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USING A DYNAMIC DOMAIN-SPECIFIC MODELING LANGUAGE FOR THE

MODEL-DRIVEN DEVELOPMENT OF CROSS-PLATFORM MOBILE

APPLICATIONS

Abstract

There has been a gradual but steady convergence of dynamic programming languages

with modeling languages. One area that can benefit from this convergence is model-

driven development (MDD) especially in the domain of mobile application develop-

ment. By using a dynamic language to construct a domain-specific modeling language

(DSML), it is possible to create models that are executable, exhibit flexible type check-

ing, and provide a smaller cognitive gap between business users, modelers and develop-

ers than more traditional model-driven approaches.

Dynamic languages have found strong adoption by practitioners of Agile development

processes. These processes often rely on developers to rapidly produce working code

that meets business needs and to do so in an iterative and incremental way. Such

methodologies tend to eschew “throwaway” artifacts and models as being wasteful ex-

cept as a communication vehicle to produce executable code. These approaches are

not readily supported with traditional heavyweight approaches to model-driven devel-

opment such as the Object Management Group’s Model-Driven Architecture approach.

This research asks whether it is possible for a domain-specific modeling language writ-

ten in a dynamic programming language to define a cross-platform model that can pro-

duce native code and do so in a way that developer productivity and code quality are at

least as effective as hand-written code produced using native tools.

Using a prototype modeling tool, AXIOM (Agile eXecutable and Incremental Object-

oriented Modeling), we examine this question through small- and mid-scale experi-

ments and find that the AXIOM approach improved developer productivity by almost

400%, albeit only after some up-front investment. We also find that the generated code

can be of equal if not better quality than the equivalent hand-written code. Finally, we

find that there are significant challenges in the synthesis of a DSML that can be used

to model applications across platforms as diverse as today’s mobile operating systems,

which point to intriguing avenues of subsequent research.
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Chapter 1

Introduction

As of July of 2015 there were, by some estimates, over 1.6 million apps in the Google

Play Store [1, 2] with another 1.4 million apps available in Apple’s App Store [2, 3].

Mobile development comes with its own set of challenges including [4]:

• Likely interaction between apps running on the same device.

• Availability and interaction with sensors such as touch screens, accelerometers,

and GPS.

• Rapid evolution of features and capabilities between different versions of the op-

erating systems.

• Security stemming from the fact that many mobile devices are open in that mali-

cious software can be installed on them just as it can be installed on more tradi-

tional computing devices.

• Testing has all of the same challenges as with more traditional applications with

the added possible complexities introduced by its interaction with cellular net-

works.

This factors, combined with the industry’s desire to quickly release new mobile software

across many different mobile devices, has spurred research into mobile development

practices.

1
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One common way in which development teams have attempted to address the challenges

of mobile development is through agile or ad-hoc development methodologies. How-

ever, with the explosion of mobile platforms and operating systems, such development

seems to demand that greater formalism be introduced into the core agile processes [5].

Agile software development promises significant improvements in the productivity of

software development projects of small to medium sizes, making them ideal for the

small-scale apps that dominate the mobile platform market. As we will see in Chap-

ter 2.4 however, there are a number of commonly acknowledged limitations of agile

development processes and methods.

A second approach, model-driven development (MDD), is a software development ap-

proach for building large-scale, high-quality software systems. By focusing on models

rather than code, MDD encourages platform independence and improves software de-

veloper productivity in a very different way from agile development.

Despite its potential, MDD has not been widely adopted by the software industry [6].

Mussbacher et. al. [7] identify several key problems with modern MDE practices:

• A vast array of modeling tools and languages make it difficult for organizations

commit to MDE. Furthermore, there is a steep learning curve for the tools that do

support MDE.

• Inconsistencies often arise between the model and the code generated from that

model, thereby diminishing MDE’s value.

• Code is still considered the most critical artifact of any software development

effort. Models are used only to facilitate the understanding required to produce

the necessary code.

• Evidence of success or failure of MDE projects focus on empirical results with-

out identifying the underlying causes of the result. We are left with essentially

anecdotal evidence.

It would be beneficial if the strengths of agile development and model-driven develop-

ment could be combined and their shortcomings mitigated. While it may appear that
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agile development and model-driven development are incompatible and opposite in na-

ture, the proposed research will investigate if they can in fact be complementary to each

other. We propose a novel and synergetic approach, called AXIOM (Agile eXecutable

and Incremental Object-oriented Modeling), that attempts to bridge the gap between

these two promising approaches.

AXIOM seeks to retain the key characteristics and benefits of both agile and model-

driven development, while delivering improvements to software quality and developer

productivity that would be difficult to achieve by either approach alone. AXIOM does

this by providing a new modeling notation based on the Groovy programming language

to facilitate the combining of models with code, thereby eliminating one of the objec-

tions to the use of models within an agile development effort. AXIOM’s goal is to

enable what Kent [8] describes as Model Driven Engineering (MDE), which is the prac-

tice of model-driven architecture advised by an appropriate methodology, in this case

agile, to determine when and how the various software artifacts are produced.

To successfully bridge the gap between practitioners of agile development and MDD,

AXIOM must satisfy several diverse needs. To meet the needs of agile developers, AX-

IOM features a modeling notation based on the dynamic language, Groovy. The use

of a dynamic language as a modeling notation ensures that developers can be immedi-

ately productive without requiring the long start-up times required by more traditional

modeling notations such as UML. However, rather than simply expecting developers to

begin producing Groovy code that directly solves the problem at hand, the intent is to

channel the development of that Groovy code into the production of models that will

then be used to create the final, executable code.

AXIOM models are consistent with a subset of UML, which is the standard modeling

notation for OMG’s Model Driven Architecture (MDA) approach. In particular, AX-

IOM’s notation is consistent with UML state chart diagrams. We provide a domain

specific modeling language (DSML) for AXIOM’s models in the form of a finite state

machine. This DSML provides consistency across the various models that UML by it-

self lacks. AXIOM’s notation is intended to enhance developer productivity be allowing
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for the design of the models using a dynamic language while still retaining the bene-

fits of visual modeling provided by UML. The notation is described in more detail in

Chapter 6.

Once the AXIOM models have been defined, they are transformed into executable appli-

cations. The transformation approach is “pluggable” in that the same AXIOM models

can be transformed into code that is intended to execute in different runtime environ-

ments. This allows users of AXIOM to realize improved productivity and cost savings

for those applications that are intended to execute on multiple platforms. Because the

models are written in a Groovy-based language, they are immediately executable. Be-

cause the emphasis is on modeling rather than on code, there is ultimately less code to

write.

While AXIOM is not the first attempt to bridge MDD and agile approaches, we believe

that it has the potential to succeed. Approaches such as Agile Model-Driven Develop-

ment and Continuous Model-Driven Engineering either abandon the main precepts of

MDD or use non-standard models. Other approaches such as xUML are not intended

for code generation. Approaches that rely more heavily on formal models, such as Al-

loy, USE or Z, are not able to adequately support agile methodologies even though they

might support model executability.

The primary focus of the proposed research is to investigate whether it is feasible to

integrate agile and model-driven techniques in a coherent and complementary way using

the AXIOM approach in the domain of mobile applications. The main objectives of the

proposed research are to:

• Develop prototypes of tools to demonstrate the feasibility of the proposed solu-

tions.

• Design and conduct case studies and comparative experiments to assess the effec-

tiveness of the proposed solutions with respect to developer productivity and the

software quality.
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The research described in this thesis attempts to address one basic question: Can AX-

IOM be at least as effective as an approach using native tools and handwritten code

when evaluated on:

• Developer productivity.

• Source code quality.

Work on AXIOM has been published at ICSOFT [9, 10], ENASE [11], and CCIS [12,

13]. Our research focused on developing the modeling language and prototype tools

as well as on conducting experiments to demonstrate the feasibility of the AXIOM

approach in the cross-platform development of mobile applications for the Android and

iPhone platforms. The intent was to provide a sufficient cross-section of functionality

in terms of the modeling notation and transformation tools to properly evaluate the

potential of the AXIOM approach to facilitate agile model-driven engineering.

We designed and conducted both proofs-of-concept and comparative experiments to

quantitatively and qualitatively assess the effectiveness of the proposed approach as

compared to other software development techniques and practices. During the proofs-

of-concept we evaluated AXIOM for fitness-of-use as well as fitness-of-purpose. Subse-

quent testing involved mid-scale comparative evaluations involving individual develop-

ers that allowed us to compare AXIOM’s effectiveness against other common software

development approaches in terms of code quality and developer productivity using in-

dustry standard metrics. The evaluations are described in chapter 7 and the results in

chapter 8.





Chapter 2

Background

2.1 Model-Driven Engineering

Model-driven engineering (MDE), as defined by Kent [8], attempts to unify the artifacts

produced by MDD with processes that define how those artifacts are to be produced.

Kent subdivides these processes into macro processes, which determine the sequence

in which the MDD artifacts are produced, and micro processes, which govern how the

artifacts themselves are actually constructed. MDE rightly suggests that the process by

which software is developed can have a profound impact on the artifacts that are actually

produced. This is particularly evident when we consider agile software development

processes.

MDE provides particular benefits when the target platforms for which the software is

being written exhibit a high degree of variability. Mobile applications are an obvious

domain since there are a variety of mobile platforms and there is no agreed upon stan-

dard that would serve to unify them in any meaningful way. To overcome this, some

organizations started building their own model-driven tools to enable them to build ap-

plications that could function as both native mobile applications as well as mobile web

applications [14]. These tools were grounded in existing open-source frameworks and

took many of the same approach for platform independences that are still in use today

including virtual machines that emphasize the use of JavaScript and HTML5.

7
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2.1.1 Properties of Models

Because model-driven development, the basis for model-driven engineering, relies on

models as the central representation of software, it is useful to discuss what models are

and the roles that they play. One definition of a model, given by Mellor [15], is:

“a coherent set of formal elements describing a system built for a purpose

that is amenable to a particular form of analysis”

while Seidowitz [16] defines a model as:

“a set of statements about some system under study.”

For purposes of this research we define a model to be “a consistent and complete set

of formal elements, visual or textual, describing a system that is amenable to analysis.”

Models that satisfy this definition should be:

1. Consistent. A consistent model is one where there are no two statements that

can be made about the model that have different truth values when applied to the

thing being modeled [16].

2. Complete. The model must totally define all important aspects of the final soft-

ware. This includes the functional and extra-functional requirements as well as

any constraints imposed by the target environment. When a model is not com-

plete, it means that there is some aspect of the finished software that has not been

accounted for.

3. Formal. Formal, or mathematical, statements are preferred to natural language

statements due to their precise nature and well-defined semantics. Formal nota-

tions, such as Z, use mathematics to support advanced model checking and the-

orem proving as a means of model verification. The use of formal methods is a

matter of some contention within the software development community, but many

safety-critical applications have derived benefits from a strong degree of formal-

ism despite the added burden on the modeler. UML provides a limited degree of

formalism in the form of OCL, a key element of MDA.



Chapter 2. Background 9

4. Visual. Models should be visual rather than textual where possible. While tex-

tual representations can provide additional details about the content of the model,

human languages are notoriously imprecise and often lead to ambiguities within

the model. Notations such as UML depend on a visual representation to make the

modeling process easier, more accurate, less error prone, and more understand-

able. Methodologies that depend on rapid prototyping do so for the same rea-

sons. Visual languages are common and include UML and other typical diagrams

in software engineering such as Entity-Relationship Diagrams (ERD), Data-Flow

Diagrams (DFD) or flowcharts.

2.1.2 Model Driven Architecture

Model-Driven Architecture (MDA) [17–20] is a software development approach in

which software systems are developed by first defining platform independent models

(PIMs), which capture the compositions and the core functionalities of a system in a

way that is independent of implementation languages or platforms. The PIMs are then

transformed into implementations of the systems for different target platforms, known

as platform specific models (PSMs). Model-driven architecture thus shifts the develop-

ment focus away from writing code [18, 21, 22] and toward the development of visual

models such as those in UML and its profiles1 [23].

MDA relies on several OMG standards including UML [24], OCL [25] and MOF [26].

UML is the primary modeling notation and is augmented by OCL, which allows for

additional formalism to be provided on the models. The MOF is the meta-metamodel

for UML and provides the framework by which transformations from UML PIMs into

PSMs takes place. By defining a model for metamodels, a meta-metamodel, MOF pro-

vides a mechanism to unify different metamodels using a common set of concepts by

which metamodels can be related to one another. Thus the metamodels for UML and

Java can be linked together because they each provide definitions for the elements of

MOF. This approach is one way in which MDA provides for the transformation from

UML into object-oriented languages such as Java.

1UML can be used informally as a communication tool or as a formal modeling notation. In the context
of this proposal we refer to UML as a formal modeling notation only.
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FIGURE 2.1: MDA conceptual approach. Author’s image.

The basic approach to MDD within the OMG standards is as follows. A model is defined

according to the rules of its metamodel. The metamodel not only provides the rules for

the model, but also describes a platform. Platforms represent runtime environments in

which the final application will be executed. We say that platforms are realized when

they become actual executable elements within the runtime environment. Primitive

realizations are those that can stand on their own whereas composed realizations are

those that are themselves composed of other realized platforms, a case common in the

definition of platform stacks.

One of the most critical elements of MDD is the transformation process, shown in Fig-

ure 2.1.

At a high level the process as described by MDA is that the source models are mapped

to the target models. When the time comes to generate the platform-specific models

and ultimately the deployable artifacts, the UML models are run through a transfor-

mation process that applies various rules, called mappings, to produce output that can

ultimately be executed within the target platform. These mappings describe how ele-

ments of one model, such as UML, can be transformed into elements of another model,

such as Java. The definition of these mapping rules can take many forms including

imperative, where the mappings are represented as executable code, and declarative,

where the mappings are encoded as rules to be applied rather then being executable

themselves. Imperative-style mappings do not facilitate round-trip engineering whereas

declarative-style mappings do.

OMG has defined QVT [27] as a hybrid imperative/declarative approach. Based on

MOF, QVT provides two major languages that have equivalent semantics. The Core
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language, which is a low-level imperative-style language and the Relations language,

which is a higher-level declarative language. The major difference between the two lan-

guages is that the Core language works at a lower level of abstraction than the Relations

language. Between the two languages, complex transformations can be constructed us-

ing various kinds of pattern matching, first-order predicate logic, and imperative state-

ments.

Some key characteristics of model-driven development include:

• An emphasis on visual modeling that allows components and relationships to be

defined in a more comprehensible visual form. This is critical in dealing with

complex, large-scale software systems.

• The use of a high-level abstract modeling and constraint language to define plat-

form independent models. UML allows the software design and code logic to be

defined completely and separately from implementation concerns.

• UML models that are amenable to analysis of a variety of properties [28, 29]. For

example, UML state diagrams can define the behavioral logic of systems and can

be analyzed for concurrency related properties.

• Customizable model transformations that allow for flexibility in implementing

the PIMs and the subsequent transformation to appropriate PSMs.

MDD has the potential to deliver great cost benefits in software development by au-

tomating many of the most time-consuming and error-prone aspects of software devel-

opment including detailed design, coding, and testing. These savings are compounded

when we have a single application that we wish to run on many different platforms. Al-

though MDD has been proven effective and successful in many industrial enterprise

applications [30] targeting mature middleware platforms with widely adopted com-

mon standards such as JEE, .NET, and SOA, there remain critical challenges to its

widespread adoption in the industry [31, 32]. This is largely due to the inherent weak-

nesses and problems in UML and related standards, as well as inadequate tool support.

While UML is used as a common, generic notation for defining PIMs, it has a number

of limitations and deficiencies [33, 34]. For example, UML models can be incomplete

and/or inconsistent [35]. In addition, UML is not executable, which means that the
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models must be translated to a target platform and programming language before an

application can be tested. Furthermore, the Object Constraint Language (OCL) [25, 36],

an important part of UML, has an awkward, non-intuitive syntax that limits its practical

usefulness. Other significant obstacles include:

• A lack of adequate tool support in creating, maintaining and understanding the

complex models derived from UML and related OMG standards. While visual

models offer huge advantages in making complex structures comprehensible, they

are also more difficult and time consuming to create and manipulate. As such,

they are much more dependent on adequate tool support than simple textual mod-

els, which only require text editors.

• The difficulty in the interchange of visual models across different tools. While

XMI [37, 38] is the standard for UML interchange, a recent study of some of the

most commonly used UML tools showed that the success rate of attempted model

interchanges amongst these tools was less than 5% [39].

• The lack of executability in the model, which leads to long turn-around times

from model to executable system. UML models are thus ill-suited for agile de-

velopment processes and are generally used only for heavyweight process.

• A lack of modeling resources comparable to the extensive frameworks and li-

braries available to agile approaches. This means that most models need to be

developed ab initio rather than building on known and proven solutions and utili-

ties. This also means that knowledge may not be portable across organizations or

even across projects.

• The support for so-called round-trip engineering is far from adequate in practice.

The code generated from models is brittle and not customizable. Modifications

to the generated code can make the reversal to models impossible.

• The complexity of building appropriate model transformations. Such transforma-

tions often require their own development efforts [40] that must go on in parallel

with the development of the models and which may not be made to easily support

multiple PSMs.
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FIGURE 2.2: Approaches to platform-independence. Author’s image.

2.1.3 Platform Independence

One of the defining characteristics of model-driven development is platform indepen-

dence. Platform independence is concerned with ignoring the details of an application’s

target runtime environment until as late in the development process as possible. This

allows developers to concentrate on the application’s functionality without being en-

cumbered by unnecessary details about where that application will finally execute.

Platform-independence is not a new goal and the cost savings that can be realized

through such independence have long been recognized. There are two main approaches

to platform independence, as shown in Figure 2.2: greater levels of abstraction or greater

degrees of standardization.

The idea of platform independence has evolved gradually. Some examples of its key

milestones include the advent of high-level languages along with their compilers and

interpreters and the introduction of virtual machines.

High-Level Languages Early software developers would simply write assembly lan-

guage code or even directly program code into the physical hardware by direct manip-

ulation of switches. For obvious reasons these approaches did not provide any degree
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of platform independence at all; the code was directly tied to the operations supported

by the physical hardware. However, since computers were comparatively rare and all

of a kind, the idea of “platform independence” had no real meaning. Today, even com-

paratively simple software may have collaborating components that are deployed to

multiple, disparate operating environments. Such software may even be intended to run

on many diverse platforms, leading to a need for true platform independence.

One significant evolution of platform independence was higher-level languages along

with their compilers and interpreters. These innovations allowed developers to work

with higher levels of abstraction than was previously possible. This required a funda-

mental shift in mindset away from the developer needing to understand the instructions

that were available in the target runtime environment and instead toward the encoding

of knowledge into the compiler or interpreter itself. This permitted developers to con-

centrate more on ensuring that their applications fulfilled their functional requirements

and less about how they worked within the physical hardware environment. This was

possible because the code that was used to represent a program was different from the

machine operations that were actually used to execute that code. In fact, such high-level

languages provided a greater degree of abstraction than lower-level languages such as

assembly language or machine code. As long as there was a compiler or interpreter

available, the source code could be compiled into the appropriate instructions for that

operating environment.

Although higher-level languages were useful tools, they did not completely abstract

away all knowledge of the target runtime environment because their associated com-

pilers and interpreters were bound to those environments. For example, ANSI stan-

dard C does not completely dictate the sizes of its integral datatypes. As described by

Kernighan and Ritchie:

“Each compiler is free to choose appropriate sizes for its own hardware,

subject only to the restriction that shorts and ints are at least 16 bits,

longs are at least 32 bits, and short is no longer than int, which is no

longer than long.” [41]
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This trait of C was carried over into its successor, C++ [42]. While providing flexibility

to the compiler designers, these kinds of details also allowed developers to write code

that could exhibit different behavior depending on the runtime environment. In addition

to needing to know at least some details about the runtime environment, languages like

C/C++ also required the developer to properly allocate and deallocate resources such as

memory, which provided significant opportunities for mischief. Tales of memory leaks

and the havoc that they caused abound in these communities.

In some circles the management of such scarce resources as memory was deemed “too

important to be left to developers” and provided some of the impetus needed for the

mainstream adoption of virtual machines.

Virtual Machines In 1995, Java was introduced to the software development commu-

nity. Java’s mantra was ”write once, run anywhere” suggesting a true form of platform

independence. This was accomplished through the use of a virtual machine, which pro-

vided a standardized runtime environment within which the Java code would actually

execute. It was now up to the Java Virtual Machine (JVM) providers to handle the

translation from the JVM specifications into the underlying hardware representation, as

suggested by this excerpt from the Java Language Specification that describes the size

of the integral types:

“The integral types are byte, short, int, and long, whose values are

8-bit, 16-bit, 32-bit and 64-bit signed two’s complement integers respec-

tively....” [43]

The fact that Java provided a language specification that standardized elements of plat-

form dependence into the semantics of the language itself and that those standards were

enforced by each JVM enabled the same code to execute within many different runtime

environments. This was a significant benefit to the software development industry and

persists to this day where the same application might need to run on a variety of com-

mon hardware and operating system configurations such as desktops, laptops, mobile

phones and tablet computers. Unfortunately, it turns out that while simply abstracting

away some of the details of the runtime environment is beneficial, it is not sufficient.
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One example, memory leaks, is a problem commonly associated with C++ applications.

While such leaks are mitigated by the JVM’s Garbage Collection facility, it is still pos-

sible for unwary developers to produce code that leaks memory. Even an awareness of

this potential problem can be dependent on the experience and ability of the developer.

While resource management and other low-level concerns capture the motivation for

increased platform independence, this is by no means the only such example. Other

examples, such as user interface design, focus on the desire to build software that can

run on many different platforms that have differences not only in the machine instruction

set, but in their ability to interact with their users.

User Interface Design Another example of platform independence that has been the

subject of much research is user interface design. It would be useful if we could provide

a single abstract representation of an application’s user interface and use it to produce

multiple concrete user interfaces based on the actual capabilities of the target platform.

This would allow us to use a single interface representation to provide different user

experiences based on both their physical platform, such as mobile phones versus tablets,

as well as the runtime environment, such as Apple’s iOS or Google’s Android.

A number of specialized notations have been defined for describing the user interface

such as UIML [44] and XIML [45], but the notations themselves must still be converted

into something that the target platform understands. Various approaches have been

suggested in an attempt to facilitate such transformations including the use of transcod-

ing and style sheets. Another approach, called TERESA [46], allows for the explicit

mapping of abstract modeling elements to equivalent elements within the various target

platforms, an approach that is common to many MDD transformations.

2.1.4 Modeling Languages and Notations

From the user interface, it is a natural progression to wanting to define a platform-

independent means of representing an entire application. A number of platform-neutral

software development notations are already in use including Z and UML. More broadly,
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these notations fall into two main categories: formal and informal. In this context, “for-

mal” means that the notation is rooted in mathematics and is thus subject to mathemat-

ical analysis via model checkers and theorem provers, while “informal” means that the

notation cannot easily be subjected to such analysis due to some mathematical incom-

pleteness in the notation itself.

Z Z [47–49] provides a modeling notation that captures and formalizes requirements

into specifications called schemas. A model checker is then used to analyze the schemas

to ensure their consistency and to point out any potential conflicts or omissions.

The initial Z language did not include references to objects or object-oriented develop-

ment. Since then various object-oriented extensions to Z have been proposed [50] such

as MooZ [51], Object-Z [52], OOZE [53], Z++ [54], and ZEST [55] in an attempt to

bring Z’s formalism to object-orientation.

UML UML [24] is the de facto standard modeling notation for modern software de-

velopment efforts. UML uses a series of views that convey different yet complementary

information about a software design. These views and their associated UML diagrams

are:

• User. The user view consists of use cases and their scenarios and is responsi-

ble for representing high-level functional requirements. The Use Case diagram

belongs to this view.

• Structural. This view describes the structural aspects of the software including

classes and their relationships. Class diagrams and object interaction diagrams

belong to this view.

• Behavioral. This view describes the software’s runtime behavior and interactions

of the various software components. Sequence, Collaboration, Activity and State

Machine diagrams all belong to this view.

• Component. The component view describes how the various software elements

will be packaged together and the dependencies between those packages. While
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some of this information can be represented within the Structural view, the Com-

ponent view is of a sufficiently different level of abstraction that it warrants its

own view. The Component diagram comprises this view.

• Deployment. The Deployment view shows how the various components will be

installed into the target runtime environment and describes the means by which

distributed components communicate within that environment. The Deployment

diagram belongs to this view.

2.2 Programming Languages

The use of static programming languages such as COBOL, C/C++ and Java is standard

practice in modern software development. However, it is increasingly common for soft-

ware to be written using dynamic languages such as PHP, Groovy and Ruby, owing in

no small part to the prevalence of frameworks such as Rails and Grails, which eases the

process of developing and maintaining complex applications, particularly those in the

web domain.

While there are many different languages, and many different ways to categorize them,

one way is to group them into static and dynamic languages. Static languages are those

where the rules of the language are typically enforced at compile time; these rules must

be satisfied before the code can even be executed. With dynamic languages the enforce-

ment of some of the rules is deferred until runtime.

Although not necessarily the only difference between static and dynamic languages,

typing and type checking are often two of the most significant differentiators between

the two approaches. Typing rules are intended to guard against the possibility that data

is used in ways that are inconsistent with the kind of information being represented.

Regardless of its particular rules, each dynamically-typed language is concerned with

the two principles described by Cartwright and Fagan [56]:



Chapter 2. Background 19

• Minimal Text Principle. The typing system should accept unannotated dynami-

cally typed programs. If programmers are required to provide additional informa-

tion, then the dynamically typed language will become harder to use than compa-

rable languages and will indeed resemble its strongly typed counterparts.

• Minimal Failure Principle. The type system should be able to avoid false neg-

atives when evaluating the run-time checks. If too many false negatives are pro-

duced, the developers will ignore the warnings, in essence disregarding the typing

system altogether.

Dynamic languages often allow some typing information to be deferred until runtime.

This means that a single variable can refer to many different and unrelated kinds of data

during its lifetime. As long as the developer does not attempt to perform an operation

on a variable that is inconsistent with its data at the time the code is executed, then

the code will perform correctly. This is a capability that is not available in compiled

languages, where each variable has a fixed and immutable type making it difficult to

perform invalid operations.

It is this type flexibility and overall runtime interpretation that makes dynamic lan-

guages appealing as modeling notations because it allows a modeler to define only what

they know and only when they know it, a process that is impractical with a strongly

typed language. This same flexibility makes dynamic languages attractive to software

developers since they are able to focus more on application functionality and less on the

mechanics of actually writing code [57].

Despite the advantages of dynamic languages, there are also some significant draw-

backs. One of the greatest is that defects in type usage that could be detected by static

languages, may remain undetected within programs based on dynamic languages. This

is because unless a particular code path is executed, the interpreter has no need to exe-

cute the instructions on that path. Thus an inadequate testing strategy may allow defects

to slip into production where they may be found by a user that inadvertently triggers the

faulty code path.
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2.3 Domain-Specific Languages

Deursen [58] defines a domain-specific language (DSL) as:

“...a programming language or executable specification language that of-

fers, through appropriate notations and abstractions, expressive power fo-

cused on, and usually restricted to, a particular problem domain.”

In other words, a DSL is a language that has been constructed specifically to solve prob-

lems within a restricted domain. This is in contrast to general purpose languages such

as C++ or Java that have been constructed so that they can be used to solve problems

irrespective of the domain. DSLs can be either static or dynamic and, in fact, many

dynamic languages provide for the creation of internal DSLs, which are DSLs based on

the language in which they are created.

Because DSLs are constructed to solve a specific class of problems to the exclusion of

all other problem domains, they can be extremely efficient. Other benefits can include

ease of expression and optimization as well as an enhanced ability to validate and test

solutions. Associated costs of DSLs include the cost of its design as well as the cost of

educating its users.

There are a number of DSLs in use by software engineers today such as HTML, SQL

and Ant. Many DSLs exhibit common characteristics. For example, most of them are

declarative, meaning that the author indicates what is to be done but does not indicate

how it is to be done; that is left to the interpreter of the language. Thus, in the case of

HTML, the precise approach for rendering content is driven by each browser. In the

case of SQL, we indicate the data we want, but we leave it up to the database engine to

determine the best approach for satisfying our request.

Another characteristic of DSLs is that they are small. This allows them to be easily un-

derstood and focuses their expressive power for the target domain. This is such a com-

mon characteristic of DSLs that they are sometimes referred to as “micro languages” or

“little languages” [59].
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Domain specific languages can be either internal, or homogeneous, or external, or het-

erogenous [60]. Internal DSLs are created by embedding them into a host language. For

example, Gradle [61] is a DSL that assists us in performing build management. Gradle

commands are written using Groovy and in fact can use all of Groovy’s syntactic con-

structs and APIs. In contrast, make [62], another application for build management, is

often written in C but has its own independent language, classifying it as an external

DSL.

2.4 Agile Software Development

Agile software development [63] refers to a collection of processes and methods that

embrace the principles articulated in the Agile Manifesto [64]. The best known agile

processes include eXtreme Programming (XP) [65] and Scrum [66]. There is evidence

showing that agile processes can deliver significantly improved productivity of software

development efforts of small to medium sizes in companies with limited organizational

complexity [67–69].

While different agile processes and methods vary in their particular aspects, they all em-

brace the key principles outlined in the Agile Manifesto, some of which are summarized

as follows:

• Embrace changes and refactoring throughout the development process.

• Working software is the primary measure of progress.

• Working software is developed iteratively and delivered in small increments.

Agile development processes are becoming more and more prevalent in the industry.

However, it is commonly acknowledged that there are a number of limitations to the

applicability of agile software development processes and methods. They are most ef-

fective and most widely used in projects that fit certain well-understood architectural

patterns, such as web-based, database-driven applications using an n-tier MVC archi-

tecture, where most of the quality requirements are well understood and show only

limited volatility.
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While agile processes and principles can be applied to software development using any

language and target any middleware or platform, of particular interest to this research is

one branch of agile methods using dynamic languages such as Ruby [70], Python [71]

and Groovy [72], in conjunction with frameworks such as Rails [73], Django [74] and

Grails [75]. This style of agile development, pioneered by Ruby on Rails, has gained

a great deal of popularity, especially for web based applications. An oft-cited claim

is that this combination of agility, language and framework can increase productivity

by as much as ten-fold. Whether these claims are accurate or not, it is unquestionable

that this approach offers benefits and advantages to organizations that can harness its

potential [67].

Some key factors that affect the productivity and applicability of agile methods using

dynamic languages include:

• The languages often use a very succinct syntax. They are interpreted and dynam-

ically or optionally typed.2 They typically support high level data types such as

sets, lists, maps, iterators, generators, and closures, thus raising the level of ab-

straction. However, these features can result in reduced readability due to missing

type information. Errors that can be detected through static type checking may

not be discovered until runtime and may even slip into production code.

• The extensive use of open-source extensible frameworks and libraries for reusing

prepackaged functionalities that significantly reduce development time. Exam-

ples of such frameworks include Spring [77], the Google Web Toolkit [78] and

Facebook applications [79].

• The adoption of convention over configuration, which reduces the complexity

of applications by enforcing a set of predefined conventions that eliminate the

need for configuration. This can significantly reduce the amount of required code

once one is familiar with the conventions. However, this approach reduces the

flexibility of applications and presents serious problems when integrating with

external, existing, or legacy applications.

2This is often referred to as duck typing, “a style of dynamic typing in which an object’s current set
of methods and properties determines the valid semantics, rather than its inheritance from a particular
class.” [76].
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Agile development methods using dynamic languages have not been widely adopted in

critical enterprise applications. One of the major obstacles in the adoption is that the

runtime environments are not yet considered sufficiently mature, robust, and trustworthy

as compared to JEE or .NET. Furthermore, there exist inherent risks associated with

dynamic typing and the meta-programming capability of dynamic languages, which

allow new kinds of defects to be introduced into applications and which can significantly

impact application performance.





Chapter 3

A Vision for Model-Driven

Engineering

Agile methodologies facilitate rapid changes only as quickly as those changes can be

incorporated into the application code. As such it is desirable to have a solution that

provides the following properties:

1. Model-centric.

2. Highly abstract.

3. Completely generative.

4. Tool agnostic.

3.1 Model-Centric

Model-centricity is the central tenet of all model-driven engineering approaches. Model-

centricity means that models are the dominant element of the application and that all

application code can be derived, directly or indirectly, from its model. This can be chal-

lenging given the complexity of modern software and the forces that it must balance in

order to be successful.

25
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3.1.1 Software Forces

There are three forces at work in any significant software development effort:

1. Functional forces. These are the functional requirements or basic capabilities

that the software must provide to be usable by the user community for which it

was created. A word processor that does not support the loading and saving of

documents might be of little utility to its users regardless of how well it supports

complex document layout.

2. Extra-functional forces. These are the non-functional, extra-functional [80]1

or Quality of Service (QoS) requirements to which the software must conform.

These are the characteristics that will be exhibited by the software regardless of

whether or not they have been planned for. These include properties such as

performance, scalability and testability.

3. Environmental forces. These are the environmental or system requirements im-

posed by the target hardware platform and operating environment. It does little

good to write an application that meets the needs of the users if it cannot be exe-

cuted within the target environment.

These three forces are similar in that they must all be satisfied, but they are different in

how they reveal themselves. Functional forces are the simplest to understand. Either

they are satisfied or they are not. If a functional capability is not planned for, then it

won’t appear in the finished software product. In contrast, extra-functional forces will

be present in the finished application whether they are planned for or not. For example,

all software exhibits some degree of performance because all software runs on physi-

cal hardware which requires at least some amount of time to perform the instructions

of the software. Like the extra-functional forces, the environmental forces will always

be present. However, unlike extra-functional forces, environmental constraints do not

emerge as a result of the reification of the software, but rather exist a priori to its de-

velopment. In some ways the environmental forces are like functional forces in that we

can choose our target deployment environment configuration in the same way that we

1Bass et. al. refer to the extra-functional requirements as quality attributes.
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can choose which capabilities the software will provide. However, they are also similar

to extra-functional forces in that we often don’t know if we can meet the environmental

constraints until after the software has been built and its runtime characteristics ob-

served.

These forces can be placed on a graph as shown in figure 3.1. The software application

is represented by the cube within the graph. Each vertex on the cube represents the

degree for which one or more forces have been addressed. The vertices can range in

value along an axis from 0 to 1, where 0 indicates that the force has not been satisfied

and 1 indicates that it has been satisfied.

FIGURE 3.1: Software force map Author’s image.

One useful property of this graph is that it can scale to different levels of detail. For

example, the graph for a single capability within an application can be represented in

the same way as the graph for the application as a whole. This capability allows us

to compose more comprehensive application-oriented graphs from simpler, capability-

oriented graphs using some form of mathematical composition.

Of the eight points shown on graph 3.1, labeled A-H, only a few are meaningful. For

example, it is meaningless to discuss software that satisfies its extra-functional or envi-

ronmental forces if it does not also satisfy its functional forces. This means that we can

eliminate points F, G and H from the graph and simplify it as shown in figure 3.2.

Given that from a pragmatic perspective the functional forces must be satisfied before

we can even begin to discuss the extra-functional and environmental forces, we can
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FIGURE 3.2: Simplified software force map. Author’s image.

further organize the force graph, which allows us to produce maps that describe the

sequence in which the various forces will be satisfied. Two such maps are shown in

figure 3.3.

The maps shown in figure 3.3 are an ideal. It is rare that software engineers would be

able to proceed along such an orderly route to software completion. Instead, the route

typically meanders along the various axes as functionality is added, extra-functional

requirements are satisfied and environmental constraints are observed.

FIGURE 3.3: Software force satisfiability maps. Author’s image.

To further complicate matters, while these three forces sometimes support each other,

they are more often than not in stark opposition to one another. For example, writ-

ing software that performs well may require the use of additional hardware that is not

available in the target environment, leading to an unsatisfied environmental constraint.

When these three forces come into conflict, they must be re-balanced and brought back



Chapter 3. A Vision for Model-Driven Engineering 29

into equilibrium. In the prior example where performance requires additional hardware,

equilibrium demands that either:

a. The environment be expanded to include additional hardware;

b. The extrafunctional performance requirement be relaxed; or

c. The functional requirement in question be changed.

Conceptually there is a conservation principal at play that suggests that you can fix any

two of the axes in the graph so long as you are willing to vary the third. Fixing all three

axes introduces the risk that the three forces cannot be balanced such that all of them

are satisfied.

Because finding equilibrium between the functional, extra-functional, and environmen-

tal forces is complex, it is often not possible to achieve it after only a single attempt.

History is full of projects that balanced their functional and environmental forces, but

failed to adequately address the extra-functional forces. The resulting application of-

ten requires significant re-work in order to address major problems such as inadequate

performance or scalability.

Balancing these forces is a difficult process that is made even more difficult by tradi-

tional software development practices. For example, while it is easy to say that “busi-

ness process X must complete within Y seconds of its initiation”, it is difficult to ensure

that this requirement will be met until after the software has been built and its perfor-

mance observed. Rosa et al. [81] describes some of the difficulties in defining extra-

functional requirements including the fact that such requirements tend to be abstract, are

often stated only informally, are difficult to design into software, and are challenging to

validate once the system is complete. Often such constraints go entirely undefined while

in other cases they develop organically. Statements from users like “the system is too

slow” are a classic example of such organic growth. Even if such response time require-

ments have been defined in the first place, they are often viewed as being “technical

details” instead of being true application requirements.

Agile methodologies are ideal for this kind of process precisely because they attempt

to provide application functionality as a series of discrete yet related chunks. Using
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this approach, a functional requirement may be met for a particular environment while

the extra-functional forces are also satisfied. This is because Agile methodologies do

not seek to deliver an entire application at once, but instead break the delivery of the

application into a series of iterations, each of which delivers some business value. This

means that developers have a chance to focus on exactly the feature that they have been

tasked to provide and can evaluate their implementation against the extra-functional

forces in addition to the functional and environmental ones. Furthermore, when the

various forces come into conflict, Agile methodologies provide a safety-valve for re-

solving the discrepancy, by allowing the scope of a delivery to vary based on the reali-

ties observed during development. This means that functionality that fails to satisfy the

extra-functional requirements might be deferred to a later iteration if there is little elas-

ticity in the extra-functional requirement. Conversely, if there is significant flexibility in

the extra-functional requirement, then the functionality may be delivered as-is, possibly

with a story defined to improve it during subsequent iterations.

Mylopoulos et. al. [82] describes two approaches used to help manage these diffi-

culties. The product-oriented approach views the problem from the standpoint of def-

inition. In this case, the extra-functional requirements are documented in much the

same way as their functional counterparts. Once the system is complete, it is vali-

dated against both functional and quality requirements to ensure correctness. While

intuitive, this approach requires that large portions of the system must be available

before its extra-functional characteristics can be established and validated against the

extra-functional requirements. In contrast, the process-oriented approach focuses on

managing the design decisions made during the development process. These techniques

allow software engineers to make decisions based on an impact analysis with respect to

the extra-functional requirements. The end result is a system that, while still requiring

validation, hopefully holds few surprises as it nears completion.

When gaps in the solution with respect to extra-functional requirements are identified,

it is often during testing when changes are difficult to implement. Such changes may

require significant re-work of the implementation and may not actually address the

problem at all. One significant problem is that there are limited means of modeling

extra-functional requirements and even fewer means of determining the adequacy of a
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solution with respect to those requirements, particularly for those requirements that are

emergent only under high transaction loads or significant distribution.

Work has been done in creating frameworks for the capture, prioritization, and trade-

off analysis of extra-functional requirements. Examples include a process-oriented

approach called Parmenides [81–83] and the Architecture Tradeoff Analysis Method

(ATAM) [80]. Work has also been done by Cysneiros, et. al [84, 85] in the inclusion of

extra-functional requirements in UML use case and class diagrams.

3.1.2 Force Elasticity

Another challenge related to finding the equilibrium point of these three forces is that

their boundaries are often not hard, but are instead fluid. For example, while a particular

constraint may at first be described as a requirement, further investigation may reveal

that it is instead desirable without actually being binding. For example, while database

independence might be a desirable outcome for an application, it is entirely possible that

an organization might relax that constraint somewhat to include only the most common

database platforms in the industry. This kind of concession is often made in an effort

to get the software completed and in a state where it can be used and maintained while

also meting some business-driven deadline by which the software can be released.

This kind of force elasticity is a measure of how much the boundary for a given force

may be exceeded before we actually claim that the boundary has been violated. Elas-

ticity is a kind of tolerance and generally applies only to the lower bounds of software

forces. In other words, it tends to represent the minimal quality of service that will

be acceptable in a solution. For example, we often don’t care how small the response

time for a given process is so long as it does not exceed some threshold. Elasticity is a

reflection of the realities of software development where the acceptability of a solution

encompasses forces with a range of possible values that can often be negotiated based

on business necessities. For example, we may decide to compensate for not meeting a

particular QoS by adding value in some other way. For example, reduced performance

may be acceptable if additional functionality is provided. Such a decision demonstrates
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that there are often a range of equilibrium points that we will accept within any given

piece of software.

3.2 Highly Abstract

Because of the diverse forces that must be satisfied by any given application, and

because changing the software to accommodate such forces, particularly when those

forces can vary based on the constraints imposed by the functional, extra-functional, and

environmental dimensions, it is desirable for any model-centric approach to be highly

abstract. This allows the modeler to focus on the primary dimension of functionality,

and to defer some of the decisions about architecture and environment until it is time to

transform the model into executable code.

One desirable side-effect of a more abstract model is that productivity can increase. If

productivity is defined as the measure of output per unit of input, then we would expect

that when a highly abstract model is used, the amount of input required for the same

output is reduced and productivity thus increases.

The challenge, then, is to provide a highly abstract way in which mobile applications can

be defined so that the developers can focus on building the applications and not on the

mechanics required to construct and deploy the applications on each target platform. A

DSML is ideally suited to this task since, properly crafted, it can synthesize the disparate

elements of the different platforms into a single language that can be used to generate

the code that will run across all platforms.

3.3 Completely Generative

To be effective, and in particular to accommodate agile methodologies, any model-

driven approach must be completely generative. That is, the model must contain suf-

ficient information that, when combined with necessary transformations, a complete

application must result. It must not be necessary for a developer to manually modify,
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enhance or instrument any of the generated code. There are both philosophical and

pragmatic reasons for this.

From a practical perspective, allowing a developer to modify the generated code leads to

problems of version control and the merging of these changes into subsequent revisions

of the model. There is also a concern over the evolution of the model and how developer-

provided source code can be managed in parallel.

Philosophically, allowing developers to introduce code outside of the model can lead to a

more complex application representation, where one is never certain of just where some

functionality resides. It also leads to problems of consistency and optimization. When

the code is completely generated, the model and its resulting code will tend to undergo

consistent transformational changes. As the transformations evolve and improve, so too

will the code resulting from subsequent use of those transformations.

The final, generated code could be one of two styles: native or container-based. In a

container-based model, the code generated is expected to run within some other con-

tainer. This approach is one commonly when the browser provides an abstraction layer

that sits between the application and the native operating system of the device. When

compared to the native style of code generation, we typically find that accessing the

native resources on the device is markedly slower [86, 87]. We thus prefer to generate

native code rather than container-based code.

3.4 Tool Agnostic

Any model-driven solution should avoid new, specialized tools. In the ideal case, the

model can be constructed visually or in a way that makes it look like other development

code. This makes it comparatively simple to deal with more complex challenges such

as the merging of model changes. It also makes it easier to move models between tools

without needing to rely on approaches like XMI.

Allowing models to be tool-agnostic is another way to reduce the learning curve and

costs required for MDE adoption.





Chapter 4

The AXIOM Approach

Both agile and model-driven development approaches offer considerable benefits in im-

proving the productivity of software development processes and/or the quality of soft-

ware products. However, each also has its own limitations. It would be beneficial to

integrate the two approaches so that they complement each other and offer the best of

both approaches. The challenges lie in a number of apparent incompatibilities and gaps

between the two approaches:

• The style of languages. Agile software development embraces dynamic and

scripting languages with little emphasis on static typing and analysis, while model-

driven development is based on modeling notations that are visual, declarative,

and amenable to a variety of techniques for ensuring qualities, such as static anal-

ysis and design by contract.

• The role of software architecture. Model-driven development is often charac-

terized as architecture-centric and design-first, while agile software development

is often code-centric with architecture as an emergent property resulting from

iterative refactoring.

• The trade-off between productivity and extra-functional qualities. Agile soft-

ware development generally emphasizes developer productivity over extra-functional

qualities, while model-driven development prioritizes the extra-functional quali-

ties and counts on the modeling aspects of MDD to achieve gains in developer

35
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productivity. Agile development focuses on quality needs in the short term,

whereas model-driven development attempts to address long term quality needs

up front.

Despite these differences, there are also critical similarities between agile and MDD

practices:

• The focus on a single deliverable. Agile practices tend to focus on working ap-

plication code as their single deliverable, since that is what is ultimately required.

MDD, too, focuses on a single deliverable: the model.

• End-user involvement. In agile practices such as XP, the user is an indispens-

able part of the software development process. They provide key insights into

business functionality as well as held define the most appropriate interaction with

the software. It is no different for MDD projects since the models must capture

the business rules and UI design.

The ultimate goal of AXIOM is to emphasize the similarities while de-emphasizing the

differences between these two approaches.

4.1 An Outline of the Approach

Our approach is called AXIOM (Agile eXecutable and Incremental Object-oriented

Modeling). The AXIOM approach aims to combine MDD techniques with agile ap-

proaches to provide true agile MDE. AXIOM consists of the following key technical

areas:

• A dynamic language based modeling notation. One of the novel aspects of

the AXIOM approach is to use a dynamic language, Groovy [72], as the basis

of the modeling notation. The Groovy language is augmented with a state ma-

chine mechanism based on the UML state diagram. The state machine is defined

as a domain specific language (DSL) in Groovy. The specifics of the modeling

notation is further elaborated in chapter 6.
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• Model transformation. One of the trade-offs for using dynamic languages is the

substantial degradation of performance of the resulting applications as compared

to those developed using statically type languages. We will develop frameworks

and techniques to transform the PIMs to PSMs with the goal of minimizing the

performance degradation of dynamic languages and attaining the same level of

performance and qualities as applications developed using the native tools and

languages of the target platforms. The model transformation mechanism is further

elaborated in chapter 5.

While we do not intend for AXIOM to directly support one particular style of agile

development, such as XP or Scrum, we do intend that it complement the overarching

principles of agile methodologies such as those espoused in the Agile Manifesto [64].

In particular, we believe that AXIOM supports agile methodologies in the following key

areas:

• Working software is the primary measure of success. By allowing developers to

focus on a model of the software rather than its implementation details, AXIOM

employs MDA transformations to realize the final application.

• Agile processes promote constant, sustainable development. By encouraging de-

velopers to work on models, rather than on application code, we believe that

AXIOM allows development teams to more rapidly produce working software at

regular intervals. While we will see that AXIOM’s DSML allows for less code

to be written, and our analysis of AXIOM’s impact on productivity supports this

assertion, further work is necessary to truly gauge AXIOM’s impact on agile de-

velopment teams.

• Changing requirements are embraced, even late in development. Because the

models are at a higher level of abstraction than the equivalent application code,

we believe that AXIOM provides development teams more opportunities to spot

and address risky changes, thus making it easier to incorporate those changes. In-

tuitively this is because we expect the AXIOM models to be significantly smaller

than the required native code, thus making the evaluation of a change to be an
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intellectually simpler task. From an empirical perspective, this assertion deserves

more investigation and is not explored further in this research.

Similarly, while AXIOM does not directly support a particular MDD methodology, it

does support the key tenets of MDD, which is that we should raise the level of ab-

straction and make models, rather than code, the focus of software development. By

incorporating both a dynamically typed language, we believe that AXIOM raises the

level of abstraction while still supporting lower degrees of abstraction when needed.

Because AXIOM is model-centric, it retains the key properties of MDD such as the

use of platform-independent models and the generation of appropriate platform-specific

models by way of targeted model transformations.

Although we expect AXIOM to be applicable across many different application do-

mains, this research focuses exclusively on mobile applications. Such applications pro-

vide fertile ground for experimentation because they allow us to immediately test the

cross-platform capabilities of AXIOM. Such applications have not yet become as com-

plex as many enterprise applications, which also allows us to scale up AXIOM’s ability

to deal with more and more complex applications while still reaping benefits during the

development of comparatively simpler applications.

4.2 A Dynamic Language Based Modeling Notation

One of the key aspects of AXIOM is the use of a dynamic language as the core of the

modeling notation. In addition to being directly executable, modern dynamic languages

support many of the features found in traditional specification and constraint languages

such as Z [47–49] and OCL [36]. These features include: high-level abstract data types

such as sets, bags, lists, maps, and relations; high level constructs such as iterators

and closures; and extensive support of object-oriented features including mix-ins, cate-

gories, and delegations. Furthermore, modern dynamic languages are highly extensible

by virtue of their support for meta-programming and domain-specific languages (DSL).

While statically typed languages offer some advantages, there are a number of known
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incompatibilities among various type systems and conventions adopted by popular mod-

ern programming languages. It is unlikely that we can devise a strong type system that

can reconcile all of the incompatibilities among the type systems of the potential tar-

get languages. Therefore, a dynamically typed language is also a natural choice for a

modeling language that is intended to be platform and language independent.

The dynamic language, Groovy, along with a number of augmentations and existing

frameworks, forms the core of the AXIOM modeling notation. We choose Groovy for

several reasons. First, all the important features necessary for adequately defining con-

straints in object-oriented models are already supported. Second, Groovy is fully com-

patible with the Java language and JVM, a mature runtime environment with extensive

libraries and frameworks, and a broad install base. Third, Groovy is highly extensi-

ble because of its meta-programming capabilities thereby allowing additional features

to be added to the base language in the form of domain-specific languages. Fourth,

Groovy supports compile-time transformations, which provides a foundation enabling

us to build model transformation tools (see chapter 4.3). Fifth, Groovy is open source,

which enables us to develop prototypes for our approach by extending and incorporat-

ing existing Groovy tools. Finally, Groovy is a popular mainstream dynamic language,

which will ease the adoption of the AXIOM approach and make it more accessible to

organizations and developers.

The AXIOM modeling notation will only use the subset of Groovy features that are

suited to modeling. The annotation mechanism in Groovy will be used to support the

stereotypes and profiles in MDD. Groovy is augmented with a textual notation of a state

machine DSL.

4.2.1 State Machine DSL

A major augmentation to Groovy is to provide visual formalism by defining the UML

state diagram as a DSL. The state diagrams define behavioral logic, which is important

in many control-oriented, multi-threaded applications such as real-time control systems,

mobile applications, computer games, and animations. Using state diagrams to define

the behavioral logic is cognitively more natural than using linear textual code.
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AXIOM’s DSL closely aligns the state machine with the user interface and the interac-

tions between its elements. For example, each view acts as a state while the UI interac-

tion elements such as links or buttons become the transitions within the state machine

and serve to drive the overall application during execution.

4.3 Model Transformation

One of the trade-offs of using dynamic languages is the performance of the resulting ap-

plication. Anecdotal evidence [88] suggests that the difference in performance between

equivalent implementations in a dynamic language and a static language can be as great

as 100 times. The performance penalty is largely due to the dynamic nature of the

language that makes compile time optimization impossible and the meta-programming

capability that is an essential component at runtime. However, compile time optimiza-

tion would be possible if the application code base is fixed. When the code base is

fixed, it becomes possible to replace the dynamic and meta-programming capabilities

with more efficient static code.

The proposed project will investigate a novel approach to translate an application de-

fined in a dynamic language to a semantically equivalent implementation in a static

language under the fixed code base assumption, which states the application code base

is fixed and no unknown components or code will become part of the application. Our

hypothesis is that the fixed code base assumption would enable such transformations

to eliminate most, if not all, of the performance degradations inherent in dynamic lan-

guages. This assumption is supported by our basic premise that the model provides a

complete representation of the application.

AXIOM provides a tool that transforms AXIOM models into equivalent implemen-

tations in statically typed target languages such as Java and Objective-C. The devel-

opment of the AXIOM model transformation tool greatly benefits from the Groovy

compile-time transformation framework. While the Groovy transformation framework

is designed for intermediate transformations during the Groovy compilation process, we

can use that same framework to generate code for different target platforms based on

information captured in the AXIOM models.
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FIGURE 4.1: Using mobile frameworks within AXIOM. Author’s image.

A prototype of the AXIOM model transformation tool has been developed. It trans-

forms AXIOM models into implementations in Java and Objective-C. The model trans-

formation tool was used in case studies to demonstrate the feasibility of the AXIOM

approach by transforming AXIOM models of mobile applications into implementations

for the Android (Java) and iPhone OS (Objective-C) platforms (see Figure 4.1).

4.4 Existing Runtime Frameworks and Libraries

One of the limitations of traditional MDD is the lack of powerful frameworks and li-

braries for modeling. Frameworks and libraries are always language and platform spe-

cific and are therefore unusable for platform independent notations such as UML. On

the other hand, frameworks and libraries that provide similar or even equivalent capa-

bilities and services are available across most platforms and languages. Thus defining

platform independent models without the benefit of the capabilities and services pro-

vided by frameworks and libraries is a huge and unnecessary obstacle.

As shown in Figure 4.1, Groovy runs on top of the JVM and can fully leverage all the

frameworks and libraries available for the JVM, which include the entire collection of

Java libraries and third-party frameworks, such as EJB [89], Spring [77], Android [90],

iOS [91] and others. The availability of this extensive collection runtime frameworks

and libraries removes one of the major obstacles of MDD.

It must be noted that while these frameworks are available for many platforms, they

may only be suitable for Java-based target platforms since it cannot be assumed that
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every framework has an equivalent within each platform. For instance, while there may

be a corresponding framework, as is the case with Spring.NET [92] or NHibernate [93],

which are .NET ports of Spring and Hibernate respectively, there may not be an equiv-

alent framework for a platform based on Objective-C. This means that the ability to use

these frameworks must be tempered by the knowledge that their use may require a more

complex model transformation for some target platforms.

In order to “bootstrap” AXIOM so that it had a basic understanding of the foundational

elements of each platform, an ingestion process was devised. This process scans the

API documentation for some of the core elements of each platform. A manual process

is then used to reconcile and unify the disparate elements of the APIs where possible.

This same process can be extended to include other libraries and frameworks, resulting

the extension of AXIOM’s capabilities without necessitating changes to its core syntax.

While not central to this research, this idea has prompted subsequent research in the

area of Adaptive Domain-Specific Modeling Languages, described in Section 9.3.2.

By encouraging the use of these readily available, and extremely useful frameworks,

AXIOM differentiates itself from the standard OMG MDA approach, which only as-

sumes the “least common denominator” within its models. This means that a model

has no access to any pre-existing frameworks or libraries; everything must be modeled

ab initio. In effect the burden is placed on the modeler to reinvent the wheel when it

comes to ubiquitous services such as persistence, asynchronous messaging and secu-

rity. In contrast, AXIOM places that burden on the transformation process, and then

only in those cases where the existing framework cannot be used directly. Thus if a

target platform supports Hibernate, the modeler may incorporate Hibernate directly into

the model. If a new platform is desired that does not support Hibernate, it will be up to

the transformation author to provide the rules that will transform the Hibernate-specific

model elements into a form that can be understood by that new platform.

While at first this may be seen as a significant burden on the transformation provider, it

is also the case that such transformations may be reused. Thus if a transformation must

be written to incorporate Hibernate-like capabilities into an application whose target

runtime environment does not support Hibernate itself, that transformation could be
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reused for any application that must be transformed to execute within that same runtime

environment.

4.5 Limitations

In addition to its potential benefits, AXIOM also has its own limitations:

• Subset of UML. AXIOM uses only a subset of UML from the structural and

behavioral views. The user, component and deployment views are not represented

and it is unclear if a complete model can be constructed without them. Part of our

research is to determine what other information is required to provide a truly

complete model.

• Modeler & Developer Skill-Sets. It is unclear as to whether or not modeler and

developer skill-sets are the same. If they are not, then this may limit the usefulness

of AXIOM since it will still require both skill-sets to provide a complete model.

• Platform Limitations. Despite our efforts at providing a common syntax for

modelers, the final generation of code for the target runtime environment may

still be constrained by the available frameworks and services. This means that

there may be an increased burden on transformation authors in the case where

there is a mismatch between the services incorporated into the model and those

that are available on the target platform.

• Non-Standard MDD. Although it retains some of the UML diagrams that under-

pin the OMG MDA standard, AXIOM is not compliant with than standard. This

could limit the adoption of the approach since it may be seen as “proprietary”.

Despite these limitations, we expect that AXIOM can provide benefits to the software

development industry by encouraging a combination of agile and MDD approaches.
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The AXIOM Architecture

The AXIOM lifecycle itself is divided into three stages: Construction, Transforma-

tion, and Translation. Each stage emphasizes different high-level activities that serve to

gradually transform the model from requirements into native source code. At each stage

AXIOM emphasizes a different model. During the Construction stage the emphasis is

on the requirements model. This model is canonicalized into the application model for

the start of the Transformation stage. Finally, the implementation model is used during

the Translation stage to produce native code for the target platform. Figure 5.1 illustrates

the high-level processes that comprise the AXIOM lifecycle.

FIGURE 5.1: Stages, phases, and activities of the AXIOM approach. Author’s image.
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5.1 Abstract Model Trees

AXIOM models represent the major characteristics of an application in a platform-

independent way. These platform-independent models, called Requirements models,

describe the core functionality of the application such that it is completely independent

of platform- and implementation-specific concerns.

The Abstract Model Tree (AMT) is a common representation that unifies all of AX-

IOM’s models. AMTs capture the logical structure and other essential elements of the

models. For example, each UI screen and logical UI control of the requirements model

is represented as a node in the AMT. A key feature of the AXIOM approach is that

models are represented as trees rather than graphs, as in MOF. This simplifies model

transformation and code generation, and makes for a versatile means of customizing

transformation rule definitions.

Definition 5.1. An Abstract Model Tree, AMT , is a 3-tuple:

AMT = (N,E,A)

where N is the set of nodes within the model, E is the set of edges connecting those

nodes to form a tree, and A is a set of mappings from the nodes in N to a set of

attributes in the form of key-value pairs.

Each node in an AMT contains a set of attributes defined as key-value pairs. In this sense

the AMT is similar to an attribute syntax tree used in an attribute grammar [94]. How-

ever, AMTs differ from attribute syntax trees in two important aspects. First, AMTs al-

low for cross-node relationships and references. Such relationships are not represented

as edges in the AMT, but as attributes of the nodes. Second, AMTs not only support

the simple data types of traditional attribute grammars, but also support complex types

such as collections and closures.
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FIGURE 5.2: Model evolution during the AXIOM lifecycle. Author’s image.

The AMT evolved over the course of an application’s progression through the AXIOM

lifecycle. Figure 5.2 shows how different AMTs are used at different times in the life-

cycle. However, in each case, the definition of the AMT is strictly observed.

5.2 Construction

5.2.1 Requirements Model

During the Construction stage, business requirements, application logic, and logical

user interfaces and interactions are captured as platform-independent requirements mod-

els. These models are represented using AXIOM’s DSL, which attempts to maximize

the ease of modeling by allowing the requirements model to be represented in a simple,

abbreviated form whenever possible. AXIOM’s DSL is further elaborated in chapter 6.

The use of a DSL to represent functionality and requirements is not new. However,

approaches such as xUML that rely on fUML and ALF [95] use a general-purpose

language. While this provides almost limitless flexibility, it remains a least-common

denominator approach; the language makes no assumptions about what it is modeling

and thus must strive to be as general as possible. AXIOM fixes the target domain,

mobile applications in our case, and uses that knowledge to provide a DSL that makes

it simple to model behavior from that domain. Because the AXIOM DSL is written
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in a general purpose programming language, it has access to a rich set of libraries and

frameworks that traditional MDD notations like UML do not provide.

Requirements models are declarative and attempt to completely capture the intent of an

application. Because they are written in a Groovy-based DSL, they are executable for

the purpose of demonstration and validation. However, requirements models by them-

selves are insufficient for model transformation and must be supplied with additional

information such as:

a) Architecture and design decisions such as the choice of platform, language, frame-

work, API; use of architecture and design patterns, implementation idioms and

techniques.

b) Customizations: fine-grained decisions on various aspects of the application, in-

cluding styles, themes, looks and feels, etc.

These augmentations are almost always platform-specific. They are introduced to the

Requirements model during the actual transformation process, which is discussed in

detail in Chapter 5.3.

To illustrate the basic elements of the AXIOM approach, consider this simple and in-

complete example. An application security system defines users, who belong to various

roles. Each role has privileges that determine what the holders of those privileges can

actually do within the application. Users want to be able to manage users and roles and

their associations as well as manage the privileges held by each role. For simplicity, we

don’t allow for the creation of new privileges.

The application for this simple set of requirements requires a UI model, to expose those

objects and services to the application users, and a behavioral model, to drive the appli-

cation. While the notation has not been completely defined, the samples in the following

sections provide a basic introduction as to their purpose and some of their mechanics.
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5.2.2 Interaction Perspective

AXIOM’s notation allows for the representation of user interfaces in a platform-neutral

way. In AXIOM, the emphasis is on views. Each view describes its visual and naviga-

tional elements, but little more.

FIGURE 5.3: Requirements model with interaction perspective. Author’s image.

Figure 5.3 depicts the simple two-screen application described above represented by

a state diagram. The requirements model is shown in Listing 5.1. The AXIOM UI

model defines the composition of the two screens. The screens are comprised of several

widgets and demonstrate different layouts. The logical UI controls in the requirements

model define only their intended functions and not the actual widgets that implement

those functions. These logical controls are mapped to concrete implementations during

the Translation stage.

The basic transition table for this two-state application is shown in Table 5.1. Each view

in the UI model corresponds to a state in the interaction model. Transitions between the

states, and hence their associated views, are defined using the next attribute of the UI

control that triggers the transition. Optional guard conditions and actions can also be

defined on the transitions.
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From State... To State... By Transition... Guarded By... Action...
Configure User

User Details Selection — —
Role

User Details
Configure User Cancel — —
Role Save isValid action

TABLE 5.1: Transition table for simple application

This approach of combining view with an FSM provides a simple mechanism for nav-

igating through the application. Each imperative action within the UI can result in a

corresponding transition within the FSM. This example leaves out some significant el-

ements such as the binding of the view to persistent data. These enhancements are part

of the scope of this work.

5.2.3 Application Model

Once the requirements model has been defined AXIOM passes it through an intelligent

model builder, which performs a series of intermediate simplifications and canonical-

izations to produce an application model. It is this model that is processed during the

subsequent Transformation stage.

The model builder uses a preprocessed representation of the iOS and Android APIs

to expose a platform-neutral version of many of their common widgets. This allows

the requirements model to specify a platform-specific widget if desired even though this

constrains the target platform. The model builder also accepts optional annotations from

the model that further advise the rest of the transformation process.

5.3 Transformation

The Transformation stage carries out a series of transformations. The aim is to trans-

form the AMT of the application model into a new AMT, the implementation model,

which includes all the details needed to generate high quality, efficient code. The mech-

anism by which this transformation occurs is driven by the application of two kinds of

transformation rules, structural and styling, during AXIOM’s multi-pass transformation
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1 app(name: ’Configure User Role’) {
2 def roles = [ ... ]
3 def users = [ ... ]
4
5 ListView(id: ’Configure User Role’) {
6 roles.each { role ->
7 Section(title: role) {
8 users.findAll{ it.role == role }.each{ user ->
9 Item(text: user.name ,

10 next: [event: Selection ,
11 target: detail , data: user])
12 }
13 }
14 }
15 }
16
17 View(id: detail , title: ’User Details’) {
18 entry(data) = { user = data }
19
20 Panel(orientation: ’horizontal’) {
21 Label(text : ’Name’)
22 Text(id: name_value , text: data.name)
23 }
24 Panel(orientation: ’horizontal’) {
25 Label(text : ’Role’)
26 Selection(id: role_value ,
27 options: roles ,
28 selected: user.role)
29 }
30 Panel(orientation: ’horizontal’) {
31 Button(id: btn_cancel , text: ’Cancel’,
32 next: [event: Click , target: user])
33 Button(id: btn_save , text: ’Save’,
34 next: [event: Click , target: user ,
35 guard: isValid(),
36 action: {
37 user.name = name_value.text
38 user.role = role_value.selected
39 }])
40 }
41 }
42 }

LISTING 5.1: Requirements model of a simple application.

process. Each pass through the transformation process may apply one or more of either

kind of transformation rule.

AXIOM’s transformation process adheres to the basic OMG MDA vision for PIM-to-

PSM-to-code conversions. The core of the AXIOM transformation process is a Groovy
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Builder. Like AXIOM’s notation, a builder is an internal DSL. There are a number

of existing Builders within Groovy such as those for XML or HTML. In our case, the

builder is called the AxiomBuilder. The AxiomBuilder can be engaged on-demand

and as often as needed. This facilitates MDD based on agile methodologies where

teams follow iterative and incremental development.

The purpose of the AxiomBuilder is to transform AXIOM models into source code for

the target platform. We do this by providing an abstraction of the platform and making

that available to the AxiomBuilder so that we effectively have an implementation of

the Strategy design pattern. Each of these strategies encapsulates the mappings required

to transform AXIOM models into code for the target platforms. These transformation

rules effectively act as “plugins” and advise the overall transformation process. This

approach is shown in Figure 5.1, where the same AXIOM models can be transformed

into either iOS or Android applications.

All model transformations begin with the AXIOM Requirements models. As shown

in Figure 5.1, the process of transforming the intent models into executable code is

divided into three phases: structural transformation, decorative transformation, and code

generation. Each phase transforms one AMT into another. Figure 5.4 illustrates the

changes introduced by each phase of the transformation process.

FIGURE 5.4: Transformations of AXIOM models. Author’s image.
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5.3.1 Transformation Rules

AXIOM defines two types of transformations: structural and styling. We elaborate on

these two kinds of transformations in Sections 5.3.1.1 and 5.3.1.2 respectively. The

transformations are free of code fragments and references to the APIs of the target

platform.

AXIOM’s transformation rules were designed with platform-specificity in mind. Our

intent was to follow a bottom-up approach to the abstraction of the different platform

APIs, preserving them so that they may be used when appropriate, while abstracting the

common features into the core DSL to simplify the development of cross-platform mo-

bile applications. The transformation rules can be reused across multiple applications

or customized on a per-application or even per-screen basis.

Definition 5.2. A transformation rule has one of the following forms:

LHS → LHS′ (5.1)

LHS → N1, ...,Nk (5.2)

LHS → ε (5.3)

where LHS represents a node to which the various transformation rules will be

applied. The LHS can be matched based on node types and attribute values.

Rule (1) is concerned with the modification of the node’s attributes. Rule (2) allows for

a node to be replaced by a sequence of nodes N1, ...,Nk, each of which can be the root

of a subtree. Rule (3) allows for a node to be removed. All model transformations are

accomplished by sets of rules in the above forms.

The model transformation process, Trans f orm, accepts an AMT, M, and a rule set, R,

and produces a new AMT, M′. Thus, Trans f orm(M,R) = M′.
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Trans f orm(M,R)

1 Traverse M in depth-first order
2 for each node n ∈ N in M
3 if n matches the LHS of any rule r ∈ R
4 if a single match is found
5 apply r to n
6 else
7 apply r with the highest

precedence to n

Model transformation is effected by a series of successive calls to Trans f orm with

different rule sets, each call resulting a new model:

M0,M1, ...,MI

For k = 1,2, ..., I, Trans f orm(Mk−1,Rk) = Mk, where Rk is the rule set used at the k-

th phase of the transformation. M0 is the initial source model, called the application

model. M1..n−1 are intermediate models that represent partial transformations. MI is the

final result of the transformation process and is called the implementation model.

AXIOM first executes Trans f orm against the initial requirements model using a set

of platform-independent rules. It then executes Trans f orm again, and applies all of

the rules that relate to the target platform. While it is possible that an ill-defined rule

could result in non-termination because of infinite recursion, thus far the rules defined

for the prototype have been simple enough to avoid deep nesting or recursion. Future

enhancements to the prototype tool could be made to address this possibility in order to

support more complex rule sets.

5.3.1.1 Structural Transformations

Structural transformations define the macro-organization of the application as the result

of a series of architecture and design decisions. Some of the transformations address

platform-independent issues, while others address platform-specific issues. This nar-

rows the range of possible implementations that meet the functional, non-functional and
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platform needs of the application and also determine the macro-organization and inter-

actions of the application components. This is particularly important when a multi-tier

architecture is desired or when specific non-functional requirements must be satisfied.

Structural transformations serve to define the cross-cutting concerns of the application,

but do so in a way that the various intermediate models retain their platform-independent

nature. Specifically, these transformations change the AMT by:

• Adding nodes along with their corresponding edges.

• Splitting single nodes into multiple nodes and adjusting the edges accordingly.

• Merging multiple nodes into a single node and adjusting the edges accordingly.

• Adding attributes.

• Removing attributes.

Definition 5.3. A structural transformation on an abstract model tree, AMT , results

in a new abstract model tree, AMT ′, such that:

AMT ′ = (N′,E ′,A′) (5.4)

where N′, E ′ and A′ result from the application of the transformation rules from R

on the original AMT’s N, E and A respectively.

Structural transformations are rule-based and generally reusable. They may alter both

the structure of the AMT as well as the attributes of its nodes yielding a new AMT, or

design model, that is functionally isomorphic to the application model, but that defines

the macro-organization of the application. Common examples of structural decisions

include target platform and language, the use of architecture and design patterns, and

code distribution. For example, these decisions can determine whether or not we use

JPA, Spring JDBC, or Active Record for the persistence. Similarly, we might opt to

generate DAOs as a means of enforcing a separation of concerns within the generated
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code. These choices will obviously yield very different designs when the model is

ultimately translated into native code.

5.3.1.2 Styling Transformations

In contrast to structural transformations, Styling transformations preserve the under-

lying structure of the design model’s AMT, but add more information to the AMT’s

nodes. This results in an AMT that is not only functionally isomorphic to the origi-

nal application model, but that is structurally isomorphic to the design model. Styling

transformations not only use the injection descriptors but also decorate the design model

with additional platform-specific elements to address intra-class, micro-organizational

decisions.

Styling transformations change the AMT by:

• Adding attributes.

• Removing attributes.

Definition 5.4. A styling transformation on an abstract model tree, AMT , results in

a new abstract model tree, AMT ′, such that:

AMT ′ = (N,E,A′) (5.5)

where N and E are the same sets that were defined for the original AMT, and A′

results from the application of transformation rules from R on A.

In this case the transformations are permitted to modify the attributes of any node, but

are not permitted to alter the set of nodes or their edges. Examples of styling transforma-

tions include: implementation idioms and related techniques; visual layout; and theme.

Styling transformations are usually not application-specific, and are highly reusable.
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One common use for this kind of transformation is platform-specific widgets. We con-

sider three cases:

Case 1 The same widget exists in both platforms. Examples include text fields, labels,

and buttons.

Case 2 The same widget does not exist on both platforms, but can be simulated with

differing levels of effort. For example, radio button groups exist natively on

Android, but must be simulated or replaced on iOS.

Case 3 The widget does not exist in both platforms and cannot be effectively simu-

lated. Examples include Android’s ImageButton and iOS’s PageView. Even

though the widget could be encoded within the DSL, the application cannot

be made cross-platform without changing the transformations and templates

to use, for example, a new widget library.

By using the annotations that were defined on the requirements model and propagated

through the subsequent transformations, the styling transformations can modify the

approach to widget generation and embed those decisions within the implementation

model. Deferring these lower-level decisions until model transformation enables us to

make selections that are appropriate for the desired overall characteristics of the target

runtime environment. For example, while it may be a functional requirement that a list

of items be sortable within the UI, we can further refine the approach to emphasize the

characteristics of one sort algorithm over another depending on the target runtime en-

vironment and its particular constraints. Such discrimination is critical given that we

must make different time-space trade-offs based on the target platform.

5.3.2 Organization

The implementation model can be thought of as a design of the application with the

modules, classes, and their relations determined. The implementation model defines

three major aspects of the overall application’s organization:

• Modules. The macro-organizational aspects of the application.
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• Resources. The component files that will comprise the completed applications.

Such files may include source files, but also whatever descriptors are required by

the target platform.

• Fragments. The fragments of content that are used to construct the final resources.

Conceptually these elements are composited, that is, modules are comprised of re-

sources, which are in turn comprised of fragments. While the implementation model

doesn’t directly contain these elements, it contains the information that is required to

generate these elements during the code generation process in the form of injection

descriptors.

5.3.3 Injection Descriptors

Each element in the implementation model is associated with one or more injection

descriptors, D = {d1,d2, ...,dk}. It is the combination of the implementation model’s

organization, combined with the injection descriptors that enables AXIOM to success-

fully generate native code for the target platform.

Definition 5.5. An injection descriptor, di, is a 3-tuple:

di = (target, template-ref, binding) (5.6)

where target refers to an implementation model element, template-ref is a reference

to the code template to be used to generate the code for this element, and binding

is a map of key-value pairs that are used within the code templates during code

generation.

5.4 Translation

During the Translation stage, the implementation model, MI , is converted into native

source code for the target platform. The implementation model contains nodes that will
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be mapped to specific items to be included in the implementation, such as project files,

class files, resource files, etc. It also includes all of the information needed to populate

each item to be generated. The task is to serialize the information stored in the AMT

into linear text files in the implementation.

AXIOM’s code generation algorithm, Generate, accepts an AMT, M, and produces

native code. Generate is template-based [96] and its code templates capture knowledge

and information about both the programming language used in the target platform and

the API of the native SDK. Each code template contains a parametric code fragment

and an injection point, the location where the code fragment can be inserted. This

information, along with the injection descriptors from the implementation model, drives

the code generation process.

Generate(M)

1 Traverse M in depth-first order
2 for each node n ∈ N in M
3 for each injection descriptor di of n
4 Retrieve the template di[template-ref ]
5 for each parameter, p, in the template
6 Substitute di[binding][p] for p
7 Inject the instantiated code to di[target]

at the injection point specified by the
code template.

8 for each item in the native implementation
9 Aggregate the code fragments into a linear

source code file

Listing 5.2 shows a partial code template used to generate the Java source for the views

in the requirements model. This template’s placeholders such as PACKAGE corre-

spond to keys within the injection descriptor being applied to the node in the AMT.

Javadoc-like placeholders such as /**IMPORT INJECTION POINT**/ indicate addi-

tional injection points that are associated with their own code templates. These injection

points are associated with their own injection descriptors and will be processed during

the execution of the Generate function

AXIOM has a knowledge of many of the core widgets of both the iOS and Android

platforms. This knowledge was derived through a separate process whereby the API was

consumed and a map built defining the widgets, their classes, their available properties
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and the associated getters and setters. When AXIOM generates native code, the map

for the target platform is consulted. Any property not located in the map is ignored.

A modeler could thus provide both Android and iOS properties on the model but only

the properties of the target platform would be incorporated. This is in keeping with

AXIOM’s goal of preserving a modeler’s ability to be as platform-specific or platform-

neutral as desired.

Each platform has its own default configuration, which include aspects of UI design

including font size, style, and color. These defaults act as a kind of CSS style when

they are applied during the code generation process. They can be easily modified to

meet new and changing needs, making them potentially application-independent and

reusable.

One key difference between AXIOM and other MDD transformation approaches is that

we do not require a formal metamodel mapping to the OMG’s Meta Object Facility

(MOF). One key purpose of MOF is to drive XML Metadata Interchange (XMI), an

OMG standard for allowing UML models to be represented in a portable format that

can used across different modeling products and tools. In essence MOF attempts to

provide the same “write once, read anywhere” properties as Java. Because the AXIOM

models are just Groovy source code, any text editor has the ability to open the models,

which means that existing software development tools can manipulate these models.

This also allows AXIOM to provide transformations and translations for technologies

without MOF models.

1 package ___PACKAGE___;
2 /**IMPORT INJECTION POINT**/
3 public class ___VIEWNAME___
4 extends ___SUPERCLASS___ {
5 /**DECLARATION INJECTION POINT**/
6 @Override
7 public void onCreate(Bundle state) {
8 super.onCreate(state);
9 /**ONCREATE INJECTION POINT**/

10 }
11 /**METHOD INJECTION POINT**/
12 }

LISTING 5.2: Partial template for Java view implementation.
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Figure 5.5 shows the screen shots of the application generated from the sample applica-

tion in Listing 5.1. In this case the AXIOM model and its corresponding transformations

are for the iOS version of the application. An equivalent Android implementation could

also be generated.

If instead of a mobile application we desired a web application, then we would require

new structural and decorative transformation rules as well as an appropriate set of tem-

plates for use during the code generation phase of model transformation. We briefly

discuss the use of AXIOM in support of alternate domains in Chapter 9.3.1.

FIGURE 5.5: Screen shots of generated application on iOS. Author’s image.





Chapter 6

The AXIOM Notation

The AXIOM notation is the actual modeling language. Requirements models are cre-

ated in model definitions files and are then processed as described in 5. Intuitively, AX-

IOM model objects form a tree, organized into progressively more granular elements

the deeper in the tree those objects are located.

In this chapter we discuss the basic AXIOM language elements and their impact on the

final, native code.

6.1 MADL Files

Each application is defined within a single Mobile Application Definition Language,

or MADL, file. MADL is synonymous with the AXIOM notation. However, whereas

AXIOM describes our entire approach to model-driven mobile application development,

MADL refers only to the notation.

MADL files use a .madl extension and can be used to generate multiple native applica-

tions with the help of a model configuration file.

63
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6.1.1 Model Configuration Files

Model configuration files define certain key pieces of information about the application

itself as well as about the target platforms for which code will ultimately be generated.

Listing 6.1 provides a simple example:

1 developer {
2 name = "App Team"
3 org = "App Inc"
4 domain = "apps.com"
5 }
6 platform {
7 ios {
8 version = 7
9 }

10 android {
11 version = 4.4
12 }
13 }

LISTING 6.1: Simple MADL configuration file, version 1.

This simple example defines some high-level information about the application provider

in the developer section, as well as information about the target iOS and Android

platforms in the platform section. It is possible to use a single model configuration file

for multiple applications to help ensure consistency.

6.2 Objects, Attributes, and Attribute Values

There are several commonly-used objects within MADL:

Application Represents the application as a whole. There can only be one of

these objects for each application and it must be the root object

in the model.

Top-Level Views UI elements that act as screens within the application. Each view

acts as a state within the applications state machine. Only view

objects can be children of the application object.
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Widgets Logical UI controls that provide the main functionality of the

user interface. Widgets include components such as labels or

buttons and are use to trigger state transitions between views.

Containers Groupings or collections of widgets. Groups are a special kind

of widget and effectively allow modelers to implements the Com-

posite design pattern.

Each object within MADL follows the same syntax:

ObjectType ( Attributes ) {
Children

}

Each ObjectType must be one of those supported by MADL. Children are other,

nested objects. For widgets there will be no children and the curly braces can be omitted.

An object’s Attributes are a comma-delimited list of key-value pairs in the form of:

key 1 : value 1, key 2 : value 2, ..., key N : value N

Each MADL object type has a set of unique keys. Although arbitrary key-value pairs

may be provided, unless they map to the pre-defined attributes for the specified object

type, they will be ignored.

Besides being simple key-value pairs, attributes can also be objects. In such cases, their

value can be a collection of attributes themselves. For example, the font attribute (of

type Font) demonstrates some of the flexibility of MADL attributes. It accepts a 3-tuple

of:

[font-name, font-style, font-size]

Attribute values can be provided in any order. If no values are provided default values

will be used.
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6.3 Applications

The root of each MADL file is the app element. This is the basis for the abstract model

tree that we defined in Chapter 5.1. Each application is rooted in an app node with a set

of related properties, along with a set of views, which represent the various screens in

the mobile application.

Consider the classic “Hello, World” example shown in Listing 6.2. In this example the

application has the name of “Hello, World” and contains a comment placeholder iden-

tifying a single top-level view. Views are described in more detail in the next section.

1 app(name:’Hello World’) {
2 // top-level view
3 }

LISTING 6.2: Requirements model of “Hello, World” application, version 1.

6.4 Top-Level Views

Each application can have one or more top-level views. Views act as the states in the

application’s state diagram, with the first view being the start state when the application

is first executed. A simple, one-view example is shown in 6.3:

1 app(name:’Hello World’) {
2 View {
3 // widgets
4 }
5 }

LISTING 6.3: Requirements model of “Hello, World” application, version 2.

6.4.1 View Types

There are several types of views supported by MADL, each of which supports a com-

monly used mobile interface style. Table 6.1, describes these view types and the plat-

forms that support them.
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TABLE 6.1: MADL View Types.

View Type Description Platform
Android iOS

Expandable List View Groups list data by categories that can be
open (expanded) or closed.

X

List View Displays a scrollable list of items. X X

Navigation View Displays the application’s main naviga-
tion options.

X X

Page View Displays content page-by-page. X

Popup Displays a popup window. Popups must
be defined within another view type.

X X

Tabbed View A view that contains other views. Each
nested view receives its own tab on the
parent view.

X X

View A generic view with no special function-
ality.

X X

6.4.2 View Properties

Like other objects within MADL, views have properties. One of the most useful is

the id property, which uniquely identifies each view within the application. The id is

used by widgets to navigate between views, and thus act as the state transitions within

the application’s state machine. As shown in Listing 6.4, views can have additional

properties such as titles, backgrounds, and orientations.

1 app(name:’Multi -View’) {
2 View(id:view1 , title:’View 1’) {
3 // widgets , with transition to view2
4 }
5 View(id:view2 , title:’View 2’) {
6 // widgets , with transition to view1
7 }
8 }

LISTING 6.4: Requirements model of multi-view application, version 1.
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6.4.3 Navigating Between Views

Each mobile platform supports a variety of graphical widgets. These will be discussed

more in Section 6.5, but here we wish to examine a key property of some widgets, which

is the support of navigation through the views of the application.

Select widgets such as Button, Item, and Image have a property called next. This

property refers to the unique ID of a view within the application and is used to navigate

the user to that view. Listing 6.5 shows the same two-view application from Listing 6.4,

but includes Button widgets that trigger navigation between those views.

1 app(name:’Multi -View’) {
2 View(id:view1 , title:’View 1’) {
3 Button(text:’Show View 2’, next:view2)
4 }
5 View(id:view2 , title:’View 2’) {
6 Button(text:’Show View 1’, next:view1)
7 }
8 }

LISTING 6.5: Requirements model of multi-view application, version 2.

View navigation can be specified either by using a view ID or by using the Previous

and Top keywords. The view ID sends the user to the view with the specified ID, the

Previous keyword sends the user to the most recent view, and the Top keyword sends

the user to the top-most, or initial application view. The applicability of these different

navigational types is shown in Figure 6.1.

6.4.4 Passing Data Between Views

In many cases, one view will need to use the data from another view. For example,

we might use one view to acquire some data and a second view to actually process that

data. For such a design approach to work, we must be able to pass data from the source

view to the target view. To accomplish this, we use a variation of the next attribute that

accepts not only a view ID but the data to be provided to that view:

next: [to: view-id, data: expression]
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The data element of the list can contain any data that the developer needs to provide to

the view including complex types such as objects, lists, and maps. The target view can

then refer to that data using an implicit variable called ’data’.

From State... To State... Available Navigation Types
ID Previous Top

View1 View2 X
View1 View3 X

View2 View1 X X X
View2 View3 X

View3 View1 X X
View3 View2 X X X

FIGURE 6.1: Availability of navigation types for view display. Author’s image.

6.5 Widgets

Applications and views by themselves don’t provide much in the way of functional-

ity. In order to implement a user interface, each view must incorporate widgets. For

example, we can add a Label widget that displays static text as shown in 6.6:

1 app(name:’Hello World’) {
2 View {
3 Label(text: ’Hello , World!’,
4 font: [Bold , 36], color: Red)
5 }
6 }

LISTING 6.6: Requirements model of “Hello, World” application, version 3.

In this case, the Label requires the text attribute to be provided, but we have also

provided several optional attributes such as font and color.
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6.5.1 Model Configuration and Widget Mappings

As we discussed in Chapter 5, one of AXIOM’s challenges is to be able to represent

platform-specific widgets in a platform-independent way. Within MADL this is facili-

tated using the design section of the model configuration file, as shown in Listing 6.7.

1 developer {
2 name = "App Team"
3 org = "App Inc"
4 domain = "apps.com"
5 }
6 platform {
7 ios {
8 version = 7
9 }

10 android {
11 version = 4.4
12 }
13 }
14 design {
15 android {
16 Selection {
17 type = ’RadioGroup’
18 }
19 }
20 }

LISTING 6.7: Simple MADL configuration file, version 2.

In this example we have overridden the default drop-down list that would ordinarily be

selected with a RadioGroup implementation instead. It is possible to make this change

at the application level, as shown here, or to only specific instances of the Selection.

6.6 Actions

Applications of any real usefulness will typically need to respond to user actions and

perform related tasks. Listing 6.8 shows a simple application and how it can react to

actions initiated by the user’s interaction with the widgets. Specifically, interactions

with the various widgets in the application will cause a label’s text to be updated to

reflect that interaction.
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The Label defined on line 4 has an attribute called id, which allows us to assign it a

unique ID within the model. This ID can be used to refer to that widget from anywhere

within the model. The various Button, Slider, Switch and Selection widgets each

define a closure for the action attribute. Whenever the user interacts with a widget, the

closure for its action will be executed. In this example, each action closure is defined

to update the text of the label with ID ’label’. This example also demonstrates the use

of template string expressions such as $value on lines 14 and 21. This is little more

than the use of a Groovy-String, or G-String, to evaluate an expression.

In addition to explicitly-defined actions, like those shown in Listing 6.8, MADL also

supports the concept of implicit actions. An implicit action is one that is defined by

virtue of the relationships between widgets. For example, consider the following snip-

pet:

Switch(id: sw1)
Label(text: ’Switch is ’ + (sw1.on ? ’On’ : ’Off’))

Notice that the Label uses the value of the Switch widget to display its current state.

However, Label widgets don’t support the action attribute – they are entirely passive

controls and do not perform actions by themselves. However, AXIOM will identify the

relationship between these two widgets and generate an implicit action for the Switch,

effectively transforming the snippet above to the following:

Switch(
id: sw1,
action: {label1.text = ’Switch is ’ + (sw1.on ? ’On’ : ’Off’)}

)
Label(id:label1)

Implicit actions are a convenient way for the application developer to focus on the result

that they want and not on the mechanics of realizing that result.
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1 app(name: ’Actions’) {
2 View {
3 Label(text: ’Simple Actions’)
4 Label(id: label, width: ’*’)
5 Button(
6 text: ’Button 1’,
7 action: {label.text = ’Button 1: Touched’}
8 )
9 Button(

10 text: ’Button 2’,
11 action: {label.text = ’Button 2: Touched’}
12 )
13 Slider(
14 action: {label.text = "Slider: ${value}"}
15 )
16 Switch(
17 action:
18 {label.text = ’Switch is ’ + (on ? ’On’ : ’Off’)}
19 )
20 Selection(
21 options: [’One’, ’Two’, ’Three’],
22 action: {label.text = "Current selection: ${value}"}
23 )
24 }
25 }

LISTING 6.8: Simple actions.

6.6.1 View States

Actions provide significant flexibility in terms of being able to manage the user experi-

ence of an application. However, by themselves they also make the model much harder

to understand and maintain. Consider Listing 6.9 as an example.

The actions in this case are a more complex sequence of changes rather than the simpler,

single changes that we’ve looked at until now. Since there is no limit on the complexity

of an action, it is clear forcing the action code to be inline with the widget definition

does not lead to easily understandable or maintainable models. To address this problem,

MADL provides view states.

View states are a mechanism by which the logic of an action can be placed into an

external state definition and referenced using a widget’s next attribute. If we consider

each view to be a state within the mobile application, then view states are like sub-states.
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Listing 6.10 demonstrates the use of view states to make the code from Listing 6.9 more

readable. Figure 6.2 shows the state diagram corresponding to this simple application.

1 app(’App State’) {
2 View(id: view1) {
3 Label(id: l1, text: ’Hello’, width: ’*’)
4 Text(id: t1, prompt: ’enter text’)
5 Row {
6 Button(id: b1, text: ’Enable’, action: {
7 t1.enabled = true; b1.enabled = false;
8 b2.enabled = true
9 })

10 Button(id: b2, text: ’Disable’, action: {
11 t1.enabled = false; b1.enabled = true;
12 b2.enabled = false
13 })
14 }
15 }
16 }

LISTING 6.9: Complex actions, version 1.

The new model defines two state objects. These objects are similar to views in that

they have unique identifiers that are used to navigate between them. The first state is

always considered the initial state and will be executed when the view is first rendered.

Each state can define closures representing the major lifecycle events of that state.

The onEntry closure will be executed whenever that state becomes active.

View states are activated using the next attribute of the widgets that comprise the view’s

UI. In this example, the view changes state in response to the user interactions with the

two buttons defined on the view.

6.6.1.1 Guard Conditions

There is one additional refinement that we can make to the model in Listing 6.10 and that

is to shift the transition between states from the view widgets to the states themselves.

At the same time we can impose guard conditions on when those transitions are followed

by using the when keyword within the affected view state as shown in Listing 6.11.
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1 app(’App State’) {
2 View(id: view1) {
3 Label(id: l1, text: ’Hello’, width: ’*’)
4 Text(id: t1, prompt: ’enter text’)
5 Row {
6 Button(id: b1, text: ’Enable’, next: s1)
7 Button(id: b2, text: ’Disable’, next: s2)
8 }
9

10 state(id: s1) { // initial state
11 onEntry {
12 t1.enabled = true; b1.enabled = false;
13 b2.enabled = true
14 }
15 }
16 state(id: s2) {
17 onEntry {
18 t1.enabled = false; b1.enabled = true;
19 b2.enabled = false
20 }
21 }
22 }
23 }

LISTING 6.10: Complex actions, version 2.

6.6.2 Events

MADL supports a variety of built-in events to deal with common mobile interactions.

The application shown in Listing 6.12 uses two events, onShake and onTouch, to react

to interactions with the mobile device itself, rather than to react to interactions with

specific graphical widgets. Table 6.2 provides examples of commonly-used events.

FIGURE 6.2: View states. Author’s image.
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1 app(’App State’) {
2 View {
3 Label(id: l1, text: ’Hello’, width: ’*’)
4 Text(id: t1, prompt: ’Line 1’)
5 Text(id: t2, prompt: ’Line 2’)
6 Button(id: b1, text: ’Done’)
7
8 state(id: s1) { // initial state
9 onEntry { b1.enabled = false }

10 when { t1.text && t2.text } next s2
11 }
12 state(id: s2) {
13 onEntry { b1.enabled = true }
14 when { !t1.text || !t2.text } next s1
15 }
16 }
17 }

LISTING 6.11: Complex actions, version 3.

Each event is defined as a closure, which allows it to interact with all of the widgets

within the view, as well as implementing any required business logic.

Events can also define closures to be executed before or after the event itself. List-

ing 6.13 demonstrates the use of the doAfter closure attached to the onTap event. In

this case the doAfter closure changes a label in the view based on whether or not the

user taps or double-taps the display. Notice that the first doAfter block has a time delay

of 2.5 seconds, which defers the execution of the closure for that period of time. The

second onTap event (which could also have been defined using the onDoubleTap event)

performs its doAfter script immediately after its own execution.

TABLE 6.2: MADL Events.

Event Is triggered when...
onDoubleTap The device’s screen is tapped twice in quick succession.

onOrientationChange The device’s orientation changes between portrait and
landscape.

onShake The device is shaken.

onTap The screen is tapped. An optional parameter can be used to
indicate how many taps are expected for the closure to be
executed.

onTouch The device’s display is touched.
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1 app(’Shake and Break 01’) {
2 View(statusBar: no) {
3 Image(id: home , file: ’home.png’)
4 onShake {
5 home.file = ’homebroken.png’
6 play ’glass.wav’
7 }
8 onTouch {
9 home.file = ’home.png’

10 }
11 }
12 }

LISTING 6.12: Event handling, version 1.

1 app(’Tap Gesture 2a’) {
2 View {
3 Label(id: label1)
4 Label(id: label2)
5 onTap {
6 label1.text = ’Single tap detected’
7 } doAfter delay:2.5.second , { label1.text = ’’ }
8 onTap(taps: 2) {
9 label2.text = ’Double tap detected’

10 } doAfter { label2.text = ’’ }
11 }
12 }

LISTING 6.13: Event handling with lifecycles.

6.6.2.1 Events and View States

MADL allows events to be combined with view states, thereby permitting an application

to be behave differently for the same event depending on its current state. Listing 6.14

demonstrates this capability.
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1 app(’Shake and Break 01’) {
2 View(statusBar: no) {
3 Image(id: home)
4 state(id: s0) {
5 home.file = ’home.png’
6 }
7 state(id: s1) {
8 home.file = ’homebroken.png’
9 onTouch(next: s0)

10 }
11 onShake {
12 play ’glass.wav’
13 } next s1
14 }
15 }

LISTING 6.14: Event handling with view states, version 1.





Chapter 7

Evaluation

A proof-of-concept prototype tool has been developed to demonstrate the feasibility of

AXIOM. The prototype tool transforms AXIOM models into native implementations

for the Android and iOS platforms. The design of the generated code follows the com-

mon MVC architecture. While only a subset of the native iOS and Android APIs are

currently supported, the prototype tool adequately demonstrates the feasibility and the

potential benefits of the AXIOM approach.

7.1 Approach

Using the prototype tool, we conducted two kinds of analyses: small-scale and mid-

scale. The small-scale tests evaluated the initial AXIOM Requirements model against

the code generated from that model. The mid-scale tests compared the code generated

from the Requirements model to hand-written code provided by experienced software

developers.

7.1.1 Small-Scale Experiments

In these experiments we assessed more than 100 small-scale tests, each of which models

a working mobile application that can be successfully built and deployed on iOS and

79
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FIGURE 7.1: Strip plot of SLOC by platform. Author’s image.

Android devices and which demonstrate functionality common to many mobile appli-

cations including screen navigation and assorted widgets – some cross-platform, others

not.

The strip plot in Figure 7.1 shows the comparative frequencies of the source lines of

code by platform and provides some basic descriptive statistics. The plot uses transpar-

ent points for each data point, so the darker the area, the more points are concentrated

there.

The sample applications were developed by Masters students from DePaul’s Software

Engineering program. These students were all experienced software developers, al-

though there were significant differences in their mobile application development ex-

pertise. None of them had used AXIOM before but they were trained in its DSML.

7.1.2 Mid-Scale Experiments

In these experiments, five mid-sized applications were developed featuring a variety of

navigation and user interactions. Table 7.1 describes the applications and some aspects

of their structure and complexity.
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TABLE 7.1: Description of Mid-Scale Applications.

App. Description
Screen Transition
Count Count

CAR Shop for cars by makes and models. 6 8

CVT Unit conversions for weight, volume, etc. 8 7

EUC Data about EU member countries. 3 2

MAT A memory game where players must match pictures. 1 1

POS A simple restaurant point-of-sale system. 8 9

The native-code versions of these applications were developed by a Masters student

from DePaul’s Software Engineering program. The AXIOM models were developed

by the same student with significant training and input from the authors. To ensure

consistency, each application had a pre-defined set of requirements that needed to be

met by both the AXIOM and hand-written implementations.

7.1.2.1 CAR

The CAR application allows a user to browse for cars. They can define some simple

filter criteria. Searching based on that criteria will send them to a list of matching

automobiles. Selecting one of the automobiles provides more details. A finite state

machine and transition table for the CAR application is shown in Figure 7.2.

From State... To State... By Transition... Guarded By... Action...
Set Filters Make List Button — —

Make List Car List Selection — —

Car List Car Detail Selection — —

Car Detail Car List Back — —

Car List Make List Back — —

Make List Set Filters Back — —

FIGURE 7.2: Transition table for CAR application. Author’s image.
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The screen captures in Figure A.1 provide a side-by-side comparison of the AXIOM-

generated and natively implemented screens. In most cases the screens are nearly iden-

tical save for stylistic issues such as font style and size.

7.1.2.2 CVT

The CVT application allows a user to perform assorted unit conversions. The user

first selects the kind of conversion to be performed. They then provide the value to

be converted as well as the unit to which it will be converted. The final screen shows

the results of the conversion. A finite state machine and transition table for the CVT

application is shown in Figure 7.3.

From State... To State... By Transition... Guarded By... Action...
From Unit Input Value Selection — —

Input Value Results Button — —

Input Value Unit List Button — —

Unit List Input Value
Selection — —
Back — —

Results Input Value Back — —

Input Value From Unit Back — —

FIGURE 7.3: Transition table for CVT application. Author’s image.

The screen captures in Figure A.2 provide a side-by-side comparison of the AXIOM-

generated and natively implemented screens. As shown in the screen captures, style and

layout are again somewhat different between the two applications. In the case of the
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native Android application, a calculator widget is invoked when the user is prompted to

enter their value, something that is not currently generated by the AXIOM transforma-

tion and translation rules.

7.1.2.3 EUC

The EUC application displays data about European Union countries. The user first

selects the country of interest. They are then shown the details of that country. They may

choose to follow an optional link to a Wikipedia page about the selected country. The

finite state machine and transition table for the EUC application is shown in Figure 7.3.

From State... To State... By Transition... Guarded By... Action...
Country List Country Details Selection — —

Country Details Wikipedia Page Link — —

Country Details Country List Back — —

FIGURE 7.4: Transition table for EUC application. Author’s image.

The screen captures in Figure A.3 provide a side-by-side comparison of the AXIOM-

generated and natively implemented screens. As shown in the screen captures, style and

layout are again somewhat different between the two applications. This application is

different from the others in that interaction with the generated application causes the

built-in browser to be opened and thus for the application context to change.

7.1.2.4 MAT

The MAT application is a simple memory game where the user attempts to locate and

remember matching pairs of numbers. The finite state machine and transition table for

the MAT application is shown in Figure 7.5.
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From State... To State... By Transition... Guarded By... Action...
Game Screen Game Screen Selection — —

FIGURE 7.5: Transition table for MAT application. Author’s image.

The screen captures in Figure A.4 provide a side-by-side comparison of the AXIOM-

generated and natively implemented screens. As shown in the screen captures, style and

layout are again somewhat different between the two applications.

7.1.2.5 POS

The POS application is a simple point-of-sale system for ordering food from a restau-

rant. The user is offered the choice of dining in, carrying out, and delivery. Once they

select their option they can either select a table, in the case of eating in, or browse the

menu. For each item on the menu, the user can select their options and add it to their

order. Once their order is complete, they can click the “Finish” button to place their

order. The finite state machine and transition table for the POS application is shown in

Figure 7.6.

The screen captures in Figure A.5 provide a side-by-side comparison of the AXIOM-

generated and natively implemented screens. As shown in the screen captures, style and

layout are again somewhat different between the two applications.
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From State... To State... By Transition... Guarded By... Action...

Main Screen
Select Table Dine-In — —
Delivery Info Delivery — —
Pick-Up Info Pick-Up — —

Delivery Info
Main Screen Back — —
Menu Screen Select Food — —

Pick-Up Info
Main Screen Back — —
Menu Screen Select Food — —

Menu Screen Menu Options Select — —

Menu Options
Main Screen Back — —
Order Add to Order — —

Order
Menu Screen Order Items — —
Finish Finish — —

FIGURE 7.6: Transition table for POS application. Author’s image.

7.1.3 Analyses

Each set of experiments was subjected to different analyses. Both the small- and mid-

scale experiments were analyzed quantitatively, as described by the metrics in Sec-

tion 7.2. In addition, the mid-scale experiments were of sufficient scale to make it

feasible to perform an additional qualitative analysis as described in Section 7.3.

7.2 Quantitative Analysis

Both sets of experiments defined metrics for representational power and information

density.
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7.2.1 Representational Power

Representational power measures how much code in one language is required to pro-

duce the same application in another language. This provides a rough indication of

the relative effort expended by a developer to produce an application using different

languages.

Our evaluation compared the source lines of code (SLOC) of the AXIOM Requirements

models to the generated SLOC for both iOS and Android. For the comparative evalua-

tion of the SLOC, we used CLOC [97] with Groovy as the source language for AXIOM.

The Android and iOS platforms were accounted for using Java and Objective-C respec-

tively. The SLOC counts do not include “non-essential” code such as comments or

block delimiters such as braces.

While SLOC is not ideal in terms of representing application complexity because of the

potential size differences introduced by developer ability, in this case we felt the metric

to be appropriate. First, the applications were straightforward enough that developer

ability was likely not a significant factor. Second, we had a limited number of devel-

opers perform the actual coding, which helped to control for the inevitable variation

in ability. Third, had we chosen to analyze story or function points, we would likely

have seen significant clustering of the data owing to the comparative simplicity of the

applications. By focusing on SLOC we were able to see relative differences in the sizes

of the different representations of the applications.

Our analysis of SLOC assumes that developer productivity measured in source lines-

of-code per person-hour (SLOC/PH) is roughly constant regardless of languages used.

Research by Jiang [98] suggests that while language generation can significantly affect

developer productivity, differences between languages in the same generation are less

pronounced. Since we focus on platforms using Objective-C and Java, both of which

are 3GL, we believe our assumption to be reasonable.

Like Jiang, Kennedy [99] identifies language as a significant component of productivity.

Kennedy’s relative power metric, ρL, based on SLOC, measures the relative expressive-

ness of one language to another.
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Definition 7.1. Kennedy’s Relative Power Metric is given by:

ρL/L0 =
I(ML0)

I(ML)
(7.1)

where I(ML0) is the SLOC required to implement model M in native code and I(ML)

is the SLOC required to implement M in AXIOM.

7.2.2 Information Density

Information density is a measure of a language’s conciseness. Languages with high

information densities have more compact representations. To evaluate comparative in-

formation densities, we created ZIP files using gzip, which is based on the DEFLATE

algorithm, excluding all files that were not generated by AXIOM. We then compared

the compression ratios, CRL, derived using:

CRL =
Uncompressed I(ML)

Compressed I(ML)
(7.2)

where L is the language in question. While compression ratios will vary from model to

model, a large number of samples can serve to provide a typical value for CRL. We then

used the compression ratios to derive the language density.

Definition 7.2. Language Density, δ, is defined as:

δL/L0 =
CRL0

CRL
(7.3)

Language density is similar to Kennedy’s relative power metric, but it relates one lan-

guage to another based on their respective compression ratios. This is different than
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measuring how many lines of code are required in different languages for similar repre-

sentations since one language might use a verbose syntax and the other a very concise

one even though their SLOC measurements are the same.

7.3 Qualitative Analysis

For the qualitative analysis we used SonarQube1 [100], an open-source, static code

quality analysis tool that is popular with software developers. SonarQube uses a set

of plugins to perform static source code analysis using common plugins such as Find-

Bugs [101, 102].

Within SonarQube we used the Android Lint plugin to analyze the Android code. It

provides a more specialized analysis of the code and supporting files than would the

standard Java analysis, which was a reasonable second choice. For the iOS code analysis

we used an open-source Objective-C plugin [103].

7.3.1 Source Code Organization

One way to begin our qualitative analysis is with source code organization. In other

words, how is the source code allocated by file, function, and class. These metrics can

be useful in discussing later topics such as complexity.

SonarQube uses a different algorithm for calculating the SLOC than CLOC does, which

leads to discrepancies in the SLOCs when compared to the quantitative analysis. In

particular SonarQube:

• Identifies a new SLOC by the presence of a carriage return.

• Ignores all comment lines.

• Treats trivial lines, such as those containing curly braces, as its own SLOC, some-

thing we eliminated for the quantitative analysis.

1SonarQube was formerly known as “Sonar”.
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• Does not include the XML files in the analysis. This is a limitation of the plugin.

Thus this part of the analysis is limited only to the Java code. Since much of

the XML documents tends to be generated by an IDE rather than by hand in

either approach, the elimination of those files’ contributions to the SLOC is not

significant.

Since we are referring to other SonarQube metrics during our analysis of the experi-

mental results, we will use the SonarQube SLOC to ensure consistency.

7.3.2 Issues and SQALE

SonarQube performs its analysis by applying individual rules to the source code based

on the language being analyzed. For example, one set of rules will apply to Java code

while another set will apply to Objective-C code. In the cases of projects with multiple

languages, SonarQube can analyze each language according to its own set of rules and

then aggregate the results into a single quality report.

The rules are organized according to the SQALE Quality Model [104, 105], which is

used to organize the non-functional requirements that relate to code quality and techni-

cal debt. This organization is defined by characteristics, sub-characteristics, and require-

ments. For our purposes, the eight SQALE “characteristics” are of primary interest:

1. Testability

2. Reliability

3. Changeability

4. Efficiency

5. Security

6. Maintainability

7. Portability

8. Reusability
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Each rule is given a severity indicating how much of an impact a violation of the rule

may have on the finished application. SonarQube identifies five severity levels. From

least critical to most critical these are:

1. Info

2. Minor

3. Major

4. Critical

5. Blocker

To some extent these severities are arbitrary, but in general the more severe the issue or

rule violation, the greater the chance that the code causing the issue contains a latent

defect. The most common issue identified above, “Hardcoded Text”, is a minor issue; it

is undesirable, but will not stop the application from actually executing (although it does

impact it’s ability to be effectively internationalized). False positives and negatives are,

of course, possible, which is why static analysis is often followed up with some kind of

code inspection.

Given the number of issues identified for an application, and given the count of the

application’s lines of code, we can now calculate the issue density, which is just a more

generic form of defect density:

Definition 7.3. Issue Density is defined as:

Issue Density =
Issue Count

LOC
(7.4)

7.3.3 Code Duplication

Another quality measure is the amount of code duplication that occurs within the code

base. Such duplication is usually the result of so-called “copy-paste” reuse, where a
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useful block of code is copied to a new location. This is often the result of individual

developers not being able or willing to refactor the code in such a way as to encourage

DRY and SOLID [106–108] principles. In general the goal is to minimize the amount

of redundant code found in a given code base. SonarQube uses PMD [109] to analyze

the source code for duplicate code using an implementation of the Karp-Rabin [110]

string matching algorithm.

7.3.4 Complexity

The final set of qualitative metrics that we analyze involve code complexity. SonarQube

provides an analysis of cyclomatic complexity for the overall application as well as by

function, class and source file. While arguably this complexity isn’t as important for

generated code, since all maintenance is intended to be done via the model rather than

by changing the generated code directly, code that is more complex than necessary will

tend to be less performant than equivalent, simpler code. The code generation templates

required to build such structures will typically be more complicated than equivalent,

simpler templates, which can make the maintenance and extension of the templates

more difficult as well as being more likely to inject defects into the generated code.





Chapter 8

Evaluation Results

8.1 Quantitative Results

Each metric in the quantitative analysis requires one or two languages depending on

whether or not it is nominal or ratio. Nominal metrics, such as compression ratio, refer

to language L0 which can be any of iOS, Android or AXIOM. Ratio metrics, such as

relative power or language density, compare two languages, L0 and L. L0 is the base

language and is either Android or iOS. L is the target language, which is always AXIOM

for our purposes.

Table 8.1 summarizes the results of our analysis of representational power and informa-

tion density based on the median SLOC from the small- and mid-scale tests. To simplify

the analysis, we treat all generated code for each platform as a single “language” even

TABLE 8.1: Median small-scale case metrics.

Test Cases of language L0 of
(n = 104) iOS Android AXIOM

Representational Power
Source LOC 171.50 106.00 15.00
Relative Power 11.43 7.07 1.00

Information Density
Compression Ratio 12.01 16.71 1.88
Language Density 6.39 8.89 1.00

93
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though the generated code may comprise several different languages. For example the

Android “language” includes XML and Java while the iOS “language” includes XML

and Objective-C.

8.1.1 Representational Power

The reduction in the size of the AXIOM Requirements models compared to the size

of the generated code represents a significant reduction in development time and hence

an increase in developer productivity. Since the median relative power of AXIOM is

between 6.59 and 11.43 that of iOS and between 7.07 and 7.39 that of Android, we

conclude that AXIOM is more representationally powerful than either iOS or Android.

Similarly, the median compression ratio for AXIOM’s models, 1.88 for the small-scale

tests and 4.43 for the mid-scale tests, is significantly smaller than either iOS or Android,

suggesting that AXIOM’s DSL is more compact. The median iOS and Android lan-

guage densities suggest that both languages may involve greater complexity and wordi-

ness to represent the same model than AXIOM although the values seem to gradually

converge as the applications get larger. We believe that at that scale, the percentage of

the model that is concerned with the mobile-ness of the application is outweighed by

the percentage of the application that is concerned with the business logic.

Table 8.2 shows a more detailed analysis of the individual representational powers for

the mid-scale experiments. The preliminary results show that the AXIOM-generated

code is often comparable to, if not smaller than, hand-written Android and iOS code.

In the cases of the CVT and POS applications, there was significantly less hand-written

code than generated code. These differences in SLOC result in similar differences in

the languages’ representational powers, as shown in figure 8.1 and information densities

for those tests. In the case of the CVT application, AXIOM produced 8 views whereas

the hand-written version used only 2. Similarly, for the POS application there were 9

hand-written Java files for the Android platform, but 13 for the AXIOM-generated code.
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TABLE 8.2: Comparison of mid-scale experiment representational power metrics.

Metric
Comparison of AXIOM Comparison of AXIOM

to a Generated L0 of to a Handwritten L0 of
iOS Android iOS Android AXIOM

Source LOC
CAR 435 488 594 889 66
CVT 1,384 1,125 431 538 365
EUC 726 506 559 913 46
MAT 293 311 193 245 64
POS 1,953 1,849 677 957 165

Relative Power
CAR 6.59 7.39 9.58 14.34 1.00
CVT 3.79 3.08 1.18 1.47 1.00
EUC 15.78 11.00 12.15 19.85 1.00
MAT 4.58 4.86 3.02 3.83 1.00
POS 11.84 10.89 4.10 5.80 1.00
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FIGURE 8.1: Comparison of mid-scale experiment relative power. Author’s image.
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Further refinement of the prototype could make the translation more parsimonious by

reducing instances of duplicated code and incorporating more concise syntactic struc-

tures, thereby bringing the amount of generated code closer to that of the hand-written

code. For example, there are ways within Groovy to use closures to shrink the models,

but the AXIOM prototype does not currently use such structures in its translation, which

can lead to bloated code. Further syntactic refinements are discussed in chapter 9.3.

8.1.2 Information Density

The compression ratios and language densities for the mid-scale experiments shown

in Table 8.3 and Figure 8.2 suggest that as the size of the application increases, AX-

IOM becomes more and more comparable to the native languages in terms of its abil-

ity to succinctly represent the models. For example, the median language density for

the small-scale Android experiments was 8.89 but for the mid-scale experiments it de-

creased to 1.83 for the generated code and 2.20 for the hand-written code. The iOS

platform experiences a similar reduction. These reductions are not surprising given that

AXIOM uses Groovy as its core syntax. Because Groovy is in the same language family

as both Objective-C and Java, we expect that the core characteristics of its compression

ratio and information density will be similar.

TABLE 8.3: Comparison of mid-scale experiment information density metrics.

Metric
Comparison of AXIOM Comparison of AXIOM

to a Generated L0 of to a Handwritten L0 of
iOS Android iOS Android AXIOM

Compression Ratio
CAR 9.18 10.82 9.53 10.59 4.82
CVT 6.87 7.54 9.95 12.87 7.33
EUC 9.69 9.03 10.72 11.47 4.94
MAT 10.30 16.27 10.96 15.83 4.43
POS 7.35 8.97 10.17 10.71 5.93

Language Density
CAR 1.90 2.24 1.98 2.20 1.00
CVT 0.94 1.03 1.36 1.76 1.00
EUC 1.96 1.83 2.17 2.32 1.00
MAT 2.33 3.67 2.47 3.57 1.00
POS 1.24 1.51 1.72 1.81 1.00
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FIGURE 8.2: Comparison of mid-scale experiment language density. Author’s image.

This observation suggests that there are some key factors that need to be considered

when designing a DSML:

1. There is a certain minimum amount of code that is needed to “bootstrap” even the

simplest programs and that base code is comparatively complex. This is why even

on the small-scale experiments we see a significant improvement in information

density. As more and more application logic is added, that code begins to erode

the information density improvements since the syntactic representations between

the different languages tends to converge. This in turn has a direct impact on

developer productivity, which we discuss further in chapter 9.1.

2. The truly significant benefits of the adoption of this kind of DSML will be reaped

only when the DSML is capable of concisely representing the domain-specific

concepts of the business in addition to the domain-specific concepts of mobile

applications. That is, while there is certainly benefit in allowing a mobile ap-

plication to be concisely modeled, the current AXIOM language emphasize the

modeling of the UI and interaction elements while leaving the implementation

of the application logic at a comparatively low level of detail. The net effect is
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that while there are productivity benefits to be seen, they are not as great as they

might be if a separate DSML was constructed to handle the application logic more

effectively.

8.2 Qualitative Results

For the qualitative analysis we used SonarQube1 [100], an open-source, static code

quality analysis tool that is popular with software developers. SonarQube uses a set

of plugins to perform static source code analysis using common plugins such as Find-

Bugs [101, 102].

Within SonarQube we used the Android Lint plugin to analyze the Android code. It

provides a more specialized analysis of the code and supporting files than would the

standard Java analysis, which was a reasonable second choice. For the iOS code analysis

we used an open-source Objective-C plugin [103].

To keep the analysis meaningful, we eliminate from consideration many of the ancillary

files produced either during code generation or by the developers who produced the

hand-written code. These files include many XML files that are important to the overall

ability for the application to be executed on the target platform, but which are often

generated by the various IDEs and supporting tools. We choose instead to focus only

on the Java or Objective-C code, which is where the most qualitative issues will be

found and where developer productivity will most likely be impacted by AXIOM’s code

generation capabilities.

8.2.1 Source Code Organization

Table 8.4 shows the basic organization of the source code in the various experiments.

In most cases the AXIOM prototype generates a number of artifacts that is comparable

to that produced by the developers with the hand-written code. In some cases the num-

ber of artifacts can be significantly fewer. We look at the qualities of these generated

artifacts in later sections.
1SonarQube was formerly known as “Sonar”.
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In many cases the SLOC of the AXIOM-generated and hand-written code using native

tools are almost the same. However, as shown by Figure 8.3, in two of the experiments

there is a wide divergence: CVT and POS. In both cases, the basic difference was in

the approach taken to model the code. For example, in the case of the CVT application,

both the AXIOM model and hand-written code used a series of “if” statements to per-

form the conversions. However, in the case of the AXIOM model, these calculations

spanned multiple views – one-per-unit-type (length, power, volume, etc.). This lead to a

significant amount of redundant code, which is born out when we look at the SonqrQube

analysis of code duplication in chapter 8.2.3. Some efforts were made to optimize the

model further, but this exposed some architectural limitations in the prototype.

In the case of the POS application, a similar approach was taken, where multiple re-

dundant views were generated where it was not actually necessary. In the case of the

hand-written code, the developers took an approach that allowed the application to take

better advantage of its data-driven nature.

TABLE 8.4: Comparison of source code organization for mid-scale experiments.

Experiment OS Style SLOC Files Funcs. Classes Stmts.

CAR
Android

AXIOM 253 3 9 6 121
Native 379 7 21 8 171

iOS
AXIOM 372 9 23 7 232
Native 349 13 31 9 199

CVT
Android

AXIOM 1,015 8 59 9 533
Native 326 2 9 2 231

iOS
AXIOM 1,452 21 115 19 816
Native 403 7 32 5 255

EUC
Android

AXIOM 254 4 11 8 106
Native 260 5 16 5 123

iOS
AXIOM 666 11 27 9 467
Native 205 11 20 7 114

MAT
Android

AXIOM 178 1 28 1 75
Native 99 2 6 2 41

iOS
AXIOM 221 5 10 3 143
Native 137 7 15 4 66

POS
Android

AXIOM 999 13 88 25 405
Native 448 9 28 9 177

iOS
AXIOM 2,037 31 152 29 1,289
Native 655 29 79 21 299
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FIGURE 8.3: SLOC comparison for mid-scale experiments. Author’s image.

8.2.2 Issue Density

As described in chapter 7.3.2, SonarQube defines five different severity levels. However,

for this analysis we condense the number of issue severities to only two categories:

major and minor. Major issues are those that are categorized as “major”, “critical”, and

“blocker” by SonarQube. Minor issues are those that SonarQube classifies as “minor”

and “info”. OCLint uses three issues severities: “major”, “minor”, and “info”.2 For this

analysis a major issue includes those that OCLint defines as “major” while a minor issue

includes those OCLint defines as “minor” or “info.” Table 8.5 shows these mappings.

In most cases, the AXIOM-generated code does not fare as well as its hand-written

counterpart. When comparing the generated and hand-written code by application for

each platform, we find that at best the AXIOM-generated code has an issue density that

is 138% that of the hand-written code while at worst it is about 550% that of the hand-

written code. This is consistent with the fact that AXIOM is template-based since any

issues present in the template, or in the algorithm that translates it, will be injected into

the generated code. This is a side-effect of all template-based approaches. However,

2There is a defect in the OCLint [111] plugin that is used to ingest the results of the Objective-C analysis
into SonarQube so the analysis was completed manually.
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TABLE 8.5: Mapping of SonarQube to OCLint issue severities.

Analysis Severity SonarQube Severity OCLint Severity

Major Blocker, Critical, Major Major

Minor Minor, Info Minor, Info

as we will discuss in chapter 9.2, this side-effect can also be harnessed to improve the

overall code quality of any application that uses the template.

Table 8.6 shows the distribution of the issues found during an analysis of the Android

implementations of the CAR application. As we might expect, the AXIOM code con-

tains more instances of specific issues, such as “unused ID” or “hardcoded text” because

its templates and the overall code generation process inject these issues.

TABLE 8.6: Distribution of issues for the Android CAR implementation.

Rule AXIOM Handwritten

Hardcoded Text 31 11
Unused id 14 4
Target SDK attribute is not targeting latest version 0 1
Overdraw: Painting regions more than once 0 1
The launcher icon shape should use a distinct silhouette 3 0
Dynamic text should probably be selectable 2 0
Missing allowBackup attribute 1 0
Image without contentDescription 1 1
Icon densities validation 1 0
Nested Layout Weights 1 0
ScrollView size validation 1 1
Unused resources 1 2

Total Issues 56 21

Table 8.7 describes the static code analysis issues identified by SonarQube, in the case

of Android, and OCLint, in the case of iOS, for each of the mid-scale tests. Figure 8.4

shows the calculated issue densities from Table 8.7.
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TABLE 8.7: Comparison of mid-scale experiment issue densities.

Experiment OS Style
SLOC from Issue Count Issue

Table 8.2 Major Minor Density

CAR
Android

AXIOM 253 0 56 0.11
Native 889 0 21 0.02

iOS
AXIOM 349 0 61 0.14
Native 594 0 32 0.05

CVT
Android

AXIOM 1,125 0 79 0.07
Native 538 0 19 0.04

iOS
AXIOM 1,384 0 190 0.14
Native 431 0 29 0.07

EUC
Android

AXIOM 506 0 80 0.16
Native 913 0 79 0.09

iOS
AXIOM 726 0 196 0.27
Native 559 0 25 0.04

MAT
Android

AXIOM 311 0 40 0.13
Native 245 0 9 0.04

iOS
AXIOM 293 0 53 0.18
Native 193 0 25 0.13

POS
Android

AXIOM 1,849 0 258 0.14
Native 957 0 46 0.05

iOS
AXIOM 1,953 0 292 0.15
Native 677 0 33 0.05
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FIGURE 8.4: Issue densities for mid-scale experiments. Author’s image.
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8.2.3 Code Duplication

As shown in Table 8.8 and Figure 8.5, there is little duplication although the generated

code contains more duplication than does the hand-written code. This is partially an

artifact of the prototype tool rather than something inherent to the approach. For ex-

ample, the prototype sometimes naively generates redundant views for the display of

similar information rather than providing a single, generic view. Furthermore, each of

these views will produce code from the same template, thus resulting in significant du-

plication. This duplication is also partially an artifact of the modelers ability to translate

the applications requirements into a simple, unambiguous requirements model. Finally,

these results also reflect some limitations in the AXIOM DSL itself which, if corrected,

would reduce the amount of code produced during the translation stage. These limi-

tations and some of the approaches that can be taken to address them are discussed in

chapter 9.

AXIOM’s generated code often contains slightly more duplicated code than the hand-

written code. This is a side-effect of the template-based code generation and can be

exacerbated by a poorly implemented model. In the case of the CAR application, for

example, the application model was written in such a way as to cause redundant views

to be generated. However, in the EUC application, an application that is even more

data intensive than the CAR application, there is no code duplication at all, because the

model was written much more efficiently.

Further investigation suggests that the prototype’s code generation algorithm is still

relatively naive and assumes that the modeler has defined the model in an optimum way.

Historically such assumptions have generally proven incorrect, leading to enhancements

such as code optimizers.

Because such unnecessary code duplication can be significant source of application

bloat, this suggests that the preprocessing and normalization steps defined by the ap-

proach need to be augmented to include additional optimization steps to minimize the

model before the more complex transformation and translation stages begin.



Chapter 8. Evaluation Results 104

TABLE 8.8: Comparison of code duplication for mid-scale experiments.

Experiment OS Style
Duplication

Total % Lines Blocks Files

CAR
Android

AXIOM 5.4 18 2 1
Native 0 0 0 0

iOS
AXIOM 0 0 0 0
Native 0 0 0 0

CVT
Android

AXIOM 21.1 265 41 7
Native 27.4 110 8 1

iOS
AXIOM 21.5 483 7 7
Native 0 0 0 0

EUC
Android

AXIOM 0 0 0 0
Native 0 0 0 0

iOS
AXIOM 0 0 0 0
Native 0 0 0 0

MAT
Android

AXIOM 0 0 0 0
Native 0 0 0 0

iOS
AXIOM 0 0 0 0
Native 0 0 0 0

POS
Android

AXIOM 6.1 84 5 3
Native 0 0 0 0

iOS
AXIOM 16.5 541 16 9
Native 2.3 32 2 2
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FIGURE 8.5: Complexity comparison for mid-scale experiments. Author’s image.
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8.2.4 Complexity

Table 8.9 and corresponding Figure 8.6 show that, in most cases, the AXIOM-generated

code has a much higher cyclomatic complexity when viewed at the application level.

However, when viewed at the function, class and file levels, the complexity is often less

then the complexity of the hand-written code. Since the AXIOM prototype tends to

generate more code than human developers, it stands to reason that the overall applica-

tion complexity would be consistently higher. Also, as has been mentioned before, any

complexity present in the template from which the final, translated code is generated

will be passed into the generated code. That also means that these complexity values

can be improved by enhancing the translation templates and transformation rules to be

more parsimonious with the generated code.

TABLE 8.9: Comparison of complexity for mid-scale experiments.

Experiment OS Style
Cyclomatic Complexity

Overall Function Class File

CAR
Android

AXIOM 26 2.9 4.3 8.7
Native 53 2.5 6.6 7.6

iOS
AXIOM 41 1.8 5.6 4.6
Native 63 2.0 6.8 4.8

CVT
Android

AXIOM 198 3.4 22.0 24.8
Native 91 10.1 45.5 45.5

iOS
AXIOM 215 1.9 11.2 10.2
Native 115 3.6 22.6 16.4

EUC
Android

AXIOM 23 2.1 2.9 5.8
Native 33 2.1 6.6 6.6

iOS
AXIOM 92 3.4 10.0 8.4
Native 34 1.7 4.6 3.1

MAT
Android

AXIOM 33 1.2 33.0 33.0
Native 11 1.8 5.5 5.5

iOS
AXIOM 16 1.6 4.7 3.2
Native 24 1.6 5.5 3.4

POS
Android

AXIOM 148 1.7 5.9 11.4
Native 53 1.9 5.9 5.9

iOS
AXIOM 279 1.8 9.6 9.0
Native 115 1.5 5.4 4.0
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It is also important to note that because AXIOM is model-driven and the models operate

at a higher level of abstraction than does the hand-written code, the complexity and its

impact on software maintenance, should be less of a factor for the AXIOM approach

than with the hand-written approach. This obviously does not change the impact that

the additional complexity might have on other important application factors like runtime

performance or application size.
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FIGURE 8.6: Complexity comparison for mid-scale experiments. Author’s image.



Chapter 9

Discussion

This research attempts to answer two main questions about model-driven development

for mobile platforms using the AXIOM approach:

1. Is developer productivity with AXIOM significantly different when compared to

writing native mobile applications?

2. Does the code created using AXIOM exhibit similar quality to equivalent hand-

written code?

9.1 AXIOM’s Impact on Developer Productivity

Developer productivity can be influenced by many factors including team size, devel-

opment language, techniques used, and development methodology. Based on research

done by Jiang [98] and others [112–114], the two most significant factors in overall pro-

ductivity are the average team size and development language, accounting for approx-

imately 25% of the variability of the Normalized Productivity Delivery Rate (PDR)1

Therefore in evaluating AXIOM’s ability to deliver on its productivity goals, we focus

on these two points.2

1PDR is defined as the normalized work effort, essentially the hours spent on the project, divided by
adjusted function points, which is the functional size of the project in points multiplied by an adjustment
factor.

2Jiang’s research did not find development methodology to be a significant factor in productivity. How-
ever, at that time the Agile movement had not yet gained the momentum it has today.

107
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We did not establish the function points of the various small- and mid-scale applications.

They were relatively limited in scope and did not exhibit the complexity of projects that

typically warrant function-point analysis. The lack of such an analysis does not affect

our assessment since for each application the overall complexity would be the same

regardless of the implementation technique (AXIOM, or native hand-written code). This

means that any productivity improvements would necessarily result from changes in the

work effort rather than because of changes in the scope of that effort.

Jiang’s model for software productivity is given by equation 9.13:

ln(PDR) = 0.357∗ log(TeamSize) (9.1)

−0.463∗ I(3GL)

−1.049∗ I(4GL)

−1.021∗ I(ApG)

−0.138∗ I(MR)

−0.219∗ I(Multi)

−0.269∗ I(PC)

−0.403∗ I(OO)

−0.447∗ I(Event)

+0.821∗ I(OO : Event)

−0.276∗ I(Business)

−0.024∗ I(Regression)

+1.015∗ I(Business : Regression)

+2.651

This model was constructed by analyzing the project database of the International Soft-

ware Benchmarking Standards Group (ISBSG) [115]. This database contains metrics

and descriptive information about each of its over 6,700 development and enhancement

projects4. These projects include 100 types of applications across 30 industry verti-

cals spanning 26 countries. This project database has been used as the basis for other

analyses of software productivity such as those done by Liu [116], Jeffery [117], and

Lokan [118]. This breadth of projects makes Jiang’s model well-suited for our analysis.

3Jiang’s original equation refers to log(PDR) rather than ln(PDR), but the text of the paper refers to ln.
4Jiang’s work was based on release 10 of the ISBSG database, which held data on only 4,100 projects.
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Jiang’s model captures several different properties such as team size, the type of lan-

guage (3GL, 4GL, Application Generator), the platform (mid-range, multi-platform, or

PC), development techniques used (OOAD, event modeling, regression testing, or busi-

ness area modeling). Factors separated by a colon are applied if both of the techniques

were used. With the exception of team size, each factor, I(X), takes a boolean value: 1

if X was used and 0 if it was not.

In our experiments, many things were held constant. We have already discussed appli-

cation complexity. Similarly, the team size was always 1. We did not use an application

generator5 and thus disregard that factor. Furthermore, we did not use any form of event

or business modeling or formal regression testing. Finally, we consider all applications

as being for the “PC” platform, a decision we explain in the subsequent analyses below.

These simplifications reduce the equation to that shown in equation 9.2:

ln(PDR) = −0.463∗ I(3GL) (9.2)

−1.049∗ I(4GL)

−0.269∗ I(PC)

−0.403∗ I(OO)

+2.651

In equation 9.2, we emphasize that there is one dominant and different factor remaining:

the type of language being used to develop the application. For the handwritten, native

applications, the ln(PDR)Native is given by equation 9.3:

ln(PDR)Native = −0.463∗ I(1) Java or Objective-C (9.3)

−1.049∗ I(0) No 4GL

−0.269∗ I(1) PC Platform

−0.403∗ I(1) Object-Oriented

+2.651

ln(PDR)Native = 1.516

PDRNative = 4.554

5We treat AXIOM as a 4GL rather than an application generator. While it does indeed generate code,
it requires up-front development in the DSML MADL first.
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For native development we consider both Java and Objective-C as 3GL languages. Be-

cause each of those languages is only used for a single platform, we consider both

Android and iOS to both be so-called “PC” platforms.

If we apply similar reasoning to the AXIOM applications, we derive the value of ln(PDR)AXIOM

shown in equation 9.4:

ln(PDR)AXIOM = −0.463∗ I(0) No Java or Objective-C (9.4)

−1.049∗ I(1) AXIOM is 4GL

−0.269∗ I(1) PC Platform

−0.403∗ I(1) Object-Oriented

+2.651

ln(PDR)AXIOM = 0.093

PDRAXIOM = 1.097

We thus find that PDRAXIOM is slightly more than 4-times greater than PDRNative. How-

ever, as shown by Equation 9.1, there are many factors that contribute to development

productivity in Jiang’s model. What assurances do we have that AXIOM is the single-

most important contributing factor in our productivity analysis?

According to Jiang and others, the average team size explains 17.3% of the variance

in ln(PDR). Development language explains another 7.8% of the variance when the

languages are of different generations, that is 3GL vs. 4GL. These two factors explain

a total of 25.1% of the overall ln(PDR) variance. However, the fact that the team size

was held constant, as were the other key factors, suggests that the type of language,

native code or AXIOM, can account for almost all 100% of the variability in ln(PDR)

in our mid-scale analyses. We thus find that PDRAXIOM is approximately four times

greater than PDRNative, suggesting that AXIOM can provide significant increases in

productivity compared to development using existing tools for native platforms.

But does the actual, measurable output of the mid-scale experiments agree with the

expected result of Jiang’s model? If we compare the expected PDRAXIOM to the rep-

resentational power metrics from Table 8.2, shown in Figure 9.1, we find significant

variance. For the five mid-scale experiments the median representational power is 4.10

for iOS and 5.80 for Android, which is in line with Jiang’s model’s predictions. One
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FIGURE 9.1: Representational power of AXIOM compared to handwritten code.
Author’s image.

of the experiments, CVT, required an amount of AXIOM code that was only slightly

less than the amount of hand-written code needed to implement the application. In that

particular example, the AXIOM model was fairly naive, resulting in code bloat.6

If we consider the impact that AXIOM has on applications involving a team size of

more than one developer, then we can infer that the productivity benefits still persist.

Based on the small- and mid-scale experiments, AXIOM has generally been observed to

reduce the number of source lines of code to be written when compared to the equivalent

native application. We can thus deduce that fewer developers would be required to

6A more efficient model was devised, but the AXIOM prototype was unable to process the semantically
more complex model.
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construct any given application using AXIOM and thus that the productivity benefits

would remain.

AXIOM can also improve developer productivity because it emphasizes up-front mod-

eling and because the transformation rules and templates can be changed and reused.

For these productivity gains to be realized the templates and transformation rules must

be designed and implemented up front. These rules and templates need not provided by

the development team. For example, the third-party provider of a persistence framework

could provide the templates and transformation rules that they believe best reflect the

use of their framework. If application-specific changes are required, they can be made

as the application is modeled and without being required to start ex nihilo.

This quantitative analysis suggests that AXIOM significantly affects developer produc-

tivity, owing to its cross-platform nature and DSML, which enables a more concise

representation of an application than the native code can. This is reflected in the com-

parative information density values from Table 8.3 as well. However, some cautions are

in order.

First, it is unclear if Jiang’s model scales effectively to smaller applications such as

those in our mid-scale experiments. Second, Jiang’s model does not explicitly deal

with mobile applications. We have identified each platform as though it was equivalent

to general PC development, but it is uncertain if this is the case. Nevertheless, we

expect that the coefficients associated with the platform, while possibly different, would

contribute equally in both cases and thus not have a material impact on the overall

productivity difference described by Jiang’s model. Third, the coefficients in the model

may be different today than in 2007 when the model was developed. Advances in tools,

such as IDEs, and techniques, such as agile development, may have affected the impact

of those factors on the model, causing the variation associated with the development

language to be less important relative to other factors.

There are other reasons why the actual developer productivity might be different from

that suggested by Jiang’s model. First, as is the case with all such productivity assess-

ments, there exist significant differences between the capabilities of individual devel-

opers and it is extremely difficult to control for them. In this evaluation, we attempted
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to control for mobile development experience on the various platforms, but did not fur-

ther refine this admittedly coarse-grained selection process. Second, the DSL was in

somewhat a state of flux during the time that the mid-scale evaluations were being con-

ducted. This meant that the developers who produced the AXIOM models might have

encountered problems that caused them to produce less than optimal code. Similarly as

new features of the language were introduced, the developers may not have gone back

and incorporated them into their already complete code.

We have found evidence of this in at least two of the mid-scale experiments. For ex-

ample, in an earlier version of the CAR application, the MADL file was significantly

longer because the modeler provided a naive implementation of the application. Based

on a Sonar analysis, the resulting source code was approximately 1,300 lines long. Af-

ter reviewing the model and applying classic software engineering techniques such as

refactoring, the model and generated code came down to their present levels as shown

in Table 8.4. A similar problem was discovered with the EUC applications with even

more dramatic results.

This suggests that one of the challenges with this kind of approach to model-driven

engineering is striking a balance between model flexibility and model simplicity. By

allowing the full syntax of the Groovy language to be available within the model, we

increase the burden on the modeler to apply intelligent software development best prac-

tices in order to prevent the final code from being too bloated. While AXIOM performs

some initial pre-processing of the model to eliminate as many sources of inefficiency

as possible, it cannot realistically compensate for a completely inefficient model while

also guaranteeing that the model’s semantics will be preserved after that optimization.

This challenge is the same as that of many compiler optimizers.

Nevertheless, there are several way in which AXIOM’s DSL could be improved to fur-

ther enhance developer productivity such as increased abstraction and implementation

patterns. These same techniques will also provide significantly more power to the mod-

eling notation and will thus enable modelers to avoid the use of Groovy syntax for

common modeling constructs.



Chapter 9. Discussion 114

9.1.1 Increased Abstraction

As described in Section 2.1.2, AXIOM is platform-independent, but not particularly

abstract so raising its level of abstraction is one important way in which AXIOM could

be extended. As always, the goal is for AXIOM to allow modelers to focus more on the

structure and behavior of the application and less about defining individual views and

transitions.

1 ListView(id: CountryListView , title: ’European Union’) {
2 EUMemberCountries.each { c ->
3 Item(text: c.name ,
4 detailText: c.capital ,
5 image: "${c.key}_flag.gif",
6 next: [to:CountryDetailView , data:c])
7 }
8 }

LISTING 9.1: ListView via iteration.

One promising area of improvement is in the brevity of AXIOM’s syntax. AXIOM

exhibits many of its Groovy roots, and much of the code uses native Groovy syntax. For

example, the code snippet in Listing 9.1 generates a ListView of countries.

This code is comparatively low level and continues a time-honored approach for dynam-

ically constructing visual elements from a data store by essential binding key properties

of a row of data to the corresponding properties in the graphical widget. The code

could be much more succinct, while being equally expressive, if we had a more abstract

notation that took advantage of a ListView’s most common properties:

1. They tend to be bound to a particular data type, in this case, a Country.

2. They often show only a small subset of information, such as an icon, a title, or

both.

3. They usually lead to a more complete, detailed representation when they’re clicked.

4. The item that was clicked must be provided to the detail page so that it can retrieve

the additional information for further display.
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If we consider such commonalities, then we might further refine AXIOM to allow for

the construction of a ListView like that of Listing 9.2.

1 ListView(id: CountryList ,
2 title: ’European Union’,
3 itemType: Country ,
4 itemTextField: "capital",
5 itemIconField: "flag",
6 next: CountryDetail)

LISTING 9.2: ListView via convention.

In this example, we define field names to act as the parameterization of the original

closure. We also made the passing of the selected data between the list and the de-

tail views implicit rather than explicit. We could also incorporate sensible defaults to

streamline the writing of the code while still allowing developers to provide explicit

values where needed. For example, we might make the next property optional and

assume a convention that an item on a ListView will always transition to a related de-

tail view whose name is based on the itemType. In this case such a view might be

called CountryDetail. Such patterns are common in frameworks such as Rails [73]

and Grails [75] and can further enhance developer productivity by allowing them to

focus only on those aspects of the application that most require custom code.

9.1.2 Implementation Patterns

Another way in which AXIOM could be extended is through the incorporation of com-

mon architectural and implementation patterns. At present AXIOM is limited by a one-

size-fits-all code generation strategy, which may be fine for small-scale applications, but

which will not scale effectively to larger, more complex software. It would be useful if

common patterns and platform idioms could be incorporated into its DSML.

For instance, if we consider the example of the Country data type, we could easily

conceive that we might want to generate a master-detail interaction to view and manage

a set of countries. Such a syntax might appear like that of Listing 9.3.
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One can easily imagine the constructive use of sensible default values for listRenderer

and detailRenderer based on the underlying type provided to the ListAndDetail.

As with any such approach, the goal is to provide the developer with as much or as lit-

tle assistance as they desire. Configuration provides the desired flexibility. Convention

reduces the need for such flexibility.

1 ListAndDetail(type: Country ,
2 listRenderer: CountryListRenderer ,
3 detailRenderer: CountryDetailRenderer)

LISTING 9.3: Increased abstraction via pattern.

Another example would be in the mechanism by which data is persisted. At present

AXIOM works only with local storage on the mobile device. If the language could

be extended to allow persistence either on the local device or through integration with

an external web service, its flexibility would be dramatically improved. Furthermore,

with an appropriate degree of abstraction built into the AXIOM DSL, the generation

of the services that provide remote data persistence could be automated as well. Such

an approach begins to incorporate elements of an Architecture Description Language

(ADL) [119] into AXIOM.

9.2 AXIOM’s Impact on Code Quality

As we showed in Chapter 8, AXIOM’s prototype generates code that is in many cases,

according to the SonarQube analysis, of slightly lesser quality than the equivalent hand-

written code. For example, the AXIOM-generated code often exhibits a significantly

greater issue density than the equivalent hand-written code. However, the issue den-

sity by itself is only one aspect of the analysis. We should also consider the estimated

time to remediate the issues once they have been found. The time needed to remediate

each issue varies according to a number of factors such as the development language,

complexity of the remediation, developer, and development methodology. However, the

approach used to remediate the issues, and the impact of that remediation, is markedly
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different between the hand-written and AXIOM-generated approaches and that differ-

ence can make it much more efficient to address issues using code generation than in

the traditional hand-written approach.

By way of example, suppose that we wish to deal with the most common issue identified

at the top of Table 8.6, that of “Hardcoded Text.” If we assume five minutes7 to address

each instance of the issue in the hand-written code, then it will take 55 minutes to

address those issues in the current code base. However, there is no guarantee that new

instances of the issue will not be introduced during subsequent development, requiring

additional time to remediate. Finally, the fixes do not propagate to other applications,

so they must be updated separately. In essence, each fix is independent of all others and

each new line of code is an opportunity to inject issues.

In the case of AXIOM-generated code, it is likely that the remediation will take longer

than five minutes. The appropriate translation templates must be updated, which is

likely to take longer than the five minutes required to address the issue that we assumed

for the hand written code. However, once the templates have been updated, the issue has

now been updated for all instances of the code, both present and future. Whenever that

template is used to generate code, the new translation rules will be used and the issue

will not be re-introduced. In the case of the CAR code, this translates into a savings

of 155 minutes less the time needed to update the template. If this issue exists in other

applications, as it doubtless will, then the fix will be applied once the new template is

used during translation, again resulting in potentially significant time savings.

Because the fixes are cumulative, AXIOM represents a better long-term investment for

the remediation effort. In addition, as industry best practices evolve, those practices can

be incorporated into the code templates more readily than if we needed to refactor each

application by hand.

7The SQALE [104] metrics tend not to go below this five minute remediation threshold.
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9.3 Future Work

In addition to increasing AXIOM’s abstraction level and incorporating common patterns

and idioms, there are other promising areas of future research including using AXIOM

for other application domains and making the language more adaptable to changes in

the mobile domain.

9.3.1 Alternate Application Domains

The AXIOM DSML has been constructed specifically for the mobile application do-

main. However, there is no effective limitation to the overarching AXIOM approach.

This means that AXIOM can be extended to other domains, such as web applications.

Constructing such a domain requires the same steps as for any other domain-specific

language:

1. Construct the DSL syntax.

2. Define the templates that represent the code to be generated in the native solution.

3. Define the injection descriptors and how they will map from the AXIOM model

elements to the placeholders within the templates.

9.3.2 Adaptive Domain-Specific Modeling Languages

One intriguing avenue of research has resulted from this work: adaptive domain-specific

modeling languages (ADSML) [120, 121]. One of the challenges that results from the

use of a domain-specific modeling language, especially in a domain that evolves as

rapidly as mobile technologies, is how to quickly extend the language to accommodate

new features and capabilities. We proposed a new kind of DSML that is able to dy-

namically and automatically adapt its syntax to incorporate new linguistic features and

frameworks.
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Related Work

10.1 General Model-Driven Engineering

Other software development approaches share some common characteristics with the

AXIOM approach. In many cases we have drawn upon the strengths of these approaches

as inspiration for AXIOM. This chapter describes some of these approaches and how

they relate to AXIOM’s fundamental goals of being agile, model-driven and formal.

We review these approaches to differentiate them from AXIOM and from our vision of

what a true fusion of agile development with MDE would look like.

In general we classify these general-purpose MDE approaches into three major cate-

gories:

• UML-Based Approaches. These are approaches that closely follow the MDA

standard as described by the OMG by relying on UML and its profiles, OCL, and

other related MDA extensions.

• Process-Driven Approaches. These approaches attempt to take the core MDA

concepts, but addresses them more from a process perspective rather than by rig-

orously following the MDA standard and approach. This is often done in an effort

to incorporate agility into processes that otherwise rely on more “heavyweight”

UML.

119
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• Formal Approaches. These approaches are based on formal models and have

little or nothing in common with MDA. However, these models provide similar

benefits as MDA’s OCL and may prove more intuitive to use.

It is important to note that while AXIOM is currently being exercised within the mo-

bile application domain, we believe that the underlying approach is not limited to that

domain and that the same approach could be used to build other kinds of applications.

10.1.1 UML-Based Approaches

Some MDA implementations closely follow the OMG’s MDA standards including their

reliance on UML, OCL, and MOF. We call these “classic MDA approaches”.

AndroMDA [122] is an open-source MDA framework. It accepts UML models, gener-

ally in an XMI format, and uses them to generate custom components. AndroMDA uses

a plugin or “cartridge” system. These cartridges are used to generate the various compo-

nents, which allows AndroMDA to evolve its generative capabilities without requiring

a constant overhaul of the core AndroMDA framework.

AndroMDA uses UML stereotypes as one means by which it can determine which

cartridges can be used for code generation. For example, classes marked with the

<<Service>> stereotype use different cartridges than those marked with an <<Entity>>

stereotype.

In addition to stereotypes, AndroMDA requires several other rules to be followed within

the model to ensure both syntactic and semantic completeness so that the code genera-

tion process completes smoothly. Many of these rules are straightforward and closely

resemble the “convention over configuration” trend of many software frameworks such

as Ruby on Rails.

Finally, AndroMDA combines the concepts of templates, for producing code, with

metafacades, which are facades that shield template and cartridge builders from the

complexity of interacting with the underlying MOF metamodel that is used to represent
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the various entities within the models being consumed. This approach allows the tem-

plates to be built in such a way that they can flexibly adapt to changes in the model and

metamodel without requiring changes to the underlying templating language.

Because AndroMDA uses traditional MDA, it is tightly coupled to UML with all of its

associated benefits and problems. Because it is not itself a modeling environment, it is

also limited by the quality of the XMI output produced by each vendors’ tools. Finally,

because it uses MOF in the form of its metafacades, it incurs a penalty in terms of model

representation and transformation because of the overhead involved in converting the

model representation into the corresponding metamodel AST.

While AndroMDA does satisfy the tenets of MDA, it is not suited to projects using

agile methodologies. First, it requires UML models to be built in different tools and

then exported via XMI so that the code can be generated. The implication is that we

require two completely different skill sets: modelers, to build the models and developers

to provide any custom code needed by the cartridges to produce their code. Finally, there

is no support for UI as a first-class concept, a shortcoming often associated with UML.

The Eclipse Foundation provides multiple technologies that support MDD across the

various aspects of MDD including model construction and model transformation. These

projects include Generative Modeling Technologies (GMT) [123], the ATL Transfor-

mation Language (ATL) [124] and others. As is the case with AndroMDA, these tech-

nologies are all based on UML. This makes them a standard MDD approach but also

means that they have all of the limitations that are inherent to that approach. These

projects have an advantage over AndroMDA in that the tools can produce and consume

the various models whereas AndroMDA is intended to consume the models produced

elsewhere.

AXIOM differs from the Eclipse approach both in terms of its approach of using a DSL

for all aspects of modeling rather than just for the transformation process. AXIOM also

provides for the UI as a first-class model.

Executable UML (xUML) is an approach that uses UML models as the primary mecha-

nism by which applications are built [125]. Like AXIOM, xUML advocates the benefits

of UML executability. xUML defines three different models for specifying software:
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• Data. This is represented using classes as well as their attributes, associations

and constraints. The UML class diagram is the notation used for this model.

• Control. This model is all about the states of the various data as well as the

events, transitions and procedures that are used to move them through their re-

spective lifecycles. A UML statechart is used to express this model.

• Action. These are the fundamental operations within the application. Actions are

referenced from the control model and are triggered whenever an object changes

state. The UML action language is used to define all actions.

Once the various xUML models have been defined, they are processed by a model com-

piler. This compiler is responsible for taking the xUML models, which are the equiva-

lent of the MDA’s PIMs, and transforming them into executable code by applying a set

of decisions about the target runtime environment. In other words, the model compiler

decorates the PIM with runtime configuration information, thereby creating a PSM, and

then transforms that PSM into executable code.

xUML is consistent with our definition of MDA, but it has some significant problems.

The first is that it is based on UML, and thus possesses all of UML’s aforementioned

limitations. The second problem is that the process of writing a model compiler may

prove to be as complex, if not more so, than producing the original models. There are

examples of publicly available xUML compilers such as xUmlCompiler [126], but each

compiler targets a specific set of technologies for its code generation processes. Fur-

thermore, xUML, which relies on fUML [127] and ALF [95], uses a general-purpose

language. While this provides significant flexibility, it remains a least-common denom-

inator approach; the language makes no assumptions about what it will model.

AXIOM differs from xUML by supporting agility in addition to executability, through

dynamic typing and on-demand static checking and analyses. Another key difference is

AXIOM’s support for UI models as a first-class models. AXIOM also fixes the target

domain to mobile applications and provides a DSL to simplify models in that domain.

Because the AXIOM DSL is written in a JVM-based language, it has access to any

library that is available to the JVM.
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XSI-Mobile [128] is a UML profile used to represent mobile concepts. It is based on

and extends the XIS [129, 130], a UML profile that can be used to define PIMs for

interactive applications, but which lacks the concepts common to mobile applications

such as gestures. It defines various views along with navigation rules and widgets. The

widgets are then associated with gestures and used to trigger actions. Custom operations

can be defined as stubs, with the developer then filling in the missing details after code

generation. This approach suffers from the same basic issues as UML in general and

MDA in particular.

Mayerhofer [131] describes xMOF as a means of specifying the behavioral semantics

of models so that they can be incorporated into MOF-based transformation processes.

AXIOM avoids MOF in favor of developer-driven semantics in the code templates and

transformation rules.

10.1.2 Process-Driven Approaches

There have been attempts to unify agile methodologies with MDA in the past by con-

structing hybrid approaches. While some such approaches are little more than the in-

formal application of agile thought processes to MDD [132], others involve a wholesale

modification of the underlying MDD premises and approach.

10.1.2.1 Agile Model Driven Development

Agile Model Driven Development (AMDD) is an iterative software development pro-

cess using UML. While AMDD [133] shares the notations and tools commonly used in

MDD, one notable deviation from the typical MDD approach is that AMDD keeps the

code as the focus of the development effort. While AMDD supports more sophisticated

code-generating models, its author assumes that only 5-10% of business application

models can benefit from such treatment. Instead, AMDD models are strictly passive,

serving as a communication medium between developers and the business community,

but are not used to generate code. Since the vast majority of the code in AMDD is

written by hand, it does not rely on code generation or on the round-trip engineering

capabilities of UML tools. It is the developer’s responsibility to manually maintain the
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consistency between the model and code. Unfortunately, this falls into the well known

trap of software evolution that such artifacts will rapidly become inconsistent with one

another; the code will be maintained while any other documentation will be completed

hastily at the end of project development cycle assuming it is ever completed at all.

In short, AMDD treats models mainly as way of understanding the problem and its

potential solutions. It is not concerned with the executability of the models, nor is

it concerned with generating code from the models. Therefore, it is fundamentally

different from the AXIOM approach.

AMDD has been executed in combination with the MIDAS framework [134, 135] as a

means of implementing web-based applications.

10.1.2.2 Continuous Model Driven Engineering

Continuous Model Driven Engineering (CMDE) creates “holistic models” by combin-

ing model-driven design, extreme programming, and process modeling. Together these

elements constitute eXtreme model-driven design (XMDD) [136]. XMDD goes be-

yond traditional MDD by using process modeling as its means of eliciting the necessary

requirements and behavior. This process model, or service logic model, is the cen-

tral model of XMDD and undergoes successive refinements until its abstractions can

be mapped to existing services. Within XMDD this is referred to as the “One Thing

Approach.” The approach of using BPM provides several useful capabilities such as

simulation and actual process execution via BPM engines. The process models can be

decorated as needed with temporal constraints, symbolic type information and cross-

cutting concerns.

While CMDE seeks to address the representational differences between what business

users understand and what developers must build, it only partially succeeds in this goal.

Process models may indeed be more intuitive for business users to understand, but it

is not clear that such models lend themselves to the actual realization of the finished

application, which often requires code generation, not only by an MDD transformation,

but from software developers as well. In those cases, the differences between the re-

quirements captured by the model and the implementation captured by the code may be
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significant. In addition, this approach does not emphasize the use of UML and is thus

unable to capitalize on the significant numbers of modelers and developers who have

been trained in its use.

10.1.3 Formal Approaches

Before there was MDA, there were formal modeling notations. These notations allows

us to subject models to formal analysis and verification in an effort to discover incon-

sistencies or errors. The approaches described in this section may support MDD, but

they often do not provide complete solutions by themselves. One particularly valuable

aspect of many formal approaches is model checking, which allows a modeler to deter-

mine whether their models make logical sense. We hope to provide similar capabilities

within AXIOM to support formal verification of its models.

Alloy [137] is a formal specification and modeling notation based on first-order logic

that can be used for model-driven development. Alloy is designed for the specification

and verification of models.

Research has been done in transforming UML model into Alloy models, most notably a

tool called UML2Alloy [138] but this is a challenging process because of the notational

and semantic differences between the two languages. For example, UML distinguishes

between sets, scalars and relations whereas Alloy does not. Even if the UML models

are successfully transformed into equivalent Alloy models, Alloy itself does not support

model executability and was not designed for agile development.

UML Specification Environment (USE) [139, 140] is a formal specification and mod-

eling notation that can be used for MDD. In addition to the graphical UML represen-

tation, USE also provides a complementary human readable textual representation and

is in that respect similar to AXIOM. USE is designed for the specification and verifi-

cation of models and some of its model verification tools could potentially be adapted

for AXIOM models. However, USE does not support model executability and was not

designed for agile development.
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Like Alloy and USE, Z is a formal specification language. Z has seen only limited adop-

tion and then primarily for extremely complex or safety-critical applications [141, 142].

While Z can be used for representing the functional requirements of an application,

there is not enough information captured by the schemas to adequately represent other

critical concerns of the software such as its components and their organization and in-

teraction. These concerns are crucial for object-oriented software because they allow

modelers to define useful and usable abstractions that will ultimately be used to build

the finished software. Similarly, Z is not itself executable although some work has been

done on making Z schemas executable [143].

While various object-oriented extensions to Z have been proposed [50] such as MooZ [51],

Object-Z [52], OOZE [53], Z++ [54], and ZEST [55] in an attempt to bring Z’s formal-

ism to object-orientation, they all suffer from the same fundamental challenge, which

is that they are intended to formalize requirements rather than implementations. This

is of particular concern where agile methodologies are concerned, since their focus is

precisely on the primary deliverable of application code rather than intermediate de-

liverables such as formal proofs that the application requirements are consistent and

complete.

Z was never designed for MDD or agile approaches. However, its formalism allows

for the analysis of application requirements. That formalism is a key feature within

AXIOM and is what enables some of those same model-checking capabilities that Z

enjoys.

Work on platform independence has been done by Jia and Liu in their work on ZOOM

(Z-based Object-Oriented Modeling), which seeks to combine the formal semantics of

Z [47] with the object-oriented notations of UML [144–146]. ZOOM divides an ap-

plication into three components: structure, behavior and user interface, and provides

separate models for each. These models are then integrated via an event-driven frame-

work. Code is generated based on the formal specifications embedded within the model

as well as with more traditional model transformation techniques [147–149].

ZOOM provided the foundation on which AXIOM is based and has thus heavily influ-

enced the AXIOM approach. Unlike AXIOM, ZOOM attempted to remain faithful to
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the standard MDA approach and was thus hampered by UML’s limitations as well as

with dealing with the complexities of MOF. AXIOM distinguishes itself from ZOOM

by deviating from the OMG MDA standard and using a DSL with a visual represen-

tation that is similar to UML, but that is closer to the code that would be written by a

developer.

10.2 Mobile Domain Approaches

These approaches are inspired by traditional MDA and code generation, but which make

little or no attempt to follow OMG’s MDA standards and have little, if any, reliance on

UML and its profiles. Instead, they focus on trying to solve the same problems as MDA

but do so using domain-specific languages, in particular those that target the domain of

mobile applications. In general these languages result in one of two types of generated

code: code that is native to the target OS or code that is expected to run in a virtual

machine, such as JavaScript and HTML.

There are many DSL-based approaches to mobile development including Rhodes [150],

DragonRAD1, Appcelerator, mobl, Canappi, MobDSL, DIMAG, Mobia Modeler, and

md2. Many, although not all, of these have been summarized by Ribeiro [151], but they

each fall into one of the two basic approaches mentioned at the start of this section.

Mobl [152] is a DSL that targets mobile applications. However, it does not address the

model-driven aspects of MDD. Thus while the DSL code may indeed be transformed

into executable code, the models themselves are not major artifacts of the software

development process.

Canappi [153] is an application that allows for the rapid creation of mobile applications.

According to the Canappi website:

“The vision of Canappi is to abstract the mobile app such that a well defined

solution model exists regardless of the technology and architecture.”

1DragonRAD appears to now be defunct.
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Canappi uses a DSL called “m|dsl” to act as the PIM. This model is uploaded to

Canappi’s website where it is converted into source code. This code is then down-

loaded and loaded into an appropriate IDE, where it can be compiled and deployed into

the target runtime environment.

Canappi provides many of the basic elements of MDD including the definition of a

PIM and the generation of appropriate platform-specific code. However, it has signif-

icant limitations. First, the model files only represent the mobile user interface. For

more complex applications, those models must be hooked to back-end services. While

Canappi provides for that integration, it does not provide for the actual generation of

those services. Second, the Canappi models do not provide for complex behavioral

logic. There is no concept of a state machine nor any indication that such a model is

necessary. Finally, Canappi is currently limited to only mobile applications.

MobDSL [154] is a DSL that uses a VM as the intermediary between the MobDSL

application and the underlying platform. This is a similar approach as that taken by

tools like Cannapi or Appcelerator save that the VMs are not based on existing cross-

platform technologies such as HTML5 and CSS, but rather based on the native platform

APIs. This provides less separation between the modeling language and the executable

environments, but still suffers from the basic performance degradation resulting from

the use of the VM. AXIOM avoids the VM in favor of completely native applications.

DIMAG (Device Independent Mobile Application Generation framework) [155] is a

framework that allows for a single, declarative application definition to be used to gen-

erate applications across a range of devices. The model is separated into several el-

ements including the DIMAG-root language, the DIMAG-ui user interface language,

and an SCXML [156] workflow description to address the actions to be triggered when

the user interacts with the UI elements of the application.

DIMAG enforces separation of concerns by splitting up the UI definition from the work-

flow that underlies that UI. In the case of AXIOM these two elements are combined into

a single MADL file. There are similar elements that can be used to provide guard con-

ditions and trigger actions and transitions between different elements of the application.

One significant difference between DIMAG and AXIOM is AXIOM’s ability to take
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advantage of different APIs on the target platform by being able to incorporate them

directly into the model as code. DIMAG provides some limited support for such inte-

gration, but the developer may need to provide “wrappers” that expose those libraries in

a way that can be easily incorporated into the model.

Mobia Modeler [157, 158] attempts to make it possible for non-technical people to

easily build their own applications. This is different from AXIOM, which seeks to

ease the burden of developing mobile applications from traditional software application

developers. Mobia Modeler follows the standard separation of PIM from PSM while

still generating native code that can be deployed to the target application. The process

of code generation is similar to that of AXIOM although it differs in the particulars.

md2 [159] is similar to AXIOM in principle, but differs in its orientation. AXIOM

takes a developer-centric, bottom-up approach to its DSL design, while md2 was devel-

oped top-down and with a business-centric focus. Both approaches generate native code

md2 though with differences in the role of the developer in advising the transformation

process. Unlike AXIOM, md2 suffers from certain limitations such as the inability to

easily provide scrollable lists of data, a common user experience in data-driven mobile

applications.

Vaupel [160] defines an MDD tool for mobile development that consists of several com-

plementary meta-models. Provider models define an implementation of those meta-

models. The tool uses multiple modeling notations including EMF [161] for the data

and UI models, and BPMN [162] and WS-BPEL [163] for the behavioral aspects. AX-

IOM uses only a single language and does not suffer from potential inconsistencies

between the provider models and the meta-models.

There are a host of other tools that address key elements of AXIOM but which, by

themselves, are inadequate to provide complete applications. We briefly discuss two of

them: Balsamiq and State Machine Compiler.

Balsmiq Mockups [164] is a wireframing tool that allows developers to rapidly develop

linked sketches, or wireframes, of application screens. Once developed, these screens

can then be exported to various formats such as PNG or PDF. The Balsamiq wireframes

themselves are defined in an XML format.
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Balsamiq by itself does not provide a complete MDD implementation. However, its

approach of defining user interfaces in an XML format provides a foundation that could

support MDD. UML does not provide for user interface modeling very well; there is

simply no concept of a UI layout in its representation. 2 By using an XML format

and segregating the user interface into its own set of dedicated components, Balsamiq

has effectively provided for the separation of UI concerns from the remainder of the

application logic and the ability to transform the XML model of the UI into other forms

through technologies such as XSL. In these respects Balsamiq is entirely consistent with

MDD both in terms of its UI segregation into what is effectively an MDA domain as

well as in providing for the transformation of a UI PIM into a UI PSM.

Because AXIOM includes models for not only the user interface, but also for the struc-

tural and behavioral elements of an application, it provides a more complete solution

than Balsamiq. However, Balsamiq’s approach to UI representation has inspired AX-

IOM’s user interface models.

The State Machine Compiler [165] is a DSL for state machines that can then be used to

generate the code that implements the State design pattern. SMC supports the definition

of states, transitions, actions, and guards. In addition, SMC allows for the navigation

across different state machines, which allows for the assembly of smaller state models

into larger, collaborative models.

SMC does not provide for a complete MDD solution. While it deals with an impor-

tant part of an overall application model, the behavioral aspect, it does not effectively

define the structural characteristics that the application’s components needs to possess.

Similarly, while the DSL captures the capabilities of a state machine, it does not do so

in a way that is consistent with UML and it does not provide for a graphical means of

representing those state charts; such graphics can be generated from the state machine

source files, but can not be used to generate the state chart itself. SMC does allow for

the generation of code targeting a variety of languages such as Java, C++, Perl, VB,

Groovy and C# based on the common DSL. From this standpoint it does provide for

rich PIM-to-PSM transformation.
2Some approaches suggest using profiles and stereotypes as a means of representing user interfaces,

but this approach is non-intuitive and has never gained traction within the UML community.
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Like SMC, AXIOM captures the behavioral aspects of an application in the form of a

state machine. However, it also captures the domain and user interface aspects, making

it a more complete approach to MDA than SMC alone.

Research on the encoding and accessing of the native platform APIs within models has

been done by Cuadrado [166] in describing a process whereby a meta-model is used to

generate an intermediate language that produces Java bytecode that references the API.

AXIOM relies instead on pre-defined mappings of objects and their properties.

AXIOM emphasizes one-way transformation from model-to-platform. Research on

bi-directional transformations such as that by Anjorin [167] can allow changes to the

implementation to be incorporated into the model to support round-trip engineering.

In practice the reversing of native code back into a model, particularly a platform-

independent model is challenging although research in Adaptive Domain-Specific Lan-

guages (Chapter 9.3.2) might make such round-trip engineering more feasible.





Chapter 11

Conclusions

It is desirable for mobile applications to run on different platforms. However, writing

applications for multiple platforms can require significant development effort, leading

to increased development and testing costs. There are two common ways of reducing

this effort. First, code can be written using common, industry standard technologies and

run within a VM. Second, code generation can be employed such that the application is

written once in a platform-neutral way and then converted into a more platform-specific

representation for runtime execution.

Model-driven development is ideally suited to this kind of development since it em-

phasizes the use of models to represent applications rather than relying on native code.

Traditional model-driven development, such as the OMG’s Model-Driven Architecture,

rely on UML to represent their models. However, such approaches often suffer from

UML limitations, a lack of adequate tool support and limited access to useful frame-

works and libraries. These approaches take the initial platform-independent models and

transforms them into platform-specific models, which are then transformed into exe-

cutable code. This transformation can result in executable code that adopts the same

two approaches mentioned earlier such as native code or code that runs within virtual

machines that rely on standardized technologies such as HTML5 and CSS.

An alternative approach to using a general-purpose modeling language such as UML

to represent the models is to use a domain-specific language instead. Such languages

can be constructed to more easily represent concepts from the mobile domain and to
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make it simpler to develop applications for that domain. Domain-specific languages can

be internal or external. Modern dynamic languages such as Ruby and Groovy provide

built-in support for the design of domain-specific languages, making it simpler to design

and develop such languages as well as given them full access to the libraries and APIs of

the host language. Through the use of dynamic languages, model-driven development

becomes more feasible than if it remains bound solely to UML.

AXIOM is an approach that attempts to retain the model-centricity of classic model-

driven approaches, but which uses an internal DSL to represent those models. AXIOM’s

goal is to evolve MDD by augmenting UML with a dynamic language. While there

are challenges to overcome, the benefits provided by this synthesis are significant and

include a high degree of abstraction in the form of a DSML, support for existing libraries

and frameworks, and freely available tool support in the form of existing text editors and

source code control systems. Dynamic languages yield executable models, which can

be rapidly validated and verified.

AXIOM’s DSML retains key elements of UML state charts to represent application be-

havior. The use of Groovy as the actual modeling language facilitates the transformation

of AXIOM platform-independent models into platform-specific models. These models

are fast to develop and easy to verify, making them compatible with mainstream agile

methodologies.

AXIOM’s requirements model captures the user interface and behavioral aspects of the

application. The requirements model is passed through AXIOM’s multi-phase transfor-

mation process. The transformation process incorporates macro-level architectural ele-

ments as well as micro-level elements to produce a final implementation model, which

is then translated into native source code for the target platform. The code generation

process is template driven and those templates can be defined at both macro- and micro-

levels to better control the generated code.

AXIOM is completely generative. Thus, developers need not edit the generated code to

incorporate additional logic because all such logic is specified during model construc-

tion. While partially generative solutions are feasible, the deviation of the final code

from the source model because of the hand-written developer-contributed code makes
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such an approach less attractive than its fully generative counterpart. Additionally, since

AXIOM models are just source code, they can be managed using existing software de-

velopment tools and techniques such as IDEs and source code management systems and

do not require specialized software to support concurrent model development.

AXIOM’s transformation rules and templates can be used across multiple applications

by externalizing the various transformation rules and templates so that they can be

reused during the transformation of other application models. From a practical per-

spective, this means that it will likely take longer to develop the rules and templates

for new technologies than it might to simply use their APIs directly, but once they have

been created, they are usable by any other application that requires them. For one-

offs or proofs-of-concept this up-front cost may be significant enough that other, more

common approaches, such as incremental prototypes built with hand-written code, may

prove to be more economical.

Because AXIOM’s transformation process divides the transformations into two discrete

types, structural and styling, and because those transformations can be applied at either

the application or view scope, it is possible for us to overcome the “least common de-

nominator” problem that arises with some cross-platform development efforts. AXIOM

was designed with platform-specificity in mind, even as it attempts to provide platform-

independent abstractions that can help simplify the modeling process. Thus, AXIOM is

not constrained to work with only the small subset of features that are common across all

platforms. Because the Application model defers low-level implementation decisions

until structural and styling transformations have produced the Implementation model, it

is possible, through the use of the transformation rules and appropriate code templates,

to generate virtually any kind of code output.

AXIOM can scale to mobile applications that are similar in size and complexity to those

that are developed manually. This is because the process of model transformation and

code generation is one of composition from smaller, simpler elements and can thus work

at different scales with equal facility.

Tests have been conducted on a sample of mobile applications that reflect common re-

quirements such as cross-screen navigation and the use of a variety of user interface
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widgets. Some of the capabilities are easy to model in a platform-independent way,

while others are not. Our results may be due in part to natural variability in developer

skill, although AXIOM embeds much of that domain knowledge in its DSL, reducing

its overall impact. There are doubtless more efficient implementations than those sub-

mitted during our tests. Based on these tests, this research attempts to answer some

key questions about model-driven development for mobile platforms using the AXIOM

approach:

1. Is developer productivity with AXIOM significantly different when compared to

writing native mobile applications?

2. Does the code created using AXIOM exhibit similar quality to equivalent hand-

written code?

Conceptually, AXIOM can improve developer productivity because it emphasizes up-

front modeling and because the transformation rules and templates can be changed and

reused. For these productivity gains to be realized the templates and transformation

rules must be designed and implemented up front. These rules and templates need not

be provided by the development team. For example, the third-party provider of a persis-

tence framework could provide the templates and transformation rules that they believe

best reflect the use of their framework. If application-specific changes are required, they

can be made as the application is modeled and without being required to start ex nihilo.

The preliminary results of AXIOM’s impact on developer productivity are promising. It

has the potential to deliver significant cost savings, particularly for cross-platform appli-

cation development, while improving overall application quality. Based on the analysis

using Jiang’s productivity metric, AXIOM can deliver significant productivity benefits

to developers. This is because of its use of a single platform-independent DSML that

can define both the interaction and behavoral aspects of the application. This allows

productivity that is about 400% greater than producing the equivalent code by hand.

A similar analysis of the SLOC required for the AXIOM models compared to hand-

written code produced by the native tools for each platform suggests a wider range in

terms of productivity. In the worst cases AXIOM required only slightly less code than
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the equivalent native applications while in the best case AXIOM required only about

8% of the lines of code of an equivalent iOS application and only 5% of the lines of

code of an equivalent native Android application.

Finally, our preliminary results with respect to AXIOM’s representational power and

conciseness are encouraging, showing that AXIOM can represent concepts in its DSL

more concisely than can be done in the native programming languages.

AXIOM’s impact on code quality is more ambiguous. With respect to the AXIOM

prototype the answer is “no” since it generally produces more code and thus more is-

sues than the equivalent hand-written code. However, with further optimizations and

better templates, there is every reason to believe that the AXIOM approach can indeed

be comparable, and perhaps even better, than hand-written code precisely because any

changes made to the template will be rendered in the generated code everywhere that

template is used rather than requiring individual fixes for each observation of a partic-

ular issue. The analysis of the SonarQube data suggests that while the native tools for

each platform doubtless help prevent some of the issues that can be introduced during

AXIOM’s Translation stage, they are not prevented in their entirety. Those issues may

be simple to eliminate, but each issue requires at least some developer time, which can

prove to be a drain on productivity.

The AXIOM DSML is comparatively young and could benefit from several optimiza-

tions. In particular it would be useful to incorporate more patterns and idioms of the

mobile platform directly into the language itself. This would further reduce the size of

the AXIOM models while also making it easier to design and construct code generation

templates to produce efficient and optimized native code. Furthermore, the approach

at present only recognizes a comparatively small subset of the iOS and Android plat-

forms. Further research suggests that extending AXIOM to use an Adaptive DSML

could further improve developer productivity and code quality by automatically ingest-

ing changes to the underlying platforms and exposing them via the AXIOM DSML.

Thus far we have not found any inherent limitations in AXIOM’s approach, although we

have found several in our prototype and in the current DSL. For example, the DSL does

not currently have a formalized entity model, relying instead on available Groovy types
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such as maps. This limits the automatic discovery and layout of data fields since there is

not enough type information available to enable AXIOM to accurately determine which

graphical widget is appropriate for each data element. Similarly, as we have seen, the

prototype does not always generate the most optimal code. Finally, the prototype cur-

rently uses only a subset of the iOS and Android APIs although AXIOM’s DSL can

be extended by importing additional libraries. All of these are limitations of the proto-

type and not of the approach in general. The goal of incorporating additional libraries

into the language has led to research in the area of “adaptive DSMLs” as described in

Section 9.3.2.

Other researches have been exploring the use of DSLs for mobile application develop-

ment as well. Appcelerator, Mobl, MobDSL, Cannapi, and md2 are all examples of

such DSLs. However, each of these approaches takes a least-common denominator ap-

proach to their languages that make it difficult, if not impossible, to adequately integrate

the native API and related libraries into the model itself. This can lead to developers

using those tools to generate the initial native code, which is then augmented with hand-

written code. This approach improves the time to deliver the initial application skeleton,

but then forces the developer to leave the model behind in favor of hand-written code,

which thus negates many of the benefits that MDD provides.

AXIOM is an approach to model-driven development in the mobile domain that seeks

to improve developer productivity while maintaining a high degree of code quality. AX-

IOM does this using a DSML and a multi-pass transformation and template-driven code

generation. The AXIOM approach has demonstrated significant productivity benefits

and appears well suited to modern agile development approaches that favor only arti-

facts that directly contribute to the understanding of the application and its final, exe-

cutable form. The use of a dynamic language further reduces the overhead of using the

DSML to model mobile applications. The results of the analysis of AXIOM’s impact on

productivity and code quality are promising and further potential improvements to the

language have been identified, including the use of adaptive domain-specific modeling

languages that may further enhance AXIOM’s ability to quickly adapt to the rapidly

changing capabilities of mobile platforms.



Appendix A

Mid-Scale Application Screenshots

We provide side-by-side screen captures of the executing version of the AXIOM and

natively developed mid-scale applications described in Chapter 7.
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(A) AXIOM-generated Android screens. Author’s images.

(B) Native Android screens. Author’s images.

(C) AXIOM-generated iOS screens. Author’s images.

(D) Native iOS screens. Author’s images.

FIGURE A.1: AXIOM, Android, and iOS Screen Captures for CAR Application.
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(A) AXIOM-generated Android screens. Author’s images.

(B) Native Android screens. Author’s images.

(C) AXIOM-generated iOS screens. Author’s images.

(D) Native iOS screens. Author’s images.

FIGURE A.2: AXIOM, Android, and iOS Screen Captures for CVT Application.
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(A) AXIOM-generated Android screens. Author’s images.

(B) Native Android screens. Author’s images.

(C) AXIOM-generated iOS screens. Author’s images.

(D) Native iOS screens. Author’s images.

FIGURE A.3: AXIOM, Android, and iOS Screen Captures for EUC Application.
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(A) AXIOM-Generated Android screens. Author’s images.

(B) Native Android screens. Author’s images.

(C) AXIOM-Generated iOS screens. Author’s images.

(D) Native iOS screens. Author’s images.

FIGURE A.4: AXIOM, Android, and iOS Screen Captures for MAT Application.
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(A) AXIOM-generated Android screens. Author’s images.

(B) Native Android screens. Author’s images.
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(C) AXIOM-generated iOS screens. Author’s images.

(D) Native iOS screens. Author’s images.

FIGURE A.5: AXIOM, Android, and iOS screen captures for POS application.
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[166] Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. The Program Is the
Model: Enabling transformations@run.time. In Krzysztof Czarnecki and Görel
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