1,187 research outputs found

    Generation of Formal Model Metrics for MOF based Domain Specific Languages

    Get PDF
    The assessment of quality in a software development process is vital for the quality of the final system. A number of approaches exist, which can be used to determine such quality properties. In a model-driven development process models are the primary artifacts. Novel technologies are needed in order to assess the quality of those artifacts. Often, the Object Constraint Language is used to formulate model metrics and to compute them automatically afterwards. This paper describes an approach for the generation of model metrics expressed as OCL statements based on a set of generic rules. These rules can be applied on any domain specific modeling languages for creating a basic set of metrics which can be tailored for the specific needs of a development process. The paper also briefly describes a prototype of a tool for the generation, computation, and management of these model metrics by using the Software Metrics Meta-model - SMM

    Generation of Formal Model Metrics for MOF based Domain Specific Languages

    Get PDF
    The assessment of quality in a software development process is vital for the quality of the final system. A number of approaches exist, which can be used to determine such quality properties. In a model-driven development process models are the primary artifacts. Novel technologies are needed in order to assess the quality of those artifacts. Often, the Object Constraint Language is used to formulate model metrics and to compute them automatically afterwards. This paper describes an approach for the generation of model metrics expressed as OCL statements based on a set of generic rules. These rules can be applied on any domain specific modeling languages for creating a basic set of metrics which can be tailored for the specific needs of a development process. The paper also briefly describes a prototype of a tool for the generation, computation, and management of these model metrics by using the Software Metrics Meta-model - SMM

    Quality-aware model-driven service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Quality aspects ranging from interoperability to maintainability to performance are of central importance for the integration of heterogeneous, distributed service-based systems. Architecture models can substantially influence quality attributes of the implemented software systems. Besides the benefits of explicit architectures on maintainability and reuse, architectural constraints such as styles, reference architectures and architectural patterns can influence observable software properties such as performance. Empirical performance evaluation is a process of measuring and evaluating the performance of implemented software. We present an approach for addressing the quality of services and service-based systems at the model-level in the context of model-driven service engineering. The focus on architecture-level models is a consequence of the black-box character of services

    Model-driven performance evaluation for service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Software quality aspects such as performance are of central importance for the integration of heterogeneous, distributed service-based systems. Empirical performance evaluation is a process of measuring and calculating performance metrics of the implemented software. We present an approach for the empirical, model-based performance evaluation of services and service compositions in the context of model-driven service engineering. Temporal databases theory is utilised for the empirical performance evaluation of model-driven developed service systems

    Using a Dynamic Domain-Specific Modeling Language for the Model-Driven Development of Cross-Platform Mobile Applications

    Get PDF
    There has been a gradual but steady convergence of dynamic programming languages with modeling languages. One area that can benefit from this convergence is modeldriven development (MDD) especially in the domain of mobile application development. By using a dynamic language to construct a domain-specific modeling language (DSML), it is possible to create models that are executable, exhibit flexible type checking, and provide a smaller cognitive gap between business users, modelers and developers than more traditional model-driven approaches. Dynamic languages have found strong adoption by practitioners of Agile development processes. These processes often rely on developers to rapidly produce working code that meets business needs and to do so in an iterative and incremental way. Such methodologies tend to eschew “throwaway” artifacts and models as being wasteful except as a communication vehicle to produce executable code. These approaches are not readily supported with traditional heavyweight approaches to model-driven development such as the Object Management Group’s Model-Driven Architecture approach. This research asks whether it is possible for a domain-specific modeling language written in a dynamic programming language to define a cross-platform model that can produce native code and do so in a way that developer productivity and code quality are at least as effective as hand-written code produced using native tools. Using a prototype modeling tool, AXIOM (Agile eXecutable and Incremental Objectoriented Modeling), we examine this question through small- and mid-scale experiments and find that the AXIOM approach improved developer productivity by almost 400%, albeit only after some up-front investment. We also find that the generated code can be of equal if not better quality than the equivalent hand-written code. Finally, we find that there are significant challenges in the synthesis of a DSML that can be used to model applications across platforms as diverse as today’s mobile operating systems, which point to intriguing avenues of subsequent research

    Distribution pattern-driven development of service architectures

    Get PDF
    Distributed systems are being constructed by composing a number of discrete components. This practice is particularly prevalent within the Web service domain in the form of service process orchestration and choreography. Often, enterprise systems are built from many existing discrete applications such as legacy applications exposed using Web service interfaces. There are a number of architectural configurations or distribution patterns, which express how a composed system is to be deployed in a distributed environment. However, the amount of code required to realise these distribution patterns is considerable. In this paper, we propose a distribution pattern-driven approach to service composition and architecting. We develop, based on a catalog of patterns, a UML-compliant framework, which takes existing Web service interfaces as its input and generates executable Web service compositions based on a distribution pattern chosen by the software architect

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache

    The Requirements Editor RED

    Get PDF

    A Model-Driven Architecture based Evolution Method and Its Application in An Electronic Learning System

    Get PDF
    Software products have been racing against aging problem for most of their lifecycles, and evolution is the most effective and efficient solution to this problem. Model-Driven Architecture (MDA) is a new technique for software product for evolving development and reengineering methods. The main steps for MDA are to establish models in different levels and phases, therefore to solve the challenges of requirement and technology change. However, there is only a standard established by Object Management Group (OMG) but without a formal method and approach. Presently, MDA is widely researched in both industrial and research areas, however, there is still without a smooth approach to realise it especially in electronic learning (e-learning) system due to the following reasons: (1) models’ transformations are hard to realise because of lack of tools, (2) most of existing mature research results are working for business and government services but not education area, and (3) most of existing model-driven researches are based on Model-Driven Development (MDD) but not MDA because of OMG standard’s preciseness. Hence, it is worth to investigate an MDA-based method and approach to improve the existing software development approach for e-learning system. Due to the features of MDA actuality, a MDA-based evolution method and approach is proposed in this thesis. The fundamental theories of this research are OMG’s MDA standard and education pedagogical knowledge. Unified Modelling Language (UML) and Unified Modelling Language Profile are hired to represent the information of software system from different aspects. This study can be divided into three main parts: MDA-based evolution method and approach research, Platform-Independent Model (PIM) to Platform-Specific Model (PSM) transformation development, and MDA-based electronic learning system evolution. Top-down approach is explored to develop models for e-learning system. A transformation approach is developed to generate Computation Independent Model (CIM), Platform-Independent Model (PIM), and Platform-Specific Model (PSM); while a set of transformation rules are defined following MDA standard to support PSM’ s generation. In addition, proposed method is applied in an e-learning system as a case study with the prototype rules support. In the end, conclusions are drawn based on analysis and further research directions are discussed as well. The kernel contributions are the proposed transformation rules and its application in electronic learning system
    corecore