104 research outputs found

    Object Hierarchies for Efficient Rendering

    Get PDF
    This thesis covers the efficient visualization of complex 3d scenes using various rendering methods such as photo-realistic and real-time rendering. Especially the important role of bounding volume hierarchies is discussed in detail in the context of illumination and visibility algorithms. We present a novel approach for automatic generation of object hierarchies and apply the resulting data structure to several rendering techniques. In the field of ray tracing we describe a novel ray acceleration method that combines objects hierarchies and regular grids. We demonstrate how radiosity computations may benefit from available scene hierarchies to determine the radiant flux between object clusters. Finally, we present an adaptive interactive rendering algorithm that may dramatically reduce the number of visibility tests in an occlusion culling framework for interactive real-time visualization.Diese Dissertation untersucht unterschiedliche Verfahren zur effizienten Visualisierung grosser dreidimensionaler Szenengeometrien, sowohl im Bereich des Photorealismus wie auch bei der Echtzeit-Visualisierung. Hierbei wird insbesondere die Nützlichkeit von Hüllkörperhierarchien bei der Beleuchtungsrechnung und bei der Beantwortung von Sichtbarkeitsfragen herausgearbeitet. Ein neuartiges, kostenbasiertes Verfahren zur automatischen Konstruktion von Objekthierarchien wird präsentiert sowie dessen Anwendung für alle gängigen Darstellungsverfahren. Zusätzlich beschreibt diese Disseration im Bereich Ray Tracing ein neues Verfahren zur Szenenstrukturierung, welches die Vorteile von Hüllkörperhierarchien und regulären Gittern kombiniert. Im Bereich der Radiosity wird gezeigt, wie sich Szenenhierarchien ideal zur Berechnung des Lichtflusses zwischen Objekt-Clustern nutzen lassen und im Bereich Echtzeit-Rendering wird ein adaptives Verfahren vorgestellt, dass die Zahl teurer Sichtbarkeitstests beim Occlusion-Culling deutlich reduziert

    Tighter bounding volumes for better occlusion culling performance

    Get PDF
    Bounding volumes are used in computer graphics to approximate the actual geometric shape of an object in a scene. The main intention is to reduce the costs associated with visibility or interference tests. The bounding volumes most commonly used have been axis-aligned bounding boxes and bounding spheres. In this paper, we propose the use of discrete orientation polytopes (\kdops) as bounding volumes for the specific use of visibility culling. Occlusion tests are computed more accurately using \kdops, but most importantly, they are also computed more efficiently. We illustrate this point through a series of experiments using a wide range of data models under varying viewing conditions. Although no bounding volume works the best in every situation, {\kdops} are often the best, and also work very well in those cases where they are not the best, therefore they provide good results without having to analyze applications and different bounding volumes

    Generation of subdivision : hierarchies for efficient occlusion culling of large polygonal models

    Get PDF
    Veröffentlichung des Wilhelm-Schickard-Institut für Informatik Universität Tübinge

    Large Model Visualization : Techniques and Applications

    Get PDF
    The size of datasets in scientific computing is rapidly increasing. This increase is caused by a boost of processing power in the past years, which in turn was invested in an increase of the accuracy and the size of the models. A similar trend enabled a significant improvement of medical scanners; more than 1000 slices of a resolution of 512x512 can be generated by modern scanners in daily practice. Even in computer-aided engineering typical models eas-ily contain several million polygons. Unfortunately, the data complexity is growing faster than the rendering performance of modern computer systems. This is not only due to the slower growing graphics performance of the graphics subsystems, but in particular because of the significantly slower growing memory bandwidth for the transfer of the geometry and image data from the main memory to the graphics accelerator. Large model visualization addresses this growing divide between data complexity and rendering performance. Most methods focus on the reduction of the geometric or pixel complexity, and hence also the memory bandwidth requirements are reduced. In this dissertation, we discuss new approaches from three different research areas. All approaches target at the reduction of the processing complexity to achieve an interactive visualization of large datasets. In the second part, we introduce applications of the presented ap-proaches. Specifically, we introduce the new VIVENDI system for the interactive virtual endoscopy and other applications from mechanical engineering, scientific computing, and architecture.The size of datasets in scientific computing is rapidly increasing. This increase is caused by a boost of processing power in the past years, which in turn was invested in an increase of the accuracy and the size of the models. A similar trend enabled a significant improvement of medical scanners; more than 1000 slices of a resolution of 512x512 can be generated by modern scanners in daily practice. Even in computer-aided engineering typical models eas-ily contain several million polygons. Unfortunately, the data complexity is growing faster than the rendering performance of modern computer systems. This is not only due to the slower growing graphics performance of the graphics subsystems, but in particular because of the significantly slower growing memory bandwidth for the transfer of the geometry and image data from the main memory to the graphics accelerator. Large model visualization addresses this growing divide between data complexity and rendering performance. Most methods focus on the reduction of the geometric or pixel complexity, and hence also the memory bandwidth requirements are reduced. In this dissertation, we discuss new approaches from three different research areas. All approaches target at the reduction of the processing complexity to achieve an interactive visualization of large datasets. In the second part, we introduce applications of the presented ap-proaches. Specifically, we introduce the new VIVENDI system for the interactive virtual endoscopy and other applications from mechanical engineering, scientific computing, and architecture

    Conservative From-Point Visibility.

    Get PDF
    Visibility determination has been an important part of the computer graphics research for several decades. First studies of the visibility were hidden line removal algorithms, and later hidden surface removal algorithms. Today’s visibility determination is mainly concentrated on conservative, object level visibility determination techniques. Conservative methods are used to accelerate the rendering process when some exact visibility determination algorithm is present. The Z-buffer is a typical exact visibility determination algorithm. The Z-buffer algorithm is implemented in practically every modern graphics chip. This thesis concentrates on a subset of conservative visibility determination techniques. These techniques are sometimes called from-point visibility algorithms. They attempt to estimate a set of visible objects as seen from the current viewpoint. These techniques are typically used with real-time graphics applications such as games and virtual environments. Concentration is on the view frustum culling and occlusion culling. View frustum culling discards objects that are outside of the viewable volume. Occlusion culling algorithms try to identify objects that are not visible because they are behind some other objects. Also spatial data structures behind the efficient implementations of view frustum culling and occlusion culling are reviewed. Spatial data structure techniques like maintaining of dynamic scenes and exploiting spatial and temporal coherences are reviewed.1. Introduction.............................................................................................................1 2. Visibility Problem...................................................................................................3 3. Scene Organization...............................................................................................10 3.1. Bounding Volume Hierarchies and Scene Graphs.................................10 3.2. Spatial Data Structures ...............................................................................13 3.3. Regular Grids...............................................................................................14 3.4. Quadtrees and Octrees ...............................................................................15 3.5. KD-Trees.......................................................................................................20 3.6. BSP-Trees......................................................................................................23 3.7. Exploiting Spatial and Temporal Coherence ..........................................27 3.8. Dynamic Scenes...........................................................................................30 3.9. Summary ......................................................................................................34 4. View Frustum Culling .........................................................................................35 4.1. View Frustum Construction ......................................................................36 4.2. View Frustum Test......................................................................................37 4.3. Hierarchical View Frustum Culling .........................................................41 4.4. Optimizations ..............................................................................................42 4.5. Summary ......................................................................................................44 5. Occlusion Culling .................................................................................................45 5.1. Fundamental Concepts...............................................................................45 5.2. Occluder Selection.......................................................................................46 5.3. Hardware Occlusion Queries....................................................................49 5.4. Object-Space Methods ................................................................................50 5.5. Image-Space Methods ................................................................................55 5.6. Summary ......................................................................................................64 6. Conclusion.............................................................................................................66 References .................................................................................................................... 7

    Efficient Real-Time Rendering of Building Information Models

    Get PDF
    A Building Information Model (BIM) is a powerful concept, since it allows both 2D-drawings and 3D-models of buildings or facilities to be extracted from the same source of data. Compared to a general 3D-CAD model a BIM is a different kind of representation, since it defines not only geometrical data but also information regarding spatial relations and semantics. However, because of the large number of individual objects and high geometric complexity, 3D-data obtained from a BIM are not easily used for real-time rendering without further processing. In this paper we present a culling system specifically designed for efficient real-time rendering of BIM’s. By utilizing the unique properties of a BIM we can form the required data structures without manual modification or expensive preprocessing of the input data. Using hardware occlusion queries together with additional mechanisms based on specific BIM-data, the presented system achieves good culling efficiency for both indoor and outdoor cases

    A Data-Virtualization System for Large Model Visualization

    Get PDF
    Interactive scientific visualizations are widely used for the visual exploration and examination of physical data resulting from measurements or simulations. Driven by technical advancements of data acquisition and simulation technologies, especially in the geo-scientific domain, large amounts of highly detailed subsurface data are generated. The oil and gas industry is particularly pushing such developments as hydrocarbon reservoirs are increasingly difficult to discover and exploit. Suitable visualization techniques are vital for the discovery of the reservoirs as well as their development and production. However, the ever-growing scale and complexity of geo-scientific data sets result in an expanding disparity between the size of the data and the capabilities of current computer systems with regard to limited memory and computing resources. In this thesis we present a unified out-of-core data-virtualization system supporting geo-scientific data sets consisting of multiple large seismic volumes and height-field surfaces, wherein each data set may exceed the size of the graphics memory or possibly even the main memory. Current data sets fall within the range of hundreds of gigabytes up to terabytes in size. Through the mutual utilization of memory and bandwidth resources by multiple data sets, our data-management system is able to share and balance limited system resources among different data sets. We employ multi-resolution methods based on hierarchical octree and quadtree data structures to generate level-of-detail working sets of the data stored in main memory and graphics memory for rendering. The working set generation in our system is based on a common feedback mechanism with inherent support for translucent geometric and volumetric data sets. This feedback mechanism collects information about required levels of detail during the rendering process and is capable of directly resolving data visibility without the application of any costly occlusion culling approaches. A central goal of the proposed out-of-core data management system is an effective virtualization of large data sets. Through an abstraction of the level-of-detail working sets, our system allows developers to work with extremely large data sets independent of their complex internal data representations and physical memory layouts. Based on this out-of-core data virtualization infrastructure, we present distinct rendering approaches for specific visualization problems of large geo-scientific data sets. We demonstrate the application of our data virtualization system and show how multi-resolution data can be treated exactly the same way as regular data sets during the rendering process. An efficient volume ray casting system is presented for the rendering of multiple arbitrarily overlapping multi-resolution volume data sets. Binary space-partitioning volume decomposition of the bounding boxes of the cube-shaped volumes is used to identify the overlapping and non-overlapping volume regions in order to optimize the rendering process. We further propose a ray casting-based rendering system for the visualization of geological subsurface models consisting of multiple very detailed height fields. The rendering of an entire stack of height-field surfaces is accomplished in a single rendering pass using a two-level acceleration structure, which combines a minimum-maximum quadtree for empty-space skipping and sorted lists of depth intervals to restrict ray intersection searches to relevant height fields and depth ranges. Ultimately, we present a unified rendering system for the visualization of entire geological models consisting of highly detailed stacked horizon surfaces and massive volume data. We demonstrate a single-pass ray casting approach facilitating correct visual interaction between distinct translucent model components, while increasing the rendering efficiency by reducing processing overhead of potentially invisible parts of the model. The combination of image-order rendering approaches and the level-of-detail feedback mechanism used by our out-of-core data-management system inherently accounts for occlusions of different data types without the application of costly culling techniques. The unified out-of-core data-management and virtualization infrastructure considerably facilitates the implementation of complex visualization systems. We demonstrate its applicability for the visualization of large geo-scientific data sets using output-sensitive rendering techniques. As a result, the magnitude and multitude of data sets that can be interactively visualized is significantly increased compared to existing approaches

    Efficient Geometry and Illumination Representations for Interactive Protein Visualization

    Get PDF
    This dissertation explores techniques for interactive simulation and visualization for large protein datasets. My thesis is that using efficient representations for geometric and illumination data can help in developing algorithms that achieve better interactivity for visual and computational proteomics. I show this by developing new algorithms for computation and visualization for proteins. I also show that the same insights that resulted in better algorithms for visual proteomics can also be turned around and used for more efficient graphics rendering. Molecular electrostatics is important for studying the structures and interactions of proteins, and is vital in many computational biology applications, such as protein folding and rational drug design. We have developed a system to efficiently solve the non-linear Poisson-Boltzmann equation governing molecular electrostatics. Our system simultaneously improves the accuracy and the efficiency of the solution by adaptively refining the computational grid near the solute-solvent interface. In addition, we have explored the possibility of mapping the PBE solution onto GPUs. We use pre-computed accumulation of transparency with spherical-harmonics-based compression to accelerate volume rendering of molecular electrostatics. We have also designed a time- and memory-efficient algorithm for interactive visualization of large dynamic molecules. With view-dependent precision control and memory-bandwidth reduction, we have achieved real-time visualization of dynamic molecular datasets with tens of thousands of atoms. Our algorithm is linearly scalable in the size of the molecular datasets. In addition, we present a compact mathematical model to efficiently represent the six-dimensional integrals of bidirectional surface scattering reflectance distribution functions (BSSRDFs) to render scattering effects in translucent materials interactively. Our analysis first reduces the complexity and dimensionality of the problem by decomposing the reflectance field into non-scattered and subsurface-scattered reflectance fields. While the non-scattered reflectance field can be described by 4D bidirectional reflectance distribution functions (BRDFs), we show that the scattered reflectance field can also be represented by a 4D field through pre-processing the neighborhood scattering radiance transfer integrals. We use a novel reference-points scheme to compactly represent the pre-computed integrals using a hierarchical and progressive spherical harmonics representation. Our algorithm scales linearly with the number of mesh vertices

    Scalable Realtime Rendering and Interaction with Digital Surface Models of Landscapes and Cities

    Get PDF
    Interactive, realistic rendering of landscapes and cities differs substantially from classical terrain rendering. Due to the sheer size and detail of the data which need to be processed, realtime rendering (i.e. more than 25 images per second) is only feasible with level of detail (LOD) models. Even the design and implementation of efficient, automatic LOD generation is ambitious for such out-of-core datasets considering the large number of scales that are covered in a single view and the necessity to maintain screen-space accuracy for realistic representation. Moreover, users want to interact with the model based on semantic information which needs to be linked to the LOD model. In this thesis I present LOD schemes for the efficient rendering of 2.5d digital surface models (DSMs) and 3d point-clouds, a method for the automatic derivation of city models from raw DSMs, and an approach allowing semantic interaction with complex LOD models. The hierarchical LOD model for digital surface models is based on a quadtree of precomputed, simplified triangle mesh approximations. The rendering of the proposed model is proved to allow real-time rendering of very large and complex models with pixel-accurate details. Moreover, the necessary preprocessing is scalable and fast. For 3d point clouds, I introduce an LOD scheme based on an octree of hybrid plane-polygon representations. For each LOD, the algorithm detects planar regions in an adequately subsampled point cloud and models them as textured rectangles. The rendering of the resulting hybrid model is an order of magnitude faster than comparable point-based LOD schemes. To automatically derive a city model from a DSM, I propose a constrained mesh simplification. Apart from the geometric distance between simplified and original model, it evaluates constraints based on detected planar structures and their mutual topological relations. The resulting models are much less complex than the original DSM but still represent the characteristic building structures faithfully. Finally, I present a method to combine semantic information with complex geometric models. My approach links the semantic entities to the geometric entities on-the-fly via coarser proxy geometries which carry the semantic information. Thus, semantic information can be layered on top of complex LOD models without an explicit attribution step. All findings are supported by experimental results which demonstrate the practical applicability and efficiency of the methods

    Efficient computation of discrete Voronoi diagram and homotopy-preserving simplified medial axis of a 3d polyhedron

    Get PDF
    The Voronoi diagram is a fundamental geometric data structure and has been well studied in computational geometry and related areas. A Voronoi diagram defined using the Euclidean distance metric is also closely related to the Blum medial axis, a well known skeletal representation. Voronoi diagrams and medial axes have been shown useful for many 3D computations and operations, including proximity queries, motion planning, mesh generation, finite element analysis, and shape analysis. However, their application to complex 3D polyhedral and deformable models has been limited. This is due to the difficulty of computing exact Voronoi diagrams in an efficient and reliable manner. In this dissertation, we bridge this gap by presenting efficient algorithms to compute discrete Voronoi diagrams and simplified medial axes of 3D polyhedral models with geometric and topological guarantees. We apply these algorithms to complex 3D models and use them to perform interactive proximity queries, motion planning and skeletal computations. We present three new results. First, we describe an algorithm to compute 3D distance fields of geometric models by using a linear factorization of Euclidean distance vectors. This formulation maps directly to the linearly interpolating graphics rasterization hardware and enables us to compute distance fields of complex 3D models at interactive rates. We also use clamping and culling algorithms based on properties of Voronoi diagrams to accelerate this computation. We introduce surface distance maps, which are a compact distance vector field representation based on a mesh parameterization of triangulated two-manifolds, and use them to perform proximity computations. Our second main result is an adaptive sampling algorithm to compute an approximate Voronoi diagram that is homotopy equivalent to the exact Voronoi diagram and preserves topological features. We use this algorithm to compute a homotopy-preserving simplified medial axis of complex 3D models. Our third result is a unified approach to perform different proximity queries among multiple deformable models using second order discrete Voronoi diagrams. We introduce a new query called N-body distance query and show that different proximity queries, including collision detection, separation distance and penetration depth can be performed based on Nbody distance query. We compute the second order discrete Voronoi diagram using graphics hardware and use distance bounds to overcome the sampling errors and perform conservative computations. We have applied these queries to various deformable simulations and observed up to an order of magnitude improvement over prior algorithms
    • …
    corecore