1,372 research outputs found

    Safe and accurate MAV Control, navigation and manipulation

    Get PDF
    This work focuses on the problem of precise, aggressive and safe Micro Aerial Vehicle (MAV) navigation as well as deployment in applications which require physical interaction with the environment. To address these issues, we propose three different MAV model based control algorithms that rely on the concept of receding horizon control. As a starting point, we present a computationally cheap algorithm which utilizes an approximate linear model of the system around hover and is thus maximally accurate for slow reference maneuvers. Aiming at overcoming the limitations of the linear model parameterisation, we present an extension to the first controller which relies on the true nonlinear dynamics of the system. This approach, even though computationally more intense, ensures that the control model is always valid and allows tracking of full state aggressive trajectories. The last controller addresses the topic of aerial manipulation in which the versatility of aerial vehicles is combined with the manipulation capabilities of robotic arms. The proposed method relies on the formulation of a hybrid nonlinear MAV-arm model which also takes into account the effects of contact with the environment. Finally, in order to enable safe operation despite the potential loss of an actuator, we propose a supervisory algorithm which estimates the health status of each motor. We further showcase how this can be used in conjunction with the nonlinear controllers described above for fault tolerant MAV flight. While all the developed algorithms are formulated and tested using our specific MAV platforms (consisting of underactuated hexacopters for the free flight experiments, hexacopter-delta arm system for the manipulation experiments), we further discuss how these can be applied to other underactuated/overactuated MAVs and robotic arm platforms. The same applies to the fault tolerant control where we discuss different stabilisation techniques depending on the capabilities of the available hardware. Even though the primary focus of this work is on feedback control, we thoroughly describe the custom hardware platforms used for the experimental evaluation, the state estimation algorithms which provide the basis for control as well as the parameter identification required for the formulation of the various control models. We showcase all the developed algorithms in experimental scenarios designed to highlight the corresponding strengths and weaknesses as well as show that the proposed methods can run in realtime on commercially available hardware.Open Acces

    Nonlinear stability and control study of highly maneuverable high performance aircraft

    Get PDF
    This project is intended to research and develop new nonlinear methodologies for the control and stability analysis of high-performance, high angle-of-attack aircraft such as HARV (F18). Past research (reported in our Phase 1, 2, and 3 progress reports) is summarized and more details of final Phase 3 research is provided. While research emphasis is on nonlinear control, other tasks such as associated model development, system identification, stability analysis, and simulation are performed in some detail as well. An overview of various models that were investigated for different purposes such as an approximate model reference for control adaptation, as well as another model for accurate rigid-body longitudinal motion is provided. Only a very cursory analysis was made relative to type 8 (flexible body dynamics). Standard nonlinear longitudinal airframe dynamics (type 7) with the available modified F18 stability derivatives, thrust vectoring, actuator dynamics, and control constraints are utilized for simulated flight evaluation of derived controller performance in all cases studied

    Optimization techniques for satellites proximity maneuvers

    Get PDF
    The main topic of this dissertation is the control optimization problem for satellites Rendezvous and Docking. Saving resources is almost as important as the mission safeness and effectiveness. Three different numerical approaches are developed. The first two techniques deal with realtime and sub-optimal control, generating a reliable control sequence for a chaser spacecraft which eventually docks to a target. The first approach uses dynamic programming to quickly generate a sub-optimal control sequence on a predetermined path to be followed by one of the two vehicles involved into the docking operations. The second method presents a fast direct optimization technique, which was previously validated on real aircraft for trajectory optimization. The third approach aims to take into account the limitations of space qualified hardware, in particular thrusters. The new technique fuses the use of a set of low thrust on-off engines with impulsive-high-thrust engines. The hybrid method here developed combines and customizes different techniques. The relative motion in the above mentioned control strategies is represented by a linear dynamic model. As secondary topic of this dissertation, the use of a genetic algorithm optimizer to find possible conditions under which spacecraft relative motion can be periodic, or at least bounded, is presented. This analysis takes into account the J2 gravity perturbation and some drag effects. The importance of the obtained results directly apply to the problem of formation keeping, as natural dynamics can be exploited to reduce the amount of active control preventing the spacecrafts to drift apart along tim

    Optimization techniques for satellites proximity maneuvers

    Get PDF
    The main topic of this dissertation is the control optimization problem for satellites Rendezvous and Docking. Saving resources is almost as important as the mission safeness and effectiveness. Three different numerical approaches are developed. The first two techniques deal with realtime and sub-optimal control, generating a reliable control sequence for a chaser spacecraft which eventually docks to a target. The first approach uses dynamic programming to quickly generate a sub-optimal control sequence on a predetermined path to be followed by one of the two vehicles involved into the docking operations. The second method presents a fast direct optimization technique, which was previously validated on real aircraft for trajectory optimization. The third approach aims to take into account the limitations of space qualified hardware, in particular thrusters. The new technique fuses the use of a set of low thrust on-off engines with impulsive-high-thrust engines. The hybrid method here developed combines and customizes different techniques. The relative motion in the above mentioned control strategies is represented by a linear dynamic model. As secondary topic of this dissertation, the use of a genetic algorithm optimizer to find possible conditions under which spacecraft relative motion can be periodic, or at least bounded, is presented. This analysis takes into account the J2 gravity perturbation and some drag effects. The importance of the obtained results directly apply to the problem of formation keeping, as natural dynamics can be exploited to reduce the amount of active control preventing the spacecrafts to drift apart along tim

    Optimal trajectory planning for a UAV glider using atmospheric thermals

    Get PDF
    An Unmanned Aerial Vehicle Glider (UAV glider) uses atmospheric energy in its different forms to remain aloft for extended flight durations. This UAV glider\u27s aim is to extract atmospheric thermal energy and use it to supplement its battery energy usage and increase the mission period. Given an infrared camera identified atmospheric thermal of known strength and location; current wind speed and direction; current battery level; altitude and location of the UAV glider; and estimating the expected altitude gain from the thermal, is it possible to make an energy efficient based motivation to fly to an atmospheric thermal so as to achieve UAV glider extended flight time? For this work, an infrared thermal camera aboard the UAV glider takes continuous forward-looking ground images of hot spots . Through image processing a candidate atmospheric thermal strength and location is estimated. An Intelligent Decision Model incorporates this information with the current UAV glider status and weather conditions to provide an energy-based recommendation to modify the flight path of the UAV glider. Research, development, and simulation of the Intelligent Decision Model is the primary focus of this work. Three models are developed: (1) Battery Usage Model, (2) Intelligent Decision Model, and (3) Altitude Gain Model. The Battery Usage Model comes from the candidate flight trajectory, wind speed & direction and aircraft dynamic model. Intelligent Decision Model uses a fuzzy logic based approach. The Altitude Gain Model requires the strength and size of the thermal and is found a priori

    Perspectives on hypersonic viscous and nonequilibrium flow research

    Get PDF
    An attempt is made to reflect on current focuses in certain areas of hypersonic flow research by examining recent works and their issues. Aspects of viscous interaction, flow instability, and nonequilibrium aerothermodynamics pertaining to theoretical interest are focused upon. The field is a diverse one, and many exciting works may have either escaped the writer's notice or been abandoned for the sake of space. Students of hypersonic viscous flow must face the transition problems towards the two opposite ends of the Reynolds or Knudsen number range, which represents two regimes where unresolved fluid/gas dynamic problems abound. Central to the hypersonic flow studies is high-temperature physical gas dynamics; here, a number of issues on modelling the intermolecular potentials and inelastic collisions remain the obstacles to quantitative predictions. Research in combustion and scramjet propulsion will certainly be benefitted by advances in turbulent mixing and new computational fluid dynamics (CFD) strategies on multi-scaled complex reactions. Even for the sake of theoretical development, the lack of pertinent experimental data in the right energy and density ranges is believed to be among the major obstacles to progress in aerothermodynamic research for hypersonic flight. To enable laboratory simulation of nonequilibrium effects anticipated for transatmospheric flight, facilities capable of generating high enthalpy flow at density levels higher than in existing laboratories are needed (Hornung 1988). A new free-piston shock tunnel capable of realizing a test-section stagnation temperature of 10(exp 5) at Reynolds number 50 x 10(exp 6)/cm is being completed and preliminary tests has begun (H. Hornung et al. 1992). Another laboratory study worthy of note as well as theoretical support is the nonequilibrium flow experiment of iodine vapor which has low activation energies for vibrational excitation and dissociation, and can be studied in a laboratory with modest resources (Pham-Van-Diep et al. 1992)

    Hybrid multi-objective trajectory optimization of low-thrust space mission design

    Get PDF
    Mención Internacional en el título de doctorThe overall goal of this dissertation is to develop multi-objective optimization algorithms for computing low-thrust trajectories. The thesis is motivated by the increasing number of space projects that will benefit from low-thrust propulsion technologies to gain unprecedented scientific, economic and social return. The low-cost design of such missions and the inclusion of concurrent engineering practices during the preliminary design phase demand advanced tools to rapidly explore different solutions and to benchmark them with respect to multiple conicting criteria. However, the determination of optimal low-thrust transfers is a challenging task and remains an active research field that seeks performance improvements. This work contributes to increase the efficiency of searching wide design spaces, reduce the amount of necessary human involvement, and enhance the capabilities to include complex operational constraints. To that end, the general low-thrust trajectory optimization problem is stated as a multi-objective Hybrid Optimal Control Problem. This formulation allows to simultaneously optimize discrete decisionmaking processes, discrete dynamics, and the continuous low-thrust steering law. Within this framework, a sequential two-step solution approach is devised for two different scenarios. The first problem considers the optimization of low-thrust multi-gravity assist trajectories. The proposed solution procedure starts by assuming a planar shape-based model for the interplanetary trajectory. A multi-objective heuristic algorithm combined with a gradient-based solver optimize the parameters de_ning the shape of the trajectory, the number and sequence of the gravity assists, the departure and arrival dates, and the launch excess velocity. In the second step, candidate solutions are deemed as initial guesses to solve the Nonlinear Programming Problem resulting from applying a direct collocation transcription scheme. In this step, the sequence of planetary gravity assists is known and provided by the heuristic search, dynamics is three-dimensional, and the steering law is not predefined. Operational constraints to comply with launch asymptote declination limits and fixed reorientation times during the transfer apply. The presented approach is tested on a rendezvous mission to Ceres, on a yby mission to Jupiter, and on a rendezvous mission to Pluto. Pareto-optimal solutions in terms of time of ight and propellant mass consumed (or alternatively delivered mass) are obtained. Results outperform those found in the literature in terms of optimality while showing the effectiveness of the proposed methodology to generate quick performance estimates. The second problem considers the simultaneous optimization of fully electric, fully chemical and combined chemical-electric orbit raising transfers between Earth's orbits is considered. In the first step of the solution approach, the control law of the electric engine is parameterized by a Lyapunov function. A multi-objective heuristic algorithm selects the optimal propulsion system, the transfer type, the low-thrust control history, as well as the number, orientation, and magnitude of the chemical firings. Earth's shadow, oblateness and Van-Allen radiation effects are included. In the second step, candidate solutions are deemed as initial guesses to solve the Nonlinear Programming Problem resulting from applying a direct collocation scheme. Operational constraints to avoid the GEO ring in combination to slew rate limits and slot phasing constraints are included. The proposed approach is applied to two transfer scenarios to GEO orbit. Pareto-optimal solutions trading of propellant mass, time of ight and solar-cell degradation are obtained. It is identified that the application of operational restrictions causes minor penalties in the objective function. Additionally, the analysis highlights the benefits that combined chemical-electric platforms may provide for future GEO satellites.El objetivo principal de esta trabajo es desarrollar algoritmos de optimización multi-objetivo para la obtención de trayectorias espaciales con motores de bajo empuje. La tesis está motivada por el creciente número de misiones que se van a beneficiar del uso de estas tecnologías para conseguir beneficios científicos, económicos y sociales sin precedentes. El diseño de bajo coste de dichas misiones ligado a los principios de ingeniería concurrente requieren herramientas computacionales avanzadas que exploren rápidamente distintas soluciones y las comparen entre sí respecto a varios criterios. Sin embargo, esta tarea permanece como un campo de investigación activo que busca continuamente mejoras de rendimiento durante el proceso. Este trabajo contribuye a aumentar la eficiencia cuando espacio de diseño es amplio, a reducir la participación humana requerida y a mejorar las capacidades para incluir restricciones operacionales complejas. Para este fin, el problema general de optimización de trayectorias de bajo empuje se presenta como un problema híbrido de control óptimo. Esta formulación permite optimizar al mismo tiempo procesos de toma de decisiones, dinámica discreta y la ley de control del motor. Dentro de este marco, se idea un algoritmo secuencial de dos pasos para dos escenarios diferentes. El primer problema considera la optimización de trayectorias de bajo empuje con múltiples y-bys. El proceso de solución propuesto comienza asumiendo un modelo plano y shape-based para la trayectoria interplanetaria. Un algoritmo de optimización heurístico y multi-objetivo combinado con un resolvedor basado en gradiente optimizan los parámetros de la espiral que definen la forma de la trayectoria, el número y la secuencia de las maniobras gravitacionales, las fechas de salida y llegada, y la velocidad de lanzamiento. En el segundo paso, las soluciones candidatas se usan como estimación inicial para resolver el problema de optimización no lineal que resulta de aplicar un método de transcripción directa. En este paso, las secuencia de y-bys es conocida y determinada por el paso anterior, la dinámica es tridimensional, y la ley de control no está prefinida. Además, se pueden aplicar restricciones operacionales relacionadas con las declinación de la asíntota de salida e imponer tiempos de reorientación fijos. Este enfoque es probado en misiones a Ceres, a Júpiter y a Plutón. Se obtienen soluciones óptimas de Pareto en función del tiempo de vuelo y la masa de combustible consumida (o la masa entregada). Los resultados obtenidos mejoran los disponibles en la literatura en términos de optimalidad, a la vez que reflejan la efectividad de la metodología a propuesta para generar estimaciones rápidas. El segundo problema considera la optimización simultanea de transferencias entre órbitas terrestres que usan propulsión eléctrica, química o una combinación de ambas. En el primer paso del método de solución, la ley de control del motor eléctrico se parametriza por una función de Lyapunov. Un algoritmo de optimización heurístico y multi-objetivo selecciona el sistema propulsivo óptimo, el tipo de transferencia, la ley de control del motor de bajo empuje, así como el número, la orientación y la magnitud de los impulsos químicos. Se incluyen los efectos de la sombra y de la no esfericidad de la Tierra, además de la radiación de Van-Allen. En el segundo paso, las soluciones candidatas se usan como estimación inicial para resolver el problema de optimización no lineal que resulta de aplicar un método de transcripción directa. El método de solución propuesto se aplica a dos transferencias a GEO diferentes. Se obtienen soluciones óptimas de Pareto con respecto a la masa de combustible, el tiempo de vuelo y la degradación de las células solares. Se identifican que la aplicación de las restricciones operacionales penaliza mínimamente la función objetivo. Además, los análisis presentados destacan los beneficios que la propulsión química y eléctrica combinada proporcionarían a los satélites en GEO.Programa de Doctorado en Mecánica de Fluidos por la Universidad Carlos III de Madrid; la Universidad de Jaén; la Universidad de Zaragoza; la Universidad Nacional de Educación a Distancia; la Universidad Politécnica de Madrid y la Universidad Rovira i Virgili.Presidente: Rafael Vázquez Valenzuela.- Secretario: Claudio Bombardelli.- Vocal: Bruce A. Conwa

    Distributed photovoltaic systems: Utility interface issues and their present status

    Get PDF
    Major technical issues involving the integration of distributed photovoltaics (PV) into electric utility systems are defined and their impacts are described quantitatively. An extensive literature search, interviews, and analysis yielded information about the work in progress and highlighted problem areas in which additional work and research are needed. The findings from the literature search were used to determine whether satisfactory solutions to the problems exist or whether satisfactory approaches to a solution are underway. It was discovered that very few standards, specifications, or guidelines currently exist that will aid industry in integrating PV into the utility system. Specific areas of concern identified are: (1) protection, (2) stability, (3) system unbalance, (4) voltage regulation and reactive power requirements, (5) harmonics, (6) utility operations, (7) safety, (8) metering, and (9) distribution system planning and design

    Advanced Feedback Linearization Control for Tiltrotor UAVs: Gait Plan, Controller Design, and Stability Analysis

    Full text link
    Three challenges, however, can hinder the application of Feedback Linearization: over-intensive control signals, singular decoupling matrix, and saturation. Activating any of these three issues can challenge the stability proof. To solve these three challenges, first, this research proposed the drone gait plan. The gait plan was initially used to figure out the control problems in quadruped (four-legged) robots; applying this approach, accompanied by Feedback Linearization, the quality of the control signals was enhanced. Then, we proposed the concept of unacceptable attitude curves, which are not allowed for the tiltrotor to travel to. The Two Color Map Theorem was subsequently established to enlarge the supported attitude for the tiltrotor. These theories were employed in the tiltrotor tracking problem with different references. Notable improvements in the control signals were witnessed in the tiltrotor simulator. Finally, we explored the control theory, the stability proof of the novel mobile robot (tilt vehicle) stabilized by Feedback Linearization with saturation. Instead of adopting the tiltrotor model, which is over-complicated, we designed a conceptual mobile robot (tilt-car) to analyze the stability proof. The stability proof (stable in the sense of Lyapunov) was found for a mobile robot (tilt vehicle) controlled by Feedback Linearization with saturation for the first time. The success tracking result with the promising control signals in the tiltrotor simulator demonstrates the advances of our control method. Also, the Lyapunov candidate and the tracking result in the mobile robot (tilt-car) simulator confirm our deductions of the stability proof. These results reveal that these three challenges in Feedback Linearization are solved, to some extents.Comment: Doctoral Thesis at The University of Toky
    corecore