

A Model-Driven Architecture based

Evolution Method and Its Application in

An Electronic Learning System

PhD Thesis

Yingchun Tian

Software Technology Research Laboratory

De Montfort University

October, 2012

To my husband, Delin Jing and

my mum, Ning Zhang

for their love and support

Declaration

I

Declaration

I declare that the work described in this thesis was originally carried out by me during

the period of registration for the degree of Doctor of Philosophy at De Montfort

University, U.K., from October 2008 to December 2011. It is submitted for the degree

of Doctor of Philosophy at De Montfort University. Apart from the degree that this

thesis is currently applying for, no other academic degree or award was applied for by

me based on this work.

Acknowledgements

II

Acknowledgements

For many years I had been dreaming about receiving a PhD, I would like to thank

many people who helped me in achieving this dream in different ways since I

undertook the work of this thesis.

My deepest gratitude goes to my supervisor, Professor Hongji Yang, for his guidance,

support and encouragement throughout my PhD career. He always provided me with

many invaluable comments and suggestions for the improvement of the thesis. I am

grateful for his leading role fostering my academic, professional and personal growth.

Many thanks go to Professor Hussein Zedan and Doctor Wenyan Wu, for examining

my PhD thesis and providing many helpful suggestions. My research career will

benefit tremendously from the research methodologies to which Professor Zedan and

Doctor Wu introduced me.

I would like to thank colleagues in Software Technology Research Laboratory at De

Montfort University, for their support and feedback, and for providing such a

stimulating working atmosphere, Professor Hussein Zedan, Doctor Feng Chen, Doctor

Amelia Platt, Doctor Antonio Cau, and many other colleagues.

In addition, I would like to thank the Graduate School Office at De Montfort

University for the outstanding management.

Finally, I wish to express thanks to my husband, Delin Jing, my mother, Ning Zhang,

and my parents in law for their love, encouragements, patience, and support over the

past years. This thesis is dedicated to them.

Abstract

III

Abstract

Software products have been racing against aging problem for most of their lifecycles,

and evolution is the most effective and efficient solution to this problem. Model-Driven

Architecture (MDA) is a new technique for software product for evolving development

and reengineering methods. The main steps for MDA are to establish models in different

levels and phases, therefore to solve the challenges of requirement and technology

change. However, there is only a standard established by Object Management Group

(OMG) but without a formal method and approach. Presently, MDA is widely

researched in both industrial and research areas, however, there is still without a smooth

approach to realise it especially in electronic learning (e-learning) system due to the

following reasons: (1) models’ transformations are hard to realise because of lack of

tools, (2) most of existing mature research results are working for business and

government services but not education area, and (3) most of existing model-driven

researches are based on Model-Driven Development (MDD) but not MDA because of

OMG standard’s preciseness.

Hence, it is worth to investigate an MDA-based method and approach to improve the

existing software development approach for e-learning system. Due to the features of

MDA actuality, a MDA-based evolution method and approach is proposed in this thesis.

The fundamental theories of this research are OMG’s MDA standard and education

pedagogical knowledge. Unified Modelling Language (UML) and Unified Modelling

Language Profile are hired to represent the information of software system from

different aspects. This study can be divided into three main parts: MDA-based evolution

method and approach research, Platform-Independent Model (PIM) to

Platform-Specific Model (PSM) transformation development, and MDA-based

Abstract

IV

electronic learning system evolution. Top-down approach is explored to develop models

for e-learning system. A transformation approach is developed to generate Computation

Independent Model (CIM), Platform-Independent Model (PIM), and Platform-Specific

Model (PSM); while a set of transformation rules are defined following MDA standard

to support PSM’ s generation. In addition, proposed method is applied in an e-learning

system as a case study with the prototype rules support. In the end, conclusions are

drawn based on analysis and further research directions are discussed as well. The

kernel contributions are the proposed transformation rules and its application in

electronic learning system.

Table of Contents

V

Table of Contents

Declaration ... I

Acknowledgements ... II

Abstract ... III

Table of Contents .. V

List of Figures ... X

List of Tables .. XVII

List of Acronyms ... XIX

Chapter 1 Introduction .. 1

1.1 Proposed Research and Overview of Problem .. 1

1.2 Research Objectives and Research Methods... 3

1.3 Research Questions and Hypotheses ... 5

1.4 Original Contributions .. 7

1.5 Success Criteria ... 8

1.6 Organisation of Thesis .. 9

Chapter 2 Background and Basic Concepts .. 12

2.1 Electronic Learning System .. 12

2.1.1 Electronic Learning .. 12

Table of Contents

VI

2.1.2 E-Learning Standards and Specifications .. 13

2.1.3 E-Learning 2.0 ... 14

2.1.4 Web-Based E-Learning Development ... 15

2.2 Meta Object Facility and Query/View/Transformation .. 19

2.2.1 Meta Object Facility .. 19

2.2.2 Query/View/Transformation .. 20

2.3 Basic Concepts and Related Terms ... 22

2.4 Summary ... 23

Chapter 3 Related Work .. 25

3.1 Unified Modelling Language .. 25

3.1.1 Unified Modelling Language 2.x ... 25

3.1.2 Unified Modelling Language and Model-Driven Architecture.................................. 29

3.1.3 UML Profile ... 31

3.2 Overview of Extensible Markup Language (XML), XML Metadata Interchange, and

Hypertext Preprocessor ... 34

3.3 Software Evolution ... 34

3.3.1 Software Changes and Evolution ... 34

3.3.2 Laws of Software Evolution .. 36

3.4 Model Driven Architecture and Model Driven Engineering .. 40

3.4.1 Model Driven Engineering... 40

3.4.2 Model-Driven Architecture .. 42

3.4.3 Model-Driven Architecture Languages and Tools ... 49

3.4.4 Model Driven Architecture and Transformation Today .. 55

Table of Contents

VII

3.5 Software Engineering Creative Computing .. 60

3.5.1 General Discussion .. 61

3.5.2 Classification of Software Engineering Principles .. 62

3.5.3 Software Engineering Creative Computing Application in an E-Learning System ... 63

3.6 Related Projects .. 66

3.7 Summary ... 67

Chapter 4 Proposed E-Learning Modelling .. 69

4.1 E-Learning Domain Modelling ... 69

4.1.1 E-Learning Standard: Learning Technology Systems Architecture 69

4.1.2 Pedagogical Strategy .. 72

4.1.3 Three Models ... 73

4.2 Model-View-Controller E-Learning Modelling .. 89

4.2.1 Model-View-Controller Modelling .. 90

4.2.2 MDA-Based Modelling Structure .. 94

4.3 E-Learning Domain Framework ... 97

4.4 Summary ... 98

Chapter 5 A Proposed Approach to Model Driven Architecture based Evolution 100

5.1 A Model-Driven Architecture based Evolution Method ... 100

5.1.1 Computation Independent Model ... 102

5.1.2 Platform-Independent Model ... 105

5.1.3 Platform-Specific Model and Code Development Method 107

5.2 A Model-Driven Architecture based Evolution Process ... 109

Table of Contents

VIII

5.2.1 Approach Overview ... 109

5.2.2 Vocabularies Extraction ... 110

5.2.3 Ontologies Classification ... 111

5.2.4 PIM Generation .. 117

5.3 Summary ... 120

Chapter 6 PIM to PSM Transformation .. 122

6.1 Scope ... 122

6.2 Transformation Architecture ... 123

6.3 Source Model and Metamodel of Source Model .. 125

6.3.1 Fundamental Model Elements for Metamodel of Source Model 125

6.3.2 Fundamental Model Elements for Source Model .. 130

6.4 Target Model and Metamodel of Target Model .. 134

6.4.1 Fundamental Model Elements for Metamodel of Target Model.............................. 134

6.4.2 Fundamental Model Elements for Target Model ... 142

6.5 Transformation Rules .. 147

6.5.1 Metamodel for Transformation Model .. 147

6.5.2 Transformation Model ... 155

6.6 Mapping Rules Implementation .. 157

6.7 Summary ... 163

Chapter 7 Case Study: ElectroAcoustic Resource Site II ... 165

7.1 Overview ... 165

7.2 EARSII System Background and Issues ... 166

Table of Contents

IX

7.2.1 EARSI Basic Introduction ... 166

7.2.2 EARS II .. 167

7.3 MDA-Based EARSII System Development Approach .. 171

7.3.1 Computation Independent Model ... 171

7.3.2 Platform-Independent Model ... 174

7.3.3 Platform-Specific Model .. 175

7.3.4 Code Packages ... 177

7.4 Toolkit ... 181

7.5 Prototype Screen Shot ... 188

7.6 Summary ... 193

Chapter 8 Conclusions .. 195

8.1 Summary of Thesis ... 195

8.2 Revisiting Original Contributions ... 196

8.3 Evaluation ... 198

8.3.1 Answering Research Questions ... 198

8.3.2 Revisiting the Measure of Success ... 202

8.4 Limitations .. 205

8.5 Further Work ... 205

References ... 207

Appendix A Prototype of EARS II ... 217

Appendix B List of Publications by Candidate ... 241

List of Figures

X

List of Figures

Figure 2-1. Technology-Based Learning Structure ... 12

Figure 2-2. Overview of Three-Tier Application ... 16

Figure 2-3. MVC Concept .. 17

Figure 2-4. MVC Collaboration Diagram ... 18

Figure 2-5. A MVC-Based PHP Project Example ... 18

Figure 2-6. MOF Meta-Levels Hierarchy [32] .. 19

Figure 2-7. Relationships Between QVT Metamodels [74] ... 21

Figure 3-1. S-Type ... 37

Figure 3-2. P-Type ... 37

Figure 3-3. E-Type ... 38

Figure 3-4. MDA Overview Structure [73] .. 42

Figure 3-5. MDA Structure Explanation ... 43

Figure 3-6. MDA Software Development Life Cycle ... 46

Figure 3-7. MDA Layered Architecture ... 47

Figure 3-8. MDA Framework .. 48

Figure 3-9. Component Structure of Interaction Learning Model 64

file:///C:/Users/Lynn/Desktop/YTian_Thesis_withAmendments.docx%23_Toc338891102
file:///C:/Users/Lynn/Desktop/YTian_Thesis_withAmendments.docx%23_Toc338891103
file:///C:/Users/Lynn/Desktop/YTian_Thesis_withAmendments.docx%23_Toc338891107

List of Figures

XI

Figure 4-1. The LTSA Abstraction-Implementation Layers [35] 70

Figure 4-2. The LTSA System Components [35] ... 71

Figure 4-3. Step by Step Learning Model Components ... 75

Figure 4-4. System Activity Diagram for Step by Step Learning Model 77

Figure 4-5. Optional Learning Model Components .. 80

Figure 4-6. System Activity Diagram for Optional Learning Model 81

Figure 4-7. Interaction Learning Model Components ... 84

Figure 4-8. Overview System Activity Diagram for Interaction Learning Model 87

Figure 4-9. Study Approach Activity Diagram for Interaction Learning Model 88

Figure 4-10. MVC Associations .. 90

Figure 4-11. Advanced MVC-Based Modelling Structure... 93

Figure 4-12. MDA-Based MVC E-Learning Structure .. 94

Figure 4-13. Modelling Structure Layers .. 95

Figure 4-14. MDA-Based E-Learning Domain Architecture Overview 97

Figure 5-1. Proposed MDA-Based System Development Lifecycle 101

Figure 5-2. Main Activities in PIM Development [102] .. 105

Figure 5-3. Main Activities in PSM and Code Development [102] 108

Figure 5-4. Ontology-Based PIM Modelling Approach .. 109

file:///C:/Users/Lynn/Desktop/YTian_Thesis_withAmendments.docx%23_Toc338891131

List of Figures

XII

Figure 5-5. Interaction Learning Model Components’ Structure 112

Figure 5-6. Reference Ontologies Structure .. 113

Figure 5-7. Transformation Rules -- AO to PIMs .. 117

Figure 6-1. Transformation Architecture .. 123

Figure 6-2. Layers of Transformation Architecture .. 124

Figure 6-3. Model for System ... 126

Figure 6-4. Model for User .. 126

Figure 6-5. Model for Content ... 126

Figure 6-6. Model for Navigation .. 127

Figure 6-7. Model for Resource Database .. 127

Figure 6-8. Model for Record Database .. 127

Figure 6-9. Stereotype Classes Relationship on Metamodel for Source Model 128

Figure 6-10. Level Structure of Metamodel for Source Model Stereotype Classes 130

Figure 6-11. Model for eLearningSys.. 131

Figure 6-12. Model for Learner .. 131

Figure 6-13. Model for Coach ... 131

Figure 6-14. Model for Admin ... 131

Figure 6-15. Model for LearnerRec .. 132

List of Figures

XIII

Figure 6-16. Model for CoachRec ... 132

Figure 6-17. Model for AdminRec ... 132

Figure 6-18. Model for Content ... 132

Figure 6-19. Model for Resource .. 133

Figure 6-20. Model for Navigation.. 133

Figure 6-21. Relationship in Source Model .. 133

Figure 6-22. Model for Login .. 134

Figure 6-23. Model for Logout .. 135

Figure 6-24. Model for UserInfo ... 135

Figure 6-25. Model for Content ... 135

Figure 6-26. Model for NavBar ... 135

Figure 6-27. Model for View ... 135

Figure 6-28. Metamodel of Target Model: View Models’ Relationship...................... 136

Figure 6-29. Model for LoginRsp .. 137

Figure 6-30. Model for LogoutRsp .. 137

Figure 6-31. Model for UserInfoCtr .. 137

Figure 6-32. Model for ContCtr .. 138

Figure 6-33. Model for NavBarCtr ... 138

List of Figures

XIV

Figure 6-34. Model for Evaluation .. 138

Figure 6-35. Model for Controller .. 139

Figure 6-36. MetaModel for Target Model: Controller Models’ Relationship 139

Figure 6-37. Model for DBConn ... 140

Figure 6-38. Model for RecDBConn ... 140

Figure 6-39. Model for ResDBConn.. 141

Figure 6-40. Model for DBEdit ... 141

Figure 6-41. Model for MVC’s Model ... 141

Figure 6-42. MetaModel for Target Model: Model Elements Relationship 142

Figure 6-43. View, Controller, and Model Metamodel Relationship 142

Figure 6-44. Model for Learner’s View... 143

Figure 6-45. Model for Coach’s View ... 144

Figure 6-46. Model for Admin’s View ... 145

Figure 6-47. Model for Mb:Controller .. 146

Figure 6-48. Model for Mb:Model .. 147

Figure 6-49. A Simple Metamodel for Source Model .. 157

Figure 6-50. A Simple Metamodel for Target Model .. 158

Figure 6-51. A Source Model Example ... 159

List of Figures

XV

Figure 6-52. A Target Model Example .. 162

Figure 7-1. Reference Ontologies (RO) Structure ... 172

Figure 7-2. Generated PIM for EARS II .. 174

Figure 7-3. PSM View Model for EARS II ... 175

Figure 7-4. PSM Controller Model for EARS II .. 176

Figure 7-5. PSM Model Model for EARS II ... 176

Figure 7-6. PSM Structure for EARS II ... 177

Figure 7-7. Structure of View Package .. 178

Figure 7-8. Structure of Controller Package ... 179

Figure 7-9. Structure of Model Package .. 180

Figure 7-10. Learner Login Interface in EARSII Prototype .. 189

Figure 7-11. Home Page in EARSII Prototype.. 189

Figure 7-12. Navigation Interfaces in EARSII Prototype 1... 190

Figure 7-13. Navigation Interfaces in EARSII Prototype 2... 190

Figure 7-14. Navigation Interfaces in EARSII Prototype 3... 191

Figure 7-15. Content Page with Sound Player .. 191

Figure 7-16. Content Page with Picture .. 192

Figure 7-17. Coach Login Interface in EARSII Prototype .. 192

List of Figures

XVI

Figure 7-18. Coach Home Page in EARSII Admin System ... 193

Figure 7-19. Coach Edit Page in EARSII Admin System .. 193

List of Tables

XVII

List of Tables

Table 3-1. UML Structure .. 27

Table 3-2. Lehman’s Laws of Software Evolution [45] ... 40

Table 3-3. Explanation of Well-Formedness Rules [57] ... 60

Table 3-4. Some of The Semantics for The Proposed Notation [57] 60

Table 4-1. Basic E-Learning Functions ... 91

Table 4-2. Functions Refining and Categories Based on MVC Pattern 93

Table 5-1. Format of a Set of Vocabularies ... 111

Table 5-2. Reference Ontologies List for General E-Learning System 115

Table 5-3. Application Ontologies Result of Step (1) .. 115

Table 5-4. Application Ontologies Result of Step (2) .. 116

Table 5-5. Application Ontologies Result of Step (3) .. 116

Table 6-1. Group 1 Rules and Its Explanations: Stereotype class: System 150

Table 6-2. Group 2 Rules and Its Explanations: Stereotype class: Content 151

Table 6-3. Group 3 Rules and Its Explanations: Stereotype class: User 151

Table 6-4. Group 4 Rules and Its Explanations: Stereotype class: Record 152

Table 6-5. Group 5 Rules and Its Explanations: Stereotype class: Resource 153

List of Tables

XVIII

Table 6-6. Group 6 Rules and Its Explanations: Stereotype class: Navigation 153

Table 6-7. Group 7 Rules and Its Explanations: Compulsory Rules 155

Table 7-1. Extracted Requirement Vocabularies ... 172

Table 7-2. Application Ontologies Result of Step 1 ... 173

Table 7-3. Extra Vocabularies ... 173

Table 7-4. Application Ontologies Result of Step 2 ... 174

Table 7-5. Codes in “learnerLogin.php” .. 179

Table 7-6. Codes in “logoutRsp.php” ... 180

Table 7-7. Codes in “learnerRecDBConn.php” .. 181

Table 7-8. Open Source UML Tools .. 183

Table 7-9. Commercial UML Tools ... 187

List of Acronyms

XIX

List of Acronyms

ADL Advanced Distributed Learning

AO Application Ontologies

CBD Component-based Development

CIM Computation Independent Model

CORBA Common Object Request Broker Architecture

CWM Common Warehouse Metamodel

DSL Domain-Specific Language

EARS ElectroAcoustic Resource Site

EF Eclipse Foundation

EJB Enterprise JavaBeans

EMF Eclipse Modelling Framework

GMF Graphical Modelling Framework

J2EE Java 2 Platform Enterprise Edition

LTSA Learning Technology Systems Architecture

MDA Model-Driven Architecture

MDA-SDLC MDA-based System Development Lifecycle

MDE Model Driven Engineering

MOF Meta Object Facility

MVC Model-View-Controller

NLP Natural Language Processing

OMG Object Management Group

OO Object-Oriented

OOP Object-Oriented Programming

PHP Hypertext Preprocessor

List of Acronyms

XX

PIM Platform-Independent Model

PSM Platform-Specific Model

QVT Query/View/Transformation

RO Reference Ontologies

SCORM Sharable Content Object Reference Model

SECC Software Engineering Creative Computing

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SPEM Software & Systems Process Engineering Metamodel

UML Unified Modelling Language

W3C World Wide Web Consortium

WSDL Web Service Description Language

XMI XML Metadata Interchange

XML Extensible Markup Language

Chapter 1. Introduction

1

Chapter 1

Introduction

Objectives

 To observe the need for the Mode-Driven Architecture based software

evolution method

 To explain the research objectives and select the research method

 To discuss research questions and develop research propositions

 To highlight original contributions and define the measure of success

 To outline the organisation of the thesis

1.1 Proposed Research and Overview of Problem

The term “software evolution” is currently a popular and well-accepted one within

both industry and research area, which implies that people have already noticed that

software are facing a rapidly aging problem caused by many changes in requirement,

maintenance, development, and so on.

A software evolution process is a combination of several software processes working

on corresponding software. These software processes are interrelated in some ways. In

software evolution process, there is a framework supporting evolution in software.

Meanwhile, workflow is another presentation for software evolution.

Chapter 1. Introduction

2

Electronic learning, abbreviated as e-learning, is generally means all forms of

electronic supported learning and teaching. It aims to effect the construction of

knowledge with reference to individual experience, practice and knowledge of learner

[100]. E-learning can be considered as an information and communication system,

whether networked learning or not, serving as specific media to implement various

learning processes [100]. In last decade, there are thousands e-learning industries have

been established in worldwide. Obliviously, e-learning is taking an important role in

current and future educational area.

E-learning system is mainly based on internet and multimedia technologies. Consulting,

content, technologies, services and support are identified as the five key sectors of the

e-learning industry [67]. Meanwhile, there are five parts are generally considered as

the key elements of the e-learning system, which are content, display, navigation,

evaluation, and communication [5, 42, 58, 65, 87, 97]. There are various standards

proposed for e-learning system, such as the Sharable Content Object Reference Model

(SCORM) which is a model for defining, packaging, and managing learning objects,

and LTSA which is a framework specifying a high level architecture for information

technology supported system [42]. However, there is no one standard process for

e-learning system development.

Model-Driven Architecture (MDA) is a new technique for software product for evolving

development and reengineering methods. The main steps for MDA are to establish

models in different levels and phases, therefore to solve the challenges of requirement

and technology change. However, there is only a standard established by Object

Management Group (OMG) but without a formal method and approach. Presently,

MDA is widely researched in both industrial and research areas, however, there is still

without a smooth approach to realise it especially in e-learning system due to the

following reasons: (1) models’ transformations are hard to realise because of lack of

Chapter 1. Introduction

3

tools, (2) most of existing mature research results are working for business area but not

education area, and (3) most of existing model-driven researches are based on

Model-Driven Development (MDD) but not MDA because of OMG standard’s

preciseness.

Hence, this thesis is trying to provide solutions to these problems. The research aims to

investigate an MDA-based approach and evolution method to improve the existing

software development approach for e-learning system, therefore, to address discussed

issues.

1.2 Research Objectives and Research Methods

The research described in this thesis has following objectives:

 To develop a Model-Driven Architecture based evolution method

 To create a guideline for electronic learning domain modelling

 To define a transformation method for the Model-Driven Architecture based

approach, especially for mapping Platform Independent Model to Platform

Specific Models

 To deploy and therefore to validate a Model-Driven Architecture based

approach’s application in an electronic learning system

The proposed research aims to build a Model-Driven Architecture based evolution

method and to apply the approach in an electronic learning system. This section

describes the research methods applied in this thesis, which links the knowledge

coming from research to the practical outcomes. The research field in this thesis belongs

to software engineering. The research method applied in this thesis is the combination of

Chapter 1. Introduction

4

empirical and constructive research that is of both high practical utility and academic

merit. The basic methods used in this thesis are summarised as follows:

 Critical Literature Review: it involves reviewing readily available materials.

It has been achieved and reported in Chapter 2. The review concentrated on

model-driven engineering, model-driven architecture, software evolution, and

electronic learning.

 Methodology: a methodology is proposed in the thesis for model-driven

architecture based evolution and implementation for electronic learning system

development, which links models and system implementation.

 Positivism: it is applied to increase the confidence on proposed method and

approach through empirical observation on transformation rules’

implementation and proposed method’s application.

 Formal method: With the support of the mathematically proved formula and

existing modelling standards, formal methods provide system development

with (semi-) automatic solutions.

 Cognitive theory: it mainly relies on domain knowledge and experience in this

thesis to support electronic learning modelling.

 Quantitative method: the proposed research reflects qualitative method by

discussing “wh-questions” and the discussion of the more specific questions

such as "how many" and "how often". Generally speaking, qualitative method

provides the precondition of the usage of quantitative method.

 Modelling: the proposed research studies model-driven architecture based

development method and defines meta-models to support transformation.

Chapter 1. Introduction

5

Furthermore, the thesis designs the architecture for electronic learning system

representing by models.

 Classification: this thesis studies electronic learning system, therefore, different

categories of users and functions are required to be clarified. Additionally,

models need to be grouped based on development architecture and design

pattern.

1.3 Research Questions and Hypotheses

Research questions are the core part of the structure of the proposed research. The

principle research question in this study can be formulated as follows:

How can software systems, especially electronic learning system, be developed

maximum automatically by Model-Driven Architecture theory?

The research work described in this thesis aims to address this research question

effectively. In order to achieve this aim, a set of manageable and tractable

sub-questions are defined that address the problem in details.

RQ1: What is the proper development approach to achieve the requirement of

Model-Driven Architecture standard?

 Which models are necessary based on Model-Driven Architecture standard?

 How to present those models to meet standard’s requirements?

 How to organise models’ structure following Model-Driven Architecture

standard?

RQ2: How to realise transformations for Model-Driven Architecture based electronic

learning system development approach?

Chapter 1. Introduction

6

 What is transformation method in the approach?

 Which phases need transformations?

 Which mapping rules should be followed in each transformation step?

RQ3: What is the proper way to modelling electronic learning system?

 What are basic functions required in electronic learning domain modelling?

 Which standards, strategies, or patterns should be involved to support domain

modelling for electronic learning?

 How to organise domain models to meet requirements on Model-Driven

Architecture based development approach?

RQ4: What is the Model-Driven Architecture based development process for electronic

learning system?

 Which phases are necessary in this development process?

 What elements should be presented in each phase?

 How to get each model’s elements automatically?

 How to define and represent the relationships between models?

RQ5: What kind of tools is capable to support the proposed Model-Driven Architecture

based approach?

In order to explore these research questions, a series of research propositions are

developed. The underlying proposition of this thesis is:

Model-Driven Architecture can be used to establish an approach for evolution of

electronic learning system in order to automate processes in development and

maintenance and, as a result, improves the efficiency of Model-Driven

Architecture application in electronic learning domain.

Chapter 1. Introduction

7

This phase is tested by analysing, developing, and deploying Model-Driven

Architecture in software systems. A set of propositions is derived from the kernel one:

RP1: Model-Driven Engineering can be used to lead system development successfully.

This proposition can be tested by developing models for different software system.

Every system can be modelled by specific rules.

RP2: Model-Driven Architecture is a defective standard can be followed to establish an

approach. This proposition is tested by OMG in its standards.

RP3: Electronic learning system can be modelled following MDA standards. This

proposition can be tested by analysing e-learning system general requirement.

Furthermore, appropriate concepts, mechanisms, techniques and rules will be proposed

to resolve each of the sub-questions. To achieve that end, this research will take

advantage of advantage of advances in modelling techniques, transformation

methodologies, object oriented and e-learning. Subsequently, all of them will be

merged as an integrated evolution method that leads the development of electronic

learning system in a progressive, precise and disciplined manner.

1.4 Original Contributions

A Model-Driven Architecture based evolution method is proposed in the context of

software engineering and model driven development. It is an application of automatic

models and transformations to the task of electronic learning domain. In this research,

the kernel contributions are a set of precise transformation rules and its application in

electronic learning system. The following are explanations of all of the original

contributions:

Chapter 1. Introduction

8

 C1: A Model-Driven Architecture based evolution method and approach is

proposed, aiming to automate the modelling and coding processes in electronic

learning system, and thereby to improve the efficiency of e-learning system

development and maintenance. Ontology technique is applied into PIM generation

process.

 C2: A PIM to PSM transformation method is designed as a set of mapping rules

for e-learning system to enrich the Model-Driven Architecture transformation

theory in electronic education domain.

 C3: E-learning system is modelled as domain framework. LTSA standard and

pedagogical strategy is applied into modelling to support e-learning system.

 C4: Model-View-Controller structure is applied into e-learning domain modelling

and proposed MDA-based evolution approach.

 C5: Software Engineering Creative Computing is proposed as a new concept with

examples and application.

 C6: An application in an e-learning system is deployed concretely to validate the

usability, productivity, interoperability, and efficiency on the proposed

Model-Driven Architecture based approach.

 C7: A set of tools is summarised and analysed to support the proposed

Model-Driven Architecture based evolution method for e-learning system.

1.5 Success Criteria

The overall measure of success of the proposed Model-Driven Architecture based

evolution method is how well it supports a successful electronic learning system

Chapter 1. Introduction

9

development. The following measures are given to judge the success of the research

described in this thesis:

 How to develop electronic learning system following Model-Driven Architecture

standard?

 How many standards or theories are supporting electronic learning domain

modelling?

 How many phases are automatic or semi-automatic in proposed development

process?

 How to realise transformations for models in different levels?

 How many rules are supporting Platform-Specific Model generation?

 How many electronic learning systems are suitable to be developed based on

proposed method?

1.6 Organisation of Thesis

The rest of this thesis is organised as follows:

In Chapter 2, an overview of research background and basic concepts is summarised.

The areas include electronic learning system, Meta Object Facility (MOF) and

Query/View/Transformation (QVT).

In Chapter 3, the related work is discussed. It includes the modelling languages, Model

Driven Architecture (MDA), transformation notations and examples, Model Driven

Engineering (MDE) and Software Engineering Creative Computing (SECC). Projects

related to this research are explored and summarised critically.

Chapter 1. Introduction

10

In Chapter 4, it is e-learning modelling specification including domain modelling and

Model-View-Controller (MVC) modelling. Learning Technology Systems

Architecture (LTSA) is employed to support e-learning domain modelling as a kernel

standard. Concretely, there are three models proposed and designed with pedagogical

strategy background. In addition, MVC is applied to be the main structure in the

e-learning modelling.

In Chapter 5, an approach is proposed to MDA-based evolution including evolution

method and process. The method is specified individually in CIM, PIM, PSM, and

code development. The proposed process is divided into two phases: vocabularies

extraction and PIM generation.

In Chapter 6, there is proposed transformation method and specification on PIM to

PSMs. Scope and normative are presented in the beginning. First, Transformation

method is explained based on QVT standard. Meanwhile, transformation architecture

is designed to present the method in levels. Second, there is specification for proposed

source model, metamodel of source model, target model, and metamodel of target

model. Then, transformation rules are designed with formula expression which is

classified into transformation model (Mt) and metamodel for transformation model

(MMt). Last, there is an implementation for mapping rules.

Chapter 7 is a case study supported by a project named ElectroAcoustic Resource Site

II (EARSII). Background and issues of EARSII are introduced in the beginning. Then,

it is a development approach in which proposed MDA-based method is applied.

Additionally, there are toolkit explanation and prototype screen shots.

Chapter 8 summarises the thesis, draws conclusions and discusses the future work. The

research questions are revisited and answered in order to evaluate the proposed

approach.

Chapter 1. Introduction

11

Appendix A is the codes generated from the proposed approach application to create

prototype of EARSⅡ.

Appendix B lists all the related publications written by the author during the PhD

study.

Chapter 2. Background and Basic Concepts

12

Chapter 2

Background and Basic Concepts

Objectives

 To introduce electronic learning system as the background of application domain

 To introduce Meta Object Facility and Query/View/Transformation

 To explain basic concepts and terms related to this research

2.1 Electronic Learning System

2.1.1 Electronic Learning

Electronic learning, abbreviated as e-learning, is a relatively new concept appeared in

this decade. Based on involved technology, there is a learning structure showing as

Figure 2-1. Technology-Based Learning Structure

Chapter 2. Background and Basic Concepts

13

Figure 2-1 which is concluded based on general classification for e-learning.

2.1.2 E-Learning Standards and Specifications

With e-learning’s rapid development, there are many rules are proposed by different

groups. There are few known as generally recognised standards lists as below with its

specifications,

 Advanced Distributed Learning

The Advanced Distributed Learning (ADL) Initiative is a strategy sponsored by the

government, industry, and academic leaders to facilitate instructional content

development and delivery using current and emerging technologies. Specifically, its

Sharable Content Object Reference Model (SCORM) project focuses on

next-generation open architecture for online learning, including standards for run-time

communication, course structure, and content meta-data.

 Aviation Industry Computer-Based Training Committee

The Aviation Industry Computer-Based Training Committee (AICC) is an

international association of technology-based training professionals that creates

guidelines for the development, delivery, and evaluation of training technologies. The

AICC pioneered the most widely accepted interoperability standards for

computer-based and web-based training. Its relevant publications for standards are the

AICC Guidelines and Recommendations (AGRs).

 IEEE Learning Technology Standards Committee

The Institute of Electrical and Electronics Engineers (IEEE) Computer Society

Standards Activity Board has chartered the Learning Technology Standards Committee

Chapter 2. Background and Basic Concepts

14

(LTSC) to develop technical standards, recommended practices, and guides for

computer implementations of education and training components and

systems—specifically, the software components, tools, technologies, and design

methods that facilitate their development, deployment, maintenance, and interoperation.

Many of the standards developed by LTSC will be advanced as international standards

by the International Organisation for Standardization/International Electro technical

Commission Joint Technical Committee Subcommittee on Information Technology for

Learning, Education, and Training (ISO/IEC JTC1/SC36).

 IMS Global Learning Consortium

The IMS Global Learning Consortium, Inc. (IMS) is a nonprofits corporation that

began with a focus on higher education. Today, they've expanded their specifications

and projects to address a wide range of learning contexts, including school, university,

corporate, and government training. Available specifications include: Learning

Resource Meta-data, Enterprise, Content Packaging, and Question & Test

Interoperability.

2.1.3 E-Learning 2.0

Over the past couple of years, e-learning is one of the strongest uses of web 2.0

technologies. There is a list of new tools in web 2.0,

 Content Creation: blog, E-portfolios (such as ELGG), and video (i.e. YouTube).

 Collaborative Writing: wikis (i.e., PB Wiki, Media Wiki, etc), collaborative

bookmarking (i.e., del.icio.us, Furl, etc), and online office applications (i.e., Writely,

Gliffy, iRows, etc).

Chapter 2. Background and Basic Concepts

15

 Aggregator: for example, “Aggregate This”, “MetaxuCafe”, “Postgennomic”,

“Edu_RSS”, “Intute”, etc.

The above new tools lead to new communication manners. Therefore, a new e-learning

method is required to fit learner’s changes. With web2.0’s great changing in e-learning

area, e-learning 2.0 is proposed as a new concept under this circumstance by Stephen

Downes [19].

2.1.4 Web-Based E-Learning Development

There are many architectures existing to support web-based development for various

requirement. In this section, related web-based architectures are reviewed and

discussed including three-tier architecture and Model-View-Controller pattern which

are considered suitable for development on e-learning system.

2.1.4.1 Three-Tier Architecture on Web Application

The figure 2-2 shows the three-tier architecture’s application in web system. There are

three layers.

 Presentation tier: it is generally a user interface (UI). It aims to translate

information (i.e., tasks, results, etc) to user’s understanding.

 Business logic tier: it is to coordinate application, process commands, make

logic decisions and evaluations, and perform calculations. It also manipulates

data between “presentation layer” and “data access layer”.

 Data access tier: it stores and retrieves information from database or file

system. It provides data to business logic tier for processing.

Chapter 2. Background and Basic Concepts

16

2.1.4.2 Model-View-Controller Architecture

Model-view-controller, abbreviated to MVC, is software architecture in software

engineering. It is also considered as an architectural pattern. Initially, MVC is

presented as a software design pattern for Smalltalk in 1974. It aims to realise a

dynamic system design process to simplify further maintenance, and to improve the

reusability. The MVC pattern contains three modules: Model, View, and Controller.

Figure 2-3 shows the MVC basic structure.

Presentation Presentation

Presentation Tier:

The top-most level of

the application is the

user interface.

Coordinator Coordinator

Logic Tier:

This layer coordinates the

application, processes

commands, makes logical

decisions and performs

calculations.

Data Tier:

Here information is stored and

retrieved from a database or file

system. The information is then

passed back to the logic tier for

processing.

Database Storage

Figure 2-2. Overview of Three-Tier Application

Chapter 2. Background and Basic Concepts

17

Figure 2-3. MVC Concept

 Model: it manages the behaviour and data of the application domain, responds to

requests for information about its state (usually from the view), and responds to

instructions to change state (usually from the controller). In event-driven systems,

the model notifies observers (usually views) when the information changes so that

they can react.

 View: it renders the model into a form suitable for interaction, typically a user

interface element. Multiple views can exist for a single model for different

purposes. A viewport typically has a one to one correspondence with a display

surface and knows how to render to it.

 Controller: it receives user input and initiates a response by making calls on

model objects. A controller accepts input from the user and instructs the model

and a viewport to perform actions based on that input.

In short, the model is the application object, the view is the screen presentation, and the

controller defines the way the user interface reacts to user input [104].

The MVC pattern provides visualised software architecture by simplify the complexity.

Fundamental components are divided from each other and acquired their own

functions.

Controller

View Model

Direct association

Indirect association (e.g., via an observer)

Chapter 2. Background and Basic Concepts

18

Figure 2-4. MVC Collaboration Diagram

The above figure contains the MVC Collaboration Diagram, where the links and

dependencies between figures can be observed.

Furthermore, there is a short php example with a simple structure to present a clear

impression on MVC’s implementation which is putting each MVC module in one

folder:

Figure 2-5. A MVC-Based PHP Project Example

Chapter 2. Background and Basic Concepts

19

2.2 Meta Object Facility and Query/View/Transformation

2.2.1 Meta Object Facility

The Meta Object Facility (MOF) is an adopted OMG standard. Its latest version is

MOF 2.0. It provides a metadata management framework, and a set of metadata

services to enable the development and interoperability of model and metadata driven

systems [77].

MOF has contributed significantly to some of the core principles of Model Driven

Architecture [77]. This technology provides a model repository that can be used to

specify and manipulate models. Therefore, MOF is a technology to encourage

consistency in manipulating models in all phases of the use of MDA.

Figure 2-6 [32] shows a typical four-layered modelling architecture based on

meta-model and MOF. Specification of MOF defines the most abstract layer M3 which

Figure 2-6. MOF Meta-Levels Hierarchy [32]

Chapter 2. Background and Basic Concepts

20

provides an abstract language and a framework for specifying, constructing, and

managing meta-models. Meta-model reside on layer M2 which provides meta-data to

construct model. Layer M1 is for the models which represent software system and real

life.

Related OMG standards are UML, MOF, CWM, SPEM, XMI, and various UML

profiles. Those technologies use MOF and MOF derived technologies for

metadata-driven interchange and metadata manipulation [77].

The MOF Model is used to model itself as well as other models and other metamodels

[77]. XML Meta-data Interchange (XMI) [76, 82] is used as a standard common model

exchange format which enables the developers to achieve the same understanding and

interpretation when exchanging models via different technologies and tools. XMI is an

XML standard for exchanging UML models. XML schema conversion rules indicate

how UML model can be converted to XML document.

2.2.2 Query/View/Transformation

Query/View/Transformation (QVT) is a standard for model transformation,

specifically in MDA, proposed and defined by the Object Management Group. Here,

the QVT is MOF 2.0 QVT. It can be considered as the kernel in MDA although there

are no specific rules defined for model transformation. In MDA guide [62], a MOF

QVT transformation model is used as a example for transformation specification. QVT

defines standards to guide the design of transformation rules.

QVT provides a formal method for model transformation research in MDA. There are

three features in QVT standard: strong expression ability, well-defined semantics, and

fully automated.

Chapter 2. Background and Basic Concepts

21

The QVT specification has a hybrid declarative/imperative nature, with the declarative

part being split into a two-level architecture, which forms the framework for the

execution semantics of the imperative part [74].

Figure 2-7. Relationships Between QVT Metamodels [74]

As figure 2-7 [74] shows, the declarative parts of this specification are structured into a

two-layer architecture. The layers are [74]:

 A user-friendly Relations metamodel and language that supports complex

object pattern matching and object template creation. Traces between model

elements involved in a transformation are created implicitly.

 A core metamodel and language defined using minimal extensions to EMOF

and OCL. All trace classes are explicitly defined as MOF models, and trace

instance creation and deletion is defined in the same way as the creation and

deletion of any other object.

In addition to the declarative Relations and Core Languages that embody the same

semantics at two different levels of abstraction, there are two mechanisms for invoking

imperative implementations of transformations from Relations or Core: one standard

language, Operational Mappings, as well as non-standard Black-box MOF Operation

implementations [74]. Each relation defines a class that will be instantiated to trace

Chapter 2. Background and Basic Concepts

22

between model elements being transformed, and it has a one-to-one mapping to an

Operation signature that the Operational Mapping or Black-box implements [74].

2.3 Basic Concepts and Related Terms

The proposed research will be related to the following terms from model-driven

architecture and model-driven engineering [4, 41] in the domain of software

engineering.

Model: A model of a system is a description or specification of that system and its

environment for some certain purpose. A model is often presented as a combination of

drawings and text. The text may be in a modelling language or in a natural language.

Platform: A platform is a set of subsystems and technologies that provide a coherent

set of functionality through interfaces and specified usage patterns, which any

application supported by that platform can use without concern for the details of how

the functionality provided by the platform is implemented.

Computation Independent Model (CIM): A computation independent model is a

view of a system from the computation independent viewpoint. A CIM does not show

details of the structure of systems. A CIM is sometimes called a domain model and a

vocabulary that is familiar to the practitioners of the domain in question is used in its

specification.

Platform Independent Model (PIM): A platform independent model is a view of a

system from the platform independent viewpoint. A PIM exhibits a specified degree of

platform independence so as to be suitable for use with a number of different platforms

of similar type.

Chapter 2. Background and Basic Concepts

23

Platform Specific Model (PSM): A platform specific model is a view of a system

from the platform specific viewpoint. A PSM combines the specifications in the PIM

with the details that specify how that system uses a particular type of platform.

Model transformation: Model transformation is the process of converting a set of

models to another set of models or to themselves for the same system. It can be divided

into two broad categories: model translation and model rephrasing. Model

transformation is transforming a model into another language described model. Model

rephrasing is changing models under a same language.

2.4 Summary

In this chapter, the background and basic concepts of model-driven architecture based

software engineering are introduced:

 A brief overview of electronic learning system is presented. The concept

“electronic learning” is introduced with its background, features, and relationship

with web technologies. Standards and specifications of e-learning are introduced

then. In addition, there is also a discussion of “e-learning 2.0” which is

e-learning’s evolution under web 2.0 impact. A series of web 2.0 tools are listed.

Furthermore, its development methods based on web service are discussed

including three-tier architecture on web application and Model-View-Controller

(MVC) architecture.

 MOF and QVT are studied. There is a presentation of MOF specification and its

model’s application. Meanwhile, QVT’s standards and its application in

transformations are explained.

Chapter 2. Background and Basic Concepts

24

 Related concepts and terms are summarised to provide a systematised knowledge

about the whole research.

Chapter 3. Related Work

25

Chapter 3

Related Work

Objectives

 To introduce UML and its usages in MDA approach

 To introduce XMI, XML and its role in this research

 To discuss software evolution and related methods

 To introduce PHP and its usages in electronic system

 To explore software engineering creative computing and its application in

e-learning system

 To discuss related projects covering MDA and e-learning

3.1 Unified Modelling Language

3.1.1 Unified Modelling Language 2.x

Unified Modelling Language (UML) is a standardised general-purpose modelling

language in the field of object-oriented software engineering. It is used to specify,

visualise, modify, construct and document the artefacts of an object-oriented

software-intensive system under development [2]. It offers a set of elements [79, 80] to

create visual models for system’s architecture including “Activities”, “Actors”,

“Business processes”, “Database schemas”, “Logical components”, “Programming

language statements”, and “Reusable software components”. Based on these elements,

UML includes a set of diagrams to create models to visualise architecture for system.

A diagram is a partial graphic representation of a system's model. The model also

Chapter 3. Related Work

26

contains documentation that drives the model elements and diagrams such as written

use cases. Besides, UML models can be exchanged among UML tools.

UML diagrams represent two different views of a system model [33]:

 Static view: it is also called structural view which emphasises the static structure

of the system using objects, attributes, operations and relationships. The structural

view includes class diagrams and composite structure diagrams.

 Dynamic view: Equally with behavioural view, it emphasises the dynamic

behaviour of the system by showing collaborations among objects and changes to

the internal states of objects. This view includes sequence diagrams, activity

diagrams and state machine diagrams.

UML

Concepts

Object oriented: Object-oriented programming; Object-oriented

analysis and design.

Structure: Actor; Attribute; Artefact; Class; Component; Interface;

Object; Package; Profile diagram.

Behaviour: Activity; Event; Message; Method; State; Use case.

Relationships: Aggregation; Association; Composition;

Dependency; Generalisation (or Inheritance).

Extensibility: Profile; Stereotype.

Other concepts: Multiplicity.

Chapter 3. Related Work

27

Diagrams

Structural Class diagram; Component diagram; Composite

structure diagram; Deployment diagram; Object

diagram; Package diagram

Behaviour Activity diagram; State Machine diagram; Use case

diagram.

Interaction: Communication diagram; Sequence

diagram; Interaction overview diagram; Timing

diagram.

Derived

Languages

Systems Modelling Language (SysML); UML eXchange Format

(UXF); XML Metadata Interchange (XMI).

Table 3-1. UML Structure

Structure diagrams emphasise the things that must be present in the system being

modelled. Since structure diagrams represent the structure, they are used extensively in

documenting the software architecture of software systems.

 Class diagram: describes the structure of a system by showing the system's

classes, their attributes, and the relationships among the classes.

 Component diagram: describes how a software system is split up into

components and shows the dependencies among these components.

 Composite structure diagram: describes the internal structure of a class and the

collaborations that this structure makes possible.

Chapter 3. Related Work

28

 Deployment diagram: describes the hardware used in system implementations

and the execution environments and artefacts deployed on the hardware.

 Object diagram: shows a complete or partial view of the structure of an example

modelled system at a specific time.

 Package diagram: describes how a system is split up into logical groupings by

showing the dependencies among these groupings.

 Profile diagram: operates at the metamodel level to show stereotypes as classes

with the <<stereotype>> stereotype, and profiles as packages with the <<profile>>

stereotype. An extension relation indicates what metamodel element a given

stereotype is extending.

Behaviour diagrams emphasise what must happen in the system being modelled. Since

behaviour diagrams illustrate the behaviour of a system, they are used extensively to

describe the functionality of software systems.

 Activity diagram: describes the business and operational step-by-step workflows

of components in a system. An activity diagram shows the overall flow of control.

 UML state machine diagram: describes the states and state transitions of the

system.

 Use case diagram: describes the functionality provided by a system in terms of

actors, their goals represented as use cases, and any dependencies among those use

cases.

Interaction diagrams, a subset of behaviour diagrams, emphasise the flow of control

and data among the things in the system being modelled:

Chapter 3. Related Work

29

 Communication diagram: shows the interactions between objects or parts in terms

of sequenced messages. They represent a combination of information taken from

Class, Sequence, and Use Case Diagrams describing both the static structure and

dynamic behaviour of a system.

 Interaction overview diagram: provides an overview in which the nodes represent

communication diagrams.

 Sequence diagram: shows how objects communicate with each other in terms of a

sequence of messages. Also indicates the lifespan of objects relative to those

messages.

 Timing diagrams: a specific type of interaction diagram where the focus is on

timing constraints.

3.1.2 Unified Modelling Language and Model-Driven

Architecture

Consequently, it is expected that this major revision to UML will play an important

role in furthering the goals of MDA [79]. It is noted in the OMG’s Executive Overview

of MDA:

“[MDA] is built on the solid foundation of well-established OMG standards,

including: Unified Modelling Language™ (UML™), the ubiquitous modelling notation

used and supported by every major company in the software industry; XML Metadata

Interchange (XMI™), the standard for storing and exchanging models using XML; and

CORBA™, the most popular open middleware standard” [78].

The following sections explain how UML 2 supports the most prominent concepts in

the evolving MDA vision.

Chapter 3. Related Work

30

 Family of languages: UML is a general purpose language that is expected to be

customised for a wide variety of domains, platforms and methods. Towards that

end, this UML specification refines UML 1.x’s Profile mechanism so that it is

more robust and flexible, and significantly easier to implement and apply.

Consequently, it can be used to customise UML dialects for various domains (e.g.,

finance, telecommunications, aerospace), platforms (e.g., J2EE, .NET), and

methods (e.g., Unified Process, Agile methods). For those whose customisation

requirements exceed these common anticipated usages and who want to define

their new languages via metamodels, the Infrastructure Library is intended to be

reused by MOF 2. Tools that implement MOF 2 will allow users to define entirely

new languages via metamodels

 Specifying a system independently of the platform that supports it: As was the

case with its predecessor, the general purpose UML 2 specification is intended to

be used with a wide range of software methods. Consequently, it includes support

for software methods that distinguish between analysis or logical models, and

design or physical models. Since analysis or logical models are typically

independent of implementation and platform specifics, they can be considered

“Platform Independent Models” (PIMs), consistent with the evolving MDA

terminology. Some of the proposed improvements to UML that will make it easier

for modellers to specify Platform Independent Models include the ability to model

logical as well as physical Classes and Components, consistent with either a

class-based or component-based approach.

 Specifying platforms: Although UML 1.x provided extremely limited support for

modelling Platform Specific Models (PSMs, the complement of PIMs), this

specification offers two significant improvements. First, the revised Profile

mechanism allows modellers to more efficiently customise UML for target

Chapter 3. Related Work

31

platforms, such as J2EE or .NET. (Examples of J2EE/EJB or .NET/COM

micro-profiles can be found in the UML Superstructure Specification.) Secondly,

the constructs for specifying component architectures, component containers

(execution runtime environments), and computational nodes are significantly

enhanced, allowing modellers to fully specify target implementation

environments.

 Choosing a particular platform for the system: This is considered a method or

approach requirement, rather than a modelling requirement. Consequently, we will

not address it here.

 Transforming the system specification into one for a particular platform: This

refers to the transformation of a Platform Independent Model into a Platform

Specific Model. The UML Superstructure Specification specifies various

relationships that can be used to specify the transformation of a PIM to a PSM,

including Realisation, Refine, and Trace. However, the specific manner in which

these transformations are used will depend upon the profiles used for the PSMs

involved, as well as the method or approach applied to guide the transformation

process. Consequently, we will not address it further here.

With its middleware independent, UML forms foundation of MDA. Besides,

extensions to the UML language will be standardised for specific purposes including

many will be designed specifically for use in MDA [62].

3.1.3 UML Profile

OMG has started working on UML profiles. They include the UML profile for

CORBA, for use by models specific to the CORBA platform, and the EDOC profile,

for use in platform independent models for certain classes of platforms, as well as

Chapter 3. Related Work

32

profiles for enterprise integration and real-time platforms [62]. A profile in the Unified

Modelling Language (UML) provides a generic extension mechanism for customising

UML models for particular domains and platforms [6]. Extension mechanisms allow

refining standard semantics in strictly additive manner, so that they can't contradict

standard semantics [6].

A UML profile is a specification that does one or more of the following [83]:

 Identifies a subset of the UML metamodel.

 Specifies “well-formed rules” beyond those specified by the identified subset of

the UML metamodel. “Well-formed rules” is a term used in the normative UML

metamodel specification to describe a set of constraints written in UML’s Object

Constraint Language (OCL) that contributes to the definition of a metamodel

element.

 Specifies “standard elements” beyond those specified by the identified subset of

the UML metamodel. “Standard element” is a term used in the UML metamodel

specification to describe a standard instance of a UML stereotype, tagged value or

constraint.

 Specifies semantics, expressed in natural language, beyond those specified by the

identified subset of the UML metamodel.

 Specifies common model elements, expressed in terms of the profile.

Profiles are defined using stereotypes, tag definitions, and constraints that are applied

to specific model elements, such as Classes, Attributes, Operations, and Activities. A

Profile is a collection of such extensions that collectively customise UML for a

Chapter 3. Related Work

33

particular domain such as aerospace, healthcare, financial, etc, or platform like

J2EE, .NET, and so on. There are two examples.

 SysML is an Object Management Group (OMG)-standardised profile of Unified

Modelling Language that is used for system engineering applications.

 MARTE is the OMG standard for modelling real-time and embedded applications

with UML2.

Presently, OMG is developing a series UML profile for domains [83].

 UML Profile for CORBA and CORBA Component Model (CCCMP)

 UML Profile for Data Distribution

 UML Profile for Enterprise Application Integration (EAI)

 UML Profile for Enterprise Distributed Object Computing (EDOC)

 UML Profile for Modelling and Analysis of Real-time and Embedded

Systems (MARTE)

 UML Profile for Modelling QoS and Fault Tolerance Characteristics and

Mechanisms

 UML Profile for Schedulability, Performance and Time

 UML Profile for Software Radio (also referred to as PIM & PSM for Software

Radio Components)

 UML Profile for System on a Chip (SoCP)

 UML Profile for Voice

 UML Testing Profile (UTP)

Chapter 3. Related Work

34

3.2 Overview of Extensible Markup Language (XML), XML

Metadata Interchange, and Hypertext Preprocessor

Extensible Markup Language (XML) is a simple, very flexible text format derived

from SGML (ISO 8879). Originally designed to meet the challenges of large-scale

electronic publishing, XML is also playing an increasingly important role in the

exchange of a wide variety of data on the Web and elsewhere.

The XML Metadata Interchange Format (XMI) specifies an open information

interchange model that is intended to give developers working with object technology

the ability to exchange programming data over the Internet in a standardised way, thus

bringing consistency and compatibility to applications created in collaborative

environments [34]. “XMI Document” and “XMI Schema” are defined as documents

and schemas produced by the XMI production [82].

Hypertext Preprocessor, recursive acronym for PHP, is a general-purpose server-side

scripting language originally designed for web development to produce dynamic web

pages [85]. PHP code is embedded into the HTML source document and interpreted by

a web server with a PHP processor module, which generates the web page document. It

also has evolved to include a command-line interface capability and can be used in

standalone graphical applications [85].

3.3 Software Evolution

3.3.1 Software Changes and Evolution

Software is a kind of product which is never complete and continues to evolve.

Presently, changing comprises a heavy and important part of the software life cycle.

Chapter 3. Related Work

35

There are four categories of software were catalogued by Lientz and Swanson [51].

These have since been updated and normalised internationally in the ISO/IEC

14764:2006 [1] :

 Corrective maintenance: Reactive modification of a software product performed

after delivery to correct discovered problems;

 Adaptive maintenance: Modification of a software product performed after

delivery to keep a software product usable in a changed or changing

environment;

 Perfective maintenance: Modification of a software product after delivery to

improve performance or maintainability;

 Preventive maintenance: Modification of a software product after delivery to

detect and correct latent faults in the software product before becoming

effective faults.

All of the preceding take place when there is a known requirement for change.

Although these categories were supplemented by many researchers, international

standard ISO/IEC 14764:2006 has kept the basic four categories. More recently the

description of software maintenance and evolution has been done using ontology [17,

18, 39, 90] which enrich the description of the many evolution activities. Presently, the

activities of software change can be classified into three categories: maintenance,

reengineering, and evolution [107].

 Software maintenance is the partly or fully modification of software based on

changes on product requirements or hardware environments. The modification

process is efficiently using the existing software. It is a term suitable to describe

Chapter 3. Related Work

36

the occasionally correction which aims to enable the software to continue to do

what it used to do.

 Software reengineering is modifying and restructuring existing software based on

reverse engineering. New version software is the reengineering prospected result.

Its kernel feature is farthest realise software’s reusability.

 Software evolution is a developed maintenance process implementing and

validating the possible major changes without being able a priori to predict how

user requirements will evolve [37]. It helps software to meet new business

opportunities rapidly.

These three activities can be considered as separated concepts; however, they are

tightly connected at the same time. Reengineering is still the basic technique for

evolving software systems. Software change can be seen as the basic operation of

software evolution [37]. Reengineering is a single change cycle, while evolution will

carry on indefinitely – software evolution is repeated software engineering [107]. In

traditional software life cycle, all the changing activities are belonging to maintenance

phrase.

3.3.2 Laws of Software Evolution

The laws of software evolution [45-47, 53] are proposed by Meir M. Lehman and his

colleagues when he was working at Imperial College London. Initially the laws were

related to large systems. Therefore, Lehman clarified large systems by a classification

scheme distinguishing three types of programs S, P and E [46, 48, 49].

 S-type program: it presents the program which can be formally specified [52]

which is showing as Figure 3-1.

Chapter 3. Related Work

37

Figure 3-1. S-Type

 Figure 3-2. P-Type

 P-type program: it stands for the category which is iterative process that cannot be

specified [52]. Figure 3-2 is a picture for it with activities, relationships, and

statements.

Real world

Requirements

specification

Program Solution

Change
Compare

Change

Abstract view of

world

Relationship between statements

Activity related relationship

SE related statement

Real world

Activity

Formal

statement of

problem

Program

Solution

Real world

May

relate to

Maybe of

interest to

Controls the

production of

Provides

SE related element

Real world

Relationship between SE related elements

Other relationship

Chapter 3. Related Work

38

 E-type program: it is embedded in real world, and it is a computer program that

solves a problem or implement a computer application in the real world domain

[52] showing as Figure 3-3.

Figure 3-3. E-Type

The laws are suitable to apply to al E-type systems irrespective of their size, functional

nature, domain of application, or the management structure and organisation

responsible for them [49]. Table 2-1 [45] shows the eight Lehman’s laws.

Law Description

I. Continuing Change An E-type program that is used must be

continually adapted else it becomes

progressively less satisfactory.

II. Increasing Complexity As a program is evolved its complexity

Real world

Program
Change

Model

Requirements

specification

SE related statement

Real world

Abstract view of

world

Activity

Relationship

Chapter 3. Related Work

39

increases unless work is done to maintain or

reduce it.

III. Self Regulation The program evolution process is self

regulating with close to normal distribution of

measures of product and process attributes.

IV. Conservation of Organisational

Stability

The average effective global activity rate on

an evolving system is invariant over the

product life time.

V. Conservation of Familiarity During the active life of an evolving program,

the content of successive releases is

statistically invariant.

VI. Continuing Growth Functional content of a program must be

continually increased to maintain user

satisfaction over its lifetime.

VII. Declining Quality E-type programs will be perceived as of

declining quality unless rigorously maintained

and adapted to a changing operational

environment.

VIII. Feedback System E-type Programming Processes constitute

Multi-loop, Multi-level Feedback systems and

Chapter 3. Related Work

40

must be treated as such to be successfully

modified or improved.

Table 3-2. Lehman’s Laws of Software Evolution [45]

3.4 Model Driven Architecture and Model Driven

Engineering

3.4.1 Model Driven Engineering

There is a methodology initiative from the software engineering community named

Model Driven Engineering (MDE). The MDE approach to software development

suggests that a model of the system should be developed first under related study,

which is then transformed into the real entity including code, component, etc [26]. The

idea of MDE stems from software engineering, and more specifically, from the recent

research in software development [26]. MDE evolved as a paradigm shift from the

object-oriented technology, in which the main principle is that everything is an object;

into the model engineering paradigm, based on the principle that everything is a model

[26]. MDE aims to raise the level of abstraction in program specification and increase

automation in program development [11].

MDE is not only containing model but also working with relations between models

and systems, metamodels, and model transformations. Similar to the object-oriented

technology, MDE can be characterised by two main relations which are representation

and conformance. Representation is a model representing software artefact or

real-world domain. Conformance is a model conforms to a metamodel. According to

Jean-Marie Favre, MDE is a field of system engineering in which the process heavily

Chapter 3. Related Work

41

relies on the use of models and model engineering. In the context, model engineering is

considered the disciplined and rationalised production of models [26].

MDE focuses on creating and exploiting domain models rather than on the computing

concepts. Its approach is meant to increase productivity by maximising compatibility

between systems via reuse of standardised models, simplifying the process of design

via models of recurring design patterns in the application domain, and promoting

communication between individuals and teams working on the system via a

standardisation of the terminology and the best practices used in the application

domain.

As it pertains to software development, MDE refers to a range of development

approaches that are based on the use of software modelling as a primary form of

expression. Sometimes models are constructed to a certain level of detail, and then

code is written by hand in a separate step. Sometimes complete models are built

including executable actions. Code can be generated from the models, ranging from

system skeletons to complete, deployable products. With the introduction of the

Unified Modelling Language (UML), MDE has become very popular today with a

wide body of practitioners and supporting tools. More advanced types of MDE have

expanded to permit industry standards which allow for consistent application and

results. The continued evolution of MDE has added an increased focus on architecture

and automation.

According to Schmidt, MDE technologies offer a promising approach to address the

inability of third-generation languages to alleviate the complexity of platforms and

express domain concepts effectively [2].

Chapter 3. Related Work

42

3.4.2 Model-Driven Architecture

Model-Driven Architecture, abbreviated to MDA, is a concept initially proposed and

launched by the Object Management Group (OMG) in 2001. It is one of the most

important research initiatives in MDE area. The main idea is to abstract kernel

Platform Independent Model (PIM) which is independent on implementation

technology and can complete describes business functions for system, defines

transformation rules for different implementation technologies which aim to mapping

to implementation technology related Platform Specific Model (PSM), and generates

codes from enriched PSM. A main objective is separation of business modelling and

the underlying platform technology, to protect the results of modelling from the impact

of technological changes.

Figure 3-4. MDA Overview Structure [73]

Figure 3-4 is a diagram showing the structure of MDA which is specifically described

as bellow:

 The inner part contains Meta Object Facility (MOF), Common Warehouse

Metamodel (CWM), and Unified Modelling Language (UML). They are the kernel

Chapter 3. Related Work

43

technologies in MDA. A main task in MDA is to convert PIM which is formed

based on these kernel technologies to PSMs corresponding with different

middleware platforms.

 The middle ring shows currently main platforms for implementation. There is

including Common Object Request Broker Architecture (CORBA), Extensible

Markup Language (XML), Java, Web Services and. NET. Obviously, as

technology development, this part contains more platforms than listed here.

 The outer ring is the public services provided by MDA such as “transactions”,

“events”, “directory”, “security”, etc.

 The diverging arrows in the outside are MDA’s applications in various

perpendicular domains, such as e-commerce, telecommunications and

manufacturing, etc.

Overall, the MDA structure can be simply explained as Figure 2-5.

Figure 3-5. MDA Structure Explanation

Chapter 3. Related Work

44

In the home page on OMG’s MDA official website, there is a presentation just besides

the figure 2-4 which is never been changed since its first release in 2001. The

presentation [73] titled with “How System Will Be Built” is as bellow,

 “OMG’s Model Driven Architecture (MDA) provides an open, vendor-neutral

approach to the challenge of business and technology change. Based on OMG’s

established standards, the MDA separates business and application logic from

underlying platform technology. Platform-independent models of an application or

integrated system’s business functionality and behaviour, built using UML and the

other associated OMG modelling standards, can be realised through the MDA on

virtually and platform, open or proprietary, including Web Services, .NET, CORBA,

J2EE, and others. These platform-independent models document the business

functionality and behaviour of an application separate from the technology-specific

code that implements it, insulating the core of the application from technology and its

relentless churn cycle while enabling interoperability both within and across platform

boundaries. No longer tied to each other, the business and technical aspects if an

application or integrated system can each evolve at its own pace-business logic

responding to business needs, and technology taking advantage of new

developments-as the business requires” [73].

Meanwhile, there is further description [70] on this topic represented by OMG as

following,

 “MDA provides an open, vendor-neutral approach to the challenge of

interoperability, building upon and leveraging the value of OMG's established

modelling standards: Unified Modelling Language (UML); Meta-Object Facility

(MOF); and Common Warehouse Meta-model (CWM). Platform-independent

Application descriptions built using these modelling standards can be realised using

Chapter 3. Related Work

45

any major open or proprietary platform, including CORBA, Java, .NET, XMI/XML,

and Web-based platforms.

As new platforms and technologies emerge, MDA enables rapid development of new

specifications that use them, streamlining the process of integration. In this way, MDA

goes beyond middleware to provide a comprehensive, structured solution for

application interoperability and portability into the future. Creating Application and

Platform Descriptions in UML provides the added advantage of improving application

quality and portability, while significantly reducing costs and time-to-market.

The architecture encompasses the full range of pervasive services already specified by

OMG, including Directory Services, Event Handling, Persistence, Transactions, and

Security. The core logic of many of these services is already available for multiple

implementation technologies; for instance, Sun's J2EE platform uses Java interfaces to

CORBA's long-established transactions and security services. MDA makes it easier

and faster to design similar multiple-platform interfaces to common services.

Most importantly, MDA enables the creation of standardised Domain Models for

specific vertical industries. These standardised models can be realised for multiple

platforms now and in the future, easing multiple platform integration issues and

protecting IT investments against the uncertainty of changing fashions in platform

technology” [70].

In MDA Guide [4], MDA defined as an approach to using models in software

development. Although MDA is not itself a technology specification, it represents an

approach and a plan to achieve a cohesive set of model-driven technology

specifications [79]. It is a new way of developing software systems which is combined

by three parts.

Chapter 3. Related Work

46

Figure 3-6. MDA Software Development Life Cycle

 A development process: briefly to say, MDA provides a model-driven

development process including four steps, (1) Build computation independent model

(CIM); (2) Build platform-independent model (PIM); (3) Generate one or more

platform-specific model (PSM) from PIM using transformation tools; (4) Use

transformation tools to generate specific codes. Figure 2-6 shows the corresponding

software development life cycle.

MDA development process brings three benefits. (1) Productivity: developer can focus

on business logic rather than technical details. (2) Portability: automated

transformation tools available in different development phases and different platforms.

(3) Maintenance and documentation: clarified models make maintenance and

documentation easy and clear.

Requirements

Analysis

Design

Implementation

Testing

Development

CIM

PIM

PSM

Code

Code

Chapter 3. Related Work

47

Figure 3-7. MDA Layered Architecture

 A framework: in MDA, a layered architecture has been defined with the

following four levels which are showing in Figure 2-7.

M3: the meta-meta-model level, which only contains the Meta-Object Facility (MOF).

M2: the meta-model level, which contains any kind of meta-model including the

Unified Modelling Language (UML) meta-model.

M1: the model level, which contains any model with a corresponding meta-model

from M2.

M0: the concrete level, which contains any real situation, unique in space and time,

described by a given model from M1.

Based on the four layers, MDA provides a software development framework which

can be described as Figure 2-8. There are four blocks built in MDA framework.

(1) Models. It is including CIM, PIM, PSM, and source code.

Chapter 3. Related Work

48

Figure 3-8. MDA Framework

(2) Transformations. It mainly includes “PIM to PSMs transformation” and “PSM to

code transformation”. Strictly, “CIM to PIM transformation” is a part of it as well.

(3) MDA specifications. Firstly, there are one or more standards and well-defined

languages to build PIM. Secondly, there are standards and languages for PSM. Lastly,

there is a language to write the definition of transformation between models.

(4) Tools. They are needed for implement the execution of the transformations.

 A set of standards: at the core of MDA there are a number of important OMG

standards: the Unified Modelling Language (UML), Meta Object Facility (MOF),

XML Metadata Interchange (XMI) and Common Warehouse Meta model (CWM).

Marketing Model Engineering Model

CIM

Transformation

PIM

Transformation

Transformation Transformation Transformation

PSM PSM PSM

Code Code Code

Transformation Transformation Transformation

Chapter 3. Related Work

49

These standards define the core infrastructure of the MDA, and have greatly

contributed to modern systems modelling and development [4, 102].

MDA provides an approach that increases the power of models in system development

by allow developers to create systems entirely with models. As the name says, it is

model–driven because it provides a means for using models to direct the course of

understanding, design, construction, development, operation, maintenances and

modification.

3.4.3 Model-Driven Architecture Languages and Tools

All of the key parts of the MDA vision have already been standardised, including not

only UML 2.0, the MOF, XMI and CWM, but also a number of middleware mappings

including one to OMG's own CORBA and a middleware-independent mapping for

enterprise systems called "UML Profile for Enterprise Distributed Object Computing"

[71].

Even though UML is usually thought of as the basis for MDA because of its visibility,

it is actually Meta-Object Facility (MOF) compliance that is formally required in order

for a tool or tool chain to be labelled "MDA Compliant". The MOF is OMG's

foundation specification for modelling languages; MOF compliance allows UML

structural and behavioural models, and CWM data models, to be transmitted via XMI,

stored in MOF-compliant repositories, and transformed and manipulated by

MOF-compliant tools and code generators [71].

Although not formally required, UML is still a key enabling technology for the Model

Driven Architecture and the basis for 99% of MDA development projects. (Work in

some specialised fields requires specially tailored modelling languages, although the

additional capabilities added to UML by the 2.0 revision satisfies this need in many

Chapter 3. Related Work

50

cases.) So, application development using the MDA is typically based on a normative,

platform-independent UML model. By leveraging OMG's universally accepted MOF

and UML standards, the MDA allows creation of applications that are portable across,

and interoperate naturally across, a broad spectrum of systems from embedded, to

desktop, to server, to mainframe, and across the Internet [71].

The basis on MOF was made official in August, 2004, when OMG's Object and

Reference Model Subcommittee unanimously adopted the definition of MDA that is

being used to revise the official MDA Guide. The August definition states [71]:

“Any modelling language used in MDA must be described in terms of the MOF

language, to enable the metadata to be understood in a standard manner, which is a

precondition for any ability to perform automated transformations” [71].

The main languages in MDA are briefly explained below [72] including Meta-Object

Facility, Unified Modelling Language, Unified Modelling Language Profile, XML

Metadata Interchange, and Common Warehouse MetaModel.

The Meta-Object Facility (MOF): In the MDA, models are first-class artefacts,

integrated into the development process through the chain of transformations from

PIM through PSM to coded application. To enable this, the MDA requires models to

be expressed in a MOF-based language. This guarantees that the models can be stored

in a MOF-compliant repository, parsed and transformed by MOF-compliant tools, and

rendered into XMI for transport over a network. This does not constrain the types of

models you can use - MOF-based languages today model application structure,

behaviour in different ways, and data; OMG's UML and CWM are good examples of

MOF-based modelling languages but are not the only ones.

Chapter 3. Related Work

51

The Unified Modelling Language (UML): Each MDA-based specification has, as its

normative base, two levels of models: a Platform-Independent Model (PIM), and one

or more Platform-Specific Models (PSM). For many specifications, these will be

defined in UML, making OMG's standard modelling language a foundation of the

MDA. (Use of UML, although common, is not a requirement; MOF is the mandatory

modelling foundation for MDA.)

UML Profiles: UML Profiles tailor the language to particular areas of computing

(such as Enterprise Distributed Object Computing) or particular platforms (such as

EJB or CORBA). In the MDA, both PIMs and PSMs will be defined using UML

profiles; OMG is well along our way defining a suite of profiles that span the entire

scope of potential MDA applications. The current suite of profiles includes:

 The UML Profile for CORBA, which defines the mapping from a PIM to a

CORBA-specific PSM.

 The UML Profile for CCM (the CORBA Component Model), OMG's contribution

to component-based programming. Enterprise JavaBeans (EJBs) are the Java

mapping of CCM; an initial take on a profile for EJB appears as an appendix of

the UML 2.0 Superstructure specification, linked above.

 The UML Profile for EDOC is used to build PIMs of enterprise applications. It

defines representations for entities, events, process, relationships, patterns, and an

Enterprise Collaboration Architecture. As a PIM profile, it needs mappings to

platform-specific profiles. A mapping to Web Services is underway now;

additional mappings will follow.

 The UML Profile for EAI defines a profile for loosely-coupled systems - that is,

those that communicate using either asynchronous or messaging-based methods.

These modes are typically used in Enterprise Application Integration, but are used

elsewhere as well.

Chapter 3. Related Work

52

 The UML Profile for Quality of Service (QoS) and Fault Tolerance defines

frameworks for Real-time and high-assurance environments.

 The UML Profile for Schedulability, performance, and time supports precise

modelling of predictable - that is, real-time - systems, precisely enough to enable

quantitative analysis of their schedulability, performance, and timeliness

characteristics.

 The UML Testing Profile provides important support for automated testing in

MDA-based development environments.

XML Metadata Interchange (XMI): XMI defines an XML-based interchange format

for UML and other MOF-based metamodels and models (since a metamodel is just a

special case of a model); by standardising XML document formats, DTDs, and

schemas. In so doing, it also defines a mapping from UML to XML. Because one of

OMG's XMI updates reflects the incorporation of XML Schemas, while MOF point

updates were made periodically through OMG's established maintenance process,

numbering of XMI and MOF versions diverged.

Common Warehouse MetaModel (CWM): The CWM standardises a complete,

comprehensive metamodel that enables data mining across database boundaries at an

enterprise and goes well beyond. Like a UML profile but in data space instead of

application space, it forms the MDA mapping to database schemas. The product of a

cooperative effort between OMG and the Meta-Data Coalition (MDC), the CWM does

for data modelling what UML does for application modelling.

In terms of products, MDA is being implemented by tools - or tool chains, which may

come from a single vendor or a number of vendors - that integrate modelling and

development into a single environment that carries an application from the PIM,

through the PSM, and then via code generation to a set of language and configuration

Chapter 3. Related Work

53

files implementing interfaces, bridges to services and facilities, and possibly even

business functionality [71]. Presently, there are many tools developed from both

business and research areas to support model-driven development. However, it is

cannot be easily defined as MDA tool if it is supporting model-driven approach. An

MDA tool should be belong to one or more of the following types:

 Creation Tool: A tool used to elicit initial models and/or edit derived models.

 Analysis Tool: A tool used to check models for completeness, inconsistencies, or

error and warning conditions. Also used to calculate metrics for the model.

 Transformation Tool: A tool used to transform models into other models or into

code and documentation.

 Composition Tool: A tool used to compose (i.e. to merge according to a given

composition semantics) several source models, preferably conforming to the same

meta-model.

 Test Tool: A tool used to "test" models as described in Model-based testing.

 Simulation Tool: A tool used to simulate the execution of a system represented by

a given model. This is related to the subject of model execution.

 Metadata Management Tool: A tool intended to handle the general relations

between different models, including the metadata on each model (e.g. author, date

of creation or modification, method of creation (which tool? which transformation?

etc.) and the mutual relations between these models (i.e. one meta-model is a

version of another one, one model has been derived from another one by a

transformation, etc.)

 Reverse Engineering Tool: A tool intended to transform particular legacy or

information artefact portfolios into full-fledged models.

Some tools perform more than one of the functions listed above. For example, some

creation tools may also have transformation and test capabilities. There are other tools

Chapter 3. Related Work

54

that are solely for creation, solely for graphical presentation, solely for transformation,

etc.

One of the characteristics of MDA tools is that they mainly take models (e.g. MOF

models or meta-models) as input and generate models as output. In some cases

however the parameters may be taken outside the MDA space like in model to text or

text to model transformation tools.

Implementations of the OMG specifications come from private companies or open

source groups. One important source of implementations for OMG specifications is the

Eclipse Foundation (EF). Many implementations of OMG modelling standards may be

found in the Eclipse Modelling Framework (EMF) or Graphical Modelling Framework

(GMF), the Eclipse foundation is also developing other tools of various profiles as

GMT. Eclipse's compliance to OMG specifications is often not strict. This is true for

example for OMG's EMOF standard, which Eclipse approximates with its ECORE

implementation. More examples may be found in the M2M project implementing the

QVT standard or in the M2T project implementing the MOF2Text standard. Several

vendors already provide tools that support integration at about this level, including

substantial code generation. OMG has collected links to MDA products and vendors

that we know about here. Today's tools are not supporting PIM to PSM transformation

very well; because the industry got started on the second step much earlier, automation

of the code generation is typically successful in many platforms [71].

Furthermore, it should be careful not to confuse of MDA tools and UML tools. Usually

MDA tools focus rudimentary architecture specification, although in some cases the

tools are architecture-independent or platform independent. This distinction can be

made more general by distinguishing “variable metamodel tools” and “fixed

metamodel tools”. A UML CASE tool is typically a “fixed metamodel tool” since it

Chapter 3. Related Work

55

has been hard-wired to work only with a given version of the UML metamodel. On the

contrary, other tools have internal generic capabilities allowing them to adapt to

arbitrary metamodels or to a particular kind of metamodels.

3.4.4 Model Driven Architecture and Transformation Today

The MDA is a new way of developing applications and writing specifications, based

on a platform-independent model (PIM) of the application or specification's business

functionality and behaviour. A complete MDA application consists of a definitive PIM,

plus one or more PSMs and complete implementations, one on each platform that the

application developer decides to support.

In order to benefit an industry, a standard must be used by a critical mass of companies.

Technology-specific standards will have trouble getting established where platform

incompatibility prevents achieving this critical mass. Sometimes the problem is even

deeper than this: In some industries, architecturally excellent standards have been

adopted in the formal sense but failed to gain hold because they were written for a

platform that few companies were willing to support [71]. MDA aims to solve these

issues. Under MDA, the functional description of every standard is technology

independent, and the architecture is capable of producing interoperating

implementations on multiple platforms. This allows an industry to define the business

functionality and behaviour of its standards as a PIM, and then produce PSMs and

implementations on whatever platforms the participants require.

In addition, technology-based standards become obsolete as their base platform ages;

in fact they lose some of their appeal as soon as a new platform gets some play in the

industry press. This is not a problem for MDA-based specifications: Because they are

based on platform-independent PIMs and can be made to interoperate with new

Chapter 3. Related Work

56

platforms, or even re-implemented on them, through the MDA development process,

MDA-based applications and specifications.

There are many advantages and benefits to using the MDA approach. Follows are the

important there of them [71]:

 In an MDA development project, attention focuses first on the application's

business functionality and behaviour, allowing stakeholders' investment to

concentrate on the aspects that critically affect core business processes. Technical

aspects, also critical but secondary to business functions, are well-handled by

automated or semi-automated development tools.

 An architecture based on the MDA is always ready to deal with yesterday's,

today's and tomorrow’s "next big thing" and makes it easier to integrate

applications and facilities across middleware boundaries.

 Domain facilities defined in the MDA by OMG's Domain Task Forces will

provide much wider interoperability by always being available on a domain's

preferred platform, and on multiple platforms whenever there is a need.

Recent years, OMG established a domain facility-OMG's Domain Task Forces. It

started to write their specifications, especially transformation rules, in the MDA in

mid-2001, led by the Life Science Research Domain Task Force, working in

Biotechnology, which was the first Domain Task Force to modify its Mission and

Goals Statement to reflect its work in MDA [72]. Currently, there are many domains

are covered as listed below with its specific projects [69],

 Transportation. It includes Air Traffic Control (ATC) and Surveillance User

Interface (SURV).

Chapter 3. Related Work

57

 Command, Control, Communications, Computers, Intelligence (C4I): Includes

Alert Management Service (ALMAS), Shared Operational Picture Exchange

Services (SOPES), Information Exchange Data Model (IEDM), Unified Profile for

the Dept. of Defence Architecture Framework (DoDAF) and the Ministry of

Defence Architecture Framework (MODAF), and Application Management and

System Monitoring for CMS Systems (AMSM).

 Telecommunications: It includes Audio / Visual Streams (AVSTR) and Telecom

Service & Access Subscription (TSAS).

 Life Sciences Research. It includes Bibliographic Query Service (BQS),

Bimolecular Sequence Analysis (BSA), Genomic Maps (GMAPS), Laboratory

Equipment Control Interface Specification (LECIS), Phenotype and Genotype

Object Model (PAGE-OM), Macromolecular Structure (MACSTR), Life Sciences

Analysis Engine (LSAE), Life Sciences Identifiers (LIS), Chemical Structure and

Access Representation (CSAR), and Gene Expression (GENE).

 Business: It includes Business Motivation Model (BMM), Business Process

Definition Metamodel (BPDM), Production Rule Representation (PRR), Business

Process Maturity Model (BPMM), and Business Process Modelling Notation

(BPMN).

 Healthcare: It includes Clinical Decision Support Service (CDSS), Lexicon Query

Service (LQS), Person Identification Service (PIDS), and Identity Cross-Reference

Service (IXS).

 Manufacturing and Industrial Systems: It includes Computer Aided Design

Services (CAD), Historical Data Acquisition from Industrial Systems (HDAIS),

and Data Acquisition from Industrial Systems (DAIS).

Chapter 3. Related Work

58

 Finance: It includes Currency (CURR), Party Management Facility (PARTY), and

General Ledger (LEDG).

 Simulation: It includes Distributed Simulation Systems (DSS).

 Space: It includes Ground Equipment Management Service (GEMS), Space

Operations Language Metamodel (SOLM), and Reference Metamodel for the

EXPRESS Information Modelling Language (EXPRESS).

 Cross-domain: It includes IT Portfolio Management Facility (ITPMF) and Task

and Session (TSKSES).

 Government: It includes Metamodel for the Federal Transition Framework (FTF),

Records Management Services (RMS), and Model for Performance-driven

Government (MPG).

 Electronic Commerce: It includes Negotiation Facility (NEG) and Public Key

Infrastructure (PKI).

 System Engineering: It includes OMG Systems Modelling Language (OMG

SysML).

 Software-based Communications: It includes PIM and PSM for Smart Antenna

(smart ant).

 Robotics Software Development: It includes Robotic Localisation Service (RLS)

and Robotic Technology Component (RTC).

Generally, model transformation is a process of converting one type model into

another type. Predefined rules are designed as the kernel part of this process. In MDA,

transformation is mainly between PIM and PSM. Vertically, it includes

Chapter 3. Related Work

59

transformation from CIM to PIM, PIM to PSM, and PSM to code whereas horizontal

transformations includes transforming a PSM into another PSM based upon

implementing technologies [59, 93]. However, the important position of

transformation rules is the same.

To generate PSM from PIM, different artefacts of the system are required to be

mapped from one model to another. Therefore, it is necessary to formulate a set of

transformation criteria that allows converting a source model in to the target model

[93]. In last decade, there are many model transformation approaches have been

proposed by researchers based on various requirements or platforms. For example,

Kleppe [40] has provided mapping rules for generating EJB specific PSM. Also,

there are a few works indirectly proposed a graphical notation for model

transformation such as papers from Mazon et al [56, 57, 88]. There are two examples

shown in this section to demonstrate the notation of transformation rules. First

example is a transformation to get multidimensional data warehouse model with

generalisation relationship from relational model which is shown as table 3-3 [57].

Next table presents the second example which is a transformation of Object

Constraint Language (OCL) navigation call expression to various Prototype

Verification System (PVS) expression.

Well-Formedness Rules Explanation

∀se:SourceElement(instanceOf(se,SourceMetamodel)) All SourceElement must be instance of

SourceMetamodel

∀re:ResultElement(instanceOf(re,ResultMetamodel)) All ResultElement must be instance of

ResultMetamodel

∀se:SourceElement, n:Name (owned(se,n) ⇒

empty(n) ∨ notEmpty(n))

SourceElement’s name can have a value

or empty

Chapter 3. Related Work

60

∀se:ResultElement, n:Name (owned(re,n) ⇒

empty(n) ∨ notEmpty(n))

ResultElement’s name can have a value

or empty

∀tl:TransformationLink (∃ ms: MappingStatement

(partOf(ms,tl)))

All TransformationLinks must have a

MappingStatement

∀tl:TransformationLink,

as:ActionStatement(partOf(as,tl)

⇒ (∃ gs:GuardStatement (partOf(gs,tl))))

ActionStatement can only appear in a

TransformationLink that have a

GuardStatement

Table 3-3. Explanation of Well-Formedness Rules [57]

Semantics Explanation

∀ tl:TransformationLink, c:Condition (partOf(c,tl)

∧c=TRUE ⇒ execute(tl))

For all transformation link that have a

condition, the transformation will happen

if the condition is true

∀ tl:TransformationLink, ms:MappingStatement,

gs:GuardStatement (gs=TRUE ∧ partOf(gs,tl) ∧

partOf(ms,tl) ⇒ exexute(ms) ∧ (∃ as:ActionStatement

(partOf(as,tl) ⇒ execute (as))))

If GuardStatement true, execute

MappingStatement and ActionStatement

that is for the same TransformationLink

as the GuardStatement

Table 3-4. Some of The Semantics for The Proposed Notation [57]

3.5 Software Engineering Creative Computing

Previous sections already demonstrated a relatively tight connection between software

engineering and creative computing. Therefore, in this part, we would like to propose a

method for software engineering creative computing, which is a solution on “how to

develop creative computing as an academic discipline”. Normally, it is a domain skill

that all kinds of software have to be developed under the guidance of Software

Engineering theory and methods. In this section, we are proposing a term, Software

Chapter 3. Related Work

61

Engineering Creative Computing (SECC), to promote a Software Engineering thinking

helping with the development of creative computing, as an academic discipline.

3.5.1 General Discussion

Software engineering is the application of a systematic, disciplined, quantifiable

approach to the development, operation, and maintenance of software, and the study of

these approaches; that is, the application of engineering to software [12]. The most

general view of software engineering is that software engineering is the analysis,

design, construction, verification and management of technical (or social) entries [86].

Regardless of the entity that is to be engineered, it is answering follow questions [106]:

 What is the problem to be solved?

 What are the characteristics of the entity that is used to solve the problem?

 How will the entity (and the solution) be realised?

 How will the entity be constructed?

 What approach will be used to uncover errors that were made in the design

and construction of the entity?

 How will the entity be supported over the long term, when corrections,

adoptions and enhancements are requested by users of the entity?

Because characteristics of creative computing, there are some new development’s

issues generated which actually can be catalogued into above “What/How” questions’

list. For example, in creative computing, “multimedia data” feature leads to a data

structure problem which can be solved by software engineering’s answer with “How

will the entity be constructed?” question.

Chapter 3. Related Work

62

To sum up, software engineering creative computing can be a roadmap in development

of creative computing in academic research and will help to enhance into a systematic

disciplined, quantifiable development approach in industrial practice.

3.5.2 Classification of Software Engineering Principles

Software engineering can be divided into ten sub disciplines. They are [12]: Software

requirements; Software development; Software maintenance; Software configuration

management; Software engineering management; Software development process;

Software engineering tools; and Software quality. Each sub discipline contains specific

principles. Specifically, all the existing Software Engineering principles can be

classified into four huge catalogues as Pressman [86] proposed,

 Managing software projects. It contains Software Process and Project Metrics,

Software Project Planning, Risk Analysis and Management, Project Scheduling and

Tracking, Software Quality Assurance, and Software Configuration Management.

 Conventional methods for software engineering. It contains System Engineering,

Analysis Principles and modelling, Design Principles (including Architectural

Design, User Interface Design, and Component-Level Design), and Software

Testing Techniques and Strategies.

 Object-Oriented software engineering. It contains Object-Oriented Principles,

Object-Oriented Analysis, Object-Oriented Design, and Object-Oriented Testing.

 Advanced Topics in software engineering. It contains Formal Methods, Cleanroom

software engineering, Component-Based software engineering, Client and Server

Ecommerce software engineering, Web Engineering, Reengineering, etc.

Chapter 3. Related Work

63

3.5.3 Software Engineering Creative Computing Application

in an E-Learning System

In the previous research, there is a music-learning system [101, 102] involved as an

experimental case, which is a creative computing project. It works as follows: there is a

three-way approach that is to be presented interdependently. It consists of a “section”

concerning music appreciation, one focusing on the understanding of musical,

theoretical and technological concepts and another involved with music making. The

heart is the understanding section as any tutor or learner-driven navigation starts here

as all key terms and concepts are embedded in this section. Nonetheless, as the music

type is not as well-known as, say, certain forms of commercial music, a didactic

approach to repertoire development and learning what to listen for is essential. This

takes place in the listening section and communicates directly with and is dependent on

the related concepts in the understanding section. When it comes to how this music is

made, certain specific means of sonic treatment will be introduced in the understanding

section, for example, how a filter can alter the timbral quality of a given sound. To this

end, some individual creative components are integrated, such as a real-time sound

manipulation tool which is working online and allow multi-users’ cooperation.

From above, this music-learning system is in the creative computing area. It mainly

shows as following features (compared with characteristics of creative computing):

Multimedia presentation, Art-technology collaboration, User cooperation, Multimedia

data, and Technology innovation.

 Multimedia presentation. There are music, text, picture, flash and other

presentations.

Chapter 3. Related Work

64

 Art-technology collaboration. This is a combination of music learning (with

composition) and e-learning technology.

 User cooperation. There are multi-user’s composition, connections between learner

and tutor, and learner’s cooperation with knowledge share and communications,

 Multimedia data. There are text, music/sound file, flash, picture, composition tool,

etc.

Figure 3-9. Component Structure of Interaction Learning Model

Learning

Content

Learner Entity

Delivery

Learning

Resources

Locator

Multimedia

Learner

Records
Update Info

Evaluation

Coach

Coach

Behavior

Interaction Context

Assessmen

t

Get

Info

Catalogue Info

Query

Learning

Parameters

Locator

Update

Info

Advices

Get Info

Communication

Information/

Multimedia

Information

Chapter 3. Related Work

65

The first four features are discussed in last section that they can be engineered based

on classic SE principles. Because the proposed “software engineer creative computing”

concept is always applied in the research development, Figure 6-5, as a proposed

learning model, shows the feasibility and applicability of proposed principles in section

6.3.

This components model contains some software engineering principles, such as “user

interface design golden rules”, “data design principles”, and “metrics for

object-oriented design class”.

 User Interface Design Golden Rules. When design components for user and their

relative actions, the golden rules are concerned. Therefore, users are divided into

two components, “Learner Entity” and “Coach”. Also, because of “Reduce user

memory load” and “Make the interface consistent” rules, another component named

“Delivery” is designed to manage presentation information.

 Data Design Principles. The “Learner Records” and “Learning Resources” are

designed based on this principle, which makes them been divided with each other

and also classifies methods between them and other components.

 Metrics for Object-Oriented Design Class. Although this model only shows

components, this principle is applied in its design because we planned our

development based on Object-Oriented. Classes Model will be mapped from this

components model. Therefore, each component is calculated by those metrics.

Above all, the principles are working efficiency in the models designed for e-learning

system.

Chapter 3. Related Work

66

3.6 Related Projects

The proposed research is trying to build a MDA-based software evolution framework,

in which software modelling into CIM, PIM, and PSM, and transformation are

designed following MOF QVT standard in order to facilitate software engineering and

software evolution. Hence, there are a great range of related projects that this study has

reviewed and discussed.

Gavras et al [27] have proposed an MDA-based development methodology. Applying

MDA to enterprise computing have described in [24]. In [13] author has provided model

driven software modernisation. They proved the practicability to apply MDA in general

systems’ development. Even in software evolution, MDA is an effective methodology

[14]. However, those work mentioned above mainly focus on MDA’s application but

weak on PIM’s establishment. Though Solms and Loubser [94] formulated a

methodology to generate PIM, it aims at the system domain experts but not software

technicians.

There are also researchers focusing on electronic learning with many results. Lots of

researchers [5, 21, 38, 54, 58, 103, 105] have been working on learning content and part

of the works focused on multimedia content management and delivery such as [54, 58].

Meanwhile, lots of researchers [15, 20, 25, 29] are working on software engineering

issues. Indeed, there are some works covered both e-learning and software engineering.

For example, in [109], the author has combined the areas of media streaming services,

mobile devices, and manufacturing processes to a e-learning streaming framework.

Especially, few studies are covering modelling theory and e-learning such as [108],

which has proposed a multi-model ontology-based framework. However, it is rare to see

research on multimedia electronic learning system combined with Model-Driven

Architecture.

Chapter 3. Related Work

67

Previously, there are several works published related this research. The initial design for

MDA-based development for a music learning system has been provided as [102],

including lifecycle and pedagogical design. In [101], an ontology-based model-driven

approach is proposed and applied in an electronic learning system, in which PIM

generation method is designed. Besides, creative computing and software engineering is

studied as [106]. In this paper, our proposal is based on those published works and can

be considered as previous works’ extension, improvement, and specification.

3.7 Summary

In this chapter, the related works of Model-Driven Architecture based evolution are

introduced and discussed including technologies and projects:

 A brief overview of software engineering is introduced. Besides, three modern

software engineering paradigms are reviewed including object oriented

programming, component based development, and service oriented architecture.

 Software changes are introduced with three different maintenance activities,

namely, maintenance, reengineering, and evolution. Additionally, the laws of

software evolution are quoted to describe software evolution.

 Model driven engineering is introduced from background and basic concepts.

Model driven architecture is summarised from three views. Meanwhile, current

situation of MDA is analysed from PIM languages, PSM languages, transaction

definitions, tools, and other standards. Related basic terms are also explained.

Besides, a brief introduction to model-driven architecture based software evolution

is given. MDA approach and methods are reviewed.

Chapter 3. Related Work

68

 UML is discussed with UML 2.x concept, UML and MDA relationship, and UML

profile. UML structure, diagram, and elements are introduced. UML modelling

tools are presented. Additionally, there is a discussion on UML’s role in MDA

approach to explain how UML 2 supports the most prominent concepts in the

evolving MDA vision. Furthermore, UML profile specification and its application

for particular domains and platforms are presented. In the meantime, there is an

overview of XML, XMI and PHP with brief introductions on their background,

definition, application, and features.

 Projects related to the MDA are reviewed and discussed. Existing works proved

the practicability to apply MDA in general systems’ development. Even in software

evolution, MDA is an effective methodology. However, those works mainly focus

on MDA’s application but weak on PIM’s establishment.

 E-learning related research results are reviewed and discussed. General researchers

are working on content structure, management, and delivery. Few projects are

covering e-learning and modelling theory. However, it is rare to see research

focusing on multimedia electronic learning system combined with Model-Driven

Architecture.

 Notion of transformation rules is studied and summarised. Related previous work

is concluded. Meanwhile, examples of previous work are presented including

“transformations to get multidimensional data warehouse model with

generalisation relationship from relational model” and “transformation of Object

Constraint Language (OCL) navigation call expression to various Prototype

Verification System (PVS) expression”.

Chapter 4. Proposed E-Learning Modelling

69

Chapter 4

Proposed E-Learning Modelling

Objectives

 To present domain modelling for e-learning

 To employ LTSA standard into modelling

 To specific designed three models in domain modelling

 To present models with MVC structure

 To propose an e-learning domain framework

4.1 E-Learning Domain Modelling

4.1.1 E-Learning Standard: Learning Technology Systems

Architecture

The standard of Learning Technology - Learning Technology Systems Architecture

(LTSA) [35], specifies a high level architecture for information technology-supported

learning, education and training systems that describes the high-level system design and

the components of five refinement layers of architecture are specified in Figure 4-1. This

architecture is applicable to a broad range of learning scenarios [35]. From the highest to

the lowest level, these layers are named as below [35]:

 Learner and Environment Interactions (informative).

Chapter 4. Proposed E-Learning Modelling

70

 Learner-Related Design Features (informative).

 System Components (normative).

Figure 4-1. The LTSA Abstraction-Implementation Layers [35]

 Implementation Perspectives and Priorities (informative).

 Operational Components and Interoperability - coding, APIs, protocols

(informative).

Concretely, the LTSA [35] identifies four processes: learner entity, evaluation, coach,

and delivery process; two stores: learner records and learning resources; and thirteen

information flows among these components: behavioural observations, assessment

information, performance and preference information (three times), query, catalogue

Chapter 4. Proposed E-Learning Modelling

71

info, locator (twice), learning content, multimedia, interaction context, and learning

preferences. The System Core Component organisation is as follow:

Figure 4-2. The LTSA System Components [35]

The LTSA system showing following features [35].

 Multiple role learning, team learning. Learners (of the collective learner entity)

operating as teams in which learners have different roles. The interface to the

learner entity is multimedia. The communication among the learners that represent

the collective learner entity. There are support tools delivering via multimedia. A

coach role is aiming to support collaboration activities.

 Collaboration and asynchronous learning. Learners are able to access the learning

environment and/or collaborate at different times. Collaboration among the learners

that present the collective learner entity. Collaboration among learners in different

“time zones” or asynchronous access.

Chapter 4. Proposed E-Learning Modelling

72

 Learner profiles. Learner information, such as performance information, preference

information, and other important information are saved as learner profiles.

The proposed new version learning application is totally independent of any underlying

platform. Therefore, it will follow the guidelines proposed in MDA [62]. Models of

LTSA system will be structured explicitly into Platform Independent Models (PIMs)

and Platform Specific Models (PSMs).

4.1.2 Pedagogical Strategy

This research is focus on educational e-learning system. Therefore, pedagogical strategy

[16, 36, 50, 55] is the kernel methodology to support our requirement analyse. The

kernel requirement based on the pedagogical strategy can be described as follow.

The pedagogical strategy that is being modelled is a holistic one. It works as follows:

there is a three-way approach that is to be presented interdependently. The holistic

approach that integrates concept development, listening and creative aspects related to

electroacoustic music is one of the unique aspects of this project. Three more interesting

aspects of the system are worthy of introduction. First of all, users will be entitled to

have diagnostic information presented either to teachers or to the learners themselves.

This information helps users to find out where their strengths lie and in which areas there

is room for improvement. It can also signal concepts not being learned and offer advice

as to how to achieve more satisfying results. This means that in any interactive aspect of

the site, user reactions will be monitored and information on the acquisition of concepts

presented. Applications of techniques developed in artificial intelligence should prove

invaluable in this aspect of the research project.

A second aspect will be offered which has to do with user-generated feedback and

content provision. To cite one example; the current EARS research site is based on a tree

Chapter 4. Proposed E-Learning Modelling

73

structure to order the ca. 500 terms that it offers. The project presented here will continue

to offer this traditional option, but will use state of the art tagging systems to offer

another means of potential navigation through concept acquisition. This brings us the

third important aspect.

The pedagogical environment will be able to be navigated in a variety of manners. These

include:

 Previously organised paths designed by the development team will be on offer for

individual users taking into account their previous knowledge. An avatar will act as

teacher in such cases.

 Similarly, teachers may prefer to use one of the curriculum navigation systems on

offer.

 The teachers may prefer to organise their own curriculum navigation system based

on classroom needs.

 Individuals may be interested in specific subjects or aspects of electroacoustic

music and therefore may want to create their own navigation.

All of the above will be implemented within the pedagogical architecture of this

environment.

4.1.3 Three Models

Considered the requirement, the main functions are organised and designed into three

groups, which present three individual learning approaches. Therefore, there are three

“learning-models” are proposed, including “step by step learning model”, “optional

learning model”, and “interacting learning model”, to support each functional group.

Chapter 4. Proposed E-Learning Modelling

74

The proposed three functional group and learn-models are based on pedagogical strategy

and combined with LTSA. In the following sections, there are specifications for three

functional groups and three learning models.

4.1.3.1 Step by Step Learning Model

This model is proposed to support the simplest learning method that is “step by step

learning”. This education method is known as a traditional teaching and learning

process which is generally applied in class education. Learning path is the kernel issue

in it which should be well designed in the beginning. Meanwhile, the learning path

cannot be changed by learners. It is a process similar with reading a novel in which

chapter’s sequence is designed for every reader.

Obviously, this traditional education method is a typical approach in some educational

process. It definitely has some advantages such as following list,

 Learning path is clear and easy to be followed. Because the path is static

designed, learning progress is a predictable route. Hence, learners’ only work is

to follow the direction step-by-step.

 Learner records are simple information which means records are easy to manage

by learner’s manual update and automatic update from learning content path

progress.

 Learning resources are easy to manage because of the static learning path.

However, there are many disadvantages in this method as well.

 Each learner cannot get specific set on learning path which cannot satisfy

individual requirement. The best this method can do is to get a learning path

designed that fit to the common requirement in an average level for the learner

group.

Chapter 4. Proposed E-Learning Modelling

75

 The successful degree in this method is more than 50% rely on the design of

learning content and learning path. Which means it is taking a huge risk on data

analysing.

 Changes on learning resources are not convenient because the contents are

tightly bonded with static learning path. Any update for existing contents may

cause path’s change. Besides, any add or delete on the resources requires

relevant change (add or delete) on the learning path.

 There is no guarantee for learner’s successful on each learning stage. There is

not including any independent assessment component. The judgement may

depend on examinations on learning resources.

 There is no communication at all if it is self-study. Everyone is in an isolate

learning environment which means learners cannot get effective help or advice

if there is any problem they cannot solve by themselves.

There is a “step by step learning model components” figure shown as below,

Figure 4-3. Step by Step Learning Model Components

Components’ specification is explained as below:

Learner Entity

Delivery

Learning

Resources

Learning

Content

Locator

Multimedia

Learner

Records
Locator

Update Info.

Update Info.

Chapter 4. Proposed E-Learning Modelling

76

 Learner Entity: It indicates a single learner, a group of learners learning

individually, a group of learners learning collaboratively, a group of learners

learning in different roles, and so on. For example, in a self-study environment,

learner entity normally is individual learner. In a classroom-study or similar

situation, it can be group learners learning individually, collaboratively, or in

different roles.

 Delivery: It is a transmission process delivering learning content to learner

entity. There are mainly two task in it, one is to receive learning content from

learning resources, the other is to deliver received learning content to learner

entity via multimedia. In addition, it may charges to locate learning resources

aims to acquired relevant learning contents.

 Learning Resources: It contains all learning contents needed in system including

various format such as text, pictures, images, sounds, and other files.

 Learner Record: It is a depository for every learner record that is necessarily to

be remembered. It contains learner’s basic information such as username and

password. Meanwhile, learner’s learning progress is a kernel part should be

recorded.

 Multimedia: It indicates applications of many display methods realised by

multimedia. It aims to support different formats’ learning content. Besides, it

can improve learners’ interest via various presentation formats.

 Learning Content: It means individual file as learning content. All learning

contents store at learning resources. It can be various format including text,

image, sounds, and so on.

 Locator: This is a component working on learning content’s location. Delivery

component might need it to use it to acquire more content. It should locate

learner required content from learning resources based on learning progress

history in learner record.

Chapter 4. Proposed E-Learning Modelling

77

 Update Info: It in charges to update any changes on learner’s basic information

and learning progress to learner record.

Figure 4-4. System Activity Diagram for Step by Step Learning Model

Learner Login

Study/update

info/Logout

System gets

learning progress

from Record

Locator gets

contents from

Resources

Delivery display

contents via

multimedia

Delivery needs

Locator?

Learner finishes

current contents?

System gets new

personal

information

Learner Record

update

Logout

Update Info

Success

Study

Yes
No

No

Yes

Fail

Home page with navigation

Chapter 4. Proposed E-Learning Modelling

78

It can be seen from the figure 4-4 that the components in this model can be categorised

into three catalogues,

 Processes: It contains “Learner Entity” and “Delivery” components.

 Storages: “Learner Records” and “Learning Resources” are two storages.

 Flows: It is including “Multimedia”, “Learning Content”, two “Update Info”

and two “Locator”.

The user oriented working process in this model is quite clear. The Figure 4-4 is an

activity diagram presents workflows of components in the step-by-step learning model.

In brief, all kinds of learning materials stored in Learning Resources. It includes text

knowledge, sound materials, music example, and so on. Delivery is a process to transfer

learning content into a presentation. Then, the presentation is represented by Multimedia,

which delivery different type knowledge to the learner entity. Plus, the Learner Records

store learner information, such as history work, study progress and so on. It is the basic

data to locate where should be study.

4.1.3.2 Optional Learning Model

This model is proposed to support another learning method named as “optional

learning”. This education method is a more flexible teaching and learning process

which is suitable for both self-study and class-study environments. Learning path is not

fixed but changeable. There is still a learning path designed on system. However, it is

only a suggestion route considered general learner’s requirements. Learner entities can

decide learning route by themselves via optional learning content selection. It is a

process similar with reading a dictionary in which sequence is not necessarily to be

followed.

Chapter 4. Proposed E-Learning Modelling

79

This education method is a typical approach in some online self-study educational

process such as The World Wide Web Consortium (W3C) Tutorials in W3Schools [3].

It definitely has some advantages such as following list,

 Learning path is flexible to change. Because the path is only designed as a

suggestion, learners can create unique learning route to suit individual

requirements via optional learning contents choice.

 Learner records are simple information which means records are easy to manage

by learner’s manual update and automatic update from learning contents’

records.

However, there are some disadvantages in this method as well.

 The successful degree in this method is more rely on learner’s own judgement

for their finish assessment and learning path plan. It means it is taking a huge

risk for rely on unpredictable user behaviour.

 Changes on learning resources are not very convenient because there is still a

designed learning path bonding with learning contents. Any update for existing

contents may cause path’s change. Besides, any add or delete on the resources

requires relevant change (add or delete) on the learning path.

 There is no guarantee for learner’s successful on each learning stage. There is

not including any independent assessment component. The judgement may

depend on examinations on learning resources. However, learners can skip any

unsuccessfully finished contents via optional learning function. It may cause

failure of learning by incoherent knowledge.

 There is no communication at all if it is self-study. Everyone is in an isolate

learning environment which means learners cannot get effective help or advice

if there is any problem they cannot solve by themselves.

Chapter 4. Proposed E-Learning Modelling

80

There is an “optional learning model components” shown as Figure 4-5, all the

components’ specifications in this model are same with specifications in last model –

“step by step learning model” proposed in section 4.1.3.1.

Figure 4-5. Optional Learning Model Components

It can be seen from the figure 4-5 that the components in this model can be categorised

into three catalogues, which is just like last proposed learning model,

 Processes: It contains “Learner Entity” and “Delivery” components.

 Storages: “Learner Records” and “Learning Resources” are two storages.

 Flows: It is including “Multimedia”, “Learning Content”, two “Update Info”

and three “Locator”.

The user oriented working process in this model can be clearly shown as Figure 4-6 as a

flowchart. It is an activity diagram presents workflows of components in the optional

learning model.

Learner Entity

Delivery

Learning

Resources

Learning

Content

Locator

Multimedia

Learner

Records
Locator

Update Info

Locator

Update Info

Chapter 4. Proposed E-Learning Modelling

81

Figure 4-6. System Activity Diagram for Optional Learning Model

Learner Login

Study/update

info/Logout

System gets learning progress

from Record

Locator gets contents from

Resources

Delivery display

contents via

multimedia

Delivery needs

Locator?

Learner finishes

current contents?

System gets new

personal

information

Learner Record

update

Logout

Update Info

Success

Study

Yes No

No

Yes

Fail

Home page with navigation

Display suggested content

title based on designed path

Learn suggested

content?

Yes

Learner choose

contents

No

Chapter 4. Proposed E-Learning Modelling

82

In brief, this model’s progress is quite similar with step by step learning model. The

main point in this model is that there is a locator flow comes from leaner entity. It

means learners can choose learning content for themselves. In the activity diagram, it

can be seen there is an option for learner to decide whether follow suggested content.

The suggested content is recommended by system based on designed learning path.

When learner decides do not follow suggestion, it is free to choose any content in the

system as next learning stage. This is the “optional” point in this model.

4.1.3.3 Interacting Learning Model

Pedagogical knowledge includes generic knowledge about how students learn,

teaching approaches, methods of assessment and knowledge of different theories about

learning [28, 66, 92, 99]. It implies that it should be more considered on aspects of

assessment, teaching approaches, learning process, etc.

At the meantime, pedagogical strategy proposed in section 4.1.2 is requiring a more

complicated learning method to be realised. Considered about the interacting learning

requirements listed in the pedagogical strategy, an interacting learning model is

proposed to complete it. Therefore, an interacting learning model is proposed in the

following paragraphs based on an introduced technology LTSA.

This education method is a very flexible teaching and learning process. Learning path

is dynamic generated based on evaluation result and learning history record in which

coach is involved as a new role to do judgement and advice for the learning path’s

location. Plus, coach is supporting communications with learner entity.

Based on the kernel points in this model, it definitely has more advantages than the last

two proposed learning models. Here is a list of benefits below,

Chapter 4. Proposed E-Learning Modelling

83

 Learning path is considered each learner entity’s requirement. Therefore, learner

entity’s learning route can be unique and suitable for their specific situation.

 The successful rate in this method is more reliable based on evaluation function

and coach’s judgements and advices. It means learning under this model is low

risk behaviour.

 Learner records are simple information which means records are easy to manage

by learner’s manual update, automatic update from learning contents’ records,

and from evaluation and coach’s advices.

 Communication is realised no matter in self-study or group-study. Everyone is

capable to communicate with others including other learners and coaches under

any learning environment which means learners can get effective help or advice

conveniently.

Compared with the other two learning models – “step by step learning model” and

“optional learning model”, the mainly disadvantage in this learning method is a higher

system complexity. There is an “interaction learning model components” shown as

Figure 4-7.

Components’ specification is explained as below:

 Learner Entity: It indicates a single learner, a group of learners learning

individually, a group of learners learning collaboratively, a group of learners

learning in different roles, and so on. For example, in a self-study environment,

learner entity normally is individual learner. In a classroom-study or similar

situation, it can be group learners learning individually, collaboratively, or in

different roles.

 Delivery: It is a transmission process delivering learning content to learner

entity. There are mainly two task in it, one is to receive learning content from

Chapter 4. Proposed E-Learning Modelling

84

learning resources, the other is to deliver received learning content to learner

entity via multimedia. In addition, it may charges to locate learning resources

aims to acquired relevant learning contents.

Figure 4-7. Interaction Learning Model Components

 Learning Resources: It contains all learning contents needed in system including

various format such as text, pictures, images, sounds, and other files.

 Learner Record: It is a depository for every learner record that is necessarily to

be remembered. It contains learner’s basic information such as username and

Learning

Content

Learner Entity

Delivery

Learning

Resources

Locator

Multimedia

Learner

Records
Update Info

Evaluation

Coach

Coach

Behavior

Interaction Context

Assessmen

t

Get

Info

Catalogue Info

Query

Learning

Parameters

Locator

Update

Info

Advices

Get Info

Communication

Information/

Multimedia

Information

Chapter 4. Proposed E-Learning Modelling

85

password. Meanwhile, learner’s learning progress is a kernel part should be

recorded.

 Multimedia: It indicates applications of many display methods realised by

multimedia. It aims to support different formats’ learning content. Besides, it

can improve learners’ interest via various presentation formats.

 Learning Content: It means individual file as learning content. All learning

contents store at learning resources. It can be various format including text,

image, sounds, and so on.

 Locator: This is a component working on learning content’s location. Delivery

component might need it to use it to acquire more content. It should locate

learner required content from learning resources based on learning progress

history in learner record.

 Update Info: It in charges to update any changes on learner’s basic information

and learning progress to learner record.

 Get Info: It is a flow to acquire history information from learner record for

evaluation and coach.

 Coach: It is a position for real or virtual tutors. Coach will analyse learner’s

existing information, assessment result, and learning resources, aims to support

learner entity with reasonable advices with learning contents’ location.

 Evaluation: It is a process to evaluate learner entity’s learning achievement

based on learner entity’s behaviours, interaction context, and learner’s history

record.

Chapter 4. Proposed E-Learning Modelling

86

 Interaction Context: It is information about current learning contents in delivery

process.

 Learning Parameters: It is parameters about current learning situations come

from learner entity, for example, learner entity’s specific question, requirement,

etc.

 Advices: It is advices that coach suggested to help learner entity. It can be

advices for learner’s questions or requirements, and advices for next step’s

learning contents.

 Behaviour: It includes every learner entities’ behaviours related to evaluation

such as online examination, exercises, demonstration, and so on.

 Communication: It includes public and private communication between learner

entity and coach, and between different learner entities.

 Information: It is information comes from learner entity or coach for

communication purpose.

 Assessment: It is evaluation result generated from evaluation process to support

coach’s work.

 Catalogue Info: It is catalogue information for contents in learning resources.

 Query: It is a coach’s action to query about learning content’s information from

learning resources.

It can be seen from the Figure 4-7 that the components in this model can be categorised

into three catalogues,

Chapter 4. Proposed E-Learning Modelling

87

 Processes: It contains “Learner Entity”, “Delivery”, “Coach”, “Evaluation”, and

“Communication” components.

 Storages: “Learner Records” and “Learning Resources” are two storages.

 Flows: It is including “Multimedia”, “Learning content”, two “Update info” and

two “Locator”, two “Get info”, “Learning parameters”, “Interaction context”,

“Advices”, “Assessment”, “Behaviour”, “Catalogue Info”, “Information”, and

“Query”.

Although the working process in this model is more complex than the other two

learning models, it still can be designed as a flowchart as below,

Figure 4-8. Overview System Activity Diagram for Interaction Learning Model

Home page with navigation

Learner login?

Study/Communication

/Update Info/ Logout?

Logout

Yes

No

System gets new

personal info

Learner Record

update

Study

Update Info

Communication

subsystem

Communication

STUDY

APPROACH

(See next figure)

Chapter 4. Proposed E-Learning Modelling

88

Figure 4-9. Study Approach Activity Diagram for Interaction Learning Model

The figure 4-8 is an activity diagram presents overview workflows of components in the

interaction learning model. Because space limitation, specific study activities are

presented as an individual diagram – figure 4-9. The two diagrams describe how the

interaction learning model works.

Briefly, compare with the other two models, the key features in this model are

communication, coach, and evaluation functions.

System gets learning history record

Locator gets contents from resources

System sends learning

parameters to coach

Coach analyses record

info, catalogue info,

and arrived info

Coach gives advices

Record update

Follow content?
Delivery display

contents

Delivery needs locator?

No

Current contents finished?

Yes No

Yes

Evaluate learner behavior,

history record, and

interaction context.

System sends

assessment Yes

No

Chapter 4. Proposed E-Learning Modelling

89

Communication is presented as an independent activity to support information

exchange between leaner entities and coaches. It is free to be developed as any

communication tools, for example, forum, blog, wiki, etc.

Evaluation and coach functions are mainly working in the study part. In the study

approach, at the beginning, system will suggest content automatically based on

learner’s history record. Then it allows leaner entity to choose follow it or not. If

learner has another idea other than the suggestion, learning parameters will be sent to

coach which can be requirement, question, and other related information. Coach

analyses parameters, learner’s record, and catalogue information to make an advice for

learner’s request. The new advice and related information updated to learner record

automatically to generate a new learning route. After those steps, learner will be

suggested to new contents. When learner finishes current content, related interaction

context and learner behaviours will be sent to evaluation part including test, exercises,

demonstrations, examination, etc. Evaluation aims to generate an assessment based on

received interaction context, learner behaviours, and learner’s history record. Then, the

assessment result will be saved into learner record and sent to coach to support coach’s

analysis.

4.2 Model-View-Controller E-Learning Modelling

Model-View-Controller (MVC) is a classic design pattern often used by applications

that need the ability to maintain multiple views of the same data. The MVC paradigm

hinges on a clean separation of objects into one of three categories – models for

maintaining data, views for displaying all or a portion of the data, and controllers for

handling events that affect the model or view. Because of this separation, multiple

views and controllers can interface with the same model. Even new types of views and

controllers that never existed before can interface with a model without forcing a

Chapter 4. Proposed E-Learning Modelling

90

change in the model design. Therefore, MVC is selected as the main design pattern for

presented e-learning modelling.

4.2.1 Model-View-Controller Modelling

There are three modules in MVC pattern: Model, View, and Controller. Figure 4-1

shows the basic associations between them.

Figure 4-10. MVC Associations

Above figure is a specific browser based MVC example. Controller communicates

with Models and Views directly. User gets browser results based on actions defined on

Controllers. An important point here is separation of view and model. The

communication between view and model is realised on controller.

Based on previous research results, basic functions on an e-learning system is

summarised as Table 4-1.

Function User

Login/Logout Learner Entity, Coach, System

Administrator

Browser Controller Model

View

HTTP

Request

HTTP

Response

Resulting

Data Arrays

GUI

Content

Resulting

Data Arrays

Execution

Parameter

Chapter 4. Proposed E-Learning Modelling

91

View Learning Contents Learner Entity, Coach, System

Administrator

Edit Learning Contents (Add/Edit/Del) Coach

Navigation Learner Entity, Coach, System

Administrator

Attend Evaluation Learner Entity

Evaluate Result Coach

User Interface Layout Editing System Administrator

Database management System Administrator

Communication Leaner Entity, Coach

Update Learner Record (personal

information)

Learner Entity

Update Learner Record (add advice) Coach

Table 4-1. Basic E-Learning Functions

The functions are user oriented. Users are including “learner”, “coach”, and “system

administrator”. Because the system administrator’s functions are basically same with

other general websites, the modelling research focuses on functions working for

“learner” and “coach”. In Table 4-2, the functions are refined and classified based on

MVC pattern.

Chapter 4. Proposed E-Learning Modelling

92

 Learner Coach

Views Learner Login/Logout Pages Coach Login/Logout Pages

Leaner Information Pages Coach Information Pages

Learning Contents Pages Learning Contents Editing

Pages (View/Add/Edit/Del)

Learner Navigation Bar Coach Navigation Bar

Evaluation Pages (e.g. Examination

Pages, Result Pages, Homework

pages, etc.)

Evaluation Pages (e.g.

Homework Check Pages)

Controllers Login/Logout Response Login/Logout Response

Learner Information Control Coach Information Control

Learning Contents Control Learning Contents Editing

(View/Add/Edit/Del) Control

Navigation Generation Navigation Generation

Evaluation Evaluation

Chapter 4. Proposed E-Learning Modelling

93

Models Databases Connection (Learning Resources DB, Learner Records DB,

and Coach Records DB)

Learning Resources Editing (Search, Add, Edit, Delete)

Records Editing (Search, Add, Edit, Delete)

Table 4-2. Functions Refining and Categories Based on MVC Pattern

Views include and only include all kind of pages. Same function should not show in

the exactly same format or content for different users, especially “learner” and “coach”

in an e-learning system. Therefore, “Login/Logout”, “Information”, “Contents”,

“Navigation”, and “Evaluation” views are divided into two groups to suit the

difference.

Figure 4-11. Advanced MVC-Based Modelling Structure

Controllers are the inside actions to connect models and views. There is at least one

controller model corresponding to each view model. Consequently, “Login/Logout”,

View Models

Controller Models

Learner’s

Controller Models

Coach’s

Controller Models

Coach’s

View Models

Learner’s

View Models

Learner and Coach’s

Model Models

Chapter 4. Proposed E-Learning Modelling

94

“Information”, “Contents”, “Navigation”, and “Evaluation” models are divided into

two groups as well.

Models are in charge of database operations. Hence, there are mainly “Databases

connection”, “Learning resources editing”, and “Records editing” models. It is the

basic database operation, so that there are no separate categories for different users.

Overall, the whole modelling structure is shown as Figure 4-11.

4.2.2 MDA-Based Modelling Structure

4.2.2.1 Modelling Structure

Based on the MVC structure, the MDA-based modelling is shown as following figure.

Figure 4-12. MDA-Based MVC E-Learning Structure

E-learning’s

CIM

E-learning’s

PIM

Model

PSM

View

PSM

Controller

PSM

Model

Code

View

Code

Controller

Code

Communication

Bridge

Communication

Bridge

Communication

Bridge

Communication

Bridge

Transformation:

CIMPIM

Transformation:

PIMModel PSM

Transformation:

PIMController PSM

Transformation: PIMView PSM

Transformation:

Code Generation
Transformation: Code Generation

Transformation:

Code Generation

Chapter 4. Proposed E-Learning Modelling

95

It merges MVC to the structure which is following MDA process.

4.2.2.2 Structure Layers

The structure is divided into four layers which are strictly following MDA principle.

 Layer 0: CIM. It is e-learning’s CIM.

 Layer 1: PIM. E-learning’s PIM is content of this level.

 Layer 2: PSM. The SPMs are divided into model PSM, view PSM, and controller

PSM.

 Layer 3: Code. There are there group code models including model code, view

code, and controller code.

Figure 4-13. Modelling Structure Layers

E-learning’s

CIM

E-learning’s

PIM

Model

PSM

View

PSM

Controller

PSM

Model

Code

View

Code

Controller

Code

Layer 0: CIM

Layer 1: PIM

Layer 2:

PIM

Layer 3:

Code

Chapter 4. Proposed E-Learning Modelling

96

4.2.2.3 Relationship and Communication on Models

As shown in figure 4-2, there are different relationships and communications between

models. It can be categorised into two kinds: Transformation and Communication

Bridge.

 Transformation CIM PIM: it is CIM to PIM transformation working from layer

0 to layer 1.

 Transformation PIM Model PSM: it is transformation from PIM specifically to

model PSM. Therefore, this transformation will select Model elements from PIM

to generate corresponding PSM.

 Transformation PIM View PSM: it is transformation from PIM specifically to

View PSM. The “specifically” means this transformation only mapping View

elements from PIM to corresponding PSM.

 Transformation PIM Controller PSM: it is transformation from PIM’s

controller elements to Controller PSM. The three PIM to PSM transformation are

working between layer 1 and layer 2.

 Transformation – Code Generation: As the name shows, this transformation aims

to generate corresponding codes for PSMs including Model PSM, View PSM, and

Controller PSM. It is working on layer 2 to layer 3.

 Communication Bridge: it exists in layer 2 and layer 3. In layer 2, it shows the

connections between PSMs. In layer 3, it presents communications between Model

code, View code, and Controller code.

Overall, the transformations and communications are bonding models, codes, and

layers to realise a united MDA-based MVC modelling structure.

Chapter 4. Proposed E-Learning Modelling

97

4.3 E-Learning Domain Framework

Based on last sections in this chapter, e-learning domain architecture is proposed as

figure 4-14 based on proposed MDA-based modelling structure.

The above figure shows a logic view of MDA-based e-learning domain architecture.

There are four layers in it specific as follow,

Figure 4-14. MDA-Based E-Learning Domain Architecture Overview

Web Site Software Application …

E-learning Systems

CIM PIM

PSMs (Model PSM, View

PSM, and Controller PSM)

E-learning Framework Models

PIM PSM Transformation

MDA Standards

MOF UML XML&XMI

OMG Standards

etc.

Chapter 4. Proposed E-Learning Modelling

98

 OMG Standards: it is a layer including various standards proposed by OMG, i.e.

MOF, UML, XML, XMI, etc. This is the foundation layer in this architecture.

 MDA Standards: this layer includes standards specifically proposed for MDA.

They are PIM, PSM, and Transformation. It is a layer supported by OMG

standards.

 E-learning Framework Models: it is a layer presenting framework models for

e-learning. Because it is supported by MDA standards layer straightforward, there

are mainly three group models: CIM, PIM, and PSM. Additionally, based on MVC

structure, PSM is composed of “Model PSM”, “View PSM”, and “Controller

PSM”.

 E-learning Systems: this is system layer presenting developed achievements. The

e-learning system can be web site, software, application, and so on, which is

running on various platforms.

Combined above domain architecture with previous proposed domain modelling, MVC

e-learning modelling, and MDA-based modelling, there is a framework for e-learning

domain covering highly abstract structure and models in detail.

4.4 Summary

In this chapter, the e-learning modelling is proposed with specification:

 The LTSA standard is employed to support e-learning domain modelling as a

kernel standard with its concept, architecture, and components. Firstly, a brief

introduction of LTSA is presented. Secondly, the LTSA abstraction is explained

with layers. Then, there are system components and features. Finally, it is stated

that models of LTSA system will be structured explicitly into Platform Independent

Models (PIMs) and Platform Specific Models (PSMs).

Chapter 4. Proposed E-Learning Modelling

99

 Three models are designed for e-learning domain modelling supported by LTSA

and pedagogical strategy. There are “step by step learning model”, “optional

learning model”, and “interacting learning model”. These three models are

presenting three individual learning approaches in order to meet the pedagogical

requirement. Furthermore, there are specifications, advantages, and disadvantages

stated for each model.

 MVC is applied to be the main design pattern for proposed e-learning modelling.

Three modules and there associations are explained. Basic functions on general

e-learning system is summarised, refined, and classified. Lastly, a whole

modelling structure is designed for e-learning system based on MVC pattern.

 Based on MVC structure, a MDA-based modelling structure is proposed for

e-learning domain with four layers. Meanwhile, each layer is explained with

details. There are also specifications for relationships and communications

between models. Moreover, there is an e-learning domain framework presented

with layered structure and supporting relationships.

Chapter 5. A Proposed Approach to Model-Driven Architecture based Evolution

100

Chapter 5

A Proposed Approach to Model Driven

Architecture based Evolution

Objectives

 To propose a Model-Driven Architecture based evolution method

 To present a Model-Driven Architecture based evolution process

 To explain development approach

 To specific vocabularies extraction method

 To present Platform-Independent Model generation

5.1 A Model-Driven Architecture based Evolution Method

A MDA-based System Development Lifecycle (MDA-SDLC) will be proposed in this

section which has been published in a conference paper [102]. This lifecycle is still

based on the traditional software development lifecycle, but combined with the

MDA-based development approach. A software development methodology normally

consists of two main parts: a Modelling Language (syntax and semantics) and a

Process. Naturally, MDA-based methodologies use UML as their modelling language.

The generic lifecycle is therefore mainly focused on the process part of the

methodology.

Chapter 5. A Proposed Approach to Model-Driven Architecture based Evolution

101

The proposed lifecycle is not a concrete methodology, but a general process that

defines the phases and activities expected to be present in an MDA-based methodology

[9]. Therefore, it can be specialised to fit the exact project situation. MDA-SDLC

consists of six phases (Figure 5-1): Project Initiation, CIM Development, PIM

Development, PSM Development, Code Development, and Maintenance. As shown in

Figure 5-1, returns to previous phases are usually necessary [9]. The PIM Development

phase, the PSM Development phase, and the Code Development phase are typically

performed in an iterative-incremental way. In section 5.1.1, the main phases will be

described in detail.

Figure 5-1. Proposed MDA-Based System Development Lifecycle

In our previous research [102], there is a basic MDA-based development approach

been proposed by us. It is an initial research result, therefore, it is been improved after

it’s publish as following sections in this chapter. PIMs are normally modelled using the

CIM

PIM

PSM

Code

Maintenance

Initial Phase

Chapter 5. A Proposed Approach to Model-Driven Architecture based Evolution

102

UML to be UML diagrams. PSMs are generated by transformation tool that can translate

the UML profile for target platforms.

5.1.1 Computation Independent Model

5.1.1.1 Requirements

The pedagogical strategy that is being modelled is a holistic one. It works as follows:

there is a three-way approach that is to be presented interdependently. It consists of a

“section” concerning music appreciation (“listening”), one focusing on the

understanding of musical, theoretical and technological concepts (“understanding”)

and another involved with music making (“doing”). The heart is the understanding

section as any tutor or learner-driven navigation starts here as all key terms and

concepts are embedded in this section. Nonetheless, as this type of music is not as well

known as, say, certain forms of commercial music, a didactic approach to repertoire

development and learning what to listen for is essential. This takes place in the

listening section and communicates directly with and is dependent on the related

concepts in the understanding section. When it comes to how this music is made,

certain specific means of sonic treatment will be introduced in the understanding

section, for example, how a filter can alter the timbral quality of a given sound. To this

end, the development team is working with the researchers who created JASS, a Java

Audio Synthesis System for programmers at the University of British Columbia. JASS

will allow for real-time sound manipulation tools to be placed online within the

understanding section of the pedagogical environment in a manner that is platform

independent. A software program called Sound Organiser is being developed

currently and will be integrated into this system. This is the one element of the system

that will exist as an independent program, but will also be adapted to work with

specific concepts introduced in the understanding section. In this way users can focus

Chapter 5. A Proposed Approach to Model-Driven Architecture based Evolution

103

on a single concept instead of dealing with the full palette of means of sound

organisation within this pedagogical environment, but will, at the same time, becoming

increasingly able to use the Sound Organiser within and outside of the learning

environment [102].

The holistic approach that integrates concept development, listening and creative

aspects related to electroacoustic music is one of the unique aspects of this project.

Three more interesting aspects of the system are worthy of introduction. First of all,

users will be entitled to have diagnostic information presented either to teachers or to

the learners themselves. This information helps users to find out where their strengths

lie and in which areas there is room for improvement. It can also signal concepts not

being learned and offer advice as to how to achieve more satisfying results. This means

that in any interactive aspect of the site, user reactions will be monitored and

information on the acquisition of concepts presented. Applications of techniques

developed in artificial intelligence should prove invaluable in this aspect of the

research project [102].

A second aspect will be offered which has to do with user-generated feedback and

content provision. To cite one example; the current EARS research site is based on a

tree structure to order the ca. 500 terms that it offers. The project presented here will

continue to offer this traditional option, but will use state of the art tagging systems to

offer another means of potential navigation through concept acquisition. This brings us

the third important aspect [102].

The pedagogical environment will be able to be navigated in a variety of manners.

These include:

Chapter 5. A Proposed Approach to Model-Driven Architecture based Evolution

104

 Previously organised paths designed by the development team will be on offer for

individual users taking into account their previous knowledge. An avatar will act

as teacher in such cases.

 Similarly, teachers may prefer to use one of the curriculum navigation systems on

offer.

 The teachers may prefer to organise their own curriculum navigation system based

on classroom needs.

 Individuals may be interested in specific subjects or aspects of electroacoustic

music and therefore may want to create their own navigation.

All of the above will be implemented within the pedagogical architecture of this

environment.

5.1.1.2 Models

In this MDA-based evolution method, there are models involved in CIM phase to

support modelling the specific requirement in section 5.1.1.1. The three learning

models proposed in last section includes “step by step learning model”, “optional

learning model”, and “interaction learning model”. These models are applied as

reference models for e-learning system based on educational pedagogical knowledge

[66], Model-Driven Architecture (MDA) [62], and the Standard for Learning

Technology — Learning Technology Systems Architecture (LTSA) [35].

Combined requirement with reference models, the CIM is created as the first layer

model in MDA structure. Following the MDA-based System Development Lifecycle

(MDA-SDLC) proposed in the beginning of section 5.1, CIM is going to be

transformed into PIM which is specific described in next section.

Chapter 5. A Proposed Approach to Model-Driven Architecture based Evolution

105

5.1.2 Platform-Independent Model

In MDA structure, PIM is the model in layer 1 which is next to layer 0 – CIM and layer

2 - PSMs. There is a PIM development method proposed in one of our previous

published conference paper [102]. This development phase aims to create a complete

and exact model of the system which is presented as PIM.

PIM includes both structure and behaviour. It is derived from the Requirements Model

which generated on the CIM phase. The core concept is that the model must be platform

independent. For example, during the creation of this model nothing about the

implementation platform is taken into account [9, 62, 63, 102]. Normally the results

should be several UML diagrams, including activity diagrams, sequence diagrams, state

machines, and class diagrams. Based on the research of M. Asadi, M. Ravakhah and R.

Ramsin [9], there is an Activities Diagrame designed by us [102] for PIM development

phases which is showing as figure 5-2.

Figure 5-2. Main Activities in PIM Development [102]

PIM Development

1. Produce analysis

PIM

2. Architecture Design

3. Produce design PIM

4. Verification/Validati

on

5. Generalization

Maintenance changes

Transformation changes

CIM

Requirement Model

Management Doc

Verified PIM

Chapter 5. A Proposed Approach to Model-Driven Architecture based Evolution

106

 Produce analysis PIM [102]: it is the beginning work in this develop phase. In this

activity, a model, which is platform independent, is defined through analysing the

requirements model and other documents. System functionalities are described in the

analysis PIM while maintaining traceability to the requirements model [9].

Developers use appropriate model elements to develop some parts of this PIM.

Although this model is not the final PIM, it is quite important because it is the

foundation for further producing to the final version. Conventional Object-Oriented

analysis techniques can be used for this activity, which is typically executed in an

iterative and incremental fashion [9].

 Architectural design [102]: in this activity, the system architecture is designed. If it is

necessary, a review of the requirement and general plan is required. A main system

framework is the result.

 Produce design PIM [9, 102]: in this activity, the model, which is generated in

analysis PIM, is refined. The main function in this activity is models the detailed

structure and behaviour of the system. Conventional OO design techniques can be

used in this activity. The design PIM is derived from the analysis PIM and it is in an

iterative-incremental style. Constraints, preconditions, post conditions, and

invariants are defined using UML and OCL mechanisms [9].Meanwhile, reusable

domain-dependent design model elements can also be retrieved from model

repositories for composing the design PIM.

 Verification/Validation [102]: in this phase (PIM Development)，it is necessary to

check whether the products of the modelling activities are free from defects. It is also

need to be sure that those products are coincident with the requirements, which is

generated in the requirements modelling activity. The mainly aim of this activity is to

correct errors in design PIM. It is vital issue in PIM to PSMs transformation.

 Generalisation [102]: after creating models in the previous activities, it is naturally to

execute the generalisation. In this activity, the models is going to be produced more

Chapter 5. A Proposed Approach to Model-Driven Architecture based Evolution

107

reusable. Reusable domain specific model elements are uploaded and categorised

into repositories for reuse in future projects [9, 102]. The main productions of this

activity are the verified design PIM and Management Documents.

It can be seen from the proposed MDA-based System Development Lifecycle (MDA-

SDLC) that a completed PIM is going to be transformed into PSMs due to specific

platform application. Then, corresponding codes are generated from PSMs. Details

about method of these two development phases are presented in next section.

5.1.3 Platform-Specific Model and Code Development

Method

The MDA separates certain key models of systems, and brings a consistent structure to

these models. Models of different systems are structured explicitly into PIMs and PSMs.

How the functionality specified in a PIM is realised is specified in a platform-specific

way in the PSM, which is derived from the PIM via some transformation tools [23].

Once the last phase PIM Development is complete, it is stored in the suitable ways, i.e.

UML diagrams. Then they will be the input resources to the mapping step, which will

produce PSMs. One PIM can generate many PSMs, which are depended on different

underlying platforms. In the beginning, UML only express PSM. However, since UML

is independent of middleware technologies, UML is also popular to expresses PIM.

Anyway, UML can be applied to store both of PIM and PSM. After transformation from

PIM to PSM, code will be generated by some MDA tools. Based on the previous

research [102], the activities of this phase are as Figure 5-3.

Chapter 5. A Proposed Approach to Model-Driven Architecture based Evolution

108

Figure 5-3. Main Activities in PSM and Code Development [102]

Transform PIM to PSM [102]: MDA tools are the main way to generate PSMs from

PIM. The new and core technology provided by MDA is the automatically

transformation. Conventional guidelines are used to guide the developer in performing

the transformation using the selected tool [9]. These guidelines are provided by the tool

or by the methodology itself.

Generate code [102]: Because good PSMs are already very close to the code, the

generation is mainly worked by some MDA tools. Ideally，in this activity, the execution

code is completely and automatically generated from the PSM using MDA tools.

However，current MDA tools cannot work so far. The developers then have to manually

complete the generated code. Plus, as mentioned in last activity, conventional guidelines

can be used to guide the developer in performing the transformation using the selected

tool [9, 102]. Currently, this activity aims to build organisation of the code. Meanwhile，

it can executes the code unit tests, and do some integration work. All components and

subsystems should be combined together shown as concrete code.

PSM & Code

Development

1. Transform PIM to

PSM

2. Generate Code

3. Testing

Maintenance changes

Transformation changes

Verified PIM

Management Doc

Package Application Doc;

Source Code;

PIM, PSM;

Management Doc

Chapter 5. A Proposed Approach to Model-Driven Architecture based Evolution

109

Testing [102]: this activity includes standard testing tasks such as: plan tests, prepare

test model, prepare test cases and test scripts, execute tests, correct defects and

document test results [9, 102]. As last activity, automatic testing is useful but still too

ideally to complete all test tasks. Actually, manual testing is usually necessary.

Developers should combine those two ways to finish this activity. There are several

main production in this activity, which are packaged application, source code, PIM，

PSM, and management documents.

5.2 A Model-Driven Architecture based Evolution Process

5.2.1 Approach Overview

Figure 5-4. Ontology-Based PIM Modelling Approach

Vocabularie

s

Classify

Ontologies

Ontology

LTSA

Requirement

Specification

(1)

(2)

(3)
Transform

Extract

PIMs

Chapter 5. A Proposed Approach to Model-Driven Architecture based Evolution

110

Based on proposed MDA-based evolution method in section 5.1, there is an

ontology-based approach designed and presented in this chapter which is based on our

published research result [101].

This ontology-based model driven approach was proposed for music learning system.

However, this approach is not only limited on music-learning system but also suitable

for general e-learning systems. Therefore, it is imported in this research to support the

proposed MDA-based evaluation method. The main approach is shown as Figure 5-4.

It can be seen from Figure 5-4, there are mainly three steps in this approach:

 Extracting vocabularies: according to Natural Language Processing (NLP)

technology, requirements are extracted into vocabularies.

 Classifying ontologies: LTSA is the basic structure for classify the vocabularies that

come from previous step. First, a RO is involved in this phase, which designed based

on LTSA. Then classify vocabularies into RO to be an AO. Next task is to add extra

vocabularies into AO. Finely, if there are redundancies in AO, they are reduced in

this step.

 Transforming into PIMs: Ontologies are transformed into Platform Independent

Models following a set of transformation rules that we proposed. Considered the

PIMs are showed as a set of UML diagrams generally, following the five rules,

classes are generated with name, mandatory attributes, operations, interfaces, and

relationships.

5.2.2 Vocabularies Extraction

Vocabularies extraction is always happened as a general activity in initial development

such as requirement writing. Normally, developers extract them on mind with potential

self-rules. In this approach, Natural Language Processing (NLP) theory is used as basic

Chapter 5. A Proposed Approach to Model-Driven Architecture based Evolution

111

technology for extraction. This activity aims to get simple vocabularies including Noun,

Verb, and relevant explanation. Therefore, Natural language understanding (NLU)

system is involved. However, we will not discuss specific methodology or tools about

NLU since it is another research issue. The only rule here is to reduce redundancy after

extraction. The result structure of vocabularies is organised as below,

 Noun: Explanation Verb: Explanation

… …

Table 5-1. Format of a Set of Vocabularies

5.2.3 Ontologies Classification

There are a number of terms to be used to classify ontologies. There are Lightweight

ontologies that only consist “if” concepts and their relationships, but without many

axioms, additional conditions and restrictions; Application Ontologies (AO) contain the

definitions specific to a particular application [31], while Reference Ontologies (RO)

focus on clarifying the intended meaning of terms used in specific domains. RO is

designed for general e-learning system based on proposed three learning models –

“step by step learning model”, “optional learning model”, and “interaction learning

model”.

The proposed three learning models has specified high level architectures for

information technology-supported learning, education and training System. Therefore,

components in those models are important supports in this phase. Additionally,

because the “interaction learning model” is covering components in the other two

learning models, it is selected to be the model to support RO’s design.

Chapter 5. A Proposed Approach to Model-Driven Architecture based Evolution

112

Figure 5-5. Interaction Learning Model Components’ Structure

Based on components’ structure in figure 5-5, a RO is designed and depicted as figure

5-6 with specification of concepts and relationships.

The notion of RO is defined as a 3-tuple RO=(C, A, Sc), where: C=Concept,

A=Attribute, Sc=SubConcept. Attribute owns a specific definition A= (Do, Ra), where:

Do=Domain, Ra=Range.

There are three steps designed to generate AO from RO:

 To generate AO by mapping vocabularies into RO;

Learning

Content

Learner Entity

Delivery

Learning

Resources

Locator

Multimedia

Learner

Records
Update Info

Evaluation

Coach

Coach

Behavior

Interaction Context

Assessmen

t

Get

Info

Catalogue Info

Query

Learning

Parameters

Locator

Update

Info

Advices

Get Info

Communication

Information/

Multimedia

Information

Chapter 5. A Proposed Approach to Model-Driven Architecture based Evolution

113

 To add extra vocabularies into ontologies as an AO;

 To reduce redundancies for AO.

Figure 5-6. Reference Ontologies Structure

The notation of AO is defined as a 4-tuple AO=(C, A, O, Sc) that A=Attribute,

O=Object= (Name, Domain, Range, Value), Sc=SubConcept. There are more details for

e-learning system on Table 5-2. Besides, the result is a “good” AO following Gruber’s

criteria [30] which describes what “good” ontology should meet: terms clarity, axioms

coherence, extensibility, and suitability.

Chapter 5. A Proposed Approach to Model-Driven Architecture based Evolution

114

Concepts [C] Attributes(Range) [A(Ra)]

SubConcept

[Sc]

LearnerEntity

leID (String);

lePassword(String);

Login(Boolean);

Logout(Boolean);

Multimedia(Delievery);

LearningParameters(Coach).

LearnerRecords

LroID(String);

learnerInfo(Evaluation).

LearnResource lrID(String);

lrContents(X
1
);

LearnContent

LearnContent

lcID(String);

lcBegin(X);

lcEnd(X).

Delivery(GUI) deID(String);

locator(LearnContent);

1
‘X’ indicates range is uncertain but depends on specific system.

Chapter 5. A Proposed Approach to Model-Driven Architecture based Evolution

115

Evaluation LearnerInfo(LearnerRecord);

Evaluate(LearnerEntity).

Coach

coID(String);

coPassword(String);

Login(Boolean);

Logout(Boolean);

sendLearnerInfo(LearnerRecord);

getHistory(LearnerRecord);

LearningParameters(LearnerEntity);

Locator (Coach, LearnResource);

Query(LearnResource);

CatalogInfo(LearnResource).

Table 5-2. Reference Ontologies List for General E-Learning System

The followings are the specific classification steps:

(1) To map vocabularies into AO.

In the vocabularies, noun words map to “Concept”, “SubConcept”, or “Object” under

its explanation. Verb maps to “Attribute” only. This step results in Table 5-3 as below,

Concepts [C] Attributes(Range) [A(Ra)] Object(O) SubConcept [Sc]

N1

…

V1; V2; V3

…

N11

…

…

Table 5-3. Application Ontologies Result of Step (1)

Chapter 5. A Proposed Approach to Model-Driven Architecture based Evolution

116

(2) To add extra vocabularies into ontologies.

If there are some vocabularies left, a step to add them properly in AO is necessary. The

Table 5-4 shows the Result of step2, where Ex is Extra Vocabulary.

Concepts [C] Attributes(Range)[A(Ra)] Object(O) SubConcept [Sc]

N1

…

Ex_N1

…

V1; V2; V3

…

Ex_V

…

N11

…

Ex_N2

…

…

Ex_N3

…

Table 5-4. Application Ontologies Result of Step (2)

(3) To reduce redundancy for AO.

There are many reasons to introduce redundancy, such as synonyms, verb and noun

with same meaning, vocabularies under inclusive relationship, etc. Table 5-5 shows the

result of this step with strikethrough on redundancy.

Concepts [C] Attributes(Range)[A(Ra)] Object(O) SubConcept [Sc]

N1

…

Ex_N1

…

V1; V2; V3

…

Ex_V

…

N11

…

Ex_N2

…

…

Ex_N3

…

Table 5-5. Application Ontologies Result of Step (3)

Chapter 5. A Proposed Approach to Model-Driven Architecture based Evolution

117

5.2.4 PIM Generation

To transform AO to PIM, a set of transformation rules are proposed. The rules working

structure is shown as figure 5-7 which presents how they are mapping AO to PIMs.

Figure 5-7. Transformation Rules -- AO to PIMs

Notations of the transformation rules are defined as follows.

(1) AO=(C, A, O, Sc); C=Concept, A=Attribute= (Name, Domain, Range, Value),

O=Object= (Name, Domain, Range, Value), Sc=SubConcept.

(2) M=PIM= (Cl, In, Re (Clx)). Cl=Class= (Na, At, Op), where, Na=Name,

At=Attribute, Op=Operation; In=Interface= (Na, At, Op) where Na=Name,

At=Attribute, Op= Operation; Re (Clx) =Relationship with Classes Clx, including

“Generalisation”, “Association”, and “Composition”.

Rule 1: Mapping Class

Chapter 5. A Proposed Approach to Model-Driven Architecture based Evolution

118

In AO, each Concept maps to a Class in PIM. Because every Concept is a noun, Class’s

name simply is valued by Concept.

 M.Cl{

Check AO.C;

Force M.CL.Na=AO.C;

}

Rule 2: Mapping mandatory attributes

In AO, if Attribute’s Range is not any Concept or Object, it equals to Class’s mandatory

attribute.

 M.Cl.At{

Check AO.A;

If (Not AO.A.Ra==AO.C and AO.O){

 M.Cl.At=AO.C.O.A;

}}

Rule 3: Mapping Operations

In AO, if Attribute’s Value is verb, it maps to Option of Class.

M.Cl.Op{

Check AO.A;

if(AO.A.Value==Verb){

 M.Cl.Op=AO.A;

}}

Rule 4: Mapping Interfaces

In AO, if Attribute’s Range is a Concept, AO’s Object is valued as an Interface in Class.

M.In{

Check AO;

if (AO.A.Range==AO.C){

 M.In=AO.O;

}}

Chapter 5. A Proposed Approach to Model-Driven Architecture based Evolution

119

Rule 5: Mapping Relationships

In PIM, three relationships are necessary: Generalisation, Association, and

Composition. They are mapped separately.

(1) Generalisation

Generalisation is “a-kind-of” relationship. Checking AO, if SubConcept is not empty,

there must have a generalisation relationship. One Class is valued by SubConcept which

is generated from the other Class that valued by Concept.

M.Re{

Check AO.Sc;

if (Not AO.Sc==None){

 M.Re=Generalisation (M.Cl1==AO.C, M.Cl2==AO.Sc);//Cl2 generated from Cl1.

}}

(2) Association

Association is a kind of semantic relationship between classes. In AO, if value of one

Attribute is another Concept, the mapped classed are associated.

M.Re{

Check AO.A;

if (have (AO1.A.Value==AO2.C)){

 M.Re=Association (M.Cl1==AO1.C, M.Cl2==AO2.C);//Cl1 associate withCl2.

}}

(3) Composition

Composition is a particular association relationship showing components. If the value

of an AO’s attribute is a sum of many other AO’s Concept, this AO valued Class is

composed by other Classes that mapped from those other AO’s Concepts.

M.Re{Check AO.A;

if (have (AO1.A.Value==∑
)){

Chapter 5. A Proposed Approach to Model-Driven Architecture based Evolution

120

 M.Re=Composition(M.Cl1==AO1.C, M.Cl2==AO2.C,…, M.Cln=AOn.C);

}}

Following above rules, AO can be transformed into PIM as UML diagrams. Most

Classes are mapped from AO’s Concepts under Rule 1. Mandatory attributes and

operations come from AO’s Attribution by Rule 2 and 3. AO’s Object been leaded to

Interface following rule 4. Also, there are main relationships generated from AO

depends on rule 5. Particularly, in rule 5, Generalisation, Association, and Composition

are the three necessary relationships we considered. To sum up, PIM is transformed

from AO under proposed rules.

5.3 Summary

In this chapter, there is a proposed approach to MDA-based evolution includes

evolution method and process:

 A MDA-based evolution method is proposed. A MDA-based System

Development Lifecycle (MDA-SDLC) is presented to support the proposed

method with six phases: Project Initiation, CIM Development, PIM Development,

PSM Development, Code Development, and Maintenance.

 There are explanations about CIM, PSM, PSM, code development methods.

Firstly, the pedagogical requirement is presented and analysed. Previously

proposed three models in last chapter are employed into CIM as reference models

for e-learning system. Then, main activities in PIM development are explained

containing “produce analysis PIM”, “architectural design”, “produce design PIM”,

“verification/validation”, and “generalisation”. Finally, PSM and code

development method is presented with transformation technology.

Chapter 5. A Proposed Approach to Model-Driven Architecture based Evolution

121

 Based on proposed MDA-based evolution method, there is an ontology-based

approach designed and presented. It is basically an ontology-based model driven

approach proposed for e-learning system. There are mainly three steps in this

approach including “Extracting vocabularies”, “Classifying ontologies”, and

“Transforming into PIMs”.

 A RO is designed and depicted with specification of concepts and relationships

based on components’ structure of “Interaction Learning Model”. Classification

steps are specified including “to map vocabularies into AO”, “to add extra

vocabularies into ontologies”, and “to reduce redundancy for AO”.

 There is a set of transformation rules proposed and specified to transform AO to

PIM. Following proposed rules, AO can be transformed into PIM as UML

diagrams.

Chapter 6. PIM to PSM Transformation

122

Chapter 6

PIM to PSM Transformation

Objectives

 To propose transformation architecture

 To design source model and metamodel for source model

 To design target model and metamodel for target model

 To define transformation rules for transformation model and metamodel for

transformation model

 To implement proposed mapping rules

6.1 Scope

This chapter outlines a PIM to PSMs transformation. It defines mapping methodology

and rules for elements of a MOF 2.0 compliant PIM to the MOF 2.0 compliant PSM.

The mapping rules basically depend on the state of the MOF 2.0 Core documents [75]

and the adopted UML Infrastructure [81]. The transformation methodology is proposed

in section 7.2. The set of mapping rules is outlined defined in detail in section 7.5.

The MOF 2.0 compliant models are chosen as PIM and PSMs aiming at the generation

of highly preferment, highly scalable, and reliability, which are automatically

deployable. It is believed that this specification strongly supports e-learning domain

modelling using metadata technology and MVC architecture. Furthermore, it is a

Chapter 6. PIM to PSM Transformation

123

contribution on the current technical disadvantages on PIM to PSMs transformation,

which is the very heart of the MDA.

For the definition of the mapping rules themselves, a combined model is derived from

the MOF 2.0 model and the MVC-based e-learning domain-specific model. Based on

this combined model, the mapping rules are defined using OCL. The methodology is

covered by section 7.2, including assumptions of the MOF model that served as the

basis for this specification.

6.2 Transformation Architecture

Based on MDA and proposed evolution method, the transformation structure is

designed as following figure with models and processes.

Figure 6-1. Transformation Architecture

The specification of this transformation architecture is as following,

 Ma: Source Model. It is the PIM for designers, which is described as a UML Object

Diagram.

MOF (MMM)

UML Profile

(MMa)

Mt

UML Profile

(MMb)
MMt

PIM UML

Diagrams (Ma)

PSM UML Diagrams

(Mb) Transformation

Chapter 6. PIM to PSM Transformation

124

 MMa: MetaModel of Ma. It is proposed as a framework designed based on our

research. It is shown as UML Class Diagram. Of course it is Platform independent.

 MMM: It is the meta-metamodel that is the kernel of MMa, MMb, and MMt.

 Mb: Target Model. It is the PSM for designers, which is described as a PHP5-aimed

UML Object Diagram.

 MMb: MetaModel of Mb. It is proposed as a framework designed based on our

research. It is shown as UML Class Diagram. Specifically, it is PHP5 dependent.

 Mt: Transformation Model. It is designed based on the proposed Transformation

Rules.

 MMt: It is the MetaModel of Mt.

The proposed transformation architecture can be divided into three layers as figure 6-2

shows,

Figure 6-2. Layers of Transformation Architecture

MMM

MMa MMt MMb

Ma Mt Mb

Layer 0

Layer 1

Layer 2

Chapter 6. PIM to PSM Transformation

125

Models and meta-models in different levels are catalogued into three layers,

 Layer 0: it is the kernel layer which supporting the other two layers. MMM is the

content in this layer.

 Layer 1: it is a layer including meta-models for source model, target model, and

transformation model. Specifically, they are MMa, MMb, and MMt.

 Layer 2: it can be seen as a user layer where shows source model, target model,

and transformation model. Models in this layer are capable to edit if it is

necessary.

6.3 Source Model and Metamodel of Source Model

In this section, the Platform Independent Model (PIM) is the source model (Ma)

representing a platform-independent definition of system. The PIM is defined in the

accompanying normative UML model. The metamodel (MMa) is also provided on a

UML profile basis. Elements of this model are presented in this clause to clarify and

provide guidance on this model.

6.3.1 Fundamental Model Elements for Metamodel of

Source Model

Based on UML Profile extension method, there are fundamental model elements

defined for MMa, including “System”, “User”, “Content”, “Navigation”,

“Resource”, and “Record”.

 System: It is a class describes the system communicating users and contents.

Chapter 6. PIM to PSM Transformation

126

+getContent()
+getNavigation()

-Id
-Title
-Owner
-Content
-Navigation

<<Stereotype>>System

Figure 6-3. Model for System

 User: It is a class indicates various users. For example, it can be learners, coaches,

and so on in an e-learning system.

+getUsername()
+getPassword()
+getRecord()

<<Stereotype>>User

Figure 6-4. Model for User

 Content: It is a class to describe contents combined by various formatted

resources in the system, including text, pictures, sound files, etc formats.

+getResource()
+postContent()

-contentId
-contentName

<<Stereotype>>Content

Figure 6-5. Model for Content

 Navigation: It is a class presenting navigation function aiming to support a path for

user.

Chapter 6. PIM to PSM Transformation

127

<<Stereotype>>Navigation

Figure 6-6. Model for Navigation

 Resource: It is a database stocking resources for system. The specific resources

are text, pictures, sound files, etc formats. Different resources gathered together

become content.

-resourceId
-resourceName
-resourceType
-resourceAddress
-resourceContent

<<Stereotype>>Resource

Figure 6-7. Model for Resource Database

 Record: It is a database stocking and providing user records for system.

-userId
-userName
-userPassword
-userRecord

<<Stereotype>>Record

Figure 6-8. Model for Record Database

The relationship between fundamental elements is defined as figure 6- 9. A “system”

depends on “Content” and “User” which shows as two “Dependency” associations.

There is a “self-association” in “Content” element indicates it is an element can

contains self-format elements. Two “Aggregation” relations present that “Resource” is

part of “Content”, and “Record” is a part of “User”.

Chapter 6. PIM to PSM Transformation

128

+getContent()
+getNavigation()

-Id
-Title
-Owner
-Content
-Navigation

<<Stereotype>>System

+getUsername()
+getPassword()
+getRecord()

<<Stereotype>>User

+getResource()
+postContent()

-contentId
-contentName

<<Stereotype>>Content

-resourceId
-resourceName
-resourceType
-resourceAddress
-resourceContent

<<Stereotype>>Resource

-userId
-userName
-userPassword
-userRecord

<<Stereotype>>Record

1..*

1 1

0..1

*

*

1..* 1

1..* 1

1..* 1

<<Stereotype>>Navigation

Figure 6-9. Stereotype Classes Relationship on Metamodel for Source Model

UML Profile is an extension based on UML aiming to present different models for

specific domain. Therefore, the stereotype elements are related to UML original

elements.

The details are shows as below figure including “metaclass:class”-based stereotype,

“metaclass:attribute”-based stereotype, “metaclass:operation-based” stereotype, and

“metaclass:association”-based stereotype.

Chapter 6. PIM to PSM Transformation

129

<<metaclass>>
Class

+getContent()
+getNavigation()

-Id
-Title
-Owner
-Content
-Navigation

<<Stereotype>>System

+getResource()
+postContent()

-contentId
-contentName

<<Stereotype>>Content

+getUsername()
+getPassword()
+getRecord()

<<Stereotype>>User

-userId
-userName
-userPassword
-userRecord

<<Stereotype>>Record
-resourceId
-resourceName
-resourceType
-resourceAddress
-resourceContent

<<Stereotype>>Resource

<<metaclass>>
Atrribute

<<Stereotype>>Id

<<Stereotype>>Title

<<Stereotype>>Owner

<<Stereotype>>Id

<<Stereotype>>contentId

<<Stereotype>>contentName

<<Stereotype>>resourceId

<<Stereotype>>resourceName

<<Stereotype>>resourceType

<<Stereotype>>resourceAddress

<<Stereotype>>resourceContent

<<Stereotype>>userId

<<Stereotype>>userName

<<Stereotype>>userPassword

<<Stereotype>>userRecord

Chapter 6. PIM to PSM Transformation

130

<<metaclass>>
Operation

<<metaclass>>
Association

<<Stereotype>>getContent()

<<Stereotype>>getNavigation()

<<Stereotype>>getResource()

<<Stereotype>>postContent()

<<Stereotype>>getUsername()

<<Stereotype>>getPassword()

<<Stereotype>>getRecord()

<<Stereotype>>Dependency

<<Stereotype>>Self-association

<<Stereotype>>Aggregation

<<Stereotype>>Association

Figure 6-10. Level Structure of Metamodel for Source Model Stereotype Classes

6.3.2 Fundamental Model Elements for Source Model

In this section, there are definitions and specifications for Ma’s fundamental model

elements, including “E-learning System (eLearningSys)”, “Learner”, “Coach”,

“Administrator (Admin)”, “Learner Record (LearnerRec)”, “Coach Record

(CoachRec)”, “Adminidtrator Record (AdminRec)”, “Content”, “Resource”, and

“Navigation”. Because elements are based on MMa’s elements, MMa’s class name is

shown before Ma’s class name in format as “MMa’s name: Ma’s name” to indicate

each element model’s metamodel. Plus, element’s attributes and operations are omitted

if they are inherited from metamodel. Only new properties are presented in the

following models.

Chapter 6. PIM to PSM Transformation

131

 E-learning System (eLearningSys): it is system top level abstract class means

whole e-learning system.

System:eLearningSys

Figure 6-11. Model for eLearningSys

 Learner: it is class for learner entities.

User:Learner

Figure 6-12. Model for Learner

 Coach: it is class to describe coach.

User:Coach

Figure 6-13. Model for Coach

 Administrator (Admin): it is class presenting system administrators.

User:Admin

Figure 6-14. Model for Admin

 Learner Record (LearnerRec): it is storage for learner’s records including general

information, learning history, and learning progress.

Chapter 6. PIM to PSM Transformation

132

Record:LearnerRec

Figure 6-15. Model for LearnerRec

 Coach Record (CoachRec): it is storage for coach’s records basically including

general information and relative learners’ information.

Record:CoachRec

Figure 6-16. Model for CoachRec

 Administrator Record (AdminRec): it is storage for system administrator’s record

including general information and operation history.

Record:AdminRec

Figure 6-17. Model for AdminRec

 Content: it is class presenting learning contents such as pages with text, picture,

and sound as learning material.

Content:Content

Figure 6-18. Model for Content

 Resource: it is class to store learning resources including various format files and

contents.

Chapter 6. PIM to PSM Transformation

133

Resource:Resource

Figure 6-19. Model for Resource

 Navigation: it is a class to indicate system navigation method.

Navigation:Navigation

Figure 6-20. Model for Navigation

The models’ relationships are based on MMa’s relationship. It can be simply shown as

below figure.

System:eLearningSys

User:Learner User:Coach User:Admin

Record:LearnerRec Record:CoachRec Record:AdminRec

Content:Content Resource:Resource

Navigation:Navigation

1
1..*

1
1..*

1
1..*

1..*1

1..*

1

1 1..*

Figure 6-21. Relationship in Source Model

Chapter 6. PIM to PSM Transformation

134

6.4 Target Model and Metamodel of Target Model

In this section, the Platform Specific Model (PSM) is the target model (Mb)

representing a platform-independent definition of e-learning system. The PSM is

defined in the accompanying normative UML model and UML profile based

metamodel. The metamodel of target model (MMb) is also defined based on UML

profile and MVC structure. Elements of this model are presented in this clause to

clarify and provide guidance on this model.

6.4.1 Fundamental Model Elements for Metamodel of

Target Model

Based on MVC structure, the MMb is divided into three catalogues: view, controller,

and model. The three parts of MMb will be presented as following three sections

including MMb:View, MMb:Controller, and MMb:Model.

6.4.1.1 MetaModel for Target Model: View

Based on UML Profile extension method, there are fundamental model elements

defined for MMb:View, including “Login”, “Logout”, “User Information (UserInfo)”,

“Content”, “Navigation Bar (NavBar)” and “View”.

 Login: it is a view allow user to login system with correct username and password.

<<Stereotype>>Login

Figure 6-22. Model for Login

Chapter 6. PIM to PSM Transformation

135

 Logout: it is a view allow user to logout system.

<<Stereotype>>Logout

Figure 6-23. Model for Logout

 User Information (UserInfo): It is a view capable to show user information.

<<Stereotype>>UserInfo

Figure 6-24. Model for UserInfo

 Content: It is a view to show specific contents.

<<Stereotype>>Content

Figure 6-25. Model for Content

 Navigation Bar (NavBar): it is a navigation function bar based on navigation

method support.

<<Stereotype>>NavBar

Figure 6-26. Model for NavBar

<<Stereotype>>View

Figure 6-27. Model for View

Chapter 6. PIM to PSM Transformation

136

 View: it is a class including rest of views including “Login”, “Logout”, “User

Information (UserInfo)”, “Content”, and “Navigation Bar (NavBar)”.

 “View” is an elements combination including “Login”, “Logout”, “User Information

(UserInfo)”, “Content”, and “Navigation Bar (NavBar)”. The follow figure shows

this relationship with “Composite” association.

<<Stereotype>>View

<<Stereotype>>Login

<<Stereotype>>Logout

<<Stereotype>>Content

<<Stereotype>>UserInfo

<<Stereotype>>NavBar

1

1

1

1

1 11

*

1

1

Figure 6-28. Metamodel of Target Model: View Models’ Relationship

6.4.1.2 MetaModel for Target Model: Controller

Based on UML Profile extension method, there are fundamental model elements

defined for MMb:Controller, including “Login Response (LoginRsp)”, “Logout

Response (LogoutRsp)”, “User Information Controller (UserInfoCtr)”, “Content

Controller (ContCtr)”, “Navigation Bar Controller (NavBarCtr)”, “Evaluation” and

“Controller”.

Chapter 6. PIM to PSM Transformation

137

 Login Response (LoginRsp): it is a controller taking responsibility for users’

login. There are mainly two operations: to check if the user is capable to login via

communication with the corresponding model in MMb:Model, and to response

successful or failed GUI which is got from view function in MMb:View.

+checkUserInfo()
+showGUI()

-username
-password

<<Stereotype>>LoginRsp

Figure 6-29. Model for LoginRsp

 Logout Response (LogoutRsp): it is a controller taking responsibility for users’

logout. There are mainly two operations including to update user’s record in

database via MMb:Model, and to response logout GUI.

+updateUserRecord()
+showGUI()

<<Stereotype>>LogoutRsp

Figure 6-30. Model for LogoutRsp

 User Information Controller (UserInfoCtr): it is a controller in charge of

changes in user’s record. The operation “getUserInfo()” is to achieve users’ record

database via model in MMb:Model. The result in “getUserInfo()” is parameter in

“showGUI()”. When user requests an update for his/her information, the

opearation “updateUserInfo()” is applied to request a database update with

MMb:Model.

+getUserInfo()
+updateUserInfo()
+showGUI()

<<Stereotype>>UserInfoCtr

Figure 6-31. Model for UserInfoCtr

Chapter 6. PIM to PSM Transformation

138

 Content Controller (ContCtr): it is a controller working on learning contents.

Operation “getContents()” in charge of achieve requested contents from learning

resources database. The results of “getContents” are parameters of “showGUI” to

respond user corresponding interface with learning contents.

+getContents()
+showGUI()

<<Stereotype>>ContCtr

Figure 6-32. Model for ContCtr

 Navigation Bar Controller (NavBarCtr): it is a controller to generate a

navigation bar. Operation “getList()” is to organise navigation list based on

learning resource database and user record. The results in “getList()” are

parameters in “showGUI()” to respond user.

+getList()
+showGUI()

<<Stereotype>>NavBarCtr

Figure 6-33. Model for NavBarCtr

 Evaluation: it is a controller working on evaluation. Operation “doEvaluation()”

is in charge of finish evaluation process via automatic settings and communication

with Coach. Evaluation results are parameters in “updateUserRecord()” to update

corresponding database. User will get evaluation results via “showGUI()”.

+doEvaluation()
+updateUserRecord()
+showGUI()

<<Stereotype>>Evaluation

Figure 6-34. Model for Evaluation

Chapter 6. PIM to PSM Transformation

139

 Controller: it is an elements combination including “Login Response (LoginRsp)”,

“Logout Response (LogoutRsp)”, “User Information Controller (UserInfoCtr)”,

“Content Controller (ContCtr)”, “Navigation Bar Controller (NavBarCtr)”, and

“Evaluation”. There are two kernel operations: “showGUI()” is to transfer data to

view and request specific GUI from MMb:View; and “connectModel()” is a

operation to communicate with MMb:Model.

+showGUI()
+connectModel()

<<Stereotype>>Controller

Figure 6-35. Model for Controller

The following figure shows above controllers’ relationship with “Composite”

association.

<<Stereotype>>Controller

<<Stereotype>>LoginRsp

<<Stereotype>>LogoutRsp

<<Stereotype>>ContCtr

<<Stereotype>>UserInfoCtr

<<Stereotype>>NavBarCtr

1

1

1

1

1 11

*

1

1

<<Stereotype>>Evaluation

1

1

Figure 6-36. MetaModel for Target Model: Controller Models’ Relationship

Chapter 6. PIM to PSM Transformation

140

6.4.1.3 MetaModel for Target Model: Model

Based on UML Profile extension method, there are fundamental model elements

defined for MMb:Model including “Database Connection (DBconn)”, “Record

Database Connection (RecDBConn)”, “Resource Database Connection

(ResDBConn)”, and “Model”.

 Database Connection (DBconn): it is aims to response communication with

databases. Mainly, there are two operations to connect and to disconnect database.

This is a parent class of “Record Database Connection (RecDBConn)” class and

“Resource Database Connection (ResDBConn)” class.

+connectDB()
+disconnectDB()

<<Stereotype>>DBConn

Figure 6-37. Model for DBConn

 Record Database Connection (RecDBConn): it is a model specific for record

databases. It directly inherits operation “connectDB()” and “disconnectDB()” from

its parent model “DBConn”.

+connectDB()
+disconnectDB()

<<Stereotype>>RecDBConn

Figure 6-38. Model for RecDBConn

 Resource Database Connection (ResDBConn): it is a model specific for

resource databases. Same as “RecDBConn”, it directly inherits operation

“connectDB()” and “disconnectDB()” from its parent model “DBConn”.

Chapter 6. PIM to PSM Transformation

141

+connectDB()
+disconnectDB()

<<Stereotype>>ResDBConn

Figure 6-39. Model for ResDBConn

 Database Edit (DBEdit): it is a model in charge of edits on databases including

“insert()”, “update()”, and “delete()”.

+insert()
+update()
+delete()

<<Stereotype>>DBEdit

Figure 6-40. Model for DBEdit

 Model: it is an elements combination including “DBConn” with its children

models, and “DBEdit”.

<<Stereotype>>Model

Figure 6-41. Model for MVC’s Model

The Figure 6-42 shows above models’ relationship with “Composite” and

“Generalisation” associations.

Figure 6-43 shows relationship between MMb: View, MMb: Controller, and MMb:

Model in one system. Controller is communicating with view and model. View and

model cannot communication directly.

Chapter 6. PIM to PSM Transformation

142

+connectDB()
+disconnectDB()

<<Stereotype>>DBConn +connectDB()
+disconnectDB()

<<Stereotype>>RecDBConn

+connectDB()
+disconnectDB()

<<Stereotype>>ResDBConn

<<Stereotype>>Model

1

1

1

1

1

1

+insert()
+update()
+delete()

<<Stereotype>>DBEdit
11

Figure 6-42. MetaModel for Target Model: Model Elements Relationship

<<Stereotype>>View <<Stereotype>>Model<<Stereotype>>Controller

<<Stereotype>>System

1* 1
* 1 0..*

Figure 6-43. View, Controller, and Model Metamodel Relationship

6.4.2 Fundamental Model Elements for Target Model

In this section, there are definitions and specifications for Mb’s fundamental model

elements. Based on MMb’s definition, there are three groups of Mb elements,

including “Mb: View”, “Mb: Controller”, and “Mb: Model”.

6.4.2.1 Target Model: View

The Mb:View have to be divided into three groups according to different user’s

character in e-learning system. The three groups are: Learner’s View, Coach’s View,

Chapter 6. PIM to PSM Transformation

143

and Administrator’s View (Admin’s View). Each group contains specific models to

achieve users’ requirements.

 Learner View: it is a view working for learners. It is composed by

“LearnerLogin”, “LearnerLogout”, “LearnerInfo”, “LearnerContent”, and

“LearnerNavBar”. The following figure shows each view component and the

associations between them.

View:learnerView

Login:learnerLogin

Logout:learnerLogout

Content:learnerContent

UserInfo:learnerInfo

NavBar:learnerNavBar

1

1

1

1

1 11

*

1

1

Figure 6-44. Model for Learner’s View

 Coach View: it is a view working for coaches. It is composed by “CoachLogin”,

“CoachLogout”, “CoachInfo”, “CoachContent”, “CoachNavBar”, and

“CoachEvaluation”. The following figure shows each view component and the

associations between them.

Chapter 6. PIM to PSM Transformation

144

View:coachView

Login:coachLogin

Logout:coachLogout

+editContent()

Content:coachContent

UserInfo:coachInfo

NavBar:coachNavBar

1

1

1

1

1 11

*

1

1

+getLearnerInfo()
+Evaluate()
+editLearnerRec()

-learerId
-coachId

coachEvaluation

1

0..*

Figure 6-45. Model for Coach’s View

 Admin View: it is a view working for learners. It is composed by “AdminLogin”,

“AdminLogout”, “AdminInfo”, “AdminContent”, “AdminNavBar”, and

“SystemMaintenance”. The following figure shows each view component and the

associations between them.

Chapter 6. PIM to PSM Transformation

145

View:adminView

Login:adminLogin

Logout:adminLogout

+contentEdit()

Content:adminContent

UserInfo:adminInfo

NavBar:adminNavBar

1

1

1

1

1 11

*

1

1

+systemMaintenance()

systemMaintenance

1

1

Figure 6-46. Model for Admin’s View

6.4.2.2 Target Model: Controller

 E-learning controller is in charge of communication between user and the rest two

parts in MVC which is model and view. Based on UML Profile extension method,

there are fundamental model elements defined for Mb:Controller including “Login

Response (LoginRsp)”, “Logout Response (LogoutRsp)”, “User Information

Controller (UserInfoCtr)”, “Content Controller (ContCtr)”, “Navigation Bar

Controller (NavBarCtr)”, “Evaluation” and “elearningController”. The

following figure shows each view component and the associations between them.

Chapter 6. PIM to PSM Transformation

146

Controller:eLearningController

LoginRsp:loginRsp

LogoutRsp:logoutRsp

ContCtr:contCtr

UserInfoCtr:userInfoCtr

NavBarCtr:navCtr

1

1

1

1

1 11

*

1

1

Evaluation:Evaluation

1

1

Figure 6-47. Model for Mb:Controller

6.4.2.3 Target Model: Model

 Based on UML Profile extension method, there are fundamental model elements

defined for Mb:Model including “E-learning Database Connection

(elarningDBconn)”, “Admin Record Database Connection (adminRecDBConn)”,

“Coach Record Database Connection (coachRecDBConn)”, “Learner Record

Database Connection (learnerRecDBConn)”, “Learning Resource Database

Connection (learningResDBConn)”, “Coach Database Edit (coachDBEdit)” and

“elearningModel”. The following figure shows each view component and the

associations between them.

Chapter 6. PIM to PSM Transformation

147

+connectDB()
+disconnectDB()

DBConn:eLearningDBConn

+connectlearnerRecDB()

RecDBConn:learnerRecDBConn

ResDBConn:learningResDBConnModel:elearningModel

1

1

1

1
1
1

+connectCoachRecDB()

RecDBConn:coachRecDBConn

+connectAdminRecDB()

RecDBConn:AdminRecDBConn

1

1

1

1

+insert()
+update()
+delete()

DBEdit:coachDBEdit

1

*

Figure 6-48. Model for Mb:Model

6.5 Transformation Rules

This section specific mapping rules for defined source model and target model based

on QVT. The rules are described as formulas with constraints.

6.5.1 Metamodel for Transformation Model

In this section, the metamodel of transformation model is defined with specifications.

Because proposed MMa and MMb are based on UML profile, the Metamodel for

Chapter 6. PIM to PSM Transformation

148

Transformation Model (MMt) is mainly taking the responsibility for transformations

between defined UML profiles.

In MMa, there are stereotype classes including system, user, record, content, resource,

and navigation. Each class includes its own attributes and operations. There are also

various associations between those stereotype classes. All of them are the elements to

be mapped into MMb.

The transformation rules in this stage is catalogued based on individual stereotype

classes describing as following groups.

Group 1. Stereotype class: System

It is mapping to MMb as a stereotype class named “System” as well. In addition, there

are three stereotype classes derived automatically including “View”, “Controller”, and

“Model” based on MMb’s basic structure.

No. Well-formed Rules Explanations

1 ⇒ ()

 :S s e ss

 () :

 :

 :

 :

MMb’s “System” is generated from

MMa’s “System” which including View,

Controller and Model.

2 () ⇒ ()

 :

 :

Attribute “Id” in MMb’s “System” comes

from MMa’s “System” attribute “Id”

directly considering they are the basic

system information.

3 () ⇒ ()
Attribute “Owner” in MMb’s “System”

Chapter 6. PIM to PSM Transformation

149

 :

 :

comes from MMa’s “System” attribute

“Owner” directly considering they are the

basic system information.

4 () ⇒ ()

 :

 :

Attribute “Title” in MMa’s “System” is

the element to generate attribute “Title”

in MMb’s “View” class because the title

value is an element in users’ GUI.

5 () ⇒ ()

 :

 :

Attribute “Content” in MMa’s “System”

is the element to generate attribute

“Content” in MMb’s “View” class

because the content value is an element in

users’ GUI.

6 () ⇒ ()

 :

 :

Attribute “Navigation” in MMa’s

“System” is the element to generate

attribute “NavBar” in MMb’s “View”

class because this attribute’s value is an

element in users’ GUI.

7 () ⇒ ()

 :

 :

 :

Operations in MMa’s “System” maps to

MMb as stereotype classes belongs to

“Controller” class. There for the

operation “getContent()” is transformed

to MMb’s “ContCtr”.

8 () ⇒ ()

 :

 :

 :

Operations in MMa’s “System” maps to

MMb as stereotype classes belongs to

“Controller” class. There for the

operation “getNavigation()” are

transformed to MMb’s “NavBarCtr”.

Chapter 6. PIM to PSM Transformation

150

Table 6-1. Group 1 Rules and Its Explanations: Stereotype class: System

Based on rules’ explanation on group 1, it is easy to understand the following group

rules. The rest groups are defined and explained as following tables for stereotype

classes “Content”, “User”, “Record”, “Resource” and “Navigation”.

Group 2. Stereotype class: Content

No. Well-formed Rules Explanations

9 ⇒ ()

 :

 :

 :

“Content” class on View of MMb is

generated from MMa’s “Content”.

10 () ⇒ ()

 :

 :

Attribute “Id” in MMa’s “Content”

is the element to generate attribute

“Id” in MMb’s “Content” class.

11 () ⇒ ()

 :

 :

Attribute “Name” in MMa’s

“Content” is the element to generate

attribute “Name” in MMb’s

“Content” class.

12 () ⇒ ()

 :

 :

Operations in MMa’s “Content” is

mapping to MMb as stereotype

classes belongs to “ContCtr”

(Content Controller) class. There for

the operation “getResource()” is

transformed to MMb’s “ContCtr”.

13 () ⇒ ()

 :

Operations in MMa’s “Content” is

mapping to MMb as stereotype

Chapter 6. PIM to PSM Transformation

151

 : classes belongs to “ContCtr”

(Content Controller) class. There for

the operation “postContent()” is

transformed to MMb’s “ContCtr”.

Table 6-2. Group 2 Rules and Its Explanations: Stereotype class: Content

Group 3. Stereotype class: User

No. Well-formed Rules Explanations

14 ⇒ () ()

 :

 :

 :

 :

 :

Details of “User” class on View and

Controller of MMb is generated

from MMa’s “User”.

15 ⇒

 :

 :

Attributes on MMb’s “UserInfo”

class is mapped from attributes on

MMa’s “User” class.

16 ⇒

 :

 :

Each operation on MMb’s

“UserInfoCtr” class is mapped from

corresponding operation on MMa’s

“User” class.

Table 6-3. Group 3 Rules and Its Explanations: Stereotype class: User

Group 4. Stereotype class: Record

No. Well-formed Rules Explanations

Chapter 6. PIM to PSM Transformation

152

17 ⇒ (())

 :

 :

 :

 :

“RecDBConn” (Record Database

Connection) class on MMb is

generated from MMa’s “Record”.

18 ⇒

 :

 :

Some operations on MMb’s

“DBEdit” class are mapped from

corresponding attributes on MMa’s

“Record” class.

19 ⇒

 :

 :

Some operations on MMb’s

“RecDBConn” class are mapped

from corresponding operation on

MMa’s “Record” class.

Table 6-4. Group 4 Rules and Its Explanations: Stereotype class: Record

Group 5. Stereotype class: Resource

No. Well-formed Rules Explanations

20 ⇒ (())

 :

 :

 :

 :

“ResDBConn” (Resource Database

Connection) class of MMb is

generated from MMa’s “Resource”

class.

21 ⇒

 :

 :

Some operations on MMb’s

“DBEdit” class are mapped from

corresponding attributes on MMa’s

“Resource” class.

Chapter 6. PIM to PSM Transformation

153

22 ⇒

 :

 :

Some operations on MMb’s

“RecDBConn” class are mapped

from corresponding operation on

MMa’s “Resource” class.

Table 6-5. Group 5 Rules and Its Explanations: Stereotype class: Resource

Group 6. Stereotype class: Navigation

No. Well-formed Rules Explanations

23 ⇒ () ()

 :

 :

 :

 :

 :

“Navigation” class on MMa will

generate MMb’s “NavBarCtr”

(Navigation Bar Control) class and

MMb’s “NavBar” (Navigation Bar)

class.

24 ⇒

 :

 :

Attributes of “NavBar” on MMb are

mapped from attributions on MMa’s

“Navigation” class.

25 ⇒

 :

 :

Operations of “NavBarCtr” on MMb

are mapped from operations on

MMa’s “Navigation” class.

Table 6-6. Group 6 Rules and Its Explanations: Stereotype class: Navigation

Group 7. Compulsory Rules

Besides the other six specific group rules, there are also 13 compulsory rules

predefined general constraints of the proposed transformation process.

Chapter 6. PIM to PSM Transformation

154

No. Well-formed Rules Explanations

26 ∃ : ()

 :

 :

There is existing and only existing

one “Login” on MMb’s “View”.

27 ∃ : ()

 :

 :

There is existing and only existing

one “Logout” on MMb’s “View”.

28 ∃ : ()

 :

 :

There is at least one “UserInfo” class

existing on MMb’s “View”.

29 ∃ : ()

 :

 :

There is at least one “Content” class

existing on MMb’s “View”.

30 ∃ : ()

 :

 :

There is at least one “NavBar” class

existing on MMb’s “View”.

31 ∃ : ()

 :

 :

There is existing and only existing

one “DBConn” (Database

Connection) on MMb’s “Model”.

32 ∃ : ()

 :

 :

There is at least one “DBEdit”

(Database Edit) class existing on

MMb’s “Model”.

33 ∃ : ()

 :

 :

There is existing and only existing

one “LoginRsp” (Login Response)

on MMb’s “Controller”.

Chapter 6. PIM to PSM Transformation

155

34 ∃ : ()

 :

 :

There is existing and only existing

one “LogoutRsp” (Logout Response)

on MMb’s “Controller”.

35 ∃ : ()

 :

 :

There is at least one “UserInfoCtr”

(User Information Controller) class

existing on MMb’s “Controller”

36 ∃ : ()

 :

 :

There is at least one “ContCtr”

(Content Controller) class existing

on MMb’s “Controller”

37 ∃ : ()

 :

 :

There is at least one “NavBarCtr”

(Navigation Bar Controller) class

existing on MMb’s “Controller”

38 ∃ : ()

 :

 :

There is at least one “Evaluation”

class existing on MMb’s

“Controller”

39

 :

 :

 :

 :

MMb’s “System” is the combination

of “View”, “Controller” and

“Model”.

Table 6-7. Group 7 Rules and Its Explanations: Compulsory Rules

6.5.2 Transformation Model

The transformation model Mt is designed to map Ma to Mb. It is based on MMt

proposed in last section. The idea about transformation model (Mt) is to support

Chapter 6. PIM to PSM Transformation

156

additional information for MMt. Therefore, it is a model allows developer to modify

under specific conditions.

There are few rules defined as a core Mt.

Rule 1: if there are more than one class that are inherited from stereotype class “user”,

then create specific “view” for each of them. View is named in this format:

“userclass.name&View”

Rule 2: Each individual “View” should contains sub-views.

Rule 3: if there are more than one class that are inherited from stereotype class “user”,

then create specific “DBConn” for each of them. The name format is

“userclass.name&RecDBConn”

Compulsory Rules:

Rule 4: ∃ : ()

 : :

Rule 5: ∃ : ()

 : :

Rule 6: ∃ : ()

 : :

Rule 7: ∑

 :

 ∑ :

Chapter 6. PIM to PSM Transformation

157

 :

 :

6.6 Mapping Rules Implementation

In this chapter, “Class Diagram” are applied to present simple source PIM and target

PSMs.

This is a simple Metamodel for PIM represented as a class diagram. There are mainly

two classes: system and content. The relationships show that system is a combination

of 1 or more contents. Meanwhile, content can be a part of content.

Figure 6-49. A Simple Metamodel for Source Model

It is not using the MMa defined in last section; because this section is aiming to prove

proposed mapping rules are suitable for general situations.

Chapter 6. PIM to PSM Transformation

158

Figure 6-50. A Simple Metamodel for Target Model

Figure 6-50 is a simple Metamodel for PSM represented as a class diagram. Figure

6-51 is a PIM represented as a class diagram based on metamodel in Figure 6-49.

There are many classes with attributes and operations. Mainly they are two groups

based on dependent metaclass.

 System based: EARSII is a class based on metaclass system.

 Content based: The rest of classes are based on metaclass content including

“Listening”, “Understanding”, and “Doing”. The “Understanding” class contains

more contents as a tree structure.

Chapter 6. PIM to PSM Transformation

159

Figure 6-51. A Source Model Example

Mapping Process

The proposed rules are the kernel of transformation model, Mt, which can be presented

as below to execute in this implementation,

 If (PIM.hasSub=Yes) {

 If (ClssName=”System”) {

 New Object.Website;

Website.Object.name=System.Object.name;

 Website.Object.owner=System.Object.owner;

Chapter 6. PIM to PSM Transformation

160

 Website.Object.domain=System.Object.domain;

 Website.Object.others=System.Object.others;

 Website.Object.address=NULL;

}

Elseif (Classname=”Content”){

 If (Content.Object.subcontent doesn’t include leaf node) {

New Object.Part;

Part.Object.name=Content.Object.name;

Part.Object.list=None (options: type1/type2/type3/…/None);

Part.Object.navigation=None (Options: Nav1/Nav2/…/None);

Part.Object.others=Content.Object.others;

}

Elseif (Content.Object.subcontent includes leaf node) {

New Object.Page;

Page.Object.title=Content.Object.name;

Page.Object.layout=None (Options: Layout1/2/…/None);

Page.Object.links=NULL;

Page.Object.others=Content.Object.others;

}

Else {

Error 2;

}

}

Else { Error 1; }

} Elseif (PIM.hasSub=”No”) {

 If (Content.Object.type=”text”) {

New Object.TextFile;

Chapter 6. PIM to PSM Transformation

161

TextFile.Object.name=Content.Object.name;

TextFile.Object.type=Null (Optinal: .txt/.doc/.docx/…);

TextFile.Object.location=Null;

TextFile.Object.Font=Null (Op: Calibri/Arial/…);

TextFile.Object.size=Null (Op: 8/9/10/…/72);

TextFile.Object.colour=black(default) (Op: black/red/…);

TextFile.Object.others=Content.Object.others;

}

If (Content.Object.type=”picture”) {

New Object.PicFile;

PicFile.Object.name=Content.Object.name;

PicFile.Object.type=Null (Optinal: .jpg/.gif/.png/…);

PicFile.Object.location=Null;

PicFile.Object.size=Null (Op: Length*Width);

PicFile.Object.others=Content.Object.others;

}

If (Content.Object.type=”sound”) {

New Object.SoundFile;

Chapter 6. PIM to PSM Transformation

162

Figure 6-52. A Target Model Example

SoundFile.Object.name=Content.Object.name;

SoundFile.Object.type=Null (Optinal: .mp3/.wma/…);

SoundFile.Object.location=Null;

Chapter 6. PIM to PSM Transformation

163

SoundFile.Object.others=Content.Object.others;

} Else {

New Object.OtherFile;

OtherFile.Object.name=Content.Object.name;

OtherFile.Object.type=Null (Optinal: .*);

OtherFile.Object.location=Null;

OtherFile.Object.others=Content.Object.others; }}

Followed above process, Figure 6-52 is generated as a target model which is

represented as a class diagram.

6.7 Summary

In this chapter, the PIM to PSMs transformation is specified:

 A transformation architecture is proposed based on MDA and proposed evolution

method. The transformation structure is designed and specified with models and

processes.

 Source model (Ma) is defined in the accompanying normative UML model. The

metamodel (MMa) is also provided on a UML profile basis. Fundamental

elements and relationships are clarified for each model.

 Target model (Mb) is defined in the accompanying normative UML model. The

metamodel (MMb) is also provided on a UML profile basis. Based on proposed

structure, there are “View”, “Model”, and “Controller” models on both Mb and

MMb. Fundamental elements and relationships are clarified for each model.

 Mapping rules for defined source model and target model are defined and

specified. The rules are described as formulas with constraints. There are rules

Chapter 6. PIM to PSM Transformation

164

working on transformation model (Mt) and metamodel for transformation model

(MMt) based on its level.

 There is a piece of simply source model employed as an implementation to prove

defined mapping rules’ feasibility.

Chapter 7. Case Study: ElectroAcoustic Resource Site II

165

Chapter 7

Case Study: ElectroAcoustic Resource

Site II

Objectives

 To introduce the ElectroAcoustic Resource Site II project

 To analyse issues on the ElectroAcoustic Resource Site II system

 To present MDA-based development approach on the ElectroAcoustic Resource

Site II

 To research toolkit supporting

 To present screen shot of prototype

7.1 Overview

The MDA-based evolution approach focuses on domain-specific modelling and model

to model and model to code transformations. In this chapter, a music e-learning system

named the ElectroAcoustic Resource Site II (EARSII) is presented as a case study to

illustrate presented approach and implementation.

The proposed MDA-based evaluation approach includes the following steps, from

CIM modelling to PIM Generation, then transformation from PIM to PSMs, finally

codes are generated from PSMs. The CIM and PIM are constructed based on

e-learning domain models and ontology-based vocabularies extraction. PSMs are

Chapter 7. Case Study: ElectroAcoustic Resource Site II

166

transformed from PIM via designed transformation method. Lastly, codes are

generated manually instead of tools.

The Pedagogical ElectroAcoustic Resource Sit (EARS II), a music learning system, is

demonstration project in this research, showing the implementation of the proposed

approach.

7.2 EARSII System Background and Issues

7.2.1 EARSI Basic Introduction

The ElectroAcoustic Resource Site project was first established in 2001, with the aim

of providing academic information for researchers in the realm of electroacoustic

music. It has been co-ordinated by Leigh Landy and Simon Atkinson at the Music,

Technology and Innovation Research Centre (MTI) of De Montfort University

Leicester and is supported by the MTI as well as an international consortium.

In 2002 the first version went online containing an English language initial glossary

and an index. Today, the website presents in a multi-lingual glossary with definitions

of about 500 terms, which are organised under six headers (Discipline of Studies,

Genre and Categories, Musicology of Electroacoustic Music, Performance Practise and

Presentation, Sound Production and Manipulation, Musical Structure), as well as an

extensive bibliography of over three thousand items and a thesaurus. Furthermore, it

provides online publications. Currently, the website is translated in five languages:

English, German, French, Italian and Spanish. In collaboration with the University of

Beijing a Chinese version of the website is in progress (the project is called CHEARS,

which stands for Chinese Electroacoustic Resource Site). A Greek translation is also

being prepared.

Chapter 7. Case Study: ElectroAcoustic Resource Site II

167

Although in the description of the ElectroAcoustic Resource Site it is stated, “The

project will cite or directly link to texts, titles, abstracts, images, audio and audiovisual

files, and other relevant format” (EARS 1), the project is mainly text based. Audio files

or other media formats are only available via links. As the EARS website addresses

researchers and experienced listeners (such as composers) in particular, this is

sufficient information.

Further information about EARS I can be found in Landy’s paper [10, 44] and article

[43].

7.2.2 EARS II

7.2.2.1 EARS II Basic Introduction

In a second part of the project (from now on called EARS II) a new web-based

environment will be developed, which addresses the inexperienced listeners, in the first

instance children at key stage 3 of the National Curriculum in the United Kingdom

(aged 11-14). As text is not appropriate as the sole means of presenting information to

children in that age group, EARS II will use the information from the current EARS

website (EARS I), but will present it now didactically within a multimedia

environment. While the information on EARS I is organised as a reference, EARS II is

based on a pedagogical approach, which means that the organisation and presentation

of the information must be adapted. Not only is knowledge transfer related to

electroacoustic music necessary; also an understanding must be gained of how it is

composed and of course how it sounds: this leads to a better acceptance of

electroacoustic music. To realise this aim, the project contains three important

components: learning about this music (understanding), listening to it (appreciation)

and making it themselves with the help of the software, Sound Organiser (creating). In

Chapter 7. Case Study: ElectroAcoustic Resource Site II

168

combining these elements EARS II is unique amongst the few other pedagogical

projects about electroacoustic music.

7.2.2.2 Aims – Content – Method for Understanding/Learning

a) Aims

In these times of far-reaching isolation of a great deal of contemporary arts within

society, the project EARS II is designed to help close the gap, at least as far as

electroacoustic music is concerned. In being an equally challenging and in equal shares

entertaining platform it is intended to broaden the mind of all users (pupils and

teachers). Presented as a mix of learning, listening and making electroacoustic music is

planned to be placed on the curricula of secondary schools internationally (plans for

translation and cultural adoption go beyond this project, but are already in an advanced

stage).

The most important aim of EARS II is to introduce children and other inexperienced

users to electroacoustic music, as it is an important part of our music culture (see also

Problems of Contemporary Music). Not only is knowledge about this music necessary,

but also understanding of basic theories and concepts, information on how the music is

composed and of course how it sounds, leads to a greater acceptance of electroacoustic

music. To realise this aim, the project contains three important components: to provide

knowledge, to explain, how to make this music and allows users to listen to this music.

b) Learning Outcomes for EARSII

The following list presents the learning outcomes a user can achieve in learning with

EARS II. As the amount of outcomes is huge, naturally not every user will achieve

every outcome. However, it shows the wide ranges of skills and knowledge which can

be gained within the EARS II environment.

Chapter 7. Case Study: ElectroAcoustic Resource Site II

169

Broad aim: A society whose members is not afraid of electroacoustic music, but

instead understand it and can appreciate it and/or make it.

Concrete social objectives:

 familiarity with the body of electroacoustic works

 broad but discriminating musical tastes

 awareness of basic musical design and the general outline of its evolution

 ability to compose or improvise with sounds

 participation in musical activity appropriate to one’s interests and talents

Program objectives:

 Knowledge of

a. a repertoire of electroacoustic music

b. basic functions of the Sound Organiser

c. musical vocabulary and meanings in the realm of electroacoustic music

d. electroacoustic music’s development

e. the principal concepts and key figures

 Understanding of

a. issues in electroacoustic music concerning technology and theoretical

discussions (e.g. performance, notation, …)

b. the general concepts related to the construction of electroacoustic music

 Skills in

a. running the basic functions of the Sound Organiser

b. being aware of the sonic environment

c. reading a graphic representation of sound

d. speaking about electroacoustic music

e. hearing and identifying the main elements of musical compositions

Chapter 7. Case Study: ElectroAcoustic Resource Site II

170

f. being aware of listening strategies

 Attitudes of

a. musical broadmindedness and the discrimination of quality

b. respect for electroacoustic music as an art and a profession

c. intention to improve one’s musicianship

 Appreciation of

a. skilled and tasteful performance

b. good music in any medium, style or genre

 User initiatives

a. frequent and efficient visits to EARS II

b. searching for more about electroacoustic compositions on the Internet,

libraries, radio, TV, and attending – where possible – concerts

Content: Although history is more integral to the pedagogical approach of EARS II

than in EARS I, the content of the website will not be presented chronologically. Not

only has the development of this music been very rapid, there have been also different

styles developed at the same time. The plan is to introduce electroacoustic music by

focussing on its key concepts. A concept can be for example the sonic material used in

the production (e.g. using real-life sounds or generated sounds) or how it is performed

(e.g. live performance or recorded on a fixed medium) or both. That said, history will

not be neglected. In EARS II music history will be presented by way of a timeline.

This timeline contains everything that is introduced in the website. By clicking on a

date the users get links to every topic that is related to that year. So the chronology of

everything that happened during this time is still present.

Chapter 7. Case Study: ElectroAcoustic Resource Site II

171

7.3 MDA-Based EARSII System Development Approach

In this section, the EARSII prototype system is shown as a case study to be developed

following proposed MDA-based e-learning system evolution approach. CIM, PIM,

PSMs, and codes are carried out to show the feasibility of the proposed method.

7.3.1 Computation Independent Model

A piece of the customers’ original requirement is showed as follows, which comes

from the EARS II music-learning system by Landy [43]:

“The pedagogical strategy that is being modelled is a holistic one. It works as follows:

there is a three-way approach that is to be presented interdependently. It consists of a

“section” concerning music appreciation (“listening”), one focusing on the

understanding of musical, theoretical and technological concepts (“understanding”)

and another involved with music making (“doing”). The heart is the understanding

section as any learner-driven navigation starts here as all key terms and concepts are

embedded in this section” [43].

Based on proposed Ontology-based CIM modelling method, the CIM for above

requirement can be generated following below modelling processes.

7.3.1.1 Extracting Vocabularies

Noun Verb

Music appreciation. Listen

Understanding Make music

Concept

Term

Learner

Chapter 7. Case Study: ElectroAcoustic Resource Site II

172

Navigation

Doing

Table 7-1. Extracted Requirement Vocabularies

According to Natural Language Processing (NLP) technology, requirements are

extracted into vocabularies. As an example here, extraction is done manually- picked

key nouns and verbs- and the result is shown as Table 7-1.

7.3.1.2 Classifying Ontologies

LTSA is the basic structure for classify the vocabularies that come from previous step.

First, a RO is involved in this phase, which designed based on LTSA. Then classify

vocabularies into RO to be an AO. Next task is to add extra vocabularies into AO.

Finely, if there are redundancies in AO, they are reduced in this step.

Figure 7-1. Reference Ontologies (RO) Structure

Chapter 7. Case Study: ElectroAcoustic Resource Site II

173

There are three steps designed to generate AO from RO: to generate AO by mapping

vocabularies into RO; to add extra vocabularies into ontologies as an AO; and to reduce

redundancies for AO.

Step 1: To map vocabularies into AO

Concepts

[C]

Attributes(Range)

[A(Ra)]

SubConcept[Sc

]

Leaner==LearnerE

ntity

leID ();

lePassword();

lrID().

Music==LearnReso

urce

lrID();

lrContents();

LearnContent

term, concept

==LearnContent

lcID();

lcBegin();

lcEnd().

Delivery(GUI)

deID();

locator(LearnContent);

Listening/Unde

rstanding/Doin

g

Table 7-2. Application Ontologies Result of Step 1

Step 2: to add extra vocabularies into ontologies as an AO

In table 7-2, Navigation is an extra vocabulary from requirement. Besides, based on

LTSA, there is a potential vocabulary, LearnerRecord.

Noun: Explanation

Learner Record: to record Learner’s information.

Navigation: to navigate the learning route.

Table 7-3. Extra Vocabularies

Table 7-3 is the AO with above vocabularies.

Concepts

[C]

Attributes(Range)

[A(Ra)]

SubConcept

[Sc]

Leaner leID ();

Chapter 7. Case Study: ElectroAcoustic Resource Site II

174

 lePassword();

lrID().

LearnerRecords

LrdID();

lrdContents().

LearnResource

lrID();

lrContents();

LearnConten

t

LearnContent lcID(String);

Delivery(GUI)

deID(String);

locator(LearnContent);

hasNavigation(Navigation).

Listening/Un

derstanding/

Doing

Navigation

Table 7-4. Application Ontologies Result of Step 2

Step 3: to reduce redundancies for AO

After check, there is no redundancy in Table 7-4, so it is the final AO for example

requirement on EARS II.

7.3.2 Platform-Independent Model

Figure 7-2. Generated PIM for EARS II

Chapter 7. Case Study: ElectroAcoustic Resource Site II

175

Ontology-based CIM is transformed into Platform Independent Models following a set

of transformation rules that proposed in Chapter 5. Considered the PIMs are showed as a

set of UML diagrams generally, following the five rules, classes are generated with

name, mandatory attributes, operations, interfaces, and relationships.

Figure 7-2 shows PIM is generated properly. Under the proposed rules, classes,

attributes, operations, and relationships are transformed from AO successfully.

7.3.3 Platform-Specific Model

In section 8.3.2, there is a PIM generated based on proposed ontology-based modelling

approach. Therefore, in this section, this PIM will be transformed into a PSM based on

proposed transformation method in chapter 7.

Based on MVC structure, PSM should be divided into three models including “View

Model”, “Controller Model”, and “Model Model”.

View:learnerView

Login:learnerLogin

Logout:learnerLogout

Content:learnerContent

UserInfo:learnerInfo

NavBar:learnerNavBar

1

1

1

1

1

1

1

*

1

1

Uderstanding

Listening

Doing

1

1

1 1

1

1

Figure 7-3. PSM View Model for EARS II

Chapter 7. Case Study: ElectroAcoustic Resource Site II

176

 PSM View Model: it is a model in charge of users’ view. Based on the PIM

generated in last section, the PSM should include “learner’s view” model but

without “coach’s view” and “administrator’s view”. The view models are shown

as Figure 7-3.

 PSM Controller Model: it is a model in charge of system’s controller. The

controller model is shown as following figure.

Controller:eLearningController

LoginRsp:loginRsp

LogoutRsp:logoutRsp

ContCtr:contCtr

UserInfoCtr:userInfoCtr

NavBarCtr:navCtr

1

1

1

1

1 11

*

1

1

Figure 7-4. PSM Controller Model for EARS II

+connectDB()
+disconnectDB()

DBConn:eLearningDBConn

+connectlearnerRecDB()

RecDBConn:learnerRecDBConn

ResDBConn:learningResDBConnModel:elearningModel

1

1

1

1
1
1

Figure 7-5. PSM Model Model for EARS II

Chapter 7. Case Study: ElectroAcoustic Resource Site II

177

 PSM Model’s Model: it is a model in charge of system’s communications with

databases. The model’s model is shown as following figure.

The “View Model”, “Controller Model”, and “Mode Model” are presented. To be a

unitary PSM for EARS II, the three models are grouped together with associations

which is shown as below,

learnerView elearningModelelearningController

EARSII

1* 1
* 1 0..*

Figure 7-6. PSM Structure for EARS II

7.3.4 Code Packages

As the last phase of proposed approach, code generation is necessary to realise

functions based on PSM which is presented in last section. According to structure in

the PSM, there are mainly there group codes to be generated. They are “View Code”,

“Controller Code”, and “Model Code” to corresponding “View Model”, “Controller

Model”, and “Model Model” in PSM. Each group is defined as a package. This section

is focus on showing the results with packages rather than specific code due to code’s

amount. Three short pieces of code are selected to give an example for each package.

The full code is attached in this thesis as appendix A.

7.3.4.1 View Package

The view package includes four php files – “learnerLogin.php”, “learnerLogout.php”,

“learnerInfo.php”, and “learnerNavBar.php”, and one sub-package named

Chapter 7. Case Study: ElectroAcoustic Resource Site II

178

“learnerContent”. There are three php files in the sub-package “learnerContent”

including “understanding.php”, “listening.php”, and “doing.php”. A brief structure for

this package is shown in below image with red mark.

Figure 7-7. Structure of View Package

The codes in each file are shown in appendix A. Here is a piece selected as an example

to show the result.

learnerLogin.php

<html>

<title>EARS2:Login</title>

<style type="text/css" >

form { width:500px;}

input { font-family:Arial; }

</style>

<body>

Chapter 7. Case Study: ElectroAcoustic Resource Site II

179

<div align="center"><img src="./files/images/LogoV1.jpg" alt="EARSII"

longdesc="http://www.dmuchina.com/ears2"></div>

<?php

echo “Username: <input type="text" name="username"/>
”;

echo “Password: <input type="password" name="password" />
”;

echo “<input type="submit" name="submit" value="Submit" align="right" />”;

echo “<input type="reset" name="cancel" value="Cancel" align="right" />”

?> <form action="checkNewLogin.php" method="post">

</body>

</html>

Table 7-5. Codes in “learnerLogin.php”

7.3.4.2 Controller Package

The controller package includes five php files – “loginRsp.php”, “logoutRsp.php”,

“userInfo.php”, “contentCtr.php”, and “navCtr.php”. A brief structure for this package

is shown in below image with red mark.

Figure 7-8. Structure of Controller Package

Chapter 7. Case Study: ElectroAcoustic Resource Site II

180

All codes are attached in appendix A including every file. One short file,

“logoutRsp.php”, is selected to show as an example of the code result.

logoutRsp.php

<?php

function updateRecord(){

 //to update user record database information

 echo("<meta http-equiv=refresh content='0; url=./Model/learnerRecDBConn.php'>");

}

function showLogoutView(){

 echo("<meta http-equiv=refresh content='0; url=./View/learnerLogout.php'>");}?>

Table 7-6. Codes in “logoutRsp.php”

7.3.4.3 Model Package

The controller package includes three php files – “elearningDBConn.php”,

“learnerRecDBConn.php”, and “learningResDBConn.php”. A brief structure for this

package is shown in below image with red mark.

Figure 7-9. Structure of Model Package

Chapter 7. Case Study: ElectroAcoustic Resource Site II

181

The codes in each file are listed in appendix A. Here is a short piece selected showing

as an example of the code result.

learnerRecDBConn.php

<?php

$db_ears2="learnerRec";

mysql_select_db($db_ears2, $db);

//$sql = "SELECT adminUsername, adminPassword FROM admin";

$sql = "SELECT * FROM admin";

$result = mysql_query($sql);

?>

Table 7-7. Codes in “learnerRecDBConn.php”

7.4 Toolkit

Presently, there are many case tools available provided by modelling vendors.

However, it is not enough for the automation requirement in OMG’s MDA. On one

hand, most of transformation works on PSMs to codes are realised by various tools by

different mapping methods, however, it is only capable to generate template codes as

the automatic transformation result generally. In this case, it is necessary to enrich and

improve code by developers to accomplish system development, which is not fully

achieving MDA’s automation ambition. On the other hand, the transformation from

PIM to PSMs is lack of tools’ support. A large number of modelling vendors is not

providing support for all the features specified by the MDA. For example, many

vendors decided to skip PSM step on their tools but designed to generate codes from

PIM directly. In the following content, there is a summary and catalogue for most

common UML tools on market researched till December 2011, in which the issues

shows clearly.

Chapter 7. Case Study: ElectroAcoustic Resource Site II

182

Tool

(Latest Ver.)

UML

Ver.

Code Enviorments XMI Platform Note

AndroMDA

(3.4)

2.2 J2EE/EJB, Spring,

Hibernet, Struts, .NET,

Web Service

YES supporting UML2 and

EMF based tools

AmaterasUM

L

(1.3.2)

2 Java Yes Java A Eclipse plug-in;

Feature on analysis of

Class Diagram and

Sequence Diagram

Astade

(0.10.1)

2 C++ No UML to C++

Transformation Tool

Cohesion

(1.0.2)

2 No Java Metamodel Modelling

Tool. UML, OCL, and

other languages can be

used.

Dia

(0.97)

2 C++, Java, CORBA IDL No Linux

(Debian,

Redhat),

Windows

Similar with Visio.

Supporting E-R

diagram.

Fujaba Tool

Suite (5.0.4)

2 Java No Java Supporting Patterns.

miUML 2 No Executable UML tool

NetBeans

UML (6.7)

2 NetBean Plug-in UML

tool

OpenAmeos

(10.2)

2 Java, C, C++, Ada95 Yes Linux,

Solaris,

Windows

A real-time embedded

system modelling tool.

OpenArchite

ctureWare

(4.3.1)

2 No Java A frame of MDA/MDD

generator. Supporting

tools as MagieDraw,

Eclipse UML2,

Enterprise Architet, etc.

A part of Eclipse

Modelling Project.

Open

ModelSphere

(3.1)

2 Java Yes Java Supporting the business

process modelling, data

modelling, and UML

modelling.

Papyrus 2 No Java Eclipse-based

Chapter 7. Case Study: ElectroAcoustic Resource Site II

183

UML (1.12) modelling tool and code

generator.

StarUML

(5.0)

2 C++, Java, C# Yes Windows UML/MDA platform

Topcased

(5.0.0)

2.1 Java No Java Eclipse’s UML plug-in.

Focus on critical system

modelling.

Umbrello

UML

Modeller

(2.0)

2 PHP, Ada2005, Perl Yes Linux/KD

E

Supporting most UML

diagrams, code export

(C++ and Java) and

reverse engineering

[89].

UMLCanvas 2 HTML No Transform HTML5

Canvas to dynamic

interactive UML

diagram.

UML Graph

(5.4)

2 Java No Java Automated drawing of

UML diagrams. It

allows the declarative

specification and

drawing of UML class

and sequence diagrams

[96].

Umlify

(1.2.6)

2 Ruby No Generate UML

diagrams from Ruby

code.

ArgoUML

(0.32.2)

2 Java, C# Yes Java A leading open source

UML modelling tool

and includes support for

all standard UML 1.4

diagrams [8].

Table 7-8. Open Source UML Tools

Above table lists currently common UML tools as open source projects. There are also

many commercial vendors supporting modelling tools. Therefore, there is also a table

summarising commercial UML tools with details such as UML version, code

environments, XMI available, running platform, etc.

Chapter 7. Case Study: ElectroAcoustic Resource Site II

184

Tool

(Latest Ver.)

UML

Ver.

Code

Environments

XMI Platform Note

PowerDesigner

(16.0)

2 C++, Java, C#,

VB.Net, XML

No Windows Enterprise modelling

to modelling, and

data modelling

combined.

Enterprise

Architect (9.2)

2.4 C++, C#, Java,

Delphi, SQL-DDL,

VB.NET, VB

Yes Windows, Linux It provides full life

cycle modelling for

business and IT

systems, software

and systems

engineering, and

real-time and

embedded

development [95].

Acceleo (3.0) 2 .Net, J2EE, PHP,

Python

No Java Integration with

Eclipse and EMF.

Apollo for

Eclipse (2.0)

2.1 Java No Java A UML extension

under Eclipse.

Supporting

Round-trip

engineering for

java5.

ARTiSAN

Studio (7.2)

2.1 C++, Java, C#,

Ada83, Ada95, C,

SQL-DDL

Yes Windows, Solaris Capable to combine

with PVCS, VSS,

ClearCase, CM

Synergy. Supporting

OMG

UPDM-DoDAF and

MODAF.

Astah UML

(6.5)

2.1 Java, C, C# No Java Supporting Mind

Map. A UML tool

for round-trip

engineering for Java.

BOUML 4.23 2 C++, Java, IDL,

PHP

No Unix/Linux/Splaris,

MacOS X,

Windows

Supporting plug-in

on C++ and Java.

Cadifra UML

Editor (1.3.2)

2 No Windows

CoFluent 2 C, C++ No UML/SysML

Chapter 7. Case Study: ElectroAcoustic Resource Site II

185

Studio development

EclipseUML 2.2 JavaEE Yes Java A UML tool

integrated Eclipse

and CVS. Capable

on reverse

engineering from the

byte code to class

diagrams and

sequence diagrams.

Edraw (6.1) 2 No Windows Visio file can be

imported.

Eiffel Studio

(6.8)

2 Eiffel No Linux, MacOS,

Windows,

FreeBSD

A plug-in for Visual

Studio based on

UML and Eiffel.

eUML2 (3.7.0) 2.1 Java Yes Java A branch product of

Eclipse UML tools.

Gaphor

(0.14.0)

2 No GTK A UML tool

developed by

Python.

Gliffy 2 An online UML tool.

GModeler 2 AS2.0 Yes Browser with Flash

available

An online Flash

UML tool.

IntelliUML

Teresa (2.1.1)

1.5 Yes Java Tightly integrated

with IntelliJ IDEA.

It has not been

updated since 2008.

Javelin

(7.3.0.2)

2 Java No Windows A graphic

programming

platform based on

UML. Automatically

maintain the class

diagram and Java

code

synchronisation.

Supporting

Hibernate.

JDeveloper 2 Java No Java A Java tool

combined with

UML.

Chapter 7. Case Study: ElectroAcoustic Resource Site II

186

LumiCode

(3.0)

2 .NET No Reverse engineering.

Generate sequence

diagram and class

diagram from .Net

program.

MacA&D (7.4) 2 C++, Java, Delphi Yes Mac Supporting UML

modelling,

structured

modelling, and data

modelling.

MagicDraw

(17.0.1)

2.2 C++, Java, C#, IDL Yes Java Integrated with

Eclipse,

VS2005/2008.

Supporting RUP and

WAE design pattern,

DoDAF framework,

and SysML.

MetaEdit+

(4.5)

2 Smalltalk, C++,

Java, Delphi, SQL,

CORBA, IDL

No Linux, Windows A Domain-Specific

Modelling (DSM)

tool.

Metamill (6.0) 2.3 C++, Java, C# Yes Linux, Windows Supporting

multi-users

modelling.

Modelio

(1.2.2)

2 C#, Java Yes

Modelmaker

(11.2.0)

2 Delphi 4 to Delphi

XE, C# to VS 2003,

VS 2005, VS 2008,

and VS 2010.

No Windows A Delphi and C#

Visual modelling

and Refactoring tool

based on UM 2

technology [64].

Objecteering

(6.0)

2 Java, C++, C#, IDL,

SQL, Oracle

Yes Windows, Linux,

Solaris

It provides a

dedicated graphical

modelling tool to

help you easily

develop the tools

you need when

implementing a

model-driven MDA

approach in your

projects [68].

Chapter 7. Case Study: ElectroAcoustic Resource Site II

187

ObjectiF (5.0) 2 Visual C++,

JBuilder, Visual

Cafe, IDL, SQL,

VB

Yes Windows Combined with

VS.NET and

Eclipse.

Rhapsody

(7.6)

2.1 IDL, Java, C++,

Ada, C

Yes Linux, Windows,

Solaris

It focuses on MDD

for real-time

embedded systems.

Rational

Software

Architect

(8.0.2)

2.1 Java, C++, VB,

ADa, IDL, Delphi,

SQL, Oracle

Yes Windows, Linux,

Unix

An IBM product.

Together R3 2 CORBA, IDL, C++,

Java, C#, COM

IDL, EJB, VS.NET,

SAP, WebSphere

Yes Java Supporting DSL,

OCL 2.0, and

PEL4WS.

Visio 2010 2 IDL, C++, C#, VB Yes Windows A Microsoft

diagram tool

supporting UML.

Table 7-9. Commercial UML Tools

From above tables, there are a large amount UML tools on the market. Functions and

aiming systems are different showing in the details specification. Considering MDA

specification, there is not much tools supporting it. To sum up, there are following

tools are related to MDA paradigm closely,

 AndroMDA 3.4 [7]: is an open source code generation framework that follows the

Model Driven Architecture paradigm. It takes models from CASE-tools and

generates fully deployable applications and other components.

 Objecteering 6.0: is a model-driven development tool. Objecteering MDA

Modeller provides a dedicated graphical modelling tool to help you easily develop

the tools you need when implementing a model-driven MDA approach in your

projects [68].

Chapter 7. Case Study: ElectroAcoustic Resource Site II

188

 ObjectiF 5.0: is a UML-Tool for Model-Driven Development in C#, C++ and Java

with model transformations for standard .NET and Java technologies, and

integrated technology for developing specific model transformations [60, 61].

 OpenArchitectureWare (oAW) 4.3.1: is a part of the Eclipse Modelling Project as a

MDA/MDD generator framework implemented in Java(TM) [84].

 Select Solution for MDA: is a ground breaking modelling and transformation tool

designed to generate, reverse engineer and synchronise all your model viewpoints

and your code, based upon UML designs within Select Architect [91].

 Together R3: is a modelling platform that gives enterprise teams leading-edge

design capabilities which enable the visualisation and continued maintenance of IT

architectures [22].

 StarUML: is an open source project to develop fast, flexible, extensible, featureful,

and freely-available UML/MDA platform aiming to build a software modelling

tool and also platform that is a compelling replacement of commercial UML tools

such as Rational Rose, Together and so on. [98].

Overall, there are many tools can be applied on the proposed MDA-based evolution

approach especially on code generation step. The available tools might not as strong as

expected; however, they are supports on current research stage and can be valuable

references for the future improvement on transformation.

7.5 Prototype Screen Shot

There are few screen shots showing the learner-oriented interfaces in EARSII

prototype system.

Chapter 7. Case Study: ElectroAcoustic Resource Site II

189

Figure 7-10. Learner Login Interface in EARSII Prototype

Figure 7-10 is leaner login page. Home page is next page shown to learner after

successfully login which is shown as Figure 7-11. Navigation in EARSII is shown as

Figure 7-12, Figure 7-13, and Figure 7-14.

Figure 7-11. Home Page in EARSII Prototype

Chapter 7. Case Study: ElectroAcoustic Resource Site II

190

Figure 7-12. Navigation Interfaces in EARSII Prototype 1

Figure 7-13. Navigation Interfaces in EARSII Prototype 2

Chapter 7. Case Study: ElectroAcoustic Resource Site II

191

Figure 7-14. Navigation Interfaces in EARSII Prototype 3

Figure 7-15 is a content page with sound player. There is a content page with picture

showing as Figure 7-16.

Screen shots showing here are samples pages. Content’s representation can be

multimedia. There is possible to add video, audio, image, application, etc into this

system to enhance content pages.

Figure 7-15. Content Page with Sound Player

Chapter 7. Case Study: ElectroAcoustic Resource Site II

192

Figure 7-16. Content Page with Picture

Interfaces for coach are showing as Figure 7-17, Figure 7-18, and Figure 7-19.

 Coach login page: username and password are required to login.

 Home page: it shows navigation tree in the left column. Right column is an area

for main contents. Initially it is designed to display notices or general information

for system.

 Edit page: it provides spaces for coach to edit learning contents.

Figure 7-17. Coach Login Interface in EARSII Prototype

Chapter 7. Case Study: ElectroAcoustic Resource Site II

193

Figure 7-18. Coach Home Page in EARSII Admin System

Figure 7-19. Coach Edit Page in EARSII Admin System

7.6 Summary

In this chapter, the proposed method is applied in a project named ElectroAcoustic

Resource Site II as a case study.

Chapter 7. Case Study: ElectroAcoustic Resource Site II

194

In the beginning, Background and issues of EARSII are introduced. Then, it is a

development approach in which proposed MDA-based method is applied. Proposed

development phases are demonstrated from CIM to PHP code. Additionally, there are

research on toolkit to explain UML tools, MDA tools, and current situations. Finally,

there are prototype screen shots to prove approach’s feasibility.

Chapter 8. Conclusions

195

Chapter 8

Conclusions

Objectives

 To summarise the thesis and draw conclusions

 To revisit original contributions

 To evaluate the research by answering the research questions and revisiting the

success criteria

 To illustrate the limitations of the work

 To propose future work

8.1 Summary of Thesis

This thesis aims to improve the software evolution methods in e-learning domain by

proposing a Model-Driven Architecture based evolution approach via domain

modelling and transformation technique. The basic idea is to employ MDA standard to

lead software lifecycle, and as a result, create a semi-automated process to enhance

models’ role in software development and maintenance and to create more space for

designers and developers on creative development.

The research described in this thesis is postulated in the context of model-driven

engineering and e-learning domain. UML and UML profile are selected to support

modelling presentation of PIM, PSMs, and their metamodels. The proposed research

can be divided into four main stages, namely, e-leaning modelling, MDA-based

evolution method, transformation, and approach’s application. The e-learning

Chapter 8. Conclusions

196

modelling stage is supported by Learning Technology Systems Architecture standard

and Model-View-Controller design pattern. The evolution method stage is based on

OMG’s Model-Driven Architecture standard and supported by ontology knowledge.

The transformation stage is implemented by UML and UML profile based MOF

mapping algorithm. The approach’s application stage deploys the proposed approach

into an e-learning system. In order to guarantee that the proposed research is

systematic and well-structured, reference has been made to software taxonomy. The

main research subjects in this study are Model-Driven Architecture and e-learning

domain system. A project named ElectroAcoustic Resource Site II is performed as use

case to validate the proposed approach. The research of toolkit is presented to support

and facilitate use case.

8.2 Revisiting Original Contributions

This thesis proposes Model-Driven Architecture based evolution method to e-learning

system, as observed in Chapter 1. An e-learning domain modelling is proposed in

Chapter 4. Proposed approach to Model-Driven Architecture based evolution is

specified in Chapter 5. Meanwhile, in Chapter 3, Software Engineering Creative

Computing is proposed as a new concept. Furthermore, the kernel contribution is a set

of predefined transformation rules and its application in electronic learning system

which is shown in Chapter 7.

This section will revisit and extend the seven expected original contributions presented

in Chapter 1 as follows:

 C1: In Chapter 5, a Model-Driven Architecture based evolution method and

approach has been proposed. The method is specified individually in CIM, PIM,

PSM, and code development.

Chapter 8. Conclusions

197

 C2: In Chapter 5, ontology technique has been applied into PIM generation

process which is divided into two phases: vocabularies extraction and PIM

generation.

 C3: In Chapter 6, a PIM to PSM transformation has been designed with

methodology and processes.

 C4: In Chapter 6, models in layers have been defined based on UML and UML

profile. There are source model, metamodel for source model, target model,

metamodel for target model, transformation model, and metamodel for

transformation model.

 C5: In Chapter 6, a set of mapping rules have been clarified with formulas and

constraints for transformation model and metamodel for transformation model.

 C6: In Chapter 4, E-learning system has been modelled as domain framework.

LTSA standard and pedagogical strategy has been applied into modelling to

support e-learning system. As a result, three models have been designed: “step by

step learning model”, “optional learning model”, and “interacting learning model”.

 C7: In Chapter 4 and 5, Model-View-Controller design pattern has been applied

into e-learning domain models and MDA-based evolution approach.

 C8: In Chapter 3, Software Engineering Creative Computing has been proposed as

a new concept. Four examples have been presented: user interface design - the

golden rules, data design principles, metrics for object-oriented design class, and

framework for web engineering. Besides, an application in e-learning system has

been implemented.

Chapter 8. Conclusions

198

 C9: In Chapter 7, an application in an e-learning system has been deployed. A

prototype of project ElectroAcoustic Resource Site II is the result.

 C10: In Chapter 7, a set of tools is summarised and analysed to support the

proposed MDA-based evolution method for e-learning system.

8.3 Evaluation

8.3.1 Answering Research Questions

The evaluation of this study starts by answering the proposed research questions. The

global research question presented in Chapter 1 was:

How can software systems, especially electronic learning system, be developed

maximum automatically by Model-Driven Architecture theory?

This question has been answered by proposing a Model-Driven Architecture based

evolution method and process. The ontology-based PIM generation approach supports

an automatic process for CIM and PIM phases. E-learning modelling is supplying

reference models and basic architecture for e-learning system, specifically PIM and

PSMs. Transformation definitions are employed to mapping PIM to PSMs. Moreover,

Software Engineering Creative Computing provides an idea to enhance the whole

process.

A set of research questions was defined subsequently to refine this global question in

detail.

RQ1: What is the proper development approach to achieve the requirement of

Model-Driven Architecture standard?

Chapter 8. Conclusions

199

Based on Model-Driven Architecture standard, there are three group models are

required including Computation Independent Model, Platform-Independent Model, and

Platform-Specific Model. A MDA based life cycle is proposed showing the

recommended development approach. (Section 2.3)

 Which models are necessary based on Model-Driven Architecture standard?

Platform-Independent Model and Platform-Specific Model are two group models

necessarily required. Computation Independent Model is optional but highly

recommended to be realised in Model-Driven Architecture standard. (Section 2.3)

 How to represent those models to meet standard’s requirements?

There are different ways to describe models including UML, UML profile, XML, XMI,

etc. In this thesis, UML and UML profile are chosen to represent models. (Section 3.3

and 3.4)

 How to organise models’ structure following Model-Driven Architecture

standard?

Models are categorised into groups including Computation Independent Model,

Platform-Independent Model, and Platform-Specific Model. The three groups are

organised in layers based on layered architecture for MDA. (Section 2.3)

RQ2: How to realise transformations for Model-Driven Architecture based electronic

learning system development approach?

QVT is the basic standard in transformation definition. Transformation architecture is

proposed to abstract the realisation. (Section 7.2)

 What is transformation method in the approach?

Chapter 8. Conclusions

200

The transformation method contains QVT-based transformation definition and

e-learning domain modelling based transformation architecture. (Section 7.2)

 Which phases need transformations?

In the proposed MDA-based approach, transformation is required in PIM to PSMs

phase. (Section 5.1.3)

 Which mapping rules should be followed in each transformation step?

Mapping rules are defined with well-formed formulas and constraints supporting

models in two layers: transformation model and metamodel for transformation model.

(Section 7.5)

RQ3: What is the proper way to modelling electronic learning system?

LTSA standard and pedagogical strategy has been applied to support electronic

learning domain modelling. Model-View-Controller has been employed as basic

design pattern. MDA standard should be followed strictly with CIM, PIM, and PSM

phases. (Section 4.1 and 4.2)

 What are basic functions required in electronic learning domain modelling?

With standard and strategy supporting, functions are selected and summarised for

different learning models. There are three learning models proposed in this thesis

including “step by step learning model”, “optional learning model”, and “Interacting

learning model”. Each learning model contains a set of functions fitting its features.

(Section 4.1)

 Which standards, strategies, or patterns should be involved to support domain

modelling for electronic learning?

Chapter 8. Conclusions

201

Based on this study, there are LTSA standard, pedagogical strategy, and

Model-View-Controller pattern chosen to support domain modelling for electronic

learning in this thesis. (Section 4.1 and 4.2)

 How to organise domain models to meet requirements on Model-Driven

Architecture based development approach?

To meet Model-Driven Architecture requirement, electronic learning domain models

are organised into a four-layered structure with CIM, PIM, and PSM expression.

(Section 4.2)

RQ4: What is the Model-Driven Architecture based development process for electronic

learning system?

The development process is based on electronic learning domain modelling and

Model-Driven Architecture standard. A Model-Driven Architecture based evolution

method is proposed as kernel theory. (Section 5.1, Section 5.2, and Section 6)

 Which phases are necessary in this development process?

Regarding Model-Driven Architecture standard, the kernel phases in this development

process are CIM creation, transformations from CIM to PIM, mapping PIM to PSMs,

and code generations. (Section 5.1)

 What elements should be presented in each phase?

Specific elements on CIM, PIM and PSM are defined and represented through

modelling. (Section 5.2 and Section 6.2)

 How to get each model’s elements automatically?

Chapter 8. Conclusions

202

Transformation is the kernel method to generate each model’s elements automatically.

Related methodology and notations are presented. Specific mapping rules are defined

with well-formatted formulas and explanations. (Section 6.3, Section 6.4 and Section

6.5)

 How to define and represent the relationships between models?

Proposed MDA-based modelling structure provides relationships between models in

levels. Specific relationships between PSMs are provided based on transformation

method. (Section 4.2.2 and Section 6.5)

RQ5: What kind of tools is capable to support the proposed Model-Driven Architecture

based approach?

There is a toolkit summarisation and analysis including two categories: general UML

tools and specific MDA-related tools with their capability of supporting the proposed

MDA-based evolution approach. (Section 7.4)

8.3.2 Revisiting the Measure of Success

In Chapter 1, a set of measures are defined to validate the success of the proposed

research described in this thesis. This section will revisit the predefined measure of

success.

 How to develop electronic learning system following Model-Driven Architecture

standard?

The development process is based on electronic learning domain modelling and

Model-Driven Architecture standard. A Model-Driven Architecture based evolution

method is proposed as kernel theory.

Chapter 8. Conclusions

203

 How many standards or theories are supporting electronic learning domain

modelling?

In this thesis, there are LTSA standard, pedagogical strategy, and

Model-View-Controller pattern chosen to support domain modelling for electronic

learning.

 How many phases are automatic or semi-automatic in proposed development

process?

By proposed Model-Driven Architecture based evolution method, every phase is

automatic or semi-automatic in proposed development process because models are

generated by transformation tool or rules, which is including CIM establish, PIM

generation, PIM to PSM transformation, and code generation.

 How to realise transformation for models in different levels?

Models are generated in steps following Model-Driven Architecture and resulted as

CIM, PIM, and PSMs. Transformations are based on UML profile and mapping rules.

Therefore, both models and transformations are complied with MDA standard.

 How many rules are supporting Platform-Specific Model generation?

Proposed mapping rules are working for models in two levels: transformation model

and metamodel for transformation model. They are supporting PSMs’ generation

from metamodel layer to model layer. There are totally 39 kernel rules categorised

into seven groups in metamodel level. Meanwhile, 7 kernel rules are defined in

transformation model level. Each level’s rules’ amount is capable to be extended

following kernel rules. Besides, because mapping rules are specified as formulas and

constrains, they are capable to be programmed as a tool.

Chapter 8. Conclusions

204

 How many electronic learning systems are suitable to be developed based on

proposed method?

The proposed Model-Driven Architecture based evolution approach is able to be

applied to a use case - ElectroAcoustic Resource Site II project, which is an existing

project including every basic function in e-learning system.

M2: The models and their transformations in different levels should be exactly

complied with OMG’s MDA standards.

Models are generated in steps following Model-Driven Architecture and resulted as

CIM, PIM, and PSMs. Transformations are based on UML profile and mapping

rules. Therefore, both models and transformations are complied with MDA standard.

M3: Designed transformation rules should support PIM to PSM properly,

meanwhile, they should be capable to be realised as a mapping tool.

Predefined transformation notions are represented based on studies of related

projects. A set of transformation rules is designed with well-formatted formulas and

explanations. Therefore, it is capable to be realised as a concrete tool or a set of

tools.

M4: The proposed MVC structure should be support the general e-learning system

based on education pedagogical knowledge.

Three learning models have been designed based on pedagogical strategy for general

e-learning system. MVC modelling is presented based on the three models.

Moreover, models presented in Chapter 6 are showing application of MVC pattern.

Chapter 8. Conclusions

205

8.4 Limitations

Having discussed the original contributions and success criteria, the proposed research

described in this thesis also has following limitations:

The PIM to PSM transformation is currently presenting as models and rules but not a

finished transformation tool.

The fundamental elements of proposed PIM to PSM transformation method are

transformation models and rules. Models are presented by UML and UML profiles.

Rules are specified as formulas and constrains. At the current stage, they are working

as standards to be followed manually. A transformation tool is not developed to realise

automatic PSM generation.

Proposed MDA-based evolution approach supports process for forward engineering

but not reverse engineering.

Development approach is well presented in proposed MDA-based evolution method

including phases: CIM, PIM, PSMs, code, and maintenance. It is capable to be applied

into forward engineering. Reverse engineering is not concerned in this study but left as

further work to be an improvement of this method.

8.5 Further Work

Based on the discussions regarding research questions, research propositions, original

contributions, success criteria, and limitations in the previous sections, the conclusions

can be drawn. The Model-Driven Architecture based evolution method and its

application in an e-learning system, described in this thesis, is a novel, systematic, and

practical methodology for software engineering in e-learning domain. The prototype of

use case and researches on toolkits have supported and verified the success of the

Chapter 8. Conclusions

206

approach. The fact that human interventions are still required indicates that it is only

semi-automatic process. However, given the fact the manual efforts’ capability to be

programmed as tools, this semi-automatic approach will improve the software

engineering process in e-learning domain greatly.

The research presented in this thesis is not the terminus. The following further work

can be suggested to be pursued based on the present work.

 Based on transformation method proposed in Chapter 6, the PIM to PSM

transformation can be programmed and realised as a tool or a toolkit to achieve

maximum automatic.

 Based on proposed e-learning modelling in Chapter 4, more specific functions

can be considered to enhance e-learning domain models.

 Proposed MDA-based evolution approach can be improved to support reverse

engineering. Mapping rules can be enhanced for reverse engineering. Because

models are the kernel elements in this method, it is capable to realise support on

reverse engineering without changes in major processes.

References

207

References

[1] ISO/IEC 14764:2006: Software Engineering - Software Life Cycle Processes -

Maintenance. 2006, pp.1-44.

[2] Unified Modelling Language from FOLDOC [Online]. Available:

http://foldoc.org/UML, 2005, pp.1-20.

[3] W3schools.com, Avaliable: http://www.w3schools.com/w3c/default.asp, 2011,

pp. 12-59.

[4] Model Driven Architecture, MDA Guide 1.0.1, OMG Standard, 2003, pp. 5-40.

[5] Y. Akpinar, V. Bal, and H. Simsek, "An E-Learning Content Development

System on The Web: BU-LCMS," in Information Technology Based Higher

Education and Training, 2004 (ITHET 2004). Proceedings of the FIfth

International Conference on, 2004, pp. 239-243.

[6] S. S. Alhir, A Guide to Successfully Applying the Uml. Secaucus, NJ, USA:

Springer-Verlag New York, Inc., 2002, pp. 24-63.

[7] AndroMDA.org. Generate Components Quickly with AndroMDA [Online],

2011, pp.1-9, Avaliable: http://www.andromda.org.

[8] ArgoUML-Overview [Online], 2008, pp. 1-3, http://argouml.tigris.org/.

[9] M. Asadi, M. Ravakhah, and R. Ramsin, "An MDA-Based System Development

Lifecycle," in Second Asia International Conference on Modeling and

Simulation, AICMS 08, 2008, pp. 836-842.

[10] S. Atkinson and L. Landy, "The ElectroAcoustic Resource Site (EARS):

Philosophy, Foundation and Aspirations," Organised Sound vol. 9, 2004, pp.

79-85.

[11] D. Batory, "Multilevel Models in Model-Driven Engineering, Product Lines, and

Metaprogramming," IBM Systems Journal, vol. 45, July 2006, pp. 527-539.

[12] E. Bersoff, V. Henderson, and S. Siegel, "Software Configuration Management,"

in Proceedings of The Software Quality Assurance Workshop on Functional and

Performance Issues, 1978, pp. 9-17.

http://foldoc.org/UML
http://www.w3schools.com/w3c/default.asp
http://www.andromda.org/
http://argouml.tigris.org/

References

208

[13] F. Chen, "Model Driven Software Modernisation," PhD Thesis, Software

Technology Research Laboratory, De Montfort University, Leicester, 2007, pp.

202-287.

[14] F. Chen, B. Qiao, H. Yang, and W. C. Chu, "A Formal Model Driven Approach

to Dependable Software Evolution," in 30th Annual International Computer

Software and Application Conference (COMPSAC'06), Chicago, 2006, pp.

205-212.

[15] J. Chen and Q. Lu, "A Complex Adaptive E-Learning Model Based on Semantic

Web Services," in Knowledge Acquisition and Modeling, 2008. KAM '08.

International Symposium on, 2008, pp. 555-559.

[16] C. Christian, "Pedagogical Pattern Selection Strategies," Neural Networks, vol.

7, 1994, pp. 175-181.

[17] D. Deridder, "A Concept-Oriented Approach to Support Software Maintenance

and Reuse activities," presented at the Workshop on Knowledge-Based

Object-Oriented Software Engineering at 16th European Conference on

Object-Oriented Programming (ECOOP 2002), Málaga,Spain, 2002, pp. 40-49.

[18] M. G. B. Dias, N. Anquetil, and e. al, "Organizing the Knowledge Used in

Software Maintenance," Journal of Universal Computer Science, vol. 9, 2003,

pp. 641-658.

[19] S. Downes. E-learning 2.0, 2011. Avaliable: http://www.downes.ca/post/31741.

[20] J. D. Edwards and M. A. Preston, "Forces in Screen-Secondary Linear

Reluctance Motors," IEEE Transactions on Magnetics, vol. 24, 1988, pp.

2913-2915.

[21] J. O. Entzinger, K. Morimura, and S. Suzuki, "Developing E-Learning Content

to Raise Global Awareness in a Seminar Style Course," in 2011 IEEE

International Professional Communication Conference (IPCC), 2011, pp. 1-8.

[22] M. Focus. Together-Visual Modeling for Software Architecture Design [Online],

Avaliable: http://www.borland.com/us/products/together/index.aspx. [Access:

09/01/2012]

[23] D. S. Frankel, Model Driven Architecture: Applying MDA to Enterprise

Computing, 1st ed. New York, NY, USA.: John Wiley & Sons, Inc., 2002, pp.

98-165.

http://www.downes.ca/post/31741
http://www.borland.com/us/products/together/index.aspx

References

209

[24] D. S. Frankel, Model Driven Architecture: Applying MDA to Enterprise

Computing, 3
rd

 ed. New York, USA: John Wiley & Sons, Inc., 2007, pp. 21-60.

[25] C. Gang, "Improving System Usability Model in E-Learning Based on

System-Reasonable Theory," in International Conference on E-Learning,

E-Business, Enterprise Information Systems, and E-Government, (EEEE '09),

2009, pp. 72-75.

[26] D. Gasevic, D. Djuric, and V. Devedzic, Model Driven Engineering and

Ontology Development: New York, USA: Springer Publishing, Inc., 2009, pp.

13-79.

[27] A. Gavras, M. Belaunde, L. F. Pires, and J. P. A. Almeida, "Towards an

MDA-Based Development Methodology," in Lecture Notes in Computer

Science: Software Architecture. vol. 3027, 2
nd

 ed. Berlin: Springer, 2004, pp.

230-240.

[28] K. C. Graber, "The Influence of Teacher Education Programs on the Beliefs of

Student Teachers: General Pedagogical Knowledge, Pedagogical Content

Knowledge, and Teacher Education Course Work.," Journal of Teaching in

Physical Education, vol. 14, Jan. 1995, pp. 157-178.

[29] P. Grew, F. Giudici, and E. Pagani, "Specification of a Functional Architecture

for E-Learning Supported by Wireless Technologies," in Fourth Annual IEEE

International Conference on Pervasive Computing and Communications

Workshops, 2006. (PerCom Workshops'06), 2006, pp. 215 -220.

[30] T. R. Gruber, "Toward Principles for the Design of Ontologies Used for

Knowledge Sharing," International Journal of Human-Computer Studies -

Special Issue: The Role of Formal Ontology in The Information Technology,

vol. 43, issue 5-6, Duluth, MN, USA: Academic Press, Inc., 1995, pp. 907-928.

[31] N. Guarino, "Understanding, Building and Using Ontologies," International

Journal of Human-Computer Studies, vol. 46, issue 2-3, Duluth, MN, USA:

Academic Press, Inc., 1997, pp. 293-310.

[32] B. Haslhofer. Meta Object Facility [Online]. 2008, pp. 12-54. Available:

http://metadaten-twr.org/2008/09/22/mof/#more-3

[33] J. Holt, UML for Systems Engineering: Watching the Wheels IET, 2
nd

 ed.

Philadephia, PA: Institution of Engineering and Technology, 2004, pp. 201-208.

http://metadaten-twr.org/2008/09/22/mof/#more-3

References

210

[34] IBM. IBM Software Development Library: Industry Standards. 2008, pp.

98-107.

[35] Draft Standard for Learning Technology — Learning Technology Systems

Architecture (LTSA) [Online], IEEE Standard, Available: http://ieeeltsc.org.

2007, pp. 30-59.

[36] D. Jaffee, "Asynchronous Learning: Technology and Pedagogical Strategy in a

Distance Learning Course," Teaching Sociology, vol. 25, Oct. 1997, pp.

262-277.

[37] K.H.Benett and V. T. Rajlich, "Software Maintenance and Evolution: a

Roadmap," presented at the The Future of Software Engineering, 2000, pp.

31-43.

[38] J. S. Kim and Y. G. Park, "Mapping Method of SCORM Content Aggregation

Model for E-Learning Content Design," in INC, IMS and IDC, 2009. NCM '09.

Fifth International Joint Conference on, 2009, pp. 2010-2015.

[39] B. A. Kitchenham, G. H. Travassos, A. v. Mayrhauser, F. Niessink, N. F.

Schneidewind, J. Singer, S. Takada, R. Vehvilainen, and H. Yang, "Towards an

Ontology of Software Maintenance," Journal of Software Maintenance, vol. 11,

1999, pp. 365-389.

[40] A. Kleppe, J. Warmer, and W. Bast, MDA Explained: the Model Driven

Architecture: Practice and Promise: Pearson Education, Inc., 2003, pp. 29-100.

[41] A. G. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven

Architecture: Practice and Promise. Boston, MA, USA: Addison-Wesley

Longman Publishing Co., Inc., 2003, pp. 52-59.

[42] P. Kumar, S. G. Samaddar, A. B. Samaddar, and A. K. Misra, "Extending IEEE

LTSA E-Learning Framework in Secured SOA Environment," in Education

Technology and Computer (ICETC), 2nd International Conference on 2010,

pp. V2-136-V2-140.

[43] L. Landy, "The ElectroAcoustic Resource Site (EARS)," Journal of Music,

Technology and Education, vol. 1, 2007, pp. 69-81.

[44] L. Landy, "The ElectroAcoustic Resource Site (EARS) Approaches Its Next

Phase: Going Global and Addressing the Young," in International Computer

Music Conference 2007 Proceedings, Copenhagen, 2007, pp. 141-144.

http://ieeeltsc.org/

References

211

[45] M. M. Lehman, "Laws of Software Evolution Revisited," in Proceedings of the

5
th

 European Workshop on Software Process Technology (EWSPT'96), London,

UK: Springer-Verlag, 1996, pp. 108-124.

[46] M. M. Lehman, "Programs, Life Cycles, and Laws of Software Evolution,"

Proceedings of the IEEE, vol. 68, issue 9, 1980, pp. 1060-1076.

[47] M. M. Lehman, D. E. Perry, and J. F. Ramil, "On Evidence Supporting the

FEAST Hypothesis and the Laws of Software Evolution," in Software Metrics

Symposium. Metrics 1998. Proceedings. Fifth International, 1998, pp. 84-88.

[48] M. M. Lehman and J. F. Ramil, "Software Evolution and Software Evolution

Processes," Annals of Software Engineering, vol. 14, 2002, pp. 275-309.

[49] M. M. Lehman and J. F. Ramil, "Software Evolution in the Age of

Component-Based Software Engineering," Software, IEE Proceedings, vol. 147,

2000, pp. 249-255.

[50] M. W. Lewis and G. E. Dehler, "Learning through Paradox: A Pedagogical

Strategy for Exploring Contradictions and Complexity," Journal of Management

Education, vol. 24, Dec. 2000, pp. 708-725.

[51] B. P. Lientz and B. E. Swanson, Software Maintenance Management: A Study of

the Maintenance of Computer Application Software in 487 Data Processing

Organizations. Boston, Ma, USA: Addison-Wesley Longman Publishing Co.,

Inc, 1980, pp. 12-32.

[52] M. M. Lehman and J. F. Ramil, "Towards a Theory of Software Evolution And

its Practical Impact," in Proceeding of Principles of Software Evolution,

International Symposium on, 2000, pp. 2-11.

[53] M. M. Lehman and L. A. Belady, Program Evolution: Processes of Software

Change. San Diego, CA, USA: Academic Press Professional, Inc, 1985, pp.

223-241.

[54] T. Mandel, The Elements of User Interface Design, 1st ed. New York, USA:

John Wiley & Sons, Inc., 1997, pp. 70-89.

[55] J. M. Matthews and S. Jahanian, "A Pedagogical Strategy for Gradual

Enhancement of Creative Performance of the Students," European Journal of

Engineering Education, vol. 24, 2012/01/09 1999, pp. 49-58.

References

212

[56] J. N. Mazon and J. Trujillo, "A Model Driven Modernization Approach for

Automatically Deriving Multidimensional Models in Data Warehouses," in

Proceedings of the 26th international conference on Conceptual modeling

(ER'07), Auckland, New Zealand, 2007, pp. 56-71.

[57] J. N. Mazon, J. Trujillo, and J. Lechtenborger, "A Set of QVT Relations to

Assure the Correctness of Data Warehouses by Using Multidimensional Normal

Forms," in Proceeding of The 25th International Conference on Conceptual

Modelling, Tucson, AZ, 2006, pp. 385-398.

[58] M. McCool, "Adapting E-Learning for Japanese Audiences Tutorial,"

Professional Communication, IEEE Transactions on, vol. 49, 2006, pp. 335-345.

[59] T. O. Meservy and K. D. Fenstermacher, "Transforming Software Development:

An MDA Road Map," IEEE Computer, vol. 38, 2005, pp. 52-58.

[60] MicroTool. Model-Driven Development (MDD) with ObjectiF [Online], 2011,

pp. 2-13. Avaliable: http://www.microtool.de/objectif/en/mdd.asp. [Access:

09/08/2011]

[61] MicroTool. ObjectiF -- the UML-Tool for Model-Driven Developemtn in C#,

C++ and Java, 2011, pp.1-5. http://www.microtool.de/objectif/en/index.asp.

[Access: 10/21/2011]

[62] J. Miller and J. Mukerji, Model Driven Architecture, MDA Guide, 1.0.1, OMG

Standard, 2003, pp. 33-97.

[63] S. J. Miller, K. Scott, A. Uhl, and D. Weise, MDA Distilled: Principles of

Model-Driven Architecture, 1
st
 ed. Boston, USA: Addison-Wesley Professional,

2004, pp. 12-105.

[64] ModelMakerTools. ModelMaker Tools: Delphi and C# .Net Refactoring & UML

Modelling [Onlin], 2011, pp.1-5. Avaliable: http://www.modelmakertools.com/.

[Access: 20/07/2011].

[65] S. Mohammad, "Effectiveness of E-Learning System," in Computer Engineering

and Technology, 2009 (ICCET '09) International Conference on, 2009, pp.

390-394.

[66] G. Morine-Dershimer, T. Kent, J. Gess-Newsome, and N. Lederman, "The

Complex Nature and Sources of Teachers’ Pedagogical Knowledge Examining

Pedagogical Content Knowledge." in Examining Pedagogical Content

Knowledge, vol. 6, section 2, Netherlands: Springer, 2002, pp. 21-50.

http://www.microtool.de/objectif/en/mdd.asp
http://www.microtool.de/objectif/en/index.asp
http://www.modelmakertools.com/

References

213

[67] A. Nagy, "The Impact of E-Learning," in E-Content: Technologies and

Perspectives for the European Market. , P. A. Bruck, A. Buchholz, Z. Karssen,

and A. Zerfass, Eds., Berlin: Springer-Verlag, 2005, pp. 79-96.

[68] ObjecteeringSoftware. Objecteering MDA Modeler [Online], 2008, pp.2-4.

Avaliable: http://www.objecteering.com/products_mda_modeler.php.

[69] OMG. Domain Specifications [Online], OMG Standard, 2009, pp. 60-74.

Avaliable:http://www.omg.org/technology/documents.htm.

[70] OMG. Executive Overview, http://www.omg.org/mda/executive_overview.htm.

2010, pp. 23-90. [Access: 20/12/2011]

[71] OMG. MDA FAQ, Avaliable: http://www.omg.org/mda/faq_mda.htm. 2010, pp.

10-43. [Access: 25/09/2011]

[72] OMG. MDA Specifications, Avaliable: http://www.omg.org/mda/specs.htm.

2007, pp. 101-129. [Access: 18/10/2011]

[73] OMG. MDA, 2003, pp. 10-146. Avaliable: http://www.omg.org/mda/.

[Access:20/09/2009]

[74] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation (QVT), v1.1

[Online], OMG Standard, Available: http://www.omg.org/spec/QVT/1.1/, 2004,

pp. 13-40. [Access:20/09/2009]

[75] OMG, "MOF 2.0 Core RFP," OMG Document ad/2001-11-052001, pp.1-2.

[76] OMG. MOF 2.0/XMI Mapping Specification v2.1, OMG Document

ad/2010-06-022005 , 2010, pp. 32-45.

[77] OMG. MOF Core Specification [Online], v2.0, OMG Standard, 2007, pp.

49-69. Available: http://www.omg.org/spec/MOF/2.0/PDF/.

[Access:20/09/2009]

[78] OMG. OMG's Executive Overview of MDA [Online], 2008, pp. 1-2. Available:

www.omg.org/mda/executive_overview.htm.[Access:16/09/2009]

[79] OMG. OMG Unified Modeling Language(OMG UML), Infrastructure, v2.4,

OMG Documentation, 2007, pp. 13-45.

[80] OMG. OMG Unified Modeling Language(OMG UML), Superstructure, v2.4.

OMG Documentation, 2007, pp. 10-79.

http://www.objecteering.com/products_mda_modeler.php
http://www.omg.org/mda/executive_overview.htm
http://www.omg.org/mda/faq_mda.htm
http://www.omg.org/mda/specs.htm
http://www.omg.org/mda/
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/MOF/2.0/PDF/
http://www.omg.org/mda/executive_overview.htm

References

214

[81] OMG, "U2P UML Infrastructure," OMG Document ad/03-03-01, 2003,

pp.10-15.

[82] OMG. XML Metadata Interchange (XMI), v2.0, OMG Document ad/07-10-01

2007, pp. 1-14.

[83] OMG and Linda. UML Profile Specification. OMG Document ad/10-06-05,

2010, pp. 1-3.

[84] OpenArchitectureWare. Official OpenArchitectureWare Homepage, 2009, pp.1.

Avaliable: http://www.openarchitectureware.org/. [Access:03/01/2011]

[85] php.net. PHP: What Can PHP Do? [Online], 2011, pp.1. [Access:06/10/2011]

[86] S. R. Pressman, Software Engineering: A Practitioner's Approach, 6th ed.

Boston: Mass: McGraw-Hill, 2005, pp. 71-85.

[87] H. Qian jin and W. Min, "LTSA-Based intelligent E-Learning System of the

personalized interactive mechanism," in Information Engineering and Computer

Science, 2009 (ICIECS 2009). International Conference on, 2009, pp. 1-3.

[88] L. A. Rahim and S. B. R. S. Mansoor, "Proposed Design Notation for Model

Transformation," in Software Engineering, 2008 (ASWEC 2008). 19th

Australian Conference on, 2008, pp. 589-598.

[89] J. Riddell. Umbrello UML Modeller, http://uml.sourceforge.net/. 2008, pp.1-3.

[90] F. Ruiz, A. V. Barceló, and e. al, "An Ontology for the Management of Software

Maintenance Projects," International Journal of Software Engineering and

Knowledge Engineering, vol. 14, 2004, pp. 323-349.

[91] SelectBusinessSolutions. Select Solution For MDA, 2010, pp. 1-2, Avaliable:

http://www.selectbs.com/analysis-and-design/select-solution-for-mda.

[Access:05/10/2011]

[92] L. S. Shulman, "Teacher Development: Roles of Domain Expertise and

Pedagogical Knowledge," Journal of Applied Developmental Psychology, vol.

21, 2000, pp. 129-135.

[93] Y. Singh and M. Sood, "Models and Transformations in MDA," in

Computational Intelligence, Communication Systems and Networks, 2009.

CICSYN '09. First International Conference on, 2009, pp. 253-258.

http://www.openarchitectureware.org/
http://uml.sourceforge.net/
http://www.selectbs.com/analysis-and-design/select-solution-for-mda

References

215

[94] F. Solms and D. Loubser, "Generating MDA's Platform Independent Model

Using URDAD," Knowledge-Based Systems, vol. 22, 2009, pp. 174-186.

[95] SparxSystems. Enterprise Architect Overview, 2010, pp. 1-2, Avaliable:

http://www.sparxsystems.com/products/ea/index.html. [Access:15/11/2011]

[96] D. Spinellis. UMLGraph: Automated Drawing of UML Diagrams, 2009, pp. 1-3,

Avaliable: http://www.umlgraph.org/. [Access:11/06/2010]

[97] C. Stark, K. J. Schmidt, L. Shafer, and M. Crawford, "Creating E-Learning

Programs: A Comparison of Two Programs," in Frontiers in Education, 2002.

FIE 2002. 32nd Annual, vol.1, 2002, pp. T4E-1-T4E-6.

[98] StarUML. StarUML - The Open Source UML/MDA Platform, 2009, pp.1-4.

Avaliable: http://staruml.sourceforge.net/en/. [Access:05/10/2011]

[99] P. Tamir, "Subject Matter and Related Pedagogical Knowledge in Teacher

Education," Teaching and Teacher Education, vol. 4, 1988, pp. 99-110.

[100] D. Tavangarian, M. Leypold, K. Nölting, and M. Röser, "Is E-Learning the

Solution for Individual Learning?," Journal of e-Learning, 2004, pp. 21-29.

[101] Y. Tian, F. Chen, H. Yang, and L. Landy, "An Ontology-Based Model Driven

Approach for a Music Learning System," in 21st International Conference on

Software Engineering and Knowledge Engineering (SEKE'09), Boston, USA,

2009, pp. 739-744.

[102] Y. Tian, H. Yang, and L. Landy, "MDA-based Development of Music-Learning

System," presented at the Proceedings of the 14th Chinese Automation &

Computing Society Conference in the UK, Brunel University, West London, UK,

2008.

[103] M. Tong, Q. Liu, and X. Liu, "A Service Context Model based on Ontology for

Content Adaptation in E-Learning," in Frontiers in Education Conference (FIE),

2010 IEEE, 2010, pp. S1D-1-S1D-5.

[104] M. Weisfeld, Object-Oriented Thought Process, The. 2
nd

 ed. Indianapolis, IN,

USA: Sams, 2003, pp. 113-150.

[105] S. Xu and H. Shen, "QoS-Oriented Content Delivery in E-Learning Systems," in

IT in Medicine & Education, 2009. ITIME '09. IEEE International Symposium

on, 2009, pp. 665-670.

http://www.sparxsystems.com/products/ea/index.html
http://www.umlgraph.org/
http://staruml.sourceforge.net/en/

References

216

[106] H. Yang and Y. Tian, "Software Engineering Creative Computing," presented at

the Conference on Computer Science and Software Engineering 2010 (CSSE

2010), Taiwan, 2010.

[107] H. Yang and M. Ward, Successful evolution of software systems, Norwood, MA,

USA: Artech House, Inc., 2003, pp. 59-149.

[108] L. Zhuhadar, O. Nasraoui, R. Wyatt, and E. Romero, "Multi-Model

Ontology-Based Hybrid Recommender System in E-Learning Domain," in Web

Intelligence and Intelligent Agent Technologies, (WI-IAT '09), IEEE/WIC/ACM

International Joint Conferences on, 2009, pp. 91-95.

[109] M. Zimmermann, "Adaption of Multimedia E-Learning Services to Mobile

Environments," in IEEE Global Engineering Education Conference (EDUCON)

, 2011, pp. 671-678.

Appendix A. Prototype of EARSII

217

Appendix A

Prototype of EARS II

This section presents php files of the manually generated code for EARSII system. It is

only a prototype, which does not cover full details of functions and user interfaces.

learnerLogin.php

<html>

<title>EARS2:Login</title>

<style type="text/css" >

form { width:500px;}

input { font-family:Arial; }

</style>

<body>

<div align="center"><img src="./files/images/LogoV1.jpg" alt="EARSII"

longdesc="http://www.dmuchina.com/ears2"></div>

<?php

echo “Username: <input type="text" name="username"/>
”;

echo “Password: <input type="password" name="password" />
”;

echo “<input type="submit" name="submit" value="Submit" align="right" />”;

echo “<input type="reset" name="cancel" value="Cancel" align="right" />”

?> <form action="checkNewLogin.php" method="post">

</body>

</html>

Appendix A. Prototype of EARSII

218

learnerLogout.php

<?php

$t="EARSII";

echo "You have been logged out. Thank you for using the". t ."system.:
";

?>

learnerInfo.php

<?php

echo “User Information:
”;

echo Info;

?>

understanding.php

<div id="content">

 <div id="understanding">

 <table width="100%"><tr align="left"><td>

 <?php

 $barW="99%";

 include ("../OldnavBar.php");

 ?>

 </td></tr></table>

 </div>

 <div id="centerFrame"><table cellspacing=0 cellpadding=5 border=2

style="border-collapse: collapse" bordercolor="#FF0000" width="578">

Appendix A. Prototype of EARSII

219

 <tr><td>

 <div id="mainCon">

 <?php

 include ($content);

 ?>

 </div>

 <table width="100%" border="0">

 <tr>

 <td align="center"><img name="timeline" src="../contents/pics/timeline.jpg"

width="590" height="30" alt=""></td>

 </tr>

 </table> </td></tr></table></div>

 </div>

listening.php

<div id="content">

 <div id="listening">

 <table width="100%"><tr align="left"><td>

 <?php

 $barW="99%";

 include ("../OldnavBar.php");

 ?>

 </td></tr></table>

 </div>

 <div id="centerFrame"><table cellspacing=0 cellpadding=5 border=2

style="border-collapse: collapse" bordercolor="#FF0000" width="578">

Appendix A. Prototype of EARSII

220

 <tr><td>

 <div id="mainCon">

 <?php

 include ($content);

 ?>

 </div>

 <table width="100%" border="0">

 <tr>

 <td align="center"><img name="timeline" src="../contents/pics/timeline.jpg"

width="590" height="30" alt=""></td>

 </tr>

 </table>

 </td></tr></table></div>

 </div>

Doing.php

<div id="content">

 <div id="doing">

 <table width="100%"><tr align="left"><td>

 <?php

 $barW="99%";

 include ("../OldnavBar.php");

 ?>

 </td></tr></table>

 </div>

 <div id="centerFrame"><table cellspacing=0 cellpadding=5 border=2

Appendix A. Prototype of EARSII

221

style="border-collapse: collapse" bordercolor="#FF0000" width="578">

 <tr><td>

 <div id="mainCon">

 <?php

 include ($content);

 ?>

 </div>

 <table width="100%" border="0">

 <tr>

 <td align="center"><img name="timeline" src="../contents/pics/timeline.jpg"

width="590" height="30" alt=""></td>

 </tr>

 </table>

 </td></tr></table></div>

 </div>

learnerNavBar.php

<div id="content">

 <div id="navBar">

 <table width="100%"><tr align="left"><td>

 <?php

 $barW="99%";

 include ("../OldnavBar.php");

 ?>

 </td></tr></table>

 </div>

Appendix A. Prototype of EARSII

222

 <div id="centerFrame"><table cellspacing=0 cellpadding=5 border=2

style="border-collapse: collapse" bordercolor="#0000FF" width="600">

 <tr><td>

 <div id="mainCon">

 <?php

 include ($content);

 ?>

 </div>

 <table width="100%" border="0">

 <tr>

 <td align="center"><img name="timeline" src="../contents/pics/timeline.jpg"

width="590" height="30" alt=""></td>

 </tr>

 </table>

 </td></tr></table></div>

 </div>

loginRsp.php

<?php

$savePath="./admin/temp/";

session_save_path($savePath);

session_start();

$_SESSION["admin"] = 0;

$error_txt="";

?>

<?php

Appendix A. Prototype of EARSII

223

$username=$_POST["username"];

$password=$_POST["password"];

require ("./conn/dbconn.php");

$db=dbconn();

if (!$db)

{

 die('Could not connect: ' . mysql_error());

}else {

 //echo "Connected!
";

}

$db_ears2=dbname();

mysql_select_db($db_ears2, $db);

$sql = "SELECT adminUsername, adminPassword, adminLevel FROM admin";

//$sql = "SELECT * FROM admin";

$result = mysql_query($sql);

$level="admin";

//$userInfo = @mysql_fetch_array($result);

 while ($userInfo = mysql_fetch_array($result)) {

 if ($userInfo["adminUsername"] == $username && $userInfo["adminPassword"] ==

$password && $userInfo["adminLevel"] == $level) {

 $_SESSION["admin"] = 1;

 $_SESSION["username"]=$username;

 $_SESSION["password"]=$password;

 echo "Session admin = ".$_SESSION["admin"] . "
";

 echo("<meta http-equiv=refresh content='0; url=edit.php'>");

 $flag=1;

Appendix A. Prototype of EARSII

224

 } else {

 //die("Username or password not correct!");

 //echo "Username or Password is not correct!111";

 //$error_txt="Username or Password is not correct!";

 }

 }

 if(!($flag==1)){

 echo("<meta http-equiv=refresh content='0; url=adminLogin.php'>");

 }

mysql_close($db);

function error_txt()

{

 return $error_txt;

}

?>

logoutRsp.php

<?php

function updateRecord(){

 //to update user record database information

 echo("<meta http-equiv=refresh content='0; url=./Model/learnerRecDBConn.php'>");

}

function showLogoutView(){

echo("<meta http-equiv=refresh content='0; url=./View/learnerLogout.php'>");

}

?>

Appendix A. Prototype of EARSII

225

userInfo.php

<?php

$savePath="./temp/";

session_save_path($savePath);

session_start();

$_SESSION["admin"] = 0;

$error_txt="";

?>

<?php

$flag=0;

$username=$_POST["username"];

$password=$_POST["password"];

require ("./conn/dbconn.php");

$db=dbconn();

if (!$db)

{

 die('Could not connect: ' . mysql_error());

}else {

 //echo "Connected!
";

}

$db_ears2=dbname();

mysql_select_db($db_ears2, $db);

$sql = "SELECT adminUsername, adminPassword FROM admin";

$result = mysql_query($sql);

//$userInfo = @mysql_fetch_array($result);

Appendix A. Prototype of EARSII

226

 while ($userInfo = mysql_fetch_array($result)) {

 if ($userInfo['adminUsername'] == $username && $userInfo['adminPassword'] ==

$password) {

 $flag=1;

 $_SESSION["admin"] = 1;

 $_SESSION["username"]=$username;

 $_SESSION["password"]=$password

 } else {

 }

 }

 if($_SESSION["admin"]==1){

 echo "Session admin = ".$_SESSION["admin"] . "
";

 echo("<meta http-equiv=refresh content='0; url=page.php'>");

 }else{

 echo("<meta http-equiv=refresh content='0; url=login.php'>");

 }

mysql_close($db);

function error_txt()

{return $error_txt;

}

?>

contentCtr.php

<?php

$edTitle=$_POST['edTitle'];

$edCont=$_POST['edCont'];

Appendix A. Prototype of EARSII

227

$parentNode=$_POST['parentNode'];

$flag=0;

require ("./conn/dbconn.php");

$db=dbconn();

if (!$db)

{

 die('Could not connect: ' . mysql_error());

}else {

 //echo "Connected!
";

}

$db_ears2=dbname();

mysql_select_db($db_ears2, $db);

$sql="SELECT * FROM contents WHERE Cont_Title='$edTitle'";

$result = mysql_query($sql);

$userInfo = @mysql_fetch_array($result);

$sql2="SELECT * FROM contents WHERE Cont_Title='$parentNode'";

$result2 = mysql_query($sql2);

$subOfNo=$result2['Cont_Id'];

 if (!empty($userInfo)) {

 $sql = "UPDATE contents SET Cont_Text = '$edCont', subOf=$subOfNo WHERE

Cont_Title='$edTitle';";

 mysql_query($sql);

 $msg="Page".'"'.$edTitle.'"'." is successfully updated.";

 }else{

 $sql = "INSERT INTO contents (Cont_Title, Cont_Text, Version, subOf) VALUES

('$edTitle','$edCont', '1', '$subOfNo');";

Appendix A. Prototype of EARSII

228

 mysql_query($sql);

 $msg="Page".'"'.$edTitle.'"'." is added as a new page.under folder".$parenNode;

 //mysql_query("INSERT INTO contents (Cont_Title, Cont_Txt) VALUES

('$edTitle','$edCont');";);

 }

 echo("<meta http-equiv=refresh content='0; url=edit.php?t=HOME&m=".$msg."'>");

if (isset($_POST['edCont']))

 $postArray = &$_POST ; // 4.1.0 or later, use $_POST

else

 $postArray = &$HTTP_POST_VARS ; // prior to 4.1.0, use HTTP_POST_VARS

foreach ($postArray as $sForm => $value)

{

 if (get_magic_quotes_gpc())

 $postedValue = htmlspecialchars(stripslashes($value)) ;

 else

 $postedValue = htmlspecialchars($value) ;

}

?>

navCtr.php

<style type="text/css">

/* common styling */

.menu {font-family: arial; width:630px; position:relative; margin:0; font-size:11px; padding:0;}

.menu ul li a {display:block; text-decoration:none; color:#003399;width:220px; height:20px;

text-align:center; border:1px solid #003399; background:#fff; line-height:20px; font-size:12px;

overflow:hidden;}

Appendix A. Prototype of EARSII

229

.menu ul li a:visited {display:block; text-decoration:none; color:#003399; width:220px;

height:20px; text-align:center; border:1px solid #003399; background:#fff; line-height:20px;

font-size:12px; overflow:hidden;}

.menu ul {padding:0; margin:0;list-style-type: none; }

.menu ul li {float:left; margin-right:1px; position:relative;}

.menu ul li ul {display: none;}

/* specific to non IE browsers */

.menu ul li:hover a.red {color:#fff; background:#ff0000;}

.menu ul li:hover a.blue {color:#fff; background:#0000ff;}

.menu ul li:hover a.green {color:#003399; background:#00ff00;}

.menu ul li:hover ul {display:block; position:absolute; top:21px; left:0; width:105px;}

.menu ul li:hover ul li a.hide {background:#ff0000; color:#003399;}

.menu ul li:hover ul li:hover a.hide {background:#ff0000; color:#000;}

.menu ul li:hover ul li ul {display: none;}

.menu ul li:hover ul.red li a{display:block; background:#ff0000; color:#fff;}

.menu ul li:hover ul.blue li a {display:block; background:#0000ff; color:#fff;}

.menu ul li:hover ul.green li a {display:block; background:#00ff00; color:#fff;}

.menu ul li:hover ul li a:hover {background:#ff00000; color:#003399;}

.menu ul li:hover ul li:hover ul {display:block; position:absolute; left:105px; top:0;}

.menu ul li:hover ul li:hover ul.left {left:-105px;}

/*Red Menu*/

/*

.menuRed {font-family: arial; width:220px; position:relative; margin:0; font-size:11px;

padding:0;}

.menuRed ul li a {display:block; text-decoration:none; color:#fff;width:220px; height:22px;

text-align:center; border:1px solid #fff; background:#cc0000; line-height:20px; font-size:14px;

Appendix A. Prototype of EARSII

230

overflow:hidden; font-weight:bold; font:Arial;}

.menuRed ul li a:visited {display:block; text-decoration:none; color:#fff; width:220px;

height:20px; text-align:center; border:1px solid #fff; background:#cc0000; line-height:20px;

font-size:14px; overflow:hidden; font-weight:bold;}

.menuRed ul {padding:0; margin:0;list-style-type: none; }

.menuRed ul li {float:left; margin-right:1px; position:relative;}

.menuRed ul li ul {display: none;}

/* specific to non IE browsers *//*

.menuRed ul li:hover a {color:#fff; background:#cc0000;}

.menuRed ul li:hover ul {display:block; position:absolute; top:21px; left:0; width:105px;}

.menuRed ul li:hover ul li a.hide {background:#cc0000; color:#003399; font-size:12px;}

.menuRed ul li:hover ul li:hover a.hide {background:#cc0000; color:#000; font-size:12px;}

.menuRed ul li:hover ul li ul {display: none;}

.menuRed ul li:hover ul li a {display:block; background:#cc0000; color:#fff; font-size:12px;}

.menuRed ul li:hover ul li a:hover {background:#cc00000; color:#003399; font-size:12px;}

.menuRed ul li:hover ul li:hover ul {display:block; position:absolute; left:105px; top:0;}

.menuRed ul li:hover ul li:hover ul.left {left:-105px;}*/

.menuRed {font-family: arial; width:220px; position:relative; margin:0; font-size:11px;

padding:0;}

.menuRed ul li a {display:block; text-decoration:none; color:#fff;width:220px; height:22px;

text-align:center; border:1px solid #fff; background:#cc0000; line-height:20px; font-size:14px;

overflow:hidden; font-weight:bold; font:Arial;}

.menuRed ul li a:visited {display:block; text-decoration:none; color:#fff; width:220px;

height:20px; text-align:center; border:1px solid #fff; background:#cc0000; line-height:20px;

font-size:14px; overflow:hidden; font-weight:bold;}

Appendix A. Prototype of EARSII

231

.menuRed ul {padding:0; margin:0;list-style-type: none; }

.menuRed ul li {float:left; margin-right:1px; position:relative;}

.menuRed ul li ul {display: none;}

/* specific to non IE browsers */

.menuRed ul li:hover a {color:#fff; background:#cc0000;}

.menuRed ul li:hover ul {display:block; position:absolute; top:21px; left:0; width:105px;}

.menuRed ul li:hover ul li a.hide {background:#cc0000; color:#003399; font-size:12px;}

.menuRed ul li:hover ul li:hover a.hide {background:#cc0000; color:#000; font-size:12px;}

.menuRed ul li:hover ul li ul {display: none;}

.menuRed ul li:hover ul li a {display:block; background:#cc0000; color:#fff; font-size:12px;}

.menuRed ul li:hover ul li a:hover {background:#999999; font-style:italic;/*color:#003399;*/

font-size:12px;}

.menuRed ul li:hover ul li:hover ul {display:block; position:absolute; left:105px; top:0;}

.menuRed ul li:hover ul li:hover ul.left {left:-105px;}

/* Green Menu */

.menuGreen {font-family: arial; width:220px; position:relative; margin:0; font-size:11px;

padding:0;}

.menuGreen ul li a {display:block; text-decoration:none; color:#fff;width:220px; height:22px;

text-align:center; border:1px solid #fff; background:#009933; line-height:20px; font-size:14px;

overflow:hidden;font-weight:bold;}

.menuGreen ul li a:visited {display:block; text-decoration:none; color:#fff; width:220px;

height:20px; text-align:center; border:1px solid #fff; background:#009933; line-height:20px;

font-size:14px; overflow:hidden;font-weight:bold;}

.menuGreen ul {padding:0; margin:0;list-style-type: none; }

.menuGreen ul li {float:left; margin-right:1px; position:relative;}

Appendix A. Prototype of EARSII

232

.menuGreen ul li ul {display: none;}

/* specific to non IE browsers */

.menuGreen ul li:hover a {color:#fff; background:#009933;}

.menuGreen ul li:hover ul {display:block; position:absolute; top:21px; left:0; width:105px;}

.menuGreen ul li:hover ul li a.hide {background:#009933; color:#003399; font-size:12px;}

.menuGreen ul li:hover ul li:hover a.hide {background:#009933; color:#000; font-size:12px;}

.menuGreen ul li:hover ul li ul {display: none;}

.menuGreen ul li:hover ul li a {display:block; background:#009933; color:#fff; font-size:12px;}

.menuGreen ul li:hover ul li a:hover {background:#999999; font-style:italic; /*color:#003399;*/

font-size:12px;}

.menuGreen ul li:hover ul li:hover ul {display:block; position:absolute; left:105px; top:0;}

.menuGreen ul li:hover ul li:hover ul.left {left:-105px;}

/* Blue Menu */

.menuBlue {font-family: arial; width:220px; position:relative; margin:0; font-size:11px;

padding:0;font-weight:bold;}

.menuBlue ul li a {display:block; text-decoration:none; color:#fff;width:220px; height:22px;

text-align:center; border:1px solid #fff; background:#003399; line-height:20px; font-size:14px;

overflow:hidden;font-weight:bold;}

.menuBlue ul li a:visited {display:block; text-decoration:none; color:#fff; width:220px;

height:20px; text-align:center; border:1px solid #fff; background:#003399; line-height:20px;

font-size:14px; overflow:hidden;}

.menuBlue ul {padding:0; margin:0;list-style-type: none; }

.menuBlue ul li {float:left; margin-right:1px; position:relative;}

.menuBlue ul li ul {display: none;}

/* specific to non IE browsers */

Appendix A. Prototype of EARSII

233

.menuBlue ul li:hover a {color:#fff; background:#003399;} /*when mouse move on

MUSIC/TECH/THEORY*/

.menuBlue ul li:hover ul {display:block; position:absolute; top:21px; left:0; width:105px;}

.menuBlue ul li:hover ul li a.hide {background:#003399; color:#fff; font-size:12px;}

.menuBlue ul li:hover ul li:hover a.hide {background:#003399; color:#fff; font-size:12px;}

.menuBlue ul li:hover ul li ul {display: none; font-size:12px;}

.menuBlue ul li:hover ul li a {display:block; background:#003399; color:#fff; font-size:12px;}

.menuBlue ul li:hover ul li a:hover {background:#999999; font-style:italic;

/*color:#000;*/font-size:12px;}

.menuBlue ul li:hover ul li:hover ul {display:block; position:absolute; left:105px; top:0;}

.menuBlue ul li:hover ul li:hover ul.left {left:-105px;}

.STYLE3 {color: #FFFFFF}

#tableNav { border-collapse:collapse; border:1px; border-color:#003399;}

</style>

<!--[if lte IE 6]>

<style type="text/css">

.menu ul li a.hide, .menu ul li a:visited.hide {display:none;}

.menu ul li a:hover ul li a.hide {display:none;}

.menu ul li a:hover {color:#fff; background:#36f;}

.menu ul li a:hover ul {display:block; position:absolute; top:21px; left:0; width:105px;}

.menu ul li a:hover ul li a.sub {background:#6a3; color:#fff;}

.menu ul li a:hover ul li a {display:block; background:#ddd; color:#000;}

.menu ul li a:hover ul li a ul {visibility:hidden;}

.menu ul li a:hover ul li a:hover {background:#6fc; color:#000;}

.menu ul li a:hover ul li a:hover ul {visibility:visible; position:absolute; left:105px; top:0;

Appendix A. Prototype of EARSII

234

color:#000;}

.menu ul li a:hover ul li a:hover ul.left {left:-105px;}

</style>

<![endif]-->

<table id="tableNav">

<tr>

<td>

<div class="menuRed">

 <?php $t="Music"; echo"".$t."";?>

 <?php

 $t="What is electroacoustic music?";

 echo"".$t."";

 ?>

 <?php

 $t="Real-world sound";

 echo"".$t."";

 ?>

 <?php

 $t="Generated sounds";

 echo"".$t."";

 ?>

Appendix A. Prototype of EARSII

235

 <?php

 $t="New types of sounds";

 echo"".$t."";

 ?>

 <?php

 $t="Genres";

 echo"".$t."";

 ?>

 <?php

 $t="Electroacoustic music and pop music";

 echo"".$t."";

 ?>

 <?php

 $t="Compose electroacoustic music";

 $t2="Composition Techniques";

 echo"".$t."";

 ?>

 <?php

 $t="Musical material";

 echo"".$t."";

 ?>

Appendix A. Prototype of EARSII

236

</div>

</td>

<td>

<div class="menuBlue">

 <?php $t="Technology"; echo"<a class='hide'

href='page.php?t=".$t."'>".$t."";?>

 <?php

 $t="Studio";

 echo"".$t."";

 ?>

 <?php

 $t="New Instruments";

 echo"".$t."";

 ?>

 <?php

 $t="Sound Manipulation";

 echo"".$t."";

 ?>

Appendix A. Prototype of EARSII

237

</div>

</td>

<td>

<div class="menuGreen">

 <?php $t="Theory"; echo"".$t."";?>

 <?php

 $t="Listening";

 echo"".$t."";

 ?>

 <?php

 $t="Performance";

 echo"".$t."";

 ?>

 <?php

 $t="Notation";

 echo"".$t."";

 ?>

 <?php

Appendix A. Prototype of EARSII

238

 $t="Dictionary";

 echo"".$t."";

 ?>

</div>

</td>

</tr>

</table>

<p>

 <!--

<div class="menu">

 Music

 <ul class="red">

 What is M?

 Music

 <ul class="blue">

 What is M?

Appendix A. Prototype of EARSII

239

</div>

-->

elearningDBConn.php

<?php

function dbconn(){

 $db=mysql_connect("localhost","root","");

 //$db=mysql_connect("mysql04.iomart.com","tiannz231","dmuchina100");

 if (!$db)

 {

 die('Could not connect: ' . mysql_error());

 }else {

 return $db;

 }

}

function dbname(){

 return "ears2v1";

 //return "tiannz231";

}

function dbdisconnect(){

 mysql_close($db);

}

?>

learnerRecDBConn.php

Appendix A. Prototype of EARSII

240

<?php

$db_ears2="learnerRec";

mysql_select_db($db_ears2, $db);

//$sql = "SELECT adminUsername, adminPassword FROM admin";

$sql = "SELECT * FROM admin";

$result = mysql_query($sql);

?>

learningResDBConn.php

<?php

$db_ears2="learningRes";

mysql_select_db($db_ears2, $db);

$sql = "SELECT * FROM admin";

$result = mysql_query($sql);

?>

Appendix B. List of Publications by Candidate

241

Appendix B

List of Publications by Candidate

[1] Y. Tian, H. Yang and L. Landy, "MDA-Based Development of Music-Learning

System," presented at the Proceedings of the 14
th

 Chinese Automation & Computing

Society Conference in the UK, Brunel University, West London, UK, 2008.

[2] Y. Tian, F. Chen, H. Yang and L. Landy, "An Ontology-Based Model Driven

Approach for a Music Learning System," in 21
st
 International Conference on Software

Engineering and Knowledge Engineering (SEKE'09), Boston, USA, 2009, pp. 739-744.

[3] H. Yang and Y. Tian, "Software Engineering Creative Computing," presented at the

Conference on Computer Science and Software Engineering 2010 (CSSE’10), Taiwan,

2010.

[4] J. Kang, J. Li, J. Huang, Y. Tian and H. Yang, "Automating Business Intelligence

Recovery from a Web-Based System," in 21
st
 International Conference on Software

Engineering and Knowledge Engineering (SEKE'09), Boston, USA, 2009, pp. 262-267.

[5] T. K. Chen, H. P. Fang, Y. Tian, H. L. Fang, Y. J. Li, S. H. Tseng, and S. E. Miao,

“Design and Evaluation of Social Interfaces for Cultural Exhibitions of Chinese Shadow

Puppetry,” in IEEE 35
th

 Annual Computer Software and Applications Conference

(COMPSAC’11), Munich, Germany, 2011, pp. 346-347.

