncontrolled

natural variations in that it outperforms the state-of-the-

art RLMS [25] and tree-based method [29] convincingly.

On these wild databases, the results show that GFRM-

Alternating is again the best performing method followed

by the DFRM and GFRM-PO method. The performance of

DFRM is comparable to SDM [27].

• The results on LFPW, Helen and AFW database also vali-

date one of the main motivations behind the proposed face

alignment framework i.e. the response maps extracted from

an unseen image can be very accurately represented by a

small set of parameters and are well suited for the task of

generic face alignment under uncontrolled natural settings.

B. Multi-PIE Database Experiments

For this experiment, images of all 346 subjects, with all six

expressions at frontal and non-frontal poses at various illumination

conditions are used. The training set consisted of roughly 8300

images which included the subjects 001-170 at poses 051, 050,

140, 041 and 130 with all six expressions at frontal illumination

and one other randomly selected illumination condition. The

multi-view RLMS-MPIE refers to the method trained using the

HOG feature based patch experts and the RLMS alignment

method (Section III-A). The multi-view DFRM-MPIE refers to

the method trained using the HOG feature based patch experts

and the proposed DFRM alignment method (Section III-B2). The

multi-view GFRM-PO-MPIE refers to the method trained using

the HOG feature based patch experts and the proposed GFRM-PO

alignment method (Section IV-B1). The multi-view GFRM-Alt-

MPIE refers to the method trained using the HOG feature based

patch experts and the proposed GFRM-Alternating alignment

method (Section IV-B2). For the tree-based method [29], we

trained the tree-based model p204-MPIE that shares the patch

templates across the neighboring viewpoints and is equivalent to

the multi-view approach adopted for other alignment methods,

using exactly the same training data for a fair comparison.

The Multi-PIE test set consisted of roughly 7100 images which

included the subjects 171-346 at poses 051, 050, 140, 041 and

130, with all six expressions, at frontal illumination and one

other randomly selected illumination condition. From the results

in Figure 5, we can clearly see that the proposed DFRM and

GFRM-Alternating methods outperform the existing RLMS and

the equivalent tree-based method (p204-MPIE). The GFRM-PO

method also outperforms the RLMS and the equivalent tree-based

method for majority of the Multi-PIE test set.
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Overall, GFRM-Alternating and DFRM are the two best per-

forming methods with both showing equally impressive landmark

localization accuracy

under controlled

settings. The qualitative

analysis of the results

suggest that the tree-

based methods [29],

although suited for

the task of face

detection and rough

pose estimation, are

not well suited for the

task of non-rigid face

alignment and landmark

localization. We believe

this is due to the use of
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Fig. 5: Multi-PIE Results

a tree-based shape model that allows for non-face like structures

to occur frequently, especially for the case of facial expressions.

See the sample alignment results in Figure 7. As for the overall

improvement, considering the normalized error (i.e. Shape RMSE

as the fraction of inter-ocular distance) of 0.05 as the benchmark

for very accurate landmark localization, the GFRM-Alternating

show a significant improvement of 20% over the RLMS and 30%

over the tree-based method. Whereas, the next best DFRM method

show an improvement of 16% over the RLMS and 26% over the

tree-based method.

C. Wild Database Experiments

To further test the ability of the proposed response map tex-

ture model based framework to handle unseen and uncontrolled

variations, we conduct experiments using three databases that

presents the challenge of wild natural settings. The Labeled Face

Parts in the Wild (LFPW) database [4] consist of the URLs

to 1100 training and 300 test images that can be downloaded

from internet. All of these images were captured in the wild

and contain large variations in pose, illumination, expression and

occlusion. We were able to download only 813 training images

and 224 test images because some of the URLs are no longer

valid. These images were manually annotated with 66 landmark

point locations to generate the LFPW ground-truth annotations.

On the other hand, the recently released Helen database [17]

consist of 2000 training images and 330 test images. All of

these images are collected from Flickr and present the challenge

of being captured under completely natural real-world settings.

From this, we manually annotated 890 training images and the

entire test set of 330 images with 66 landmark point locations

to generate the Helen ground-truth annotations. In addition, we

used the extremely challenging annotated faces in-the-wild (AFW)

database [29] to test the performance of the proposed methods

on a completely unseen in-the-wild testset. The AFW test set

consisted of 205 images with a total of 468 faces that were

manually annotated with 66 landmark point locations to generate

AFW ground-truth annotations.

To generate the wild training set, we augmented the Multi-

PIE training set (used in Section V-B) with the LFPW and Helen

training sets. The models trained using this wild training set

are referred as DFRM-Wild, GFRM-PO-Wild, GFRM-Alt-Wild,

RLMS-Wild and p204-Wild. In addition, we also compare the

performance of the proposed response-map texture model based

framework to the Supervised Descent Method (SDM) [27]. For

this, we trained both the single-view SDM (as originally proposed

in [27]) and the multi-view SDM. SDM-Singleview-Wild refers

to the single-view SDM trained using the HOG features and the

wild training set. SDM-Wild refers to the multi-view SDM trained

using the HOG features and the wild training set.

These were then used to perform non-rigid face alignment

on the LFPW, Helen and AFW test sets and the results are

reported in Figure 6. From these results, we can clearly see

the dominance of the proposed DFRM, GFRM-PO and GFRM-

Alternating methods over the RLMS and the equivalent tree-based

method p204. The performance of multi-view SDM approach is

comparable to that of DFRM. Considering the normalized error

of 0.05 as the benchmark for very accurate landmark localization,

GFRM-Alternating shows significant overall improvement of 20%

over the RLMS and 39% over the tree-based method. Whereas,

the DFRM method shows an overall improvement of 14.5% over

the RLMS and 33% over the tree-based method.

GFRM-Alternating method is consistently the best performing

method. Our results show that the proposed generative and dis-

criminative methods outperform other state-of-the-art approaches

under the generic face alignment scenario. Moreover, they also

demonstrate the ability to handle the challenging variations present

in the wild databases (pose, illumination, facial hair, glasses and

ethnicity). This result validates the main motivation behind the

proposed framework (i.e. the response maps extracted from an

unseen image can be very accurately represented by a small set of

parameters and are suited for the task of generic face alignment).

See the sample alignment results in Figure 7.

VI. CONCLUSION

In this paper, we proposed a new response map texture model

based generic face alignment framework that shows state-of-the-

art results in the wild. For this, firstly, we empirically validated

the superiority of the response map based texture model over the

pixel value based texture model. Secondly, within this framework,

we proposed a part-based alignment method (i.e. DFRM) and

two holistic model based alignment methods (i.e. GFRM-PO

and GFRM-Alternating) that can handle challenging in-the-wild

conditions. Overall, the proposed methods are highly efficient and

real-time capable.

The current MATLAB implementation of the multi-view

GFRM-Alternating, GFRM-PO and DFRM methods take 4

sec/image, 1 sec/image, and 1 sec/image, respectively, on an

Intel Xeon 3.60 GHz processor. Moreover, the current C/CUDA

implementation of DFRM method runs at 30-45 FPS on an

Intel Xeon 3.60 GHz processor with NVIDIA GeForce GTS 450

graphic card (192 Cores). In this implementation, the response

map for each landmark point is computed in parallel using CUDA,

allowing the DFRM fitting to perform in real-time. On the other

hand, the GFRM-Alternating method requires the Hessian and its

inverse to be computed at each iteration. Therefore, making a

real-time GFRM implementation is not straight-forward and is

left as future work. See supplementary material for additional

experimental results on benchmarking the accuracy fitting results

(Appendix D), in-the-wild occluded images (Appendix E) and

images under varying resolution (Appendix F).
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