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Heras for showing our group your amazing organizational skills and tools. Although you were

once my teacher, now we have proven to make a great team, specially when it has to do with

flying quadcopters. Thank you Daniele, Aniel, Eduardo and Nacho for sharing your amazing

investigations with me during the research group meetings.
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tesis. Gracias Rosa por mantenernos a todos siempre informados de cualquier cotilleo que pueda

haber. Gracias Ferro por amenizar cualquier ocasión con una bonita (?) canción. Gracias Edu,

Fran y Yuste porque sin vosotros nuestras reuniones estaŕıan vaćıas. Mil gracias a todos y cada
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Universidad Carlos III de Madrid

Abstract
Department of Bioengineering and Aerospace Engineering

Hybrid Multi-Objective Trajectory Optimization of Low-Thrust Space Mission Design

by David Morante González

The overall goal of this dissertation is to develop multi-objective optimization algorithms
for computing low-thrust trajectories. The thesis is motivated by the increasing number of
space projects that will benefit from low-thrust propulsion technologies to gain unprecedented
scientific, economic and social return. The low-cost design of such missions and the inclusion of
concurrent engineering practices during the preliminary design phase demand advanced tools to
rapidly explore different solutions and to benchmark them with respect to multiple conflicting
criteria. However, the determination of optimal low-thrust transfers is a challenging task and
remains an active research field that seeks performance improvements. This work contributes to
increase the efficiency of searching wide design spaces, reduce the amount of necessary human
involvement, and enhance the capabilities to include complex operational constraints. To that
end, the general low-thrust trajectory optimization problem is stated as a multi-objective Hybrid
Optimal Control Problem. This formulation allows to simultaneously optimize discrete decision-
making processes, discrete dynamics, and the continuous low-thrust steering law. Within this
framework, a sequential two-step solution approach is devised for two different scenarios.

The first problem considers the optimization of low-thrust multi-gravity assist trajectories.
The proposed solution procedure starts by assuming a planar shape-based model for the in-
terplanetary trajectory. A multi-objective heuristic algorithm combined with a gradient-based
solver optimize the parameters defining the shape of the trajectory, the number and sequence of
the gravity assists, the departure and arrival dates, and the launch excess velocity. In the sec-
ond step, candidate solutions are deemed as initial guesses to solve the Nonlinear Programming
Problem resulting from applying a direct collocation transcription scheme. In this step, the
sequence of planetary gravity assists is known and provided by the heuristic search, dynamics
is three-dimensional, and the steering law is not predefined. Operational constraints to com-
ply with launch asymptote declination limits and fixed reorientation times during the transfer
apply. The presented approach is tested on a rendezvous mission to Ceres, on a flyby mission
to Jupiter, and on a rendezvous mission to Pluto. Pareto-optimal solutions in terms of time
of flight and propellant mass consumed (or alternatively delivered mass) are obtained. Results
outperform those found in the literature in terms of optimality while showing the effectiveness
of the proposed methodology to generate quick performance estimates.

The second problem considers the simultaneous optimization of fully electric, fully chemical
and combined chemical-electric orbit raising transfers between Earth’s orbits is considered. In
the first step of the solution approach, the control law of the electric engine is parameterized
by a Lyapunov function. A multi-objective heuristic algorithm selects the optimal propulsion
system, the transfer type, the low-thrust control history, as well as the number, orientation,
and magnitude of the chemical firings. Earth’s shadow, oblateness and Van-Allen radiation
effects are included. In the second step, candidate solutions are deemed as initial guesses to
solve the Nonlinear Programming Problem resulting from applying a direct collocation scheme.
Operational constraints to avoid the GEO ring in combination to slew rate limits and slot
phasing constraints are included. The proposed approach is applied to two transfer scenarios to
GEO orbit. Pareto-optimal solutions trading off propellant mass, time of flight and solar-cell
degradation are obtained. It is identified that the application of operational restrictions causes
minor penalties in the objective function. Additionally, the analysis highlights the benefits that
combined chemical-electric platforms may provide for future GEO satellites.

https://www.uc3m.es/Inicio
http://portal.uc3m.es/portal/page/portal/inicio/universidad/departamentos_institutos/departamento_bioing_aeroespacial/bioingenieria_ingenieria_aeroespacial
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Resumen
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Hybrid Multi-Objective Trajectory Optimization of Low-Thrust Space Mission Design

by David Morante González

El objetivo principal de esta trabajo es desarrollar algoritmos de optimización multi-objetivo
para la obtención de trayectorias espaciales con motores de bajo empuje. La tesis está motivada
por el creciente número de misiones que se van a beneficiar del uso de estas tecnoloǵıas para
conseguir beneficios cient́ıficos, económicos y sociales sin precedentes. El diseño de bajo coste
de dichas misiones ligado a los principios de ingenieŕıa concurrente requieren herramientas com-
putacionales avanzadas que exploren rápidamente distintas soluciones y las comparen entre śı
respecto a varios criterios. Sin embargo, esta tarea permanece como un campo de investigación
activo que busca continuamente mejoras de rendimiento durante el proceso. Este trabajo con-
tribuye a aumentar la eficiencia cuando espacio de diseño es amplio, a reducir la participación
humana requerida y a mejorar las capacidades para incluir restricciones operacionales complejas.
Para este fin, el problema general de optimización de trayectorias de bajo empuje se presenta
como un problem h́ıbrido de control óptimo. Esta formulación permite optimizar al mismo
tiempo procesos de toma de decisiones, dinámica discreta y la ley de control del motor. Dentro
de este marco, se idea un algoritmo secuencial de dos pasos para dos escenarios diferentes.

El primer problema considera la optimización de trayectorias de bajo empuje con múltiples
fly-bys. El proceso de solución propuesto comienza asumiendo un modelo plano y shape-based
para la trayectoria interplanetaria. Un algoritmo de optimización heuŕıstico y multi-objetivo
combinado con un resolvedor basado en gradiente optimizan los parámetros de la espiral que
definen la forma de la trayectoria, el número y la secuencia de las maniobras gravitacionales,
las fechas de salida y llegada, y la velocidad de lanzamiento. En el segundo paso, las soluciones
candidatas se usan como estimación inicial para resolver el problema de optimización no lineal
que resulta de aplicar un método de transcripción directa. En este paso, las secuencia de fly-bys
es conocida y determinada por el paso anterior, la dinámica es tridimensional, y la ley de control
no está predefinida. Además, se pueden aplicar restricciones operacionales relacionadas con las
declinación de la aśıntota de salida e imponer tiempos de reorientación fijos. Este enfoque es
probado en misiones a Ceres, a Júpiter y a Plutón. Se obtienen soluciones óptimas de Pareto
en función del tiempo de vuelo y la masa de combustible consumida (o la masa entregada). Los
resultados obtenidos mejoran los disponibles en la literatura en términos de optimalidad, a la
vez que reflejan la efectividad de la metodoloǵıa propuesta para generar estimaciones rápidas.

El segundo problema considera la optimización simultanea de transferencias entre órbitas
terrestres que usan propulsión eléctrica, qúımica o una combinación de ambas. En el primer
paso del método de solución, la ley de control del motor elétrico se parametriza por una función
de Lyapunov. Un algoritmo de optimización heuŕıstico y multi-objetivo selecciona el sistema
propulsivo óptimo, el tipo de transferencia, la ley de control del motor de bajo empuje, aśıcomo
el número, la orientación y la magnitud de los impulsos qúımicos. Se incluyen los efectos de la
sombra y de la no esfericidad de la Tierra, además de la radiación de Van-Allen. En el segundo
paso, las soluciones candidatas se usan como estimación inicial para resolver el problema de
optimización no lineal que resulta de aplicar un método de transcripción directa. El método
de solución propuesto se aplica a dos transferencias a GEO diferentes. Se obtienen soluciones
ótimas de Pareto con respecto a la masa de combustible, el tiempo de vuelo y la degradación
de las células solares. Se indentifica que la aplicación de las restricciones operacionales penaliza
mı́nimamente la función objetivo . Además, los análisis presentados destacan los beneficios que
la propulsión qúımica y eléctrica combinada proporcionaŕıan a los satélites en GEO.

https://www.uc3m.es/Inicio
http://portal.uc3m.es/portal/page/portal/inicio/universidad/departamentos_institutos/departamento_bioing_aeroespacial/bioingenieria_ingenieria_aeroespacial
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Chapter 1. Introduction 2

1.1 Motivation

The exploration and exploitation of outer space play an essential role in the efficient functioning

of modern societies. It contributes to advance scientific knowledge and technology innovation,

to meet global challenges on Earth, as well as to generate substantial commercial revenues. His-

torically, space activities have been dominated by space-faring countries with large economies,

a few big commercial enterprises, and little competition. However, over the past decade the

number of private and public players involved in space activities has increased. As a conse-

quence, the space sector is undergoing fundamental transformations towards a more global and

diverse ecosystem with a mix of government and commercial initiatives, a variety of contrac-

tors, and stiff competition. Meanwhile, missions of growing levels of sophistication, complexity,

and scientific return are being proposed for the forthcoming years. Indeed, envisioned projects

include mega-constellations of small satellites orbiting Earth, probes landing on the moons of

outer planets, and even human settlements being established on Mars.

In such scenario, reducing the cost and schedule of accessing and using space without com-

promising quality and safety becomes a major goal. The potential benefits translate not only

into economic gains for commercial space actors, yet into enhancing or enabling future scientific

missions that cannot currently be accomplished due to budget or technological limitations. For

such purpose, novel mission architectures and breakthrough technologies have become primary

tools. Among them, the development of new commercial launch systems, the thriving generation

of small satellites prompted by miniaturized but fully functional electronics, the recent advances

in computers and material sciences, and the implementation of distributed mission concepts will

be shaping the global space sector during the next decades. On top of that, ambitious future

projects will continue to benefit from the high fuel efficiency inherent to the well-stablished

electric propulsion systems. Similarly, the use of gravity assisted maneuvers1 will remain as the

chief means to lower the cost of reaching distant targets in the Solar System.

Space mission analysis and design activities are also experiencing a paradigm shift to more

rapid and cost-effective processes based on concurrent engineering principles. Contrary to tradi-

tional methods, in concurrent engineering the elements of the mission architecture along with the

spacecraft subsystems are designed simultaneously. This strategy demands multi-disciplinary

software tools able to provide real-time performance tradeoffs between the available options.

However, these requirements are difficult to be achieved in missions where the spacecraft has

to travel from the injection orbit into its final destination using multiple gravity assists and/or

electric propulsion. Mission designers have to obtain the transfer trajectory, the steering law

of the electric engine, and/or the optimal sequence of swing-bys that best accomplish the mis-

sion goals, while satisfying subsystems’ constraints and operational restrictions. Consequently,

this task becomes a very expensive process in terms of human and computer hours, where any

increase in automation or reduction in execution times are highly desirable.

1Gravity assists maneuvers are also know as gravitational slingshots or swing-bys.
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1.1.1 The Role of Electric Propulsion

Today’s mature space propulsion technologies include electric propulsion (EP), and chemical

propulsion (CP). The former features a higher propellant efficiency to produce the same overall

effect, offering substantial leverage for reducing launch mass, increasing payload capacity or

prolonging the service life. Additionally, EP can operate over long time periods, allowing to

continuously modify the trajectory. Thus, more frequent launch opportunities are enabled, and

the sensitivity to launcher injection accuracy is reduced. The current disadvantage of EP is

its very low-thrust levels, unlike their chemical counterparts, because they are limited by the

available electrical power on-board. To date, only solar photovoltaic cells have been implemented

in real missions as power source. Because attainable solar power diminishes as the spacecraft

moves farther from the Sun, the spacecraft becomes less capable of maneuvering and eventually

useless. Subsequently, EP have their greatest benefits in missions within the inner solar system

requiring small thrust [1] (e.g., station-keeping maneuvers) or long journeys (e.g., interplanetary

transfers). An excellent overview of EP principles can be found in [2].

The first major breakthrough was NASA’s Deep Space 1 (1998) [3], which flew by asteroid

9969 Braille. Thereafter, a series of successful deep-space missions using EP were carried out.

In 2003, JAXA’s Hayabusa [4] performed a rendezvous with asteroid 1998 SF36 Itokawa, after a

flyby on Earth, and returned samples to Earth in 2010. In the same year ESA launched SMART-

1 [5], a technology demonstrator, which used an EP thruster and multiple Lunar gravity assists,

to target the Moon. Later, in 2017, NASA launched the Dawn mission [6], which was developed

to rendezvous two of the largest objects in the main asteroid belt, Asteroid Vesta and dwarf

planet Ceres, after a Mars flyby (See Fig. 1.8). It was followed in 2014 by Hayabusa-2 [7]

to rendezvous with the near-Earth asteroid 162173 Ryugu in 2018 after an Earth flyby. It is

expected to leave the asteroid at the end of 2019 and return to Earth around the end of 2020.

Bepicolombo [8], the joint ESA/JAXA mission. It was launched in 2018 and will arrive at

Mercury in late 2025 after a flyby of Earth, two flybys of Venus and six flybys of Mercury.

Most of these missions have combined the benefits steaming from EP with gravity assisted

maneuvers at intermediate planets to further reduce propellant needs. In fact, journeys to

distant targets (e.g., Mercury, Jupiter, most comets and asteroids) or sample-return missions

may be infeasible by direct trajectories, even when using EP. Thus, gravity assists may be

required to enable interplanetary endeavours. During the close approach there is an energy

exchange between the spacecraft and the planet that is flown by. Because of the difference in

their masses the change in the orbit of the planet is negligible, but the spacecraft experiences and

important change in its velocity (i.e., increased or decreased velocity). The swing-by technique

has been widely used since the 1970s. It was first applied during the Mariner-10 mission to

Mercury [9], but most notably for the Voyager program to study the outer Solar System [10].

Notwithstanding their benefits, this mission architecture typically increase the flight time, its

operational and design complexity, and narrow the launch window options.
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(a) Dawn Space probe. Credit: NASA (b) Baseline Trajectory. Credit: NASA

Figure 1.1: Artistic view of NASA’s Dawn Mission

Table 1.1: Representative Electric Thrusters for Deep Space Missions

Thruster Manufacturer Power (W)* Thrust (mN)* Isp(s)* Application Launch Ref.
NSTAR Boeing, USA 2567 93 3127 Deep Space 1 1998 [3]
- – - - - Dawn 2007 [6]
PPS-1350 Snecma, FR 1200 73 1640 SMART-1 2003 [5]
µ10 JAXA/ISAS, JP 1400 32 3200 Hayabusa 2003 [4]

Hayabusa-2 2014 [7]
T6 QineticQ, UK 4500 210 4700 Bepicolombo 2018 [8]
NEXT-C NASA, USA 6900 236 4190 DART 2021 [11]
SPT-140 Fakel, RS 4500 250 1770 Psyche 2022 [12]
HERMeS NASA, USA 12500 589 2600 PEE 2022 [13]

* Values at 1 Astronomical Unit (AU) distance from the Sun.

EP technologies used in previous deep-space missions have been summarized in Table 1.1.

Therefrom, it is revealed how the steadily increasing performances in terms of power, thrust

and specific impulse (Isp)
2 have been allowing missions of growing complexity and scientific

return over time. In the future, even more powerful EP systems combined with gravitational

maneuvers are expected to continue enabling new mission concepts. These missions include the

NASA’s DART (Double Asteroid Redirection Test) mission [11] forecasted for early 2021. It will

demonstrate kinetic asteroid deflection by crashing into the smaller body of the binary system

Didymos. Also, the NASA mission Psyche [12], slated for launch in 2022, will investigate for the

first time a metal asteroid after a Mars flyby. Additionally, the Power and Propulsion Element

(PEE) mission was announced for 2022 as the first part of the construction of the Deep Space

Gateway.3 It will be the first possible application of the advanced propulsion system HERMeS

(Hall Effect Rocket with Magnetic Shielding) [13], which will demonstrate three times the power

of state-of-the-art electric propulsion thrusters.

2Specific impulse directly relates to the propellant consumption efficiency.
3Retrieved from: https://spacenews.com/nasa-selects-maxar-to-build-first-gateway-element/. Ac-

cessed: June 2019.

https://spacenews.com/nasa-selects-maxar-to-build-first-gateway-element/
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(a) The GEO belt. Credit: Public (b) Van-Allen Belts. Credit: Public

Figure 1.2: Artistic view of Earth’s Environment

Within the commercial space industry EP has found widespread acceptance in the geostation-

ary telecommunication market. Although their application had been limited to station-keeping

purposes, they are increasingly being used to deliver satellites from geostationary transfer orbit

(GTO), where most of them are dropped off by their launcher, to their final position in the Geo-

stationary orbit (GEO). However, the low-thrust levels provided by EP yields to long transfer

times and to multiple revolutions around the Earth during orbit raising. Additionally, as long

as the injection orbit perigeum is below 10.000 km, each revolution takes the satellite through

the lower Van Allen Belts (see Fig.1.2b). This region, populated by high energetic protons, has

a degrading effect on spacecraft electronics and solar arrays. On top of that, transfers from

GTO may imply a high number of crossings with the GEO belt (see Fig.1.2a). This volume is

characterized by a high number of large satellites, 883 according to ESA4. Before each crossing,

the collision risk must be assessed, which may increase the operational cost of the mission.

Subsequently, new all-electric communication satellites offer a real paradigm shift: at the cost

of a longer orbit transfer (i.e., longer time-to-market) and risk, propellant mass is significantly

reduced (i.e., lower investment). As an illustration, propellant for orbit transfer with CP and

EP can represent up to 40% and 15% of a GEO satellite mass respectively (see Figure 1.3).

However, the transfer time is increased from days or weeks to months. Notably, it wasn’t until

2015 that the first ever all-electric satellites (Eutelsat 115WB and ABS-3A) were launched.

They incorporated the 702SP architecture manufactured by Boeing. Thanks to the great mass

savings, they could be launched together for the first time.5 Two years later, Eutelsat 115WB,

based on the Airbus Eurostar E3000EOR platform, reached an operative status. To date, eight

all-electric satellite have been launched. Among them, Eutelsat 172 West B used the saved mass

to lower the launch costs and reached orbit after four months, whereas SES-14 used it to carry

an exceptionally large payload performing a seven months orbit raising.6

4Retrieved from: https://discosweb.esoc.esa.int/web/guest/statistics. Accessed: June 2019.
5Retrieved from: https://spacenews.com/spacex-lofts-pair-of-all-electric-satellites-for-abs-

and-eutelsat/. Accessed: June 2019.
6Retrieved from: https://spacenews.com/airbus-charges-ahead-with-electric-propulsion/. Accessed

June 2019.

https://discosweb.esoc.esa.int/web/guest/statistics
https://spacenews.com/spacex-lofts-pair-of-all-electric-satellites-for-abs-and-eutelsat/
https://spacenews.com/spacex-lofts-pair-of-all-electric-satellites-for-abs-and-eutelsat/
https://spacenews.com/airbus-charges-ahead-with-electric-propulsion/.
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All chemical All-electric All-electric

Dry Mass
Chemical Propulsion
Electric Propulsion
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(e.g., Eutelsat 172B)
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(e.g., Eutelsat SES-12)
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Up to 1 week
 transfer time

Electric Propulsion
Up to 6 months
 transfer time

Figure 1.3: Artistic view of all-electric and all-chemical GEO satellite platforms

Table 1.2: Representative Electric Thrusters for all-electric Geostationary satellite platforms

Thruster Manufacturer Power (W)* Thrust (mN)* Isp(s)* Application Launch Ref.
XIPS-25 L-3 ETI, USA 4400 165 3500 Eutelsat 115WB 2015 [14]
- – - - - ABS-3A 2015 -
- - - - - Eutelsat 117WB 2016 -
- - - - - ABS-2A 2016 -
- - - - - SES-15 2017 -
SPT-140D Fakel, RS 4500 250 1770 Eutelsat 172B 2017 [15]
- - - - - SES-14 2018 -
- - - - - SES-12 2018 -
PPS-5000 Snecma, FR 5000 320 1700 SES-17 2020 [16]
- - - - - Hotbird 13F 2021 -
- - - - - Hotbird 13F 2021 -
LIPS-300 LIP, CH 5000 170 4100 DFH-4SP 2020 [17]

* Values at 1 AU distance from the Sun.

At this point, all major GEO satellites manufacturers are fabricating all-electric platforms.

This sudden success is being boosted by the emergence of new launch services (e.g., SpaceX’s

Falcon 9) which have become an economically attractive option for light telecommunication

satellites. In fact, it is expected that all-electric satellites will represent half of the market by

2020.7 For instance, Airbus is producing its new platform, Eurostar Neo, under the ESA’s

NEOSAT project. It is planned to be incorporated in 2021 for Hotbird 13F and Hotbird 13G.

Within the same NEOSAT project, Thales Alenia is marketing its all-electric Spacebus Neo

platform, which will be implemented in the SES-17 satellite by 2020. In parallel, ESA, SES and

OHB have established the electra program [18], a public-private partnership aimed at developing

the SmallGeo full-electric satellite platform by 2021. Last but not least, China is constructing

its DFH-4SP bus and Lockheed Martin the LM2100 to enter the all-electric satellite market

in 2020. A summary of the all-electric satellites already launched and planned for the coming

years is shown in Table 1.2. Current available thrusters receive input power less than 5 kW,

but increased performance are expected to reduce the transfer time.

7Retrieved from: https://spacenews.com/all-electric-satellites-halfway-to-becoming-half-of-

all-satellites/. Accessed: June 2019.

https://spacenews.com/all-electric-satellites-halfway-to-becoming-half-of-all-satellites/
https://spacenews.com/all-electric-satellites-halfway-to-becoming-half-of-all-satellites/
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In addition to station-keeping and complete orbit raising, EP is being used for orbit topping

or partial orbit raising. The operation consists on a hybrid transfer that uses a Combined

Chemical-Electric propulsion system (CCEP): a CP subsystem is responsible for initially raising

the orbit and a EP subsystem is to conclude the transfer and to inject the satellite into GEO.

Customers may be provided with significantly more payload mass than all-chemical satellites,

yet maintaining an acceptable on-orbit delivery time and reducing the radiation exposure of all-

electric satellites. In 1998, the GSTAR-III telecommunication satellite [19] become the first orbit

topping use of EP. Although their electric thrusters were devoted for station-keeping, a failure

during the chemical transfer forced operators to use them for finalizing the orbit raising. It was

followed in 2001 by ESA’s ARTEMIS [20], which used EP for partial orbit raising to compensate

for a malfunction in the launch vehicle’s upper stage. Thereafter, Lockheed Martin’s AEHF

SV1 (2010), SV2 (2012) and SV3 (2013) satellites incorporated EP to perform a three months

orbit raising. They used the on-board CP to initially boost the perigee over the Van Allen

belts [21]. Boeing have also introduced partial electric orbit raising capabilities on their heavy

702HP platform, whose first application was Viasat-2 (2017).8 Meanwhile, Airbus is studying

the hybrid transfer concept on its large E3000SXL and E3000LX platforms.9

Satellite-constellations operators at medium and low orbits are also considering EP. Its po-

tential applications include, but are not limited to, the following: orbit raising, constellation

deployment, drag compensation for maintaining very low altitudes, controlled re-entry and de-

commissioning. For instance, ESA may use electric propulsion for the second generation of

Galileo satellites for orbit raising and station-keeping maneuvers in order to increase the pay-

load mass. Airbus-OneWeb satellites will be launched at an altitude of 500 km before raising

to their operational orbit of 1200 km by their onboard electric propulsion.10 SpaceX claims

that the Starlink constellation will use electric thrusters to adjust position on orbit, to maintain

intended altitude, and to de-orbit.11 Regarding CubeSats, given the small size and volume of

these satellites, EP systems may be a suitable option.12 Therefore, development of a new gener-

ation of miniaturized EP platforms is expected, and it is reasonable to assume that this market

will rapidly increase. EP is also becoming more attractive for spacecraft precision pointing and

positioning, opening up new mission concepts. A dramatic example of a different type of mis-

sion enabled by EP is GOCE [22], which was able to make high-accuracy and high-resolution

measurements of Earth’s gravitational field by flying at 260 km. By using the EP thruster,

GOCE was able to counteract the atmospheric drag.

8Retrieved from: https://www.viasat.com/news/what-happens-after-viasat-2-launches-step-1-

orbit-raising. Accessed: June 2019.
9Retrieved from: https://artes.esa.int/projects/e3000-mechanical-platform-electric-orbit-

raising. Accessed: June 2019.
10Retrieved from: https://www.airbus.com/newsroom/press-releases/en/2016/01/airbus-defence-and-

space-and-oneweb-create-oneweb-satellites-company-the-next-stage-of-the-oneweb-adventure.html.
Accessed: June 2019.

11Retrieved from: https://spacenews.com/spacex-launches-60-starlink-satellites-begins-

constellation-buildout/. Accessed: June 2019.
12Retrieved from: https://spacenews.com/more-startups-are-pursuing-cubesats-with-electric-

thrusters/. Accessed: June 2019.

https://www.viasat.com/news/what-happens-after-viasat-2-launches-step-1-orbit-raising
https://www.viasat.com/news/what-happens-after-viasat-2-launches-step-1-orbit-raising
https://artes.esa.int/projects/e3000-mechanical-platform-electric-orbit-raising
https://artes.esa.int/projects/e3000-mechanical-platform-electric-orbit-raising
https://www.airbus.com/newsroom/press-releases/en/2016/01/airbus-defence-and-space-and-oneweb-create-oneweb-satellites-company-the-next-stage-of-the-oneweb-adventure.html
https://www.airbus.com/newsroom/press-releases/en/2016/01/airbus-defence-and-space-and-oneweb-create-oneweb-satellites-company-the-next-stage-of-the-oneweb-adventure.html
https://spacenews.com/spacex-launches-60-starlink-satellites-begins-constellation-buildout/
https://spacenews.com/spacex-launches-60-starlink-satellites-begins-constellation-buildout/
https://spacenews.com/more-startups-are-pursuing-cubesats-with-electric-thrusters/
https://spacenews.com/more-startups-are-pursuing-cubesats-with-electric-thrusters/
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Figure 1.4: Space Mission Design Phases

Last but not least, it is worth mentioning that other highly efficient but less mature propulsion

technologies are arising and aiming at competing with or complementing current EP systems.

Among them, solar sailing and tethers have been developed. The major advantage of these

systems relies on their propellantless nature, i.e., they do no consume fuel at all. Solar sails are

large ultra-lightweight reflecting surfaces that utilize solely the freely available solar radiation

pressure for propulsion. In 2010, JAXA launched the world’s first interplanetary solar sail

spacecraft IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun) to Venus

[23]. However, large sail areas are required to propel a conventional spacecraft and a deployment

mechanism have to be included. Tethers, which uses the Earth’s or other planet’s magnetic field

and ionosphere to generate a propulsive force, have been considered for de-orbiting or orbit-

raising, among other applications [24]. For instance, in 2007, YES2 (Young Engineers’ Satellite

2) satellite employed a 32 km tether to de-orbit a small re-entry capsule, “Fotino” [25]. Both

solar sails and tethered systems, like EP, produce very low-thrust levels. Therefore they are

known under the same name, low-thrust propulsion.

1.1.2 The Role of Space Mission Analysis and Design

The space mission analysis and design activity aims at defining a space system that meets

the mission requirements at the minimum over-all cost and risk [26]. The result may include

spacecraft’s systems and subsystems (e.g., payload, power, structure, attitude, communication,

thermal), the mission planning and scheduling (from launch phase to operations, and ultimately

spacecraft disposal), the ground segment (e.g., ground stations, control centers) and launch seg-

ment (e.g., launch facility, launch vehicle). Previous sections have acknowledged that missions

of increasing levels of sophistication and complexity are being proposed for the coming years in

order to deliver greater scientific, commercial or social return. Consequently, the analysis and

design of space missions under such exacting requirements become a challenging and expensive

task in terms of both human and computer-hours. Thus, finding ways to lower these costs while

maintaining the quality of the mission is a major goal in the space community. Nowadays,

mission analysts and designers necessitate innovative methodologies, alternative approaches, as

well as advanced and rapid tools to efficiently assist them during the whole design process.
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Figure 1.5: Traditional Engineering (left) vs Concurrent Engineering (right).

Approach to space mission analysis and design steps through different phases (see Fig. 1.4).

The process typically starts with a feasibility or concept study (Phase A). Sometimes, there is

also a Pre-Phase A (NASA’s nomenclature) or Phase 0 (ESA’s terminology) stage. During this

early period, scientists and decision makers are interested in high-level trade-off analysis, i.e.,

exploring as many options as possible and assessing them against multiple, and often conflicting

criteria. They are typically conducted on a short duration schedule with limited resources and

input information. However, the success of this early phase has been demonstrated to drastically

reduce resultant system life-cycle cost (up to 80%) and to increase the chances of a successful

final design [27]. Thereafter, the preliminary design (Phase B) is intended to calculate a set

of compromise solutions capable of meeting mission needs, which have already been further

specified. At this stage, detailed trade studies are performed to validate the design against

project goals. During the detailed design phase (Phase C) one or more baseline and back-up

solutions are further studied, already including high-fidelity models of the corresponding systems

and components. At the end of this phase, the mission project moves into the construction phase.

Conventionally, elements of the space mission architecture are designed consecutively. How-

ever, this approach is being complemented and progressively replaced by concurrent engineer-

ing practices, especially during Phase A [28]. It involves the multi-disciplinary design of the

components collectively and in parallel, and pursues the goal of increasing competitiveness by

decreasing lead-time while improving quality and cost (see Fig. 1.5). Nowadays, it is key to

the low-cost design of space missions. Therefore, Team-X, formally called the Advanced Prod-

ucts Development Team, was created by the JPL in 1995. It was followed by others such as

the Integrated Design Center (IDC) at Goddard Space Flight Center and COMPASS at Glenn

Research Center. Similarly, the Concurrent Design Facility (CFD) from ESA, was created in

1999 to rapidly perform feasibility studies for future missions. At CFD, it is claimed that the

duration of the Phase A has been shortened from months to weeks.13 This concept has also been

stablished at the German Aerospace Center (DLR) Concurrent Engineering Facility (CEF), at

the Satellite Design Office (SDO) of Airbus, and at the PASO office of CNES.

13Retrieved from: https://www.esa.int/Our_Activities/Space_Engineering_Technology/20_years_of_

ESA_s_Concurrent_Design_Facility_an_oral_history/(print). Accessed: July 2019.

https://www.esa.int/Our_Activities/Space_Engineering_Technology/20_years_of_ESA_s_Concurrent_Design_Facility_an_oral_history/(print)
https://www.esa.int/Our_Activities/Space_Engineering_Technology/20_years_of_ESA_s_Concurrent_Design_Facility_an_oral_history/(print)
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Figure 1.6: Spacecraft Trajectory Optimization Problem Elements

Notably, one of the most demanding design scenarios occurs when the spacecraft is not directly

injected by the launcher into the operational orbit. In such case, an on-board propulsion module

has to thrust the spacecraft thereto. Mission designers seek to determine the transfer trajectory

and the associated maneuver plan that comply with the mission requirements. The selected path

dictates the propellant expenditures and the time at which the spacecraft will be operational,

thus utterly impacting mission feasibility, cost and return. Therefore, the minimum-cost transfer

has to be selected among the feasible set of trajectories. This goal is typically achieved by

formulating the trajectory design as an optimization problem, such that a certain objective

function or performance index is minimized and mission constraints are met. The general

spacecraft trajectory optimization process requires the definition of the appropriate objectives,

the mathematical modeling of the dynamics and constraints of the system, the development of

a solution approach and the selection of a numerical solving technique when needed (see Fig.

1.6). Although a formal revision of these elements will be provided in Chapter 2, the most

relevant findings for this thesis are nonetheless summarized herein.

Firstly, it has been found that spacecraft trajectory optimization problems can be classified

regarding the number of optimization criteria as either single or multi-objective. The former

produces an optimal point design solution, whereas the latter searches for a whole set of equally

optimal solutions with respect to various competing criteria [29]. Secondly, it has been noted

that problem modeling accuracy ranges from low-fidelity and constraint-relaxed formulations,

to high-fidelity and operationally restricted representations. A different taxonomy can be de-

rived according to the continuous, discrete or hybrid nature of the models. Thirdly, solution

approaches essentially fall into two categories: analytical and numerical [30]. Analytical ap-

proaches are mainly based on optimal control theory, whereas numerical approaches are broadly

classified as direct, indirect or dynamic programming [29]. Basically, each numerical approach

converts the trajectory optimization problem into a different mathematical problem: direct ap-

proaches into a Nonlinear Programming Problem (NLP), indirect approaches into a Multi-Point

Boundary Value Problem (MPBVP) and Dynamic Programming into a partial differential equa-

tion (PDE). Finally, solutions techniques for the aforementioned mathematical problems can be

regarded as deterministic, heuristic or as a hybrid combination of both.
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Table 1.3: Performance Criteria for Trajectory Optimization Methods

Criteria Description
Speed Computational time required to achieve a solution
Accuracy Degree of fidelity to reality
Flexibility Degree of versatility to cope with a wide range of scenarios
Robustness Degree of numerical stability or sensitivity to the input parameters
Optimality Degree of closeness to the optimal solution

Each possible combination of objective functions, models, solution approaches and numerical

techniques is characterized by both positive and negative performances, intrinsically limiting

their application to either conceptual, preliminary or detailed mission design. In particular,

when selecting the most suitable ones there exits an important trade between flexibility, robust-

ness, accuracy, speed and optimality (see Table 1.3). On the one hand, conceptual or preliminary

studies prioritize speed and flexibility at the cost of accuracy and optimality. Speed allows to

rapidly obtain solutions and make design decisions, while flexibility permits to explore a wide

variety of possible scenarios and to contrast them against multiple criteria. During this early

design process, where possibilities are broad, any smart automation is highly desirable, such that

minimal user input and oversight is required. Moreover, the concept of concurrent engineer-

ing demands trajectory designers to include multidisciplinary approaches, aiming at optimizing

the trajectory and the spacecraft high-level architecture simultaneously. These features may

be accomplished with multi-objective heuristic techniques and low-to-medium fidelity models.

However, the lack of accuracy may lead to an erroneous exploration of the design space and to

obtain infeasible or unrealistic trajectories. Thus, a careful selection of models is mandatory.

On the other hand, detailed design focuses on accuracy, robustness and optimality at the

expense of speed. Accuracy will guarantee that the spacecraft will follow an orbit that is close

enough to the computed nominal trajectory. A poor model will lead to unexpected maneuvers to

correct the course, reducing the amount of fuel available for nominal operations and, ultimately,

prohibiting the success of the mission. Robustness will ensure that small modifications in the

final design will not change significantly the nominal solution, whereas optimality warrants that

there is no better solution among the feasible options. Additionally, during this phase, complex

operational constraints that limits the thrust maneuverability or impose pointing restrictions

need to be included in the optimization problem. Constraints will increase the cost of the

mission, but they are required to obtain a flyable trajectory. Previous requirements may be ac-

complished with single-objective deterministic techniques and high-fidelity models. Commonly,

obtaining high-fidelity solutions demands mission designers to provide an initial estimate of the

trajectory that is taken from the preliminary low-fidelity solutions. The selection of the most

adequate initial guess is a crucial task because it directly relates to the success of the method

and its computational time.
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1.1.3 Research Gaps on Low-Thrust Trajectory Optimization

The optimization of trajectories involving CP is a well-known problem and has been profusely

studied in the literature; [31–35] provide a partial, but representative list of such prior works.

Conversely, the optimization of trajectories involving low-thrust maneuvers are significantly

more challenging. Note that the expression“low-thrust” encompasses a broad variety of quite

different propulsion concepts, from solar sail to tether techniques. In this thesis, low-thrust

propulsion refers to EP only, unless noted otherwise. During the optimization of CP trajectories

only a finite and small number of variables have to be considered. Meanwhile, low-thrust opti-

mization requires the determination of a continuous steering law throughout the entire transfer.

Besides, the highly non-linear and non-convex dynamics, the space environment perturbations,

and the existence of many local minima further complicates the optimization process [36]. Al-

though numerous approaches have been reported to solve low-thrust problems, there is still

on-going research. It mainly consists of performance improvements and difficult corner cases.

In fact, the 2015 NASA Technology Roadmaps14 [37] stated the following capability goals:

• Enable design of more ambitious low-thrust missions.

• Increase efficiency of searching broad design space.

• Reduce computational time from days to hours per simulation.

• Enforce new mission critical constraints.

• Optimize alternative objectives.

Previous objectives are specified for low-thrust trajectories that exploit multi-body dynamics

or those involving numerous revolutions around a central body. The former group contains

the so-called Low-Thrust Multi-Gravity Assisted trajectories (LT-MGA)15, whereas the latter

includes Low-Thrust Orbit Raising transfers (LT-OR). Other difficult scenarios such as low-

thrust scape and capture trajectories, and low-energy transfers are attracting research interest,

yet they are out of the scope of this thesis. In this work, only the optimization of LT-MGA and

LT-OR trajectories will be investigated. These problems can be formulated, in the most gen-

eral form, as Multi-Objective Hybrid Optimal Control Problems (MO-HOCP). Frameworks for

these problems have been proposed by Chilan and Conway [38], and by Ross et al. [39]. In fact,

EP systems have a hybrid nature with two distinct discrete working modes (i.e., thrusting and

coasting). The hybrid formulation allows to formally include discrete events such as flybys, dis-

crete decision-making processes and mission-planning in the optimization. Although LT-MGA

and LT-OR scenarios share the complexity associated to the optimization of low-thrust maneu-

vers, they exhibit particular challenges deriving from the interplanetary or the planetocentric

environment respectively, as well as from problem-specific constraints.

14They are a set of documents that consider a wide range of needed technology candidates and development
pathways for the 2015-2035 period. In particular, it is mentioned the goals 5.4.2.1 and 5.4.2.7.

15In this thesis only high-energy gravity assists will be considered.
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Figure 1.7: Illustration of typical Pareto front solutions

On the one hand, LT-MGA solutions comprise the optimal launch date, the sequence of

planetary gravity assists, the flight times between encounters, and the low-thrust steering law.

Mission designers are particularly interested in rapidly and automatically obtaining the trade-

offs between time of flight and propellant mass as a function of the number gravity assists (see

Fig. 1.7a). Traditionally, they have resorted to intuition and experience to develop the optimal

flyby sequence. Indeed, much of the work has been done for a user-specified sequence. Examples

include the direct methods implemented in the software DITAN [40] and jTOP [41]. They were

used for designing Bepicolombo and PROCYON trajectories respectively. However, several ef-

forts have been made to develop rapid tools to automatically determine this sequence without

a-priori information. This goal has been accomplished by the tool Mystic [42], which implements

a dynamical programming algorithm and was used to design the trajectory for Dawn, and the

indirect method developed by J. Olympio [43]. They have proven to be able to automatically

determine the optimal sequence of gravity assists exploiting the multi-body dynamics in high-

fidelity models. However, these methods demands an initial guess and have difficulties to satisfy

operational constraints, which are included as penalties in the objective function [44]. Addition-

ally, computational time is prohibitive for preliminary design [45]. Additionally, computational

time is prohibitive for preliminary design [45].
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Among the medium-fidelity methods, only GA-EMTG developed by Englander et al. [46] have

proven to automatically find gravity assists sequences and to perform a multi-objective search.

This method implements a hybrid heuristic-deterministic technique and does not require initial

guess. However, computational times range from several hours to days [46]. Therefore, faster

assessments at the cost of fidelity and optimality are desirable. For such purpose, shape based-

methods have been widely used. Several examples exist in the literature which have proven to

be useful for the preliminary design os interplanetary missions (e.g., [47–53]). However, they

have been applied to problems without intermediate flybys (e.g., [51–53]), to predefined gravity-

assisted maneuvers (e.g., [47, 49]) or to problems where the objective is to minimize the fuel

consumption as single-objective (e.g., [48–50]). Thus, the multi-objective exploration of flybys

sequence with shape-based methods have not been done yet, as far as the author knowledge.

Additionally, previous methods only consider predefined thrust-coast sequences, which may not

properly approximate trajectories with multiple revolutions around the Sun.

Important operational constraints such as minimum flyby-distances or launch asymptote

bounds have been included in some prior works [40–43, 46]. Establishing a minimum flyby

distance will prevent the spacecraft from crashing into the surface, entering the planet’s atmo-

sphere or other dangerous regions such as Saturn’s rings or the jovian radiation belts. Limiting

the declination of the launch asymptote will ensure that the mission can be launched from the

selected launch site. Notably, none of the previous approaches have resorted in a major opera-

tional constraint. The solutions, during the thrust arcs, are always for the optimal time-histories

of the thrust pointing angles. However, missions are not flown with the vehicle continuously

changing its attitude. Commonly, the vehicle is re-oriented periodically. For instance, during

the interplanetary cruise, Dawn’s thrust direction was inertially fixed for a week [54]. There-

fore, developing an algorithm to automatically determine the optimal re-orientation times for

an interplanetary mission is demanded.

On the other hand, LT-OR are very demanding because they involve a great number of orbital

revolutions (e.g. hundreds) due to the strong gravity field in the proximity of the central body.

In case the transfer occurs in the Earth’s environment, accurate gravitational models including

the oblateness effect have to be used. Besides, atmospheric drag have to be considered for

low orbits, whereas luni-solar and solar pressure perturbations impacts the dynamics of high

orbits. Additionally, when considering solar EP, the period on the shadow of the Earth has

a significant effect since no thrust is generated when the spacecraft passes through it. If the

spacecraft transverses the Van-Allen radiation belts during the transfer, the radiation damage on

the solar arrays should be included as it may reduce the power available, and thus the maximum

thrust for maneuvering. Furthermore, the resulting trajectory has to avoid the crossings with

the GEO ring due to the likelihood of impact with operational satellites. Other operational

constraints such as slew rate limitations based on the Attitude and Control System or phasing

to a certain orbital slot may have to be imposed in the solution.
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Most authors have focused on solving the complete low-thrust orbit raising problem. In this

case, the solution space comprises a set of increasingly fuel efficient solutions at the cost of

longer flight times (see Fig. 1.7b). For instance, high-fidelity trajectories have been obatined in

the works published by Betts [55] and Schäff [56], and by the tool OPTELEC [57]. However,

they are time-consuming for the preliminary design. To alleviate the computational effort and

complexity, the control law and/or the trajectory can be predefined. This strategy allowed some

authors to obtain analytical solutions (e.g., [58, 59]). Other researchers combined it with aver-

aging techniques (e.g., [60–66]) or asymptotic analysis (e.g., [67, 68]) to estimate the dynamics.

However, previous approaches are restricted for certain special cases. A different approach uti-

lizes closed form feedback control laws derived from predetermined Lyapunov functions [69–72].

Several works [73, 74] employed an heuristic algorithm to optimize the parameters of the Q-law

Lyapunov function proposed by Petropoulos [70]. This technique was proven to permit a rapid

evaluation of the trade-off space and to provide reasonable performance estimates.

Regarding the application of the aforementioned operational constraints, Betts [55] has re-

ported successful results on imposing slew rate restrictions. The software tools OPTELEC [57]

and LOTTO [75] claim to be able to include slew rate restrictions, slot phasing, GEO ring avoid-

ance and radiation constraints, although they only furnished a brief description of the models

employed. Schäff [56] shortly presented two different approaches for avoiding the GEO ring.

In the first approach, he formulated the condition as a cost function forbidding the spacecraft

to travel through the GEO region. However, this formulation could only be applied to target

an orbit 500 km below GEO and a small number of crossings. In the second approach, he

considered the introduction of a constraint on the evolution of the apogee altitude in order to

avoid the crossings. However, this approach was found to introduce a significant penalization

in terms of propellant mass. Therefore, an algorithm able to avoid a high number of crossings

while targeting GEO with a small penalty in terms of propellant mass is desirable.

Fewer authors have studied the partial low-thrust orbit-raising followed by a set of chemical

firings, i.e., using CCEP systems. Therefore, the whole transfer sequence, including the CP

maneuvers, has to be optimized. In this scenario, Pareto front solutions are moved towards more

rapid and fuel-demanding trajectories (see Fig. 1.7c). An excellent insight into CCEP transfer

problem has been provided by [76–84]. Nevertheless, they have neglected various important

characteristics of the problem. For instance, many of them did not account for major space

environmental effects such as [76–78, 83], who ignored the Earth-shadow eclipse effect during

the EP transfer. References [76, 78–81, 83] did not quantify the solar-cell degradation caused

by transit through the Van Allen radiation belts. Other studies were not flexible enough as they

assumed a fixed or constrained starting orbit for the beginning of the EP phase [76, 77, 80–

82] or imposed a constant spacecraft attitude [76, 78]. Last but not least, [82–84] performed

an offline optimization procedure (i.e., curve fits of stored optimal solutions) to estimate the

performances. Consequently, a methodology to optimize general CCEP orbit-raising transfers,

including space environmental effects and radiation damaged is required.
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Notably, none of the previous approaches for LT-OR trajectories have considered the simul-

taneous optimization of fully electric transfer and combined chemical-electric transfers. For

completeness, the inclusion of fully chemical orbit raising transfers would be desirable. The

problem of selecting the optimal EP and/or CP technologies among a user provided list of

available options have been also unaddressed. The rapid solution to those problems within a

unique algorithm would provide mission designers with a highly flexible software tool that will

automatically and in just one run search over a large design space of orbit raising trajectories

with respect to time of flight and propellant mass (see Fig. 1.7d). Additionally, incorporating

solar-array radiation damage as an alternative optimization objective, would enable a deeper

insight of the trades between the optimal solutions. Such results would make the design-making

process easier and faster, and would be very suitable for concurrent engineering teams.

In summary, improved and more efficient low-thrust algorithms and software are required

to significantly enhance the capabilities to design more ambitious and cost-effective missions.

As a rule, it can stated that better tools lead to better mission. However, despite decades of

heritage, the topic of low-thrust spacecraft trajectory optimization remains an active field of

research and development, with countless approaches available yet much room for improvement.

Notably, more efficient algorithms to rapidly perform multi-objective optimization of transfer

trajectories while including design decision-making and complex operational constraints are

demanded. Hence, the motivation of the research described in this thesis is to develop a unified

optimization framework for LT-MGA and LT-OR trajectories where a variety of existing and

refined optimization methods will provide new and improved capabilities in terms of speed and

flexibility to be used depending on the specific requirements and difficulties of each mission.

1.2 Objectives of the Thesis

In light of the gaps of traditional and state-of-the-art optimization methods, this dissertation

aims at developing solution approaches that improve the efficiency of searching wide design

spaces, reduce the amount of necessary human involvement, and enhance the capabilities to

include complex operational constraints for LT-MGA and LT-OR trajectories. To reach this

main goal the following intermediate objectives must be achieved:

O.1 Formal statement of the problem within a rigorous mathematical framework.

O.2 Definition of the dynamical and constraints models.

O.3 Design of a solution approach to perform the multi-objective search.

O.4 Implementation of the proposed approach into an optimization software tool.

O.5 Validation of the implemented algorithm against benchmark scenarios.

O.6 Performance comparisons against state-of-the-art approaches.
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1.3 Contributions

The following summary lists the original contributions of this dissertation:

C.1 A general mathematical framework for modeling the multi-objective optimization of con-

strained spacecraft transfer trajectories is introduced. The framework is based on hybrid

optimal control theory and is capable of reflecting continuous and discrete dynamics, along

with discrete events and decision-making processes.

C.2 A numerical solution approach able to concurrently optimize fully electric, fully chemical

and combined chemical-electric orbit raising transfers within the Earth environment is

provided. The selection of the optimal propulsion technology is also a decision variable.

It is based on a two-step sequential algorithm. The first step is able to rapidly perform

multi-objective trade studies and to provide sub-optimal propulsive maneuver plans using

low-fidelity models and a heuristic technique. The algorithm is flexible, since it does not

impose any restriction on the initial or final orbits, neither on the chemical firings. The

second step is able to obtain medium-fidelity single-point design solutions, where new

models for avoiding the GEO ring in combination to slew rate limits and slot phasing

constraints are included within a direct transcription scheme. Results show that the

operational constraints can be enforced with minimal penalties in terms of propellant

mass. Computational time ranges from minutes to hours for typical LEO to GEO or

GTO to GEO transfers. This contribution lead to the development of a journal article

that is under review process.

C.3 A numerical solution approach able to automatically optimize the sequence of gravity as-

sists and the steering law of the electric engine for interplanetary transfers is provided. It

is based on a two-step sequential algorithm. The first step combines an outer loop that

provides a multi-objective optimization via a heuristic algorithm with an inner loop that

supplies deterministic optimization of a planar shape-based parametrization of the trajec-

tory. The algorithm is flexible, since it is not constrained to a fixed number or sequence of

gravity assists. However, its application is limited to targets with a moderate inclination.

The second step is able to obtain medium-fidelity single-point design solutions, where a

new model for automatically optimizing the reorientation schedule is included within a

direct transcription scheme. Moreover, the analysis of the maximum allowable orientation

error with respect to the optimal maneuver plan that fulfills the mission requirements is

provided. Results show that the operational constraints can be enforced with minimal

penalties in terms of propellant mass. Computational time ranges from minutes to hours

for typical transfers involving three or less flybys. This contribution lead to the publication

of the journal article of Ref. [85]
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1.4 Problem Statement

For the sake of clarity, the problem under consideration in this work is summarized herein. In

particular, two different scenarios are considered:

• Interplanetary Transfers: A spacecraft is to travel from a given departure planet to

rendezvous or flyby a target body within the solar system. The spacecraft may benefit

from gravity assisted maneuvers of other planets, as well as from the continuous thrust

provided by an electric engine (see Fig, 1.8b). The problem is to find the set of optimal

Pareto solutions in terms of flight time and propellant mass consumption. The solution

has to comprise the optimal launch and arrival date, the sequence and configuration of the

planetary encounters, as well as the time-history of the thrust magnitude and direction.

The electric engine can be switched off due to propellant saving reasons or due to available

power constraints. Additionally the initial mass of the spacecraft may be free and subject

to optimization. Operational constraints to comply with launch asymptote declination

constraints and fixed reorientation times during the transfer may apply.

• Orbit-Raising Transfers. A spacecraft is to travel from a given departure orbit to a

target orbit within the Earth’s environment. The spacecraft may be equipped with on-

board chemical propulsion, electric propulsion or combined chemical-electric propulsion

(see Fig, 1.8a). The problem is to find the set of optimal Pareto solutions in terms of flight

time, propellant mass consumption and radiation damage during the transit through the

Van-Allen radiation Belts. The solution has to comprise the optimal propulsion system,

the number, magnitude, direction and location of the chemical firings, as well the time-

history of the thrust magnitude and direction of the electric engine. The electric engine

can be switched off due to propellant saving reasons or due eclipse conditions. Operational

constraints to arrive at a certain slot in the target orbit, the avoidance of the geostationary

ring during the transfer or slew rate limitations may apply.
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1.5 Proposed Solution Approach

In order to accomplish the goals, the aforementioned problem is formulated as a Multi-Objective

Hybrid Optimal Control Problem (MO-HOCP) and a sequential two-step algorithm is proposed

to solve it. The algorithm is termed MOLTO (Multi-Objective Low-thrust trajectory optimizer)

and its architecture is schematically depicted in Fig.1.9.

MOLTO-OR
(Orbit Raising)

MOLTO-IT
(Interplanetary)	
  

MOLTO - Step 2 
Direct Collocation + Gradient Based solver 

MOLTO - Step 1
Multi-Objective  Genetic Algorithm

	
  
Q-law Shape-based method

MOLTO
Multi-Objective Low-Thrust Optimizer

Figure 1.9: MOLTO: General Overview

In the first step, (i.e., MOLTO Step 1) low-fidelity models and/or heuristic control laws

are applied to greatly simplify the dimension and complexity of the problem. In particular, the

MO-HOCP is converted into a Multi-Objective Mixed-Integer Nonlinear Programming Problem

(MO-MINLP) that is then solved with a Multi-objective Genetic algorithm (MO-GA) [86].

This step is intended to quickly find near-optimal estimations of the main design parameters

and mission performances. The solution obtained therefrom can be used as an initial guess

for the second step (i.e., MOLTO Step 2). In the second step, the fidelity of the models is

improved in order to improve the accuracy and optimality of the solutions. In this case, the

MO-HOCP is converted into a Non-linear Optimization Problem (NLP) via Hermite-Simpson

direct transcription scheme that is solved with a Gradient Based Solver. In this stage, the

operational constraints can be easily included. Further details of the algorithm for each scenario

(i.e., Interplanetary and Orbit-Raising transfers) is provided in the following lines.
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For orbit raising transfers:

• MOLTO-OR Step 1: The thrust magnitude, direction and on/off switchings of the

electric engine are parametrized using a feedback control law, the Q-law developed by

Petropoulos [70] and the chemical impulses are modeled as instantaneous velocity changes.

The Van allen radiation belt are approximated via an analytical model [87]. The Q-law

parameters, and the location, direction and magnitude of the chemical firings represents

the real variables to be determined, whereas the number of chemical maneuvers and the

propulsion system decision-making process is modeled as integer variables. No operational

constraints are applied at this stage. Dynamics are modeled as a two-body problem and

including Earth-shadow eclipses and Earth-oblateness perturbations. They are explicitly

simulated by a time-marching method

• MOLTO-OR Step 2: The propulsive system and the number of CP firings are known

and provided by the Step 1. The state of the spacecraft is discretized over a selected grid.

The eclipse regions during the transfer are approximated by a smoothed binary-function

and the on/off switchings of the electric engine during sunlight are modeled as a relaxed-

binary control. The GEO ring avoidance condition is modeled as a set of interior point

constraints, slew rate limits as path constraints, and slot phasing as a terminal constraint.

This strategy allow to include them in the NLP as a set of non-linear constraints.

For interplanetary transfers:

• MOLTO-IT Step 1: A two-dimensional patched-conic model of the trajectory is as-

sumed, in particular the shape based method proposed by Roa et al. [88] to represent a

trajectory leg (i.e. from one planet to the next one). The engine on/off switchings are

determined by a predefined user-defined sequence. The planetary flyby sequence and the

number of revolutions around the central body during each leg are modeled as set of inte-

ger variables. In this case, the MO-GA is combined with a sequence of inner-loop NLPs

to solve for the shape-based parameters, the gravity assisted altitude and orientation, and

to impose the planetary encounters constraints. The MO-GA is in charge of providing the

initial guess for the inner-loop NLP solver. No operational constraints are applied at this

stage. Dynamics are implicitly simulated by the analytical solution.

• MOLTO-IT Step 2: It is assumed that the sequence of planetary gravity assisted ma-

neuvers is known and provided by the Step 1. The state of the spacecraft is discretized

over a selected grid and the dynamics are three-dimensional. The on/off switchings of the

electric engine are modeled as a relaxed-binary control. Flybys are enforced as interior

point constraints, launch asymptote limits are defined as an initial constraint and the

rendezvous condition as a terminal constraint. The fixed reorientation time constraints

are included in the NLP problem via a embedding technique.
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1.6 Outline of the Document

The remainder of this dissertation is structured as follows:

• Chapter 2 presents the general formulation of a trajectory optimization problem and

discusses the different elements involved in the formulation and solution of such problem.

Thereafter, a critical and exhaustive review of the existing methodologies and tools for

optimizing low-thrust transfers is provided.

• Chapter 3 is dedicated to present the mathematical framework of this thesis. After intro-

ducing the mathematical formalism to describe Hybrid Dynamical Systems, the general

Multi-Objective Hybrid Optimal Control problem is formulated.

• Chapter 4 covers the modeling of the dynamics and constraints employed in MOLTO-

OR Step 1 and MOLTO-OR Step 2. Thereafter, the two steps of the solution approach

implemented in MOLTO-OR are described. Finally, numerical examples and analysis are

included for typical LEO to GEO and GTO to GEO transfers.

• Chapter 5 details the modeling of the dynamics and constraints employed in MOLTO-

IT Step 1 and MOLTO-IT Step 2. Thereafter, the two steps of the solution approach

implemented in MOLTO-IT is described. Finally, numerical examples and analysis are

included for a rendezvous mission to Ceres, a Jupiter flyby mission, and a rendezvous

mission to Pluto.

• Chapter 6 summarizes the main conclusions drawn in this dissertation, high-lights the

capabilities of the implemented algorithm, indicates its main limitations, and outlines

recommendations for future lines of research.
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2.1 Introduction

This chapter is intended to introduce the general problem of low-thrust trajectory optimization,

to categorize the solution approaches, and to survey the state-of-the art methodologies and

tools, so that the work performed in this thesis will be in context. For such purpose, the entire

process of solving a spacecraft trajectory optimization problem is first divided into four steps.

They include mathematical modeling of the spacecraft dynamics, defining the number and type

of mission objectives, developing an appropriate approach, and lastly, achieving the solution.

Additionally, the main differences between Continuous Optimal Control Problems and Hybrid

Optimal Control problems will be highlighted. Traces of these key elements can be found in the

survey works presented by Betts [89], Conway [90], Rao [91], and Shirazi et al. [29]. Thereafter,

the available solution methodologies will be reviewed. However, the subject is a vast one with

a large literature, and the research herein presented will be unapologetically incomplete.

2.2 Optimal Control Problem Statement

Let the discussion begin by mathematically formulating the trajectory optimization problem

as a classical Optimal Control Problem (OCP). Formally, it can be posed as the problem of

determining the state/trajectory, x(t) ∈ X ⊂ Rnx , which belongs to the set X of permissible

states, the control u(t) ∈ U ⊂ Rnu , which belong to the set U of feasible controls, the initial

time t0 ∈ R, and the terminal time tf ∈ R, where t ∈ [t0, tf ] is the independent variable, that

optimizes (i.e., minimizes or maximizes) the following performance index:

J(x,u) =M[x(t0), t0,x(tf ), tf ] +

tf∫

t0

L[x(t),u(t), t]dt (2.1)

subject to:1

ẋ(t) = f[x(t),u(t), t], ∀t ∈ [t0, tf ] (2.2)

h[x(t0), t0,x(tf ), tf ] ≤ 0 (2.3)

g[x(t),u(t), t] ≤ 0, ∀t ∈ [t0, tf ] (2.4)

x(t) ∈ X ⊂ Rnx , u(t) ∈ U ⊂ Rnu , ∀t ∈ [t0, tf ] (2.5)

In the above, f : X × U × R −→ Rnx represents the set of differential equations of motion in

a explicit form. The minimization of the objective function in Eq.(2.1) is subject to initial and

terminal conditions on the state vector (Eq.(2.3)), given by the function h : X × R −→ Rnh ,

admissible values for the continuous and discrete control and state variables (Eq.(2.5)), and

further inequality path constraints (Eq.(2.4)), given by the function g : X × U × R −→ Rnc .

Note that, maximizing or minimizing a cost criterion is equivalent since both approaches can

be converted into each other by inverting the sign of the cost criterion [91].

1Explicit time-dependency of state and control variables will be usually omitted in this work for purpose of
better readability of the text. Hence it holds that x = x(t), u = u(t).
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2.2.1 Dynamical Modeling

The first step to solve any spacecraft trajectory optimization problem involves a firm under-

standing of the dynamics inherent to the system. It refers to the mathematical modeling of

the problem, which involves choosing a set of variables to represent the dynamical state of the

system, deriving the set of dynamical differential equations to describe the evolution or time

history of the state, and selecting the control variables, which represent the degrees of freedom

of the system. In spacecraft trajectory optimization problems, the state of the vehicle is also

referred as the trajectory (i.e., its position in space with respect to time), while the set of dif-

ferential equations are also known as Equations of Motion (EOM). Finally, the set of control

variables is regarded as the steering strategy or maneuver plan of the propulsive system.

2.2.1.1 State Representation

The spacecraft is typically considered to be a point-mass. Thus, six independent parameters or

generalized coordinates are necessary to describe its three-dimensional motion. In practice, there

are several forms of representing the spacecraft state, each of them having positive and negative

aspects [92]. They can be classified as sets based on position and velocity (e.g., cartesian or

polar coordinates), and based on orbital elements (e.g., classical or equinoctial). An overview

of the most prominent ones is presented hereafter:

• Cartesian State Vector (CSV): The most common model for describing a spacecraft

trajectory refers to its position and velocity vectors. They are typically projected on an

inertial cartesian frame, such that xCSV = [rx, ry, rz, vx, vy, vz]. Here, (rx, ry, rz) are the

projections of the position vector, and (vx, vy, vz) are the projections of the velocity vector.

• Polar State Vector (PSV): They are mainly used for two-dimensional or planar rep-

resentations of the problem dynamics. They consists on the following set: xPSV =

(r, θ, v, ψ), where r is the distance to the central body, θ is the polar angle, v is the

modulus of the velocity with respect to an inertial frame, and ψ is the flight path angle.

• Classical Orbital Elements (COE): Another form of mathematical model to represent

the spacecraft dynamics is in terms of classical orbit elements xCOE = (a, e, i,Ω, ω,M).

They are named as the semi-major axis, eccentricity, inclination, right-ascension of the

ascending node, argument of perigee and mean anomaly respectively. Instead of the true

anomaly, the mean motion, the true anomaly or the eccentric anomaly can be used [93].

• Modified Equinoctial Elements (MEE): The other model for completely defining the

state of the spacecraft is by the use of the set of modified equinoctial orbital elements

xMEE = (p, f, g, h, k, L). Here, p is the semi-latus rectum of the orbit, and L is named

the true longitude. The elements (f, g) are related to the projection of the eccentricity

vector on the inertial frame, while (h, k) are associated to the inclination of the orbit.
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Table 2.1: Comparison of state vector models for low-thrust thrust transfers

Criteria CSV PSV COE MEE
Element set rx, ry, rz, vx, vy, vz r, θ, v, ψ a, e, i,Ω, ω,M p, f, g, h, k, L
Having physical meaning High High High Low
Suffering form singularities No No Yes No
Practical for numerical averaging No No Yes Yes
Practical for analytical solutions No Yes Yes Yes
Numerical stability Low Low High High

The CSV representation is widely used for low-thrust interplanetary trajectories. They al-

low to naturally impose the restrictions associated to flyby or rendezvous a planet, as well as

to easily formulate the problem including multi-body gravitational attractions. Additionally,

the resulting cartesian EOM are singularity free. However, in planetocentric environments,

where multi-revolution occurs, strong oscillations of the cartesian state variables occurs, which

increases to numerical instability. Thus, more efficient state representations are required to

reduce the computational cost for this transfers. The PSV formulation is simple but limited to

planar transfers. This fact may not be a problem during the preliminary design on interplane-

tary transfers, since most planets almost lie in the same orbital plane. The use of PSV allowed

many authors to obtain analytical solutions of the EOM for certain cases. The extension to the

three-dimensional case by including rz, is known as cylindrical coordinates (PSV3).

Conversely, the COE representation is typically applied in planetocentric environments. They

are very intuitive as they are related to the physical geometry of the trajectory. The solution of

the two-body problem can be stated in terms of the constant COE. For low-thrust trajectories

this formulation is appealing because the solution can be described in terms of “almost constant”

orbital elements. This fact have allowed many authors to obtain analytical or semi-analytical

representations of the trajectory. Unfortunately, they have a number of singularities that may

complicate the numerical integration of the EOM. For instance, at zero inclination (i = 0) the

right ascension of ascending node (Ω) loses meaning. Similarly, for zero eccentricity (e = 0)

the argument of perigee (ω) becomes undetermined. This is the case of many of the orbits of

interest such as GEO. These singularities cause rapid oscillations when the spacecraft is near a

singular point and, therefore, lead to difficulties in numerically integrating the EOM [94].

Similarly, the MEE is used for multi-revolution transfer. They are non-singular for all values

of eccentricity and inclination. Therefore, they are most used in low-thrust orbit raising transfers

to GEO. However, unlike COE, the physical interpretation of the MEE set is not intuitive. Both,

COE and MEE allow to easily imposed the constraint of reaching a certain orbit, where the

specific location in the orbit is not important. They also permit to fasten the integration of

the EOM by applying orbital averaging techniques. When using COE or MEE for optimization

of multi-revolution transfer, the angular variable, i.e., true anomaly or true longitude, is often

used as independent variable instead of the physical time [55], as this transfers are characterized

by very long transfer times. However, neither COE or MEE are well suited when perturbations

of the two-body problem are significant, such as transfers to the moon or to libration points.
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Figure 2.1: Perturbed Restricted N-body Problem Illustration.

The presented sets of elements for modeling the spacecraft state are compared in Table 2.1.

There is significant freedom in the choice of a suitable set of state variables or orbital elements.

Therefore, depending on the specific mission or on the mission designer’s experience, one set may

be used in favor of others to provide better results. Notably, other forms of state representations

than the ones explained herein may be used for spacecraft trajectory optimization. To be more

specific, there are twenty two identified candidate orbit element sets plus variations. These other

forms of orbital elements are well explained in a survey presented by Hintz [92]. Additionally,

the evolution of the spacecraft mass m is typically required to fully describe the dynamics of the

system. It is used to compute the acceleration aT produced by the spacecraft given the thrust

force T produced by the low-thrust propulsion subsystem, and it varies with respect to time as

propellant mass is consumed and ejected.

2.2.1.2 Equations of Motion

The EOM are the mathematical description of Eq.(2.2) in the formulation of the OCP. Consider

a spacecraft traveling in space under the gravitational attraction of n-bodies in the solar system

and subject to the acceleration produced by a low-thrust engine and other space environmental

effects (see Fig. 2.1). Its EOM can be generally described as a Perturbed Restricted N-Body

Problem (PR-NBP). In case the gravitational bodies are perfectly spherical, the PR-NBP is

mathematically expressed in CSV coordinates with respect to an inertial cartesian reference

frame I as follows:

v̇ = −
n∑

i=1

µi(r(t)− ri(t))

|r(t)− ri(t)|3
+ aT + aP , ṙ = v, ṁ = ṁ(x,u, t) (2.6)

Here, µi and ri are the gravitational constant and position vector of the ith attracting central

mass respectively, whereas ṁ is the propellant consumption rate of the propulsion system.

Note that, if n = 2 or n = 1 the formulation is known as the Perturbed-Restricted Three-Body-

Problem (PR-3BP) or as the Perturbed-Restricted Two-Body-Problem (PR-TBP) respectively.

The perturbing acceleration aP represents the summation of any accelerations due to the space

environment other than the gravitational attraction (e.g., solar radiation, atmospheric drag).
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The engine acceleration aT can be expressed as a function of the thrust generated, which

generally depends on the spacecraft relative position with respect to the Sun, the total mass,

and the control variables as follows:

aT =
T

m
u (2.7)

In the above, u = [u1, u2, u3] represent the direction cosines of the thrust pointing vector

with respect to I. The following path constraint have to be fulfilled
√
u2

1 + u2
2 + u2

3 = 1.

Alternatively, the thrust azimuth α, and declination β steering angles with respect to I can be

considered as control variables. In such case, the dimension of the control space is reduced from

three to two, and the path constraint do not need to be applied. The thrust acceleration vector

can be computed as:

aT =
T

m
[cosα cosβ, sinα cosβ, sinβ] (2.8)

A different selection of control variables are possible. For example, the thrust pointing angles

with respect to other frame can be chosen. Similarly, the EOM (Eq.(2.6)) can be formulated

using other state vector such as PSV, COE or MEE. However, regardless of the selection of

the state vector, and assuming a control representation as in Eq.(2.7), a general mathematical

expression for the dynamical equations can be derived as a function of MF (x, t) and DF (x, t),

which are state and time dependent matrices:

ẋ = MF (x, t)u +DF (x, t) (2.9)

Notably, computing trajectories under the PR-NBP formulation, yet highly accurate and re-

quired for the detailed design, is computationally expensive. Thus, simplified or surrogate mod-

els are demanded for the preliminary design. The first step is to reduce the number of attracting

bodies up to an acceptable value for the specific scenario. For instance, a low-thrust mission

to the Moon requires a PR-3BP formulation. However, PR-TBP dynamics provides suitable

results for transfers between Earth-orbits. Notably, for interplanetary transfers, a patched-conic

approach is often assumed. This simplification splits the trajectory into a sequence PR-TBP,

i.e., the trajectory changes from being heliocentric to planetocentric when the spacecraft enters

the sphere of influence of a particular planetary body. An additional approximation assumes

that the radius of this sphere is infinitesimal and the flyby occurs instantaneously [43]. As a sec-

ond step, analytical solutions, averaging techniques or asymptotic analysis can further speed-up

the simulation of the dynamics at the cost of fidelity.

• Analytical solutions: Analytical techniques were at the very origin of spacecraft trajec-

tory optimization. They seek to obtain closed-forms solutions for the dynamical systems,

such that the EOM do not need to be integrated.

ẋ = f(x,u, t) −→ x = x(x,u, t) (2.10)

These techniques are available in special cases only. Two well-known and widely used

analytical solutions correspond to the Kepler and Stark models.
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Figure 2.2: From left to right: The Kepler model, the Stark model, and the Continuous model

– Kepler Model (KM): It is a reduced model that uses pure Keplerian arcs connected

at nodes with impulsive velocity vector discontinuities that approximate the effect of

performing a low-thrust maneuver during the Keplerian arc.

– Stark Model (SM): The Stark model yields exact closed-form solutions for a space-

craft in a two-body gravitational field subject to a thrust acceleration that is inertially

constant in both magnitude and direction.

Additionally, analytical solutions can be derived under other conditions than the KM or

the SM. For instance under constant radial or tangential thrust without space pertur-

bations. Moreover, there are analytical solutions that include some space environmental

effects. They will be reviewed through the next section.

• Asymptotic solutions: The propulsive acceleration is considered as a perturbation effect

acting on a well-known or unperturbed trajectory (e.g., a Keplerian orbit). Thus, the

perturbed trajectory can be approximated as a series expansion:

ẋ = f(x,u, t) −→ x(ε, t) ≈ x0(t) + εx1(t) +O(ε2) (2.11)

where ε is an non-dimensional thrust acceleration, and has to fulfill that ε� 1, x0 is the

unperturbed trajectory, and x1 is the first-order perturbation term, which can be obtained

analytically under certain circumstances (e.g., constant tangential or radial acceleration).

Commonly, second-order terms are not included in the expansion.

• Averaging techniques: The method of averaging consists in the elimination of high-

frequency components from the EOM by averaging over a short time scale (typically the

orbital period). The averaged equations contains only secular and long-periodic terms.

ẋ = f(x,u, t) −→ ˙̄x =
1

T

∫ t+T

t
f(x(t),u(t), t)dt (2.12)

where x̄ is the mean state vector, and T is the orbital period. This is particularly useful in

planetocentric scenarios with multiple-revolutions due to the quasi-periodic nature of the

orbits. However, averaging results in a loss of exact position information which is desired

to assess the power availability to the spacecraft or to rendezvous.
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2.2.2 Objective Functions

The objective function, also called value function or performance index, represents the cost of

the mission in minimization problems or the benefit in maximization ones. The form defined

in Eq.(2.1) is known as the Bolza objective function [91]. The function M : X × R −→ Rnj

represents the Mayer term and denotes the cost related to the initial x(t0) and final x(tf ) states,

and the initial t0 and final tf times. The integrand function L : X ×U ×R −→ Rnj is called the

Lagrange form and denotes the running cost, i.e., it depends on the value of the state x(t) and

control u(t) at every time instant t along the trajectory. The objective function may contain

just the Lagrange form, just the Mayer term, or both. Notably, as stated by Rao [91], any

objective function in Lagrange form can be converted to a Mayer form by adding an extra state,

such that ẋnx+1 = L(x(t),u(t), t). Various forms of objective functions can be categorized with

respect to two different aspects: the type and number of objectives.

In most trajectory optimization problems, according to Conway [90], there are two common

types of objectives: either some function related to the control effort or to the time required

to accomplish the mission. The former typically relates to the spacecraft thrust acceleration

level, J =
∫ tf
t0
|aT |dt, or to the propellant mass consumed, J = m(tf ) − m(t0). The latter

simply takes the Mayer form J = tf . Alternative objectives, such as launch mass or absorbed

radiation, as well as mission-specific criteria may be considered. Besides, in some formulations,

the objective function is used to include the infeasibility of the constraints as a penalty term,

e.g., J = J0 + w
∫ tf
t0
|g|dt. Here, J0 is a cost function in the form of Eq.(2.1), w is a given

penalty weighting parameter, and g is the path constraints function of Eq.(2.4) in the form of

equality constraints. However, different solutions would be obtained for different values of the

penalty parameter. Regarding the number of objective functions nk, the OCPs can be classified

as either single-objective or multiple-objective.

• Single-objective: The goal is to search for a solution in the feasible set that provides

the minimum value of a scalar-valued function, i.e., nj = 1. In this case, a single-point

solution, under mild regularity assumptions, is obtained. From a mathematical point of

view, a feasible solution (x∗,u∗) is optimal if it satisfies the following condition:

J(x∗,u∗) ≤ J(x,u), ∀u ∈ U and ∀x ∈ X (2.13)

• Multi-objective: The aim is to minimize a vector-valued function formed by nk > 1

conflicting criteria, i.e., J = [J1, J2, . . . , Jnj ]. The solution in the objective space typically

consists of a (nj−1)-dimensional hypersurface [95] known as the Pareto-optimal set2 [96].

A feasible solution (x∗,u∗) is weak Pareto-optimal if there does not exit another feasible

solution (x,u) that could improve all the objectives simultaneously such that:

Ji(x,u) ≤ Ji(x∗,u∗), ∀i ∈ {1, . . . , nj} ∀u ∈ U and ∀x ∈ X (2.14)

Otherwise, the point (x∗,u∗) is said to be dominated.

2Pareto-optimal set is also known as Pareto front, Pareto frontier, Pareto-efficient set or nondominated front.
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Figure 2.3: Illustration of a Pareto front

Solving multi-objective optimization problems, also known as vector optimization or multi-

purpose optimization, is far more difficult and computationally expensive than solving single-

objective problems. However, decision making during the conceptual or preliminary design

greatly benefits from the trade-offs provided by multi-objective optimization. Therefore, multi-

objective optimization have attracted lots of researches over the last few decades. Solving a

multi-objective optimization problem is sometime understood as approximating or computing

a representative set of Pareto optimal solutions. One of the most common solution methods

for searching for the Pareto front consists on solving a series of single-objective optimization

problems. This process is called scalarization. In this approach, a modified version of the vector

valued objective function is formulated as a weighted sum of each component
∑nj

i=1wiJi, which

results in a single objective function. Here, wi are the weighting parameters. They designate

the relative importance of each individual cost function Ji. However, this approach does not

allow for obtaining non-convex regions of the Pareto front [97].

Most optimization problems appearing in low-thrust trajectory design have multiple objec-

tives that are often equally important and conflicting. As an example, consider the optimization

of propellant mass consumed and transfer time-of-flight. The feasible objective space along with

six designs is illustrated in Figure 2.3. Because both propellant mass and flight time are mini-

mized, the Pareto front is located in the lower left region of the feasible objective space. Design-1,

design-2 and design-3, are along the Pareto front and compose the Pareto-optimal; all other de-

signs are non-optimal. Although design-3 has the lowest propellant mass, design-1 has shorter

time of flight; thus they are equally optimal in terms of Pareto. Note that, solution design-1

would have been obtained by a single-objective problem minimizing time-of flight. Similarly, so-

lution design-3 would be the solution of uniquely minimizing propellant mass. Solution design-2

could be obtained by minimizing a scalar combination of time of-light and propellant mass. For

further background in the associated multi-objective optimization in engineering applications,

the reader should refer to Marler et al. [97].
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2.2.3 Continuous and Hybrid Optimal Control Problems

Up to this point, defined state and control variables can be classified as continuous-valued,

i.e., they can assume infinite values in a given continuum. However, for certain problems,

it is interesting to include discrete-valued or discontinuous states, i.e., they can take values

in a finite or countable set. For example, discrete state variables can describe the different

working modes of an electric engine (on or off ). When switched-on, the engine operates at

maximum thrust, whereas when switched-off the thruster is coasting. Notably, changing the

mode of operation implies changing the set of differential equations. Therefore, the time-history

of the discrete state is required to determine the trajectory. Similarly, discrete controls may be

included in the system to model controller switchings, changing operating modes, or spacecraft

design decision-making processes. For instance, selecting a propulsive system among a list of

available options can be represented by a discrete control variable. Each alternative provides

distinct performances, and consequently a different resulting trajectory.

Similarly, the spacecraft dynamics presented in Eq.(2.6) are continuous, since they are gov-

erned by differential equations. However, spacecraft dynamics may include discrete-event dy-

namics. Discrete events produces instantaneous changes in the spacecraft continuous or discrete

state. Performing a gravity assist maneuver or a chemical engine firing before the low-thrust

phase are examples of discrete events. Notably, the sequence and number of discrete-events, i.e.,

the sequence and number of flybys or chemical maneuvers are not know a-priori. The coupling

of the discrete events and continuous dynamics, along with the continuous and discrete controls,

make hybrid systems the most appropriate theoretical framework to address this issues. The

trajectory optimization problem of a hybrid dynamical system is formally tackled as a Hybrid

Optimal Control Problem (HOCP).3 It is a extension of Continuous Optimal Control Problem

(COCP), where all the variables involved in the dynamics are continuous. An illustration to

compare continuous and hybrid dynamics is depicted in Figure 2.4

Time
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Figure 2.4: Continuous versus Hybrid Dynamics

3A formal statement of Hybrid Optimal Control Problems will be given in Chapter 3
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2.3 Numerical Approaches and Solutions for COCPs

Hitherto, the elements required to properly formulate a spacecraft trajectory optimization prob-

lem have been presented, namely objective functions, spacecraft state representation, equations

of motion, and control variables. The next step is then to develop a proper approach for find-

ing the optimal solution. Historically, low-thrust trajectory optimization problems have been

formulated as purely continuous optimal control problems (COCP). However, well-developed

techniques for solving COCP are totally or partially transferred to solve more complex trajec-

tory optimization problems such as Hybrid Optimal Control Problems as it will be detailed

in the next section. Therefore, in this section, the different solution methods presented in the

literature for solving COCP, will be first characterized. Since this step is a vast subject, only an

overview of approaches with a brief discussion is provided herein. For a fundamental background

in the associated methodologies, the reader should refer to [89–91].

As a rule, two types of approaches exists: analytical approaches an numerical approaches.

Analytical approaches results in analytical solutions for the optimal trajectory. They can only

be obtained in special cases. Therefore, they are seldom feasible for the majority of the space-

craft trajectory optimization problems. Most of researchers have been dedicated to numerical

methods in order to find the solution to most meaningful trajectory optimization problems.

Numerical approaches can be divided in three well-known methods: indirect methods, direct

methods and dynamic programming. Indirect methods rely on the Pontryagin minimum prin-

ciple, dynamic programming on the Hamilton-Jacobi-Bellman theory, and direct methods on

the Karush-Kuhn-Tucker optimality conditions. Furthermore, each method result in a different

mathematical problem that can be solved with the aid of gradient-based, heuristic or hybrid

techniques. Each combination exhibits differentiating positive and negative aspects. Hereafter,

an overview of these approaches along with their related techniques will be briefly discussed.

The overall schema of numerical approaches is depicted in Fig. 2.5.

Numerical Approaches

Dynamic Programming

Indirect

Direct Differential inclusion

 Single Shooting

Collocation

Gradient methods

 Multiple Shooting

Hybrid

Heuristic

Deterministic

Solutions Techniques Solutions

Figure 2.5: Numerical approaches, techniques and solutions for COCPs
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2.3.1 Indirect Method

In the indirect approach, the goal is to solve the multi-point boundary value problem (MPBVP)

that results from applying the Pontryagin Minimum Principle (PMP) and the calculus of varia-

tions to the OCP given by Eqs.(2.1)-(2.5). The PMP, which was developed by Pontryagin and

his coworkers in 1962 [98], characterizes the first-order necessary conditions that an optimal

solution (x∗,u∗), also called extremal, must satisfy. These conditions are typically expressed

by defining the Hamiltonian H : X × Rnx × Rng × U × R −→ R, such that:

H(x, λ, µ,u, t) = L+ λT f− κT g (2.15)

where λ(t) ∈ Rnx denotes the costate or adjoint and κ ∈ Rng is the Lagrange multiplier associ-

ated with the path constraints (Eq. (2.4)). The PMP is then formally written as:

u∗ = arg min
u
H, u ∈ U (2.16)

It implies that at any instant in time t on the optimal trajectory x∗(t), the optimal control

variables u∗(t) are chosen such that the Hamiltonian H is minimized. Additionally, the states

and costates must obey the Euler-Lagrange equations:

ẋ =
∂H

∂λ
, λ̇ = −∂H

∂x
(2.17)

Furthermore, the initial and final costates must comply with the transversality conditions:

λ(t0) = − ∂Φ

∂x(t0)
+ νT

∂g

∂x(t0)
, λ(tf ) =

∂Φ

∂x(tf )
− νT ∂g

∂x(tf )
(2.18)

The Hamiltonian at the initial and final time must verify the complementary conditions:

H(t0) =
∂Φ

∂t0
− νT ∂g

∂t0
, H(tf ) = − ∂Φ

∂tf
− νT ∂g

∂tf
. (2.19)

In the above, ν ∈ Rnh represents the Lagrangian multiplier associated with the boundary

conditions (Eq.(2.3)). Finally, κ must satisfy the following switching structure:

κj(t) = 0, when gj(x,u, t) < 0, j = 1 . . . , nc (2.20)

κj(t) ≤ 0, when gj(x,u, t) = 0, j = 1 . . . , nc (2.21)

The Euler-Lagrange equations (Eq.(2.17)) together with the equality boundary conditions

(Eq.(2.5)), transversality (Eq.(2.18))and complementary conditions (Eq.(2.19)) define the MP-

BVP. Note that the control can be obtained as a function of the state and costate at each instant,

explicitly or numerically (e.g., Newton’s method), applying the PMP (Eq.(2.16)). While some

analytical solutions exist for certain special cases [30, 99], an indirect method aims to numerically

solve the MPVBP to determine candidate extremal trajectories. The optimal solution is then

found by choosing the extremal trajectory with the lowest cost. Typically, one of the following

methods are employed: indirect single/multiple shooting, indirect collocation, or gradient-based

methods. A brief conceptual depiction of their implementation is provided hereby. For a more

comprehensive review, the reader is referred to [91] and to [99].
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• Indirect Single Shooting: An indirect single shooting method is an iterative technique

in which an initial guess is made of the unknown initial states and costates. Using this

guess, together with the known initial conditions, the state and costate dynamical system

is integrated using a time-marching method. Upon reaching tf , the terminal conditions

obtained from the numerical integration are compared to the known terminal conditions on

the states and costates. The unknown initial conditions are the adjusted and the process

is repeated until the difference between the known and the computed terminal conditions

is less than some specified threshold. The single-shooting scheme describes the problem

in terms of a small number of unknowns, but suffers from numerical instabilities.

• Indirect Multiple Shooting: In a multiple-shooting method, the time interval [t0, tf ]

is broken up into N + 1 subintervals. The shooting method is then applied over each

subinterval [ti, ti+1] with the initial values of the state and adjoint at each subinterval

being unknowns that need to be determined. Additionally, continuity conditions have

to be enforced at the interface of each subinterval, such that the difference between the

final computed values in each subinterval and the initial values of the next subinterval is

driven to zero. The parameters are updated until the boundary and intermediate matching

conditions are satisfied. This method increases the number of the unknown variables but

improves the robustness of the indirect single-shooting.

• Indirect Collocation: In an indirect collocation method, the states and costates are

discretized over a predefined time-grid, such that the states and costates are known only

at discrete time-samples, typically the beginning and end of each time segment into which

the total time is subdivided. The state and costate differential equations are transformed

into a set of discrete defect constraints, which relates the values at the beginning of the

subinterval to the values at the end. The unknown discretized states and costates are

modified to drive the defect constraints to zero and to meet the boundary conditions.

Different methods can be found regarding the quadrature rule that approximates the

differential equations: local and global collocation methods. This approach requires the

determination of a high number of variables, but improves the convergence domain.

• Gradient Methods: they are based on the special structure of these necessary conditions.

They are more intuitive than the previous ones because the optimization variable is the

history of control values, thus can be guessed more intuitively [100]. Starting from the

initial condition, in indirect gradient method the dynamical system is integrated forward

in time until the final time tf is reached. Then, the adjoint equations are integrated

backwards in time until t0. The backward integration is initialized with the relevant

optimality conditions at the final time. To performed the forward integration and the

initialization of the adjoint variables, a control function of the time has to be initially

guessed. These unknowns are the decision variables, which are iteratively varied until the

optimality conditions are satisfied. Depending on the update procedure for the control,

gradient methods of first order [100] and second order [101] are distinguished.
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2.3.2 Direct Method

The basic idea of direct methods is to transcribe the OCP given by Eqs.(2.1)-(2.5) into a

parameter optimization problem or nonlinear programming problem (NLP), where the objective

function (Eq.(2.1)) is “directly” optimized. The goal of a general NLP problem is to determine

a vector of unknown decision variables z ∈ Z ⊂ Rnz , which belongs to the set Z of feasible

decision variables, such that:

Minimize J(z)

subject to c(z) = 0

k(z) ≤ 0

(2.22)

In the above, J : Z −→ Rnj is the cost function, c : Z −→ Rng represents the equality

constraints, and k : Z −→ Rnk represents the inequality ones. An optimal solution z∗ to the

NLP problem has to fulfill first-order necessary optimality conditions. These conditions, also

known as Karush-Kuhn-Tucker conditions (KKT) [102, 103], can be formulated as follows:

ci(z) = 0, (i = 1, ..., ng) (2.23)

ki(z) ≤ 0, (i = 1, ..., nk) (2.24)

κi ≥ 0, (i = 1, ..., nk) (2.25)

κi ki(z) = 0, (i = 1, ..., nk) (2.26)

∇zJ(z) +

nc∑

i=1

νi∇z ci(z) +

nk∑

i=1

κi∇z ki(z) = 0 (2.27)

where ν ∈ Rg and κ ∈ Rk are known as the Lagrange multipliers due to the equality and

inequality constraints respectively. Conceptually, transcribing the original OCP into a NLP

starts by defining a time-grid, such that t0 < ti < tN and tN = tf . Thereafter, the control

and/or state variables are discretized over the mesh, such that the continuous OCP converts to

a discrete OCP:

J(x(t),u(t)) −→ J(x(ti),u(ti), ti)

x(t)) = f(x(t),u(t), t) −→ x(ti+1))− f(x(ti),u(ti), ti) = 0

g[x(t0), t0,x(tf ), tf ] ≤ 0 −→ g[x(t0), t0,x(tN ), tN ] ≤ 0

c[x(t),u(t), t] ≤ 0 −→ c[x(ti),u(ti), ti] ≤ 0

(2.28)

Finally, the discretized states and controls are treated as NLP variables, i.e., z = [x(ti),u(ti)],

such that Eq.(2.28) transforms to a NLP problem in the form of Eq.(2.22). The dynamical, path

and boundary constraints are converted into a set of NLP equality and inequality constraints.

The NLP is then numerically solved using well-known optimization techniques [91]. Note that

the dynamical equations are converted to a set of non-linear equality constraints. Notably, there

exist several techniques for selecting the discretization grid and for transcribing the differential

equations. Among these techniques, it is possible to distinguish differential inclusion, direct

single/multiple shooting, and direct collocation. A brief conceptual depiction of their working

principles is provided hereby. For a more in depth explanation, the reader is referred to [89].
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• Differential Inclusion: in differential inclusion only the state variables are discretized

over a predefined time-grid. This method enforces the equations of motion at each dis-

crete time by applying inequality constraints on the rates of change of the states. These

inequality constraints are obtained by substituting the upper and lower bounds on the

control vector into the equations of motion. An implicit integration rule is then used to

write the time rates of change as functions of the state variables alone. The discretized

states are updated until the inequality constraints are satisfied and the cost function is

minimized. The advantage given by differential inclusions is that it effectively eliminates

the explicit dependence on control values at each node. However, this technique can

become numerically unstable and the formulation can be problem dependent.

• Direct Single Shooting: direct shooting methods discretize the control on a specified

time-grid, and solve for the discretized controls that optimize the cost function. Like

indirect single shooting methods, dynamics are satisfied by integrating the differential

equations using a time-marching algorithm from t0 to tf . Additionally, the cost is deter-

mined using a quadrature approximation that is consistent with the integrator used to

solve the differential equations. Upon reaching tf , the terminal conditions obtained from

the numerical integration are compared to the known terminal conditions on the states.

The control parameters are then updated to drive the cost and the infeasibility of the

terminal constraints to a lower value. This scheme has the ability to describe the problem

in terms of a small number of unknowns, but suffers from numerical instabilities.

• Direct Multiple Shooting: in a manner similar to that for indirect methods, in a direct

multiple-shooting method, the temporal domain [t0, tf ] is divided into N + 1 subintervals.

The aforementioned direct shooting method is then used over each segment [ti, ti+1] with

the values of the state at the beginning of each subinterval and the discretized controls

being unknowns in the optimization. In multiple shooting, the end of one segment will not

necessarily match up with the start of the next. This difference is known as a defect, and

it is added to the constraint vector. The optimization parameters are updated until the

cost in minimized and the constraints satisfied. This method reduces the high sensitivity

of the single shooting algorithm at the cost of increasing the number of unknowns.

• Direct Collocation: direct collocation-based methods discretize both the control and

state variable time histories, i.e., the states and controls are known only at discrete points,

typically the beginning and end of each time segment into which the total time is subdi-

vided. The system-governing equations are transformed into discrete defect constraints,

which relate the values at the beginning of the subinterval to the values at the end. Dif-

ferent methods are characterized by the choice of quadrature rule to approximate the

differential equations between each two subintervals: local and global collocation meth-

ods. The unknown discretized states and controls are updated to reduce the cost criterion

and to drive the defect constraints to zero. This approach leads to a large-scale NLP

problem, but exhibits superior rates of convergence.
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2.3.3 Predefined Control Laws

In previous lines, it has been assumed that the control law u(t) is discretized over a time-

grid ti, such that u(ti) become optimization parameters of an NLP problem. Due to the

fact that low-thrust transfers are typically very long or involve many revolutions around the

central body, a high number of discrete samples are required to accurately represent the thrust

steering. This may result in a time-consuming numerical approach. In order to speed-up the

computational process, it is common to use a predefined or heuristic control laws, such that

the thrust direction and magnitude is prescribed as a function of a small set of parameters.

Heuristic control laws generally yield suboptimal trajectories, but follow a policy that a mission

designer deems acceptable for the preliminary design. In fact, some predefined control laws may

allow to obtain an analytical representation of the trajectory. They can be categorized into six

main groups, depending on the heuristic function that is used to parametrize the control:

• Blended Control (BC): The optimal steering that maximize the variation (i.e, increase

or decrease) of each element of the state vector independently ux(x) ∈ Rnx are computed

as a function of the position in the orbit. They are commonly obtained analytically.

Then, the complete control law to simultaneously modify all the elements of the state

vector results from the following weighted sum:

u∗(Gx, t) =
∑

Gx(t)ux(x) (2.29)

where Gx ∈ Rnx are time-varying weighting functions that fulfills
∑
Gx(t) = 1. Their

time-discretized values z = Gx(ti) are the unknowns to be determined. Commonly, BC

are derived for MEE or COE formulations. Further, they can incorporate a coasting mech-

anisms based on the effectivity of the maneuver, i.e., as a function of the instantaneous

rate of change of each element and the maximum obtainable. If this efficiency factor is

below a threshold, the spacecraft turns to coasting mode, until the efficiency improves.

• Calculus of Variations based (COV): The PMP (Eq.(2.16)) is used to obtain the

optimal control history. For simplicity, a minimum-time OCP with the EOM provided by

Eq.(2.9 is assumed along with the equality path constraint uTu = 1. Thus, the control

law can be explicitly obtained as:

u∗(λ, t) = −
MT
F (x)λ(t)

||MT
F (x)λ(t)||

(2.30)

The costates λ(t) are interpolated through an appropriate time-grid, such that the values

z = λ(ti) become the optimization parameters. Thus, they are directly optimized by the

solver rather than governed by the Euler-Lagrange equations. Additionally, analytical

formulations for the transversality conditions do not need to be derived. This is why this

method is included in the direct optimization techniques. However, many authors have

classified it as a hybrid, i.e., a combination of direct and indirect principles.
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• Lyapunov Control (LC): It defines an energy-like (i.e., a positive-definite) scalar Lya-

punov function of the state V (∆x(t), z) ∈ R. Here, ∆x(t) = x(t)−xf , and xf is the target

state. The set of free parameters z ∈ Rnz are to be determined as part of the solution of

the NLP problem. The Lyapunov function has to fulfill the following condition:

V̇ (z) = ∇xV (∆x, z) · f(x,u) ≤ 0 (2.31)

The thrust steering law is then obtained by minimizing the variation of V̇ with respect to

the control law (i.e, making it as negative as possible) as follows:

u∗(z, t) = arg min
u
∇xV (∆x(t), z) · f(x,u) (2.32)

Notably, this control law naturally drives the spacecraft to the desired final state, avoiding

the need to include the final boundary conditions in the NLP. Similarly to BC, a coasting

mechanism can be incorporated in terms of an efficiency parameter.

• Shape-based Approaches (SB): In this approach, the state vector x(t), usually the

trajectory, is assumed to have a predefined form, e.g., x = x(z, t), where z ∈ Rnz are the

unknowns to be determined by the NLP solver. The control law is obtained by forcing

the EOM to be satisfied:

u∗(z, t) : ẋ(z, t)− f(x(z, t),u∗, t) = 0 (2.33)

An analytical solution for the control is derived therefrom. Note that the obtained control

may not satisfy the constrained related to the maximum thrust available. Thus it may

lead to unfeasible trajectories. The solution may not fulfill the boundary constraints, thus

they must be included in the formulation of the NLP.

• Neurocontroller (NC): The problem of finding an optimal strategy that leads to an

optimal trajectory is thus transformed into the determination of the optimal network

transfer function N : X × Rnz × R −→ U . This function acts as a map from the current

spacecraft state, the desired final state xf , and the network’s internal parameters z ∈ Rnz

to the instantaneous steering. Thus, it holds that:

u∗(z, t) = N(z,xf ,x, t) (2.34)

The controller parameters z are to be determined as part of the NLP solution.

• Finite Fourier Series (FFS). The low-thrust steering history is assumed to be repre-

sented by a Finite Fourier series expansion, such that:

u∗(ak, bk, t) =
∑

k=0

ak(t) cos

(
2πkθ

∆θ

)
+ bk(t) cos

(
2πkθ

∆θ

)
(2.35)

where the time-varying coefficients ak and bk are time-discretized, such that z = [ak(ti), bk(ti)]

are optimized by the NLP solver. The angle θ represent any orbit anomaly, and ∆θ repre-

sents the with of the interval in which the Fourier expansion applies. Note that, increasing

the number of coefficients will improve the accuracy of the representation at the cost of

increasing the number of unknowns and the complexity.
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2.3.4 Dynamic Programming

The method of Dynamic Programming is based on the Bellman’s principle of optimality [104]:

“An optimal policy has the property that whatever the initial state and initial decision are, the

remaining decisions must constitute an optimal policy with regard to the state resulting from the

first decision.” Even though Dynamic Programming was originally developed for discrete-time

systems, it was extended to continuous-time problems. The continuous-time equivalent of the

Bellman’s principle resulted in the Hamilton-Jacobi-Bellman (HJB) theorem [105]. The HJB

theorem describes the sufficient conditions for the trajectory (x∗,u∗) to be an optimum. These

conditions are derived for an unconstrained problem version of the OCP given by Eqs.(2.1)-

(2.5), where the objective function depends only on the state at the final time. Let us defined

the value function V : Rnx × R→ R as follows:

V (x, t) = min





Φ[x(t), t,x(tf ), tf ] +

tf∫

t

L[x(t),u(t), t]dt




, u ∈ U (2.36)

The HJB theorem states that the optimal control u∗ is given by the relationship:

u∗(x, t) = arg min
u

(
L[x(t),u(t), t] +∇xV (x, t)T f(x,u, t)

)
, u ∈ U (2.37)

where the value function must satisfy the Hamilton-Jacobi-Bellman Partial Differential Equation

(HJB-PDE):

− ∂V

∂t
(x, t) = min

u

{
L[x(t),u(t), t] +∇xV (x, t)T f(x,u, t)

}
, u ∈ U (2.38)

Additionally, the value function must comply with the boundary condition:

V (x(tf ), tf ) = Φ(x(tf ), tf ) (2.39)

Analytical solutions of the HJB-PDE only exist for special system classes, e.g., linear sys-

tems with quadratic costs. In most cases, the solution has to be found numerically. There the

problem of the curse of dimensionality arises, since for solutions the time, state, control, and

possibly output spaces have to be sampled, which means that the computational complexity

increases exponentially with the dimensions of the state, control, and output spaces [106]. Ef-

forts to resolve the curse of dimensionality have resulted in approximate dynamic programming

[106]. There, for example, function approximations are used to approximate the value func-

tion (Eq.(2.36)) or control policies (Eq.(2.37)). However, the global optimality of the solution

cannot be guaranteed anymore in the latter approach. The most successful solution of these

approximate methodologies for spacecraft trajectory optimization relies in Differential Dynamic

Programming [107]. It is a gradient-based second-order technique that relies on HJB theorem

and successive minimization of quadratic approximations of Eq.(2.36). DDP proceeds by itera-

tively performing a backward pass on the nominal trajectory to generate a new control sequence

given by Eq.(2.37), and then a forward pass to compute and evaluate the cost of the trajectory.
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2.3.5 Gradient-Based, Heuristic and Hybrid Solutions

Most previous approaches (e.g., indirect/direct single/multiple shooting and collocation) have

converted the COCP to the problem of determining an unknown vector of decision variables

z ∈ Rnz . For direct methods, the unknown decision vector has to fulfill a set of non-linear

constraints, while minimizing an objective function (i.e., solving an NLP problem). On the

other hand, in indirect methods the unknown parameters only have to meet a set of nonlinear

constraints (i.e. solving a system of algebraic equations). Notably, a root-finding problem can

be formulated as an NLP with a fictitious or constant cost [91]. Methods for solving NLPs and

systems of algebraic equations can be classified as gradient-based (also known as deterministic

methods) heuristic or hybrid algorithms. They all are iterative methods, that use a different

set of rules for evolving. Hereafter, the main lines for each of them will be drawn.

• Gradient-based: In a gradient-based method, an initial guess is made of the unknown

decision vector z. At the kth iteration, a search direction pk, and a step length αk, are

determined. The search direction provides a direction in Rnz along which to change the

current value zk, while the step length provides the magnitude of the change. The update

from zk to zk+1 has the form: zk+1 = zk + αkpk. The iterations proceed until the

KKT conditions are met. To compute the search direction, these methods require the

user provide information for the gradient of the constraint and the objective function (if

necessary). The most widely used methods are classified as sequential quadratic problems

(e.g., SNOPT, NPSOL) or interior point methods (e.g., IPOPT, KNITRO). Extensive

information about their implementations can be found in Refs. [108] and [109] respectively.

• Heuristic: The search is performed in a stochastic/metaheuristic manner without requir-

ing gradient information. The most known class of heuristics are evolutionary algorithms.

They start by generating a set of candidate solutions or individuals zi,0 for i = 1, . . . , n,

termed population. Thereafter, the population is iteratively modified by applying a set

of stochastic rules Π : Z −→ Z, which may incorporate random processes, such that

the population at (k + 1)th iteration is computed as zi,k+1 = Π(zi,k), and the iterations

proceed until a stopping criteria is met (e.g., max number of iterations). The candidate

with the lowest cost is deemed as the solution to the problem. Well known stochastic rules

are genetic algorithms (GA) [110], which emulate evolutionary processes in genetics, and

particle swarm optimization (PSO) [111], which is based on the idea of swarms of animals.

• Hybrid: Hybrid approaches combine a set of rules exploiting gradient-information and

a set of rules based on heuristics searches to iteratively operate over a solution or a set

of candidate solutions. Gradient-information is exploited to drive the constraints to zero,

while heuristic rules are applied to efficiently explore large design domains or to manage

integer variables. They are typically combined on a two-loop approach. The heuristic

solver operates over a subset of decision variables in the outer loop. In the inner loop, the

remaining subset of design parameters are optimized with the gradient-based method.
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2.3.6 Discussion

The main benefit of using the indirect approach is that it provides assurances that the first-

order optimality conditions are satisfied. Additionally, they may offer an interesting theoretical

insight into the problem physical and mathematical characteristics. However, difficulties arise

in that explicit derivations of the costate and control equations are required, which can be

very difficult depending on the OCP being considered, and prior knowledge of the activeness

of inequality constraints is necessary. Numerical techniques applied to the resulting MPBVP

normally require an appropriate initial guess of the costates, which is often nonintuitive since

they generally do not have physical interpretations. Moreover, the resulting trajectory is very

sensitive to their values and the region of convergence tends to be quite narrow. The indirect

approach is further complicated by the need to re-form the Hamiltonian and re-derive the adjoint

equations and boundary conditions as different state variables, constraints and dynamics are

considered. Because of these practical difficulties, indirect methods are not suitable to solve

highly constrained spacecraft trajectory optimization problems.

On the other side, direct methods have the advantage that the user does not have to be

concerned with deriving the first-order necessary conditions. Furthermore, direct methods are

easier to initialize due to a larger domain of convergence and the physically intuitive meaning

of the optimization variable. Although they still rely on a tentative guess and may not con-

verge to the optimal solution, direct methods find at least a suboptimal solution unlike indirect

approaches. Another point of success of direct methods is that even complex control or state

constraints can be handled easily and that, in case of path inequality constraints, the sequence

of free and constrained arcs does not need to be known a-priori. As a major drawback, with

a direct method is always uncertain whether the trajectory found by solving the NLP is truly

an optimal solution to the original OCP or a suboptimal one. Notwithstanding, direct methods

have been extensively used for solving highly constrained spacecraft trajectory optimization

problems in spite of the fact that they present lower optimality than indirect methods.

Flexibility Robustness Optimality

Numerical 
Approaches

Indirect

Direct

Dynamic Programming

Numerical 
solutions

Deterministic

Heuristic

Hybrid

Figure 2.6: Methods and techniques in numerical approaches.
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Dynamic programming has two main advantages when compared to all other methods pre-

sented. First, the whole state space is searched, thus an optimal solution is also the global

optimum. Second, all controls are precomputed once a solution is found. This implies that

closed-loop control policies instead of an open-loop control trajectory can be obtained, as well

as it can be naturally extended to tackle uncertain and stochastic problems. The main drawback

of dynamic programming relies on the curse of dimensionality. Therefore, memory and compu-

tational times of standard dynamic programming grow very quickly with the number of state

variables and become impractical for high-dimensional state space. The direct application of

dynamic programming is therefore limited in practice to problems with low state-space dimen-

sionality. Notably, the curse of dimensionality is resolved when using approximated techniques,

based on local approximations of the value function, such as Differential Dynamic Program-

ming. However, the obtained solution is no longer guaranteed to be globally optimal and the

closed-loop control is only locally valid.

Regarding the solution approaches, gradient-based approaches provide deterministic con-

ditions for convergence. They are able to handle a large number of problem variables and

constraints. However, they require the constraint and objective function to be twice differen-

tiable. Consequently, they are not well suited for problems that use tabular data, or suffer from

discontinuities. These methods require the user to provide an initial guess and the obtained

solution will be in the neighborhood of the initial guess. Heuristic methods are well suited

for problems with a reduced number of variables but with a high-dimensional space. While a

gradient method is a local method a heuristic method is a global technique. These methods are

more flexible, since they do not require the involved functions to be differentiable. However,

when using heuristic algorithms, it is always uncertain if the obtained solution is optimal, since

no optimality conditions are applied. In fact, in every different run a different solution can be

obtained. Moreover, constraints are difficult to be met, since no gradient information is ex-

ploited. Hybrid approaches exhibit intermediate performances in terms of flexibility, robustness

and optimality with respect to deterministic and heuristics methods.

Qualitative performance comparison of dynamic programming, direct methods, and indirect

approaches, along with gradient-based and heuristic solutions for solving continuous optimal

control problems is shown in Fig 2.6 in terms of three criteria: flexibility, robustness and opti-

mality. The definition of each criteria can be found in Table 1.3. The green color means that

the method affects positively on the selected criteria, the red color means that it influences

negatively, whereas orange implies intermediate performances. Notably, direct methods exhibit

good performances in terms of flexibility and robustness, whereas dynamic programming is more

suitable when seeking for optimality and robustness. Regarding numerical solution approaches,

hybrid methods provide a good compromise between optimality, robustness, and flexibility,

when compared to purely heuristic or gradient-based solutions. Finally, note that the presented

assignment of methods to the three categories is not necessarily unique since some methods

combine characteristics from several categories to generate improved performances.
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2.4 Numerical Solution Approaches for HOCPs

Numerical approaches to solve HOCPs are also categorized as dynamic programming, direct

methods, or indirect methods. They inherit all of the positive and negative aspects from their

application to COCP [39]. However, optimal control for hybrid systems is challenging due to the

close interconnection of continuous and discrete dynamics. Methods for COCPs problems are not

able to handle HOCPs since discrete decisions influence the continuous optimization. Similarly,

methods for purely discrete optimization problems are unsuitable since the discrete optimization

strongly depends on the continuous optimal control. Combining methods from continuous

optimal control and discrete optimization is not straightforward. Continuous optimal control

relies on infinitesimal variations of control and state variables and derivatives of functions.

Such concepts are difficult to translate to discrete decision problems. In contrast, discrete

optimization often relies on graph based search methods, which are not applicable for continuous

optimal control problems as these are infinite dimensional.

First-order necessary optimality conditions for HOCPs are provided by the so-called hybrid

minimum principle in (HMP) [112], which is generalization of the PMP for control systems with

both continuous and discrete states and dynamics. It includes state and adjoint differential

equations, a minimization of the Hamiltonian with respect to the continuous control, initial

and terminal conditions for the state and/or adjoint variables, jump conditions for the adjoint

variables, and Hamiltonian value conditions specifying the optimal discrete event times. How-

ever, no condition with respect to the sequence of discrete events can be given. This fact would

imply that the sequence of gravity assists (when considered instantaneous) have to be provided

by the user. For this case, the HMP converts the HOCP into a MPBVP, which can be solved

applying indirect shooting, collocation or gradient-methods [112]. Dynamic programming the-

ory has been extended in [113] to tackle general classes of HOCPs, which in fact can be solved

with DDP techniques. Though several algorithms have been developed, the convergence of the

approximated value function to the true value function is in general still to be shown [112].

HOCPs that are solved by direct methods are usually formulated as Mixed-integer Nonlinear

Programming (MINLP), i.e. NLPs where the optimization variables may be real or discrete.

If the discrete state is identified with a finite sequence of phases and the discrete control can

be described by an integer variable, then the HOCP can be converted to a MINLP by apply-

ing direct single/multiple shooting or collocation, where the continuous/discrete controls are

discretized/parametrized. The solution to MINLPs has been shown to be NP-hard to solve

[114], i.e., it is “at least as hard as any NP-problem”. Therefore, various methods have been

developed to reduce the computational time. The most prominent method in hybrid spacecraft

trajectory optimization consists on a two-nested optimization loop. The inner loop solves for

the continuous variable with a gradient-based solver, and the outer loop handles the discrete

variables with a heuristic algorithm. Other methods include: branch and bound, branch and

cut, outer approximation, generalized Benders decomposition [115].
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Table 2.2: Representative Tools Implementing Direct Methods for Low-Thrust Trajectory Optimization

Name Ref Company/Organization/Author Approach Solution Obj. Dynamics States Transfers
ASTOP [116] Space Flight Solutions Single Shooting GB SO PR-NBP CSV IT
COPERNICUS [117] Texas Univ., JSC Multiple Shooting GB SO PR-NBP CSV G
jTOP [41] Tokio Univ., JAXA Multiple Shooting GB SO PR-NBP CSV G
DITAN [40] ESA, Milano Univ. Collocation GB SO PR-NBP CSV G
MODHOC [118] Strathclyde Univ. Collocation HY MO PR-NBP CSV G
MANTRA [119] ESA Collocation GB SO PR-NBP CSV G
DIRETTO [120] Milano Univ. Collocation GB SO PR-NBP CSV G
MAVERICK [121] Colorado Boulder Univ. Collocation GB SO PR-NBP CSV G
MColl [122] NASA. Collocation GB SO PR-NBP CSV G
COLT [123] Purdue Univ. Collocation GB SO PR-NBP CSV G
GMAT [124] NASA Collocation GB SO - - G
STK [125] AGI Collocation GB SO - - G
OTIS [126] GCR, Boeing Collocation GB SO - - G
POST [127] NASA Single Shooting GB SO - - G
SOCS [55] Boeing Collocation GB SO - - G
DIDO [128] TOMLAB Collocation GB SO - - G
GPOPS [129] Univ. of Florida Collocation GB SO - - G
OPTELEC [57] Airbus Multiple Shooting GB SO PR-TBP MEE PC
LOTOS [56] ASTOS Solutions Collocation GB SO PR-TBP MEE PC
XIPSTOP [130] Boeing Collocation GB SO PR-TBP MEE PC
GALLOP [131] JPL,Purdue Univ. Multiple-Shooting GB SO KM CSV IT
COLTT [132] Colorado Boulder Multiple-Shooting GB SO KM CSV IT
LInX [133] J.H. Univ., Nabla Zero Multiple-Shooting GB SO KM CSV IT
BOLTT [134] Colorado Boulder Multiple-Shooting GB SO KM CSV IT
MALTO [135] JPL Multiple-Shooting GB SO KM CSV IT
EMTG [46] GSFC, Illinois Univ. Multiple-Shooting HY MO KM CSV IT
PaGMO [136] ESA Multiple-Shooting HY SO KM CSV IT
GA-GALLOP [137] Purdue Univ. Multiple-Shooting HY MO KM CSV IT
- [138] Zuiani et al. Multiple-Shooting GB SO SM CSV IT
DIFINC [139] Coverstone et al. Differential Inclusion GB SO PR-TBP CSV IT
- [140] Gerald et al. Single Shooting HS SO PR-TBP PSV IT
- [141] Pontani et al. Single Shooting HS SO PR-TBP PSV IT

* GB=Gradient-Based, HS=Heuristic, HY=Hybrid, SO=Single-Objective, MO=Multi-Objective, IT=Interplanetary, PC=Planetocentric, G=General,
SM=Stark-Model, KM=Kepler-Model, AVG=Averaging, AN=Analytical, CSV=Cartesian-State-Vector, MEE=Modified-Equinoctial-Elements,
COE=Classical-Orbital-Elements, PSV3=Cylindrical-Coordinates, PR=Perturbed-Restricted, TBP=Two-Body-Problem, NBP=N-Body Problem
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Table 2.3: Representative Tools Implementing Predefined Control laws for Low-Thrust Trajectory Optimization

Name Ref Company/Organization/Author Approach Solution Obj. Dynamics States Transfers
HYTOP [142] Aerospace Corp. Blended Control GB SO PR-TBP MEE PC
- [64] Yang Gao Blended Control GB SO PR-TBP+AN+AVG COE PC
- [143] Yang Gao COV-Based GB SO PR-TBP+AVG MEE PC
- [144] Strathclyde Univ Blended Control HY MO SM+AVG COE PC
SEPDOC [63] Kluever et al. Blended Control GB SO PR-TBP+AVG COE PC
- [65] Hudson et. al Finite-Fourier-Expansion GB SO PR-TBP+AN+AVG COE PC
- [145] Chang et. al Lyapunov Control GB SO PR-TBP CSV PC
GA-Q-Law [70] JPL Lyapunov Control HS MO PR-TBP MEE PC
STOUR-LTGA [47] JPL, Purdue Univ. Shape-based HS SO PR-TBP+AN PSV IT
IMAGO [50] Pascale et al. Shape-based HS SO PR-TBP+AN MEE IT
- [48] Wall et al. Shape-based HS SO PR-TBP+AN PSV IT
- [52] Taheri et al. Shape-based HS SO PR-TBP+AN PSV3 IT
- [53] Gondelach et al. Shape-based HS SO PR-TBP+AN PSV3 IT
- [88] Roa et al. Shape-based HS SO PR-TBP+AN PSV IT
InTrance-GA [146] DLR Neural control HY SO PR-TBP CSV IT

* GB=Gradient-Based, HS=Heuristic, HY=Hybrid, SO=Single-Objective, MO=Multi-Objective, IT=Interplanetary, PC=Planetocentric, G=General, SM=Stark-
Model, KM=Kepler-Model, AVG=Averaging, AN=Analytical, CSV=Cartesian-State-Vector, MEE=Modified-Equinoctial-Elements, COE=Classical-Orbital-Elements,
PSV3=Cylindrical-Coordinates, PR=Perturbed-Restricted, TBP=Two-Body-Problem, NBP=N-Body Problem

Table 2.4: Representative Tools Implementing Dynamic Programming for Low-Thrust Trajectory Optimization

Name Ref Company/Organization/Author Approach Solution Obj. Dynamics States Transfers
MYSTIC [42] NASA DDP - SO PR-NBP CSV G
- [147] Colorado Boulder Univ. DDP - SO PR-TBP MEE PC
HDDP [148] Lantoine et al. HDDP - SO SM/KM CSV G

* GB=Gradient-Based, HS=Heuristic, HY=Hybrid, SO=Single-Objective, MO=Multi-Objective, IT=Interplanetary, PC=Planetocentric,
G=General, SM=Stark-Model, KM=Kepler-Model, AVG=Averaging, AN=Analytical, CSV=Cartesian-State-Vector, MEE=Modified-
Equinoctial-Elements, COE=Classical-Orbital-Elements, PSV3=Cylindrical-Coordinates, PR=Perturbed-Restricted, TBP=Two-Body-
Problem, NBP=N-Body Problem
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Table 2.5: Representative Tools Implementing Indirect Methods for Low-Thrust Trajectory Optimization

Name Ref Company/Organization/Author Approach Solution Obj. Dynamics States Transfers
VARITOP [149] JPL Single Shooting GB SO PR-TBP CSV IT
SEPTOP [150] JPL Single Shooting GB SO PR-TBP CSV IT
NEWSEP [151] JPL Single Shooting GB SO PR-TBP CSV IT
SAIL [152] JPL Single Shooting GB SO PR-TBP CSV IT
HILTOP [153] SpaceFlight Sol. Single Shooting GB SO PR-TBP CSV IT
ETOPH [154] CNES Single Shooting GB SO PR-TBP CSV IT
ITOP [155] Aerospace Corp. Single Shooting GB SO PR-TBP MEE PC
LT20 [156] Milano Univ. Single Shooting GB SO PR-TBP MEE PC
Tfmin [157] CNES Single Shooting GB SO PR-TBP COE PC
- [158] Kéchichian Single Shooting GB SO PR-TBP MEE PC
T-3D [159] Thales Single Shooting GB SO PR-TBP+AVG MEE G
ELECTRO [160] OHB Single Shooting GB SO PR-TBP+AVG MEE PC
MIPELEC [161] CNES Single Shooting GB SO PR-TBP+AVG MEE PC
SEPSPOT [162] NASA Single Shooting GB SO PR-TBP+AVG MEE PC
GA-SEPTOP [163] JPL Single Shooting HY MO PR-TBP CSV IT
LOTTO [75] SES Engineering Single Shooting GB SO PR-TBP MEE PC
- [164] Torino Univ. Single Shooting HS SO PR-TBP CSV IT
- [165] Pontani et al. Single Shooting HS SO PR-TBP PSV IT
- [166] Lee et al. Single Shooting HS MO PR-TBP CSV IT
BNDSCO [167] Hamburg. Univ Multiple Shooting HS SO - - G
- [168] Meng et al. Multiple-Shooting GB SO PR-TBP MEE PC
- [169] Olympio Gradient method - SO PR-NBP PSV G

* GB=Gradient-Based, HS=Heuristic, HY=Hybrid, SO=Single-Objective, MO=Multi-Objective, IT=Interplanetary, PC=Planetocentric, G=General,
SM=Stark-Model, KM=Kepler-Model, AVG=Averaging, AN=Analytical, CSV=Cartesian-State-Vector, MEE=Modified-Equinoctial-Elements,
COE=Classical-Orbital-Elements, PSV3=Cylindrical-Coordinates, PR=Perturbed-Restricted, TBP=Two-Body-Problem, NBP=N-Body Problem
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2.5 Review of Existing Low-Thrust Optimization Tools

The preliminaries required for formulating and solving low-thrust trajectory optimization prob-

lems have been briefly explained through previous sections. Hereafter, an overview of existing

and representative low-thrust trajectory optimization tools and research works will be presented.

Their main characteristics, capabilities and limitations will be outlined and compared to each

other. Firstly, analytical solution approaches will be presented and followed by indirect, direct

and dynamic programing methods. A special section is dedicated to analyze the predefined

control laws applied within direct methods schemes. A total of 90 references have been investi-

gated, among which 18 correspond to analytical solutions methodologies, while the remaining 72

are numerical approaches. Numerical approaches corresponding to indirect, direct, predefined

control laws and dynamic programming have been summarized in Tables 2.2-2.5 respectively.

They include information about the name of the tool, the developing company, organization or

author, the type of numerical approach, objective, dynamics, state vector, and application.

The yearly distribution for the publication dates of the examined references is shown in

Fig. 2.7a. It can be seen that half of the references has been published in the last decade.

Notably, among the analyzed numerical methods, direct methods represent a 65%, while indirect

and dynamic programming are the 30% and 5% respectively. The most widely implemented

direct method has been the single-shooting algorithm (38%), followed by collocation (32%),

multiple-shooting (18%), and differential inclusion (2%). Similarly, the most common indirect

method is single shooting (86%), followed by multiple-shooting (9%) and gradient methods

(5%). Remarkably, a 75% of the numerical solution approaches use a gradient-based solver to

tackle the resulting mathematical problem, while a 20% use purely heuristic algorithms and

the remaining 5% apply hybrid algorithms. Finally, most approaches have been dedicated to

solve single-objective problems (83%), while the remaining 17 % exhibit the capability of solving

multi-objective optimization problems. These statistics are illustrated in Figure 2.8.
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Figure 2.7: Illustration of the problem statement
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Figure 2.8: Overview of investigated Low-Thrust Optimization tools

2.5.1 Analytical solutions

There have been valuable efforts to solve simple low-thrust trajectory cases analytically. For

instance, by either fixing the direction of the thrust, e.g., constant tangential or radial thrust, or

by simplifying the boundary conditions, e.g., solving coplanar circle-to-circle transfers. They are

convenient for rapidly evaluating low-thrust trajectories, or to be combined with a numerical

optimization technique, either as an initial guess or as a dynamical model. One of the first

pioneers in the history of analytical solutions was Tsien [170]. In his work of 1953, which

has been exquisitely reproduced by Battin [171], analytical approximated planar solutions are

derived in case of radial and circumferential thrust for initially circular orbits. An alternative

closed-form solution in terms of an orbital anomaly and elliptic functions was derived by Izzo

et al. [172]. Bombardelli et al. [173] and Gonzalo et al. [68] proposed a first-order asymptotic

solution for the trajectory in the case of constant tangential and radial acceleration respectively.

Exact solutions to the tangential thrust problem have eluded researchers, but explicit solutions

for certain variables can be found. For instance, the expressions defining the escape conditions

or the amplitude of the bounded motion have been provided by different authors (e.g., Prussing

et al. [174] and Mengali et al. [175]).
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In 1961 Edelbaum’s [176] original analysis involved a low-thrust transfer between two circular

orbits with a constant out-of-plane angle. He derived analytical expressions for the total velocity

change and time of flight, and served as a starting point for many subsequent analysis. Later,

Kéchichian [177] reformulated Edelbaum’s problem [176] by applying optimal control theory

to the minimum-time transfer problem to obtain the optimal time varying semi-major axis,

inclination and yaw angles. Edelbaum [178] provided a complete first-order asymptotic solution

for the Hamiltonian system resulting from power-limited transfer between coplanar elliptic orbits

of arbitrary size and orientation. Fernandes et al. [179] obtained a first-order analytical solution,

which includes short periodic terms, of the resulting average Hamiltonian system resulting from

the optimal low-thrust transfers between coplanar orbits with small eccentricities. Zuiani et al.

[138] presented a first-order analytical solution for transfers between general orbits. He exploits

the benefits of using a set of non-singular orbital elements.

Ruggiero et al. [180] developed analytical solutions for the optimal steering angles that

maximize the instantaneous change of each COE independently. In [181], Kéchichian derived

analytical solutions for transferring between circular orbits for two different scenarios: for the

simultaneous change of semimajor axis and inclination, and for changing the argument of the

ascending node and the semimajor-axis. Burt [182] presented closed-form analytical formulas

to compute the velocity increment and trip time for adjusting the eccentricity at a constant

semi-major axis. This is accomplished with a constant in-plane acceleration perpendicular to

the semi-major axis of the ellipse. Pollard [183] extended Burt’s approach to the case of discon-

tinuous acceleration by analyzing the perigee-and apogee-centered burn arcs, and extended the

analysis to simultaneously change the eccentricity and inclination. Many of the aforementioned

analytical approaches are implemented in the preliminary design software tool CAMELOT

(Computational-Analytical Multi-fidelity Low-thrust Optimization Toolbox) [184].

Furthermore, there exists some trajectory analytical results for transfers incorporating Earth

environmental effects. For instance, Kéchichian [61] obtained analytical solutions under the

assumption of constant tangential thrust. He included the effect of J2 and engine shut down

during eclipses along small-to-moderate eccentricity orbits in terms of non-singular elements.

Kluever [185] included periods of zero thrusting due to the Earth shadow eclipses and develop a

semi-analytical algorithm to solve the Edelbaum’s problem. Kechichian [186] and Colasurdo et

al. [187] also developed a purely analytical method for obtaining low-thrust and multi-revolution

transfers between coplanar circular orbits in the presence of Earth shadow, constraining the

eccentricity to remain zero during the transfer. A two-variable asymptotic expansion method

applicable to transfers from elliptic orbits was considered by Flandro [188], who included shadow

penalty terms due to eclipses. Gao [64] obtained analytical solutions of the averaged equations

when a predefined control law is applied, including shadow and J2.
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2.5.2 Indirect Methods

The most common indirect method is the indirect single shooting. It has been implemented in

the tools SEPTOP (Solar Electric Propulsion Trajectory Optimization Program) [150], VAR-

ITOP (VARIational calculus Trajectory Optimization Program) [149], NEWSEP (NEW Solar

Electric Propulsion trajectory optimization program) [151], and SAIL [152]. These tools have

been developed at the Jet Propulsion Laboratory (JPL) and they are part of the Low-Thrust

Trajectory Tool Suite (LTTT). The most general of the suite is VARITOP, which handles nu-

clear electric propulsion as well as solar electric propulsion and sail trajectories. However, solar

electric engines and solar sails are more accurately modeled in the SEPTOP and SAIL programs

respectively. NEWSEP is a variation of SEPTOP that can accept discrete values of a thruster’s

throttle table rather than approximating the polynomial as its predecessor. They have been

extensively used to design a variety of missions. For instance, NEWSEP provided trajectory

support for the Deep Space 1 mission [152]. Runtimes for these tools range from hours to days

[152], especially for those trajectories with numerous intermediate flybys.

Indirect single shooting algorithms were also implemented in the tools HILTOP (Heliocen-

tric Interplanetary Low Thrust Optimization Program) [153] and ETOPH (Electric Transfer

Optimization with Planetocentric and Heliocentric phases) [154]. HILTOP was employed in nu-

merous NASA and industry studies of missions to most planets, comets and asteroids. This tool

lead to the development of MAnE-EP (Mission Analysis Environment for Electric Propulsion),

which is an updated version of HILTOP. The tool ETOPH incorporates a smoothing technique

for overcoming the difficulty of predefining the sequence of active constraints, and to reduce the

numerical instabilities associated with the bang-bang structure of the control. Aforementioned

tools implement a patched two-body dynamics with CSV. Therefore, they are well suited for

solving interplanetary trajectories, requiring the user to provide the flyby sequence, yet not for

orbit-raising trajectories. They use a gradient-based solvers and they require an initial guess

that is typically difficult to obtain and are limited to obtain a single optimized solution.

Previous limitations are surmounted by using heuristic or hybrid techniques. Pontani and

Conway [165] employed a PSO algorithm to solve an Earth-Mars rendezvous problem. They

ignored the transversality conditions, as the objective function was optimized by the PSO and

the constraints on the final state were included as penalties. A similar technique was presented

by Lee et al. [166]. They combined a GA with simulated annealing to obtain trade-offs be-

tween delivered mass and required flight time for two-body and a three-body orbit transfers.

Coverstone et al. [163] used a multi-objective GA to choose initial guesses for SEPTOP and op-

timized with respect to delivered mass, flight time and number of revolutions for an Earth-Mars

rendezvous mission. Rosa and Casalino [164] employed a GA to search for the combination of

unknown parameters that minimizes the error on the boundary conditions; the minimum-error

combination was provided as a guess to a gradient-based solver to obtain a converged solution.

The procedure was tested in direct and multiple-gravity-assist missions to Mars.
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Previous single shooting methods are not able to analyze planet-centered trajectories beyond

a simple escape or capture maneuver, mainly because the EOM are expressed in CSV. There-

fore, single shooting methods with MEE or COE have been developed. In [158], Kéchichian

analytically derived the Hamiltonian system in terms of non-singular elements without addi-

tional perturbations than a constant thrust acceleration. He solved for the unknown initial

costates for a LEO-GEO transfer using a deterministic solver. The initial guess was obtained

by setting to zero the values of the initial costates. A similar approach was implemented in

the software tool Tfmin4 [157]. However, the technique from Kéchichian allows to rendezvous

in the target orbit, while Tfmin was developed for free final longitude. Later, Kéchichian [189]

extended his approach to account for the effect of J2 perturbation, derived the set of dynam-

ical and adjoint equations, and solves it for a LEO-GEO case. The initial guess was obtained

by solving the problem without the oblateness effect. Kéchichian [190] further developed the

low-thrust rendezvous in equinoctial elements by considering Earth zonal harmonics up to J4.

However, previous approaches neither account for the effect of switching off the engine during

eclipse, nor include coasting periods to obtain minimum-fuel consumption trajectories. For

such purpose, software tools such as ITOP (Indirect Trajectory Optimization Program) [155],

LT20 (Low-Thrust Trajectory Optimizer) [156], and LOTTO [75] were developed. They all

are high-fidelity tools capable of solving min-time or min-fuel orbit transfers by implementing

a switching function. They include eclipse shadowing, non-spherical Earth potential, solar

radiation pressure, third-body perturbations, drag force, and altitude constraints via penalty

functions. LOTTO further include slew rate restrictions and longitude targeting. Notably,

ITOP was used for designing the electric orbit-raising maneuvers for the Al Yah 3 satellite

[155]. ITOP and LT2O use gradient information to solve for the unknown initial costates. On

the contrary, LOTTO uses a robust heuristic search method without relying on an initial guess.

It selects the initial values for the costates that minimizes the error on the final constraints.

Accurately integrating the trajectory for the indirect shooting method is very time-consuming,

due to the non-linearities in the dynamics, the long flight-times and the high number of orbital

revolutions. Thus, many authors have taken advantage of orbital-averaging techniques to greatly

increase the speed of computation at the expense of fidelity. One of the most known softwares

is SEPSPOT5 (Solar Electric Propulsion Steering Program for Optimal Trajectories) [162]. It

was developed in the mid-1970’s by Edelbaum et al. [191] to solve minimum-time transfers with

a set of non-singular elements. The program includes options for oblateness, shadowing with

or without delay in thruster startup, an analytic radiation and power degradation model, and

altitude constraints as penalties. For several decades, SEPSPOT has been NASA’s primary

tool for the optimization of planetocentric low-thrust trajectories. However, the convergence

probability is greatly diminished when solar cell degradation effects are included. The program

has the option to solve hybrid transfers. For the initial high-thrust stage, one or two impulses

of fixed magnitude can be included, and the initial orbit is assumed to be circular.

4Tfmin is freely available to download at http://apo.enseeiht.fr/tfmin/
5It was previously named SECKSPOT (Solar Electric Control Knob Setting Program by Optimal Trajectories)

http://apo.enseeiht.fr/tfmin/
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Other examples with averaged EOM include ELECTRO (ELECtric propulsion TRajectory

Optimisation) [160], MIPELEC (Satellite Positioning with Electric Propulsion) [161] and T3D

[159]. MIPELEC6 is based on the theory developed by Geffroy and Epenoy [161] to solve min-

time orbit-raising transfers with MEE, without shadow or oblateness effects. It is initialized by

a user-provided guess or by an planar analytical approximation. ELECTRO implements EOM

based on MEE to solve min-time transfers, including shadow and oblateness effects. An arbitrary

user-provided guess is transformed into a feasible guess by an initial restoration phase. The tool

T3D solves min-time and min-fuel transfers including coast arcs by a smoothing mechanism,

third-body perturbations, solar radiation pressure, oblateness, atmospheric drag and eclipse

effects. A continuation method is implemented to run from an arbitrary guess. The main

difference between the averaging method implemented in MIPELEC and those in T3D and

ELECTRO, is that the true longitude is the independent variable instead of time.

The remaining indirect methods, namely multiple-shooting, collocation and gradient-based,

have been less popular, yet also have provided successful results. For instance, the general-

software tool BNDSCO [167] implements indirect multiple-shooting. Oberle and Grimm [167]

applied it intensively to study Earth-Mars low-thrust transfers. Meng et al. [168] implemented

an indirect multiple-shooting algorithm where the transversality conditions were ignored, and

the EOM were expressed in MEE. The unknown costates and the objective function were opti-

mized by a gradient-based solver. He successfully solved a transfer from GTO to GEO. Olympio

[43] developed an indirect gradient-based method using second-order derivative information. He

was able to automatically find gravity assists naturally exploiting the multi-body dynamics in-

cluding space and capture phases. He also applied it to design an orbit raising transfer from

LEO to MEO. Finally, although indirect collocation methods have been used in other fields, the

author has not found any example of its application to low-thrust trajectory optimization.

2.5.3 Direct Methods

A variety of methods for computing multi-gravity assisted interplanetary and Earth-orbit trans-

fers in accurate dynamical models implement direct methods combined with gradient-based

solvers: POST (Program to Optimize Simulated Trajectories) [127] and ASTOP (Arbitrary

Space Trajectory Optimization Program) [116] implements single shooting, Copernicus [117]

and jTOP [41] use multiple shooting, while others such as DITAN (Direct Interplanetary Tra-

jectory Analysis), MODHOC (Multi-Objective Direct Hybrid Optimal Control) [118], OTIS

(Optimal Trajectories by Implicit Simulation) [126], MANTRA [119], GMAT (General Mission

Analysis Tool) [124], DIRETTO (DIREct collocation tool for Trajectory Optimization) [120],

MAVERICK [121], Mcoll [122], COLT (Collocation with Optimization for Low-Thrust) [132],

SOCS (Sparse Optimal Control Software) [55], GPOPS (Gauss Pseudospectral Optimization

Software) [129], DIDO (Direct and Indirect Dynamic Optimization) [128], and STK/Astrogator

(Systems Tool Kit) [125] implement collocation methods.

6MIPELEC is freely available to download at https://logiciels.cnes.fr/en/content/mipelec

https://logiciels.cnes.fr/en/content/mipelec
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Some previous approaches correspond to software tools specifically designed for optimiz-

ing low-thrust trajectories (e.g., DITAN, MANTRA, DIRETTO, MAVERICK, Mcoll, COLT),

while others are general-purpose products for solving OCPs that have been used for solving

low-thrust transfer problems (e.g., MODHOC, OTIS, SOCS, GPOPS, DIDO). Notably, MOD-

HOC is able to automatically search over a multi-objective design space and to handle discrete

variables. Others are general space mission analysis tools that have specific modules for low-

thrust trajectory optimization (e.g., GMAT, STK). They all have proven to be effective for

the design of low-thrust transfers. For instance, MANTRA and DITAN were used to design

the multiple-flyby trajectory for Bepicolombo [8], while jTOP was used for the the trajectory

for the micro-spacecraft PROCYON [41]. They implement multi-body dynamics, but require

the user to provide the sequence of flybys as well as an appropriate initial guess to converge.

Additionally, the computational load make them unsuitable for the preliminary design.

Consequently, faster tools were developed at the cost of fidelity. One of the most widely-

used algorithms for interplanetary transfers is the Sims-Flanagan Transcription (SFT) scheme.

It implements a multiple-shooting scheme, the analytical Kepler model for the control, and

instantaneous flybys. Most known tools include: GALLOP (Gravity Assisted Low-Thrust Local

Optimization Program) [131], COLTT (CCAR Optimal low-Thrust Tool) [132], LInX (Low-

thrust Interplanetary eXplorer) [133], MALTO (Mission Analysis Low-Thrust Optimizer) [135],

EMTG7 (Evolutionary Mission Trajectory Generator) [192], BOLTT (Boulder Optimal Low-

Thrust Tool) [134] and PaGMO8 (Parallel Global Multi-Objective Optimizer) [136]. Solutions

from these tools are usually used as initial guesses for higher-fidelity tools. For instance, MALTO

and GALLOP provide initial guesses for Copernicus and OTIS, while EMTG’s solutions were

used to feed GMAT [193]. A similar approach to the SFT was developed by Zuiani et al. [138],

yet implementing the analytical Stark model between the multiple-shooting nodes.

Some of the previous methods used hybrid solutions approaches to avoid the need for the

user to provide a suitable initial guess. For instance, Vavrina and Howell [137] presented GA-

GALLOP, a program that use a GA to automatically provide initial guesses for GALLOP and to

explore the multi-objective design space in terms of flight time and final mass. It was applied to

Mars and Jupiter missions including one flyby. Yam et al. [136] used monotonic basin hopping

(MBH) to automatically feed PaGMO. The approach was applied to maximize the final mass on

a mission to Mercury involving up to six flybys. However, the tool require the user to provide

the flyby sequence. An automated solution for the number and sequence of gravity assists has

been addressed by Englander and Conway [192] in EMTG. In their approach they combine

two nested optimization algorithms. The outer loop uses a GA to select the flyby number and

sequence while the inner loop solves the corresponding sequence of interplanetary legs using

MBH along with the SFT scheme. The method was proven to automatically determine the

flyby sequences that maximize the delivered mass for missions to Mercury, the asteroid belt,

and Pluto. This methodology was also tested on multi-objective problems [46].

7EMTG is freely available to download at https://opensource.gsfc.nasa.gov/projects/emtg/
8PaGMO is freely available to download at https://github.com/esa/pagmo

https://opensource.gsfc.nasa.gov/projects/emtg/
https://github.com/esa/pagmo
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A different approach has been considered by Gerald and Converstone-Carrol [140], and by

Pontani et al. [141], who only relied on population-based heuristic methods to find a solution

of the direct shooting transcription resulting from planar low-thrust interplanetary transfers

without flybys. The former implemented a GA to solve for the time-discretized thrust directional

angles that minimize the transfer time for an Earth-Mars transfers, and that minimizes the fuel

consumption for an Earth-Mercury trajectory. They included a binary optimization variable to

determine wether the engine is in thrusting or coasting mode. Constraints on the final state have

been applied as penalties in the objective function. The latter modeled the thrust steering law

as a linear combination of B-Spline functions and used a particle swarm algorithm to optimize

the parameters defining them. They claimed that despite its simplicity and intuitiveness, the

particle swarm methodology proved to be quite effective in finding the optimal solution to orbital

rendezvous optimization problems with considerable numerical accuracy.

Other available software tools are especially dedicated to solve minimum-time and minimum-

fuel electric orbit-raising problem including operational constraints, such as LOTOS (Low-thrust

Orbit Transfer Optimization Software) [56], XIPSTOP (Xenon Ion Propulsion System Trajec-

tory Optimization Program) [130], and OPTELEC [57]. The tools LOTOS and XIPSTOP

implement a direct collocation scheme combined with a gradient-based solver, while OPTELEC

uses multiple-shooting with a gradient-based solver. All of them include the possibility of

imposing eclipse or radiation constraints, slew rate and power consumption restrictions, slot

targeting, avoidance of the GEO ring, Sun-angle or sensor pointing constraints. They imple-

ment a perturbed two-body dynamics along with accurate models for Earth Oblateness. They

have proven to successfully solve numerous transfers to GEO. For example, XIPSTOP and

OPTELEC are used to calculate the maneuvers for Boeing’s and Airbus all-electric platforms

respectively. Notably, LOTOS and OPTELEC are able to compute hybrid transfers, where the

chemical orbit-raising is followed by an electric orbit-raising phase.

The remaining class of direct approaches refers to differential inclusion. Only one algorithm

was found by the author. The tool DIFINC (DIFferential INClusion) was presented in [139]

by Coverstone and William to compute low-thrust trajectories in the two-body problem with

cartesian coordinates. This formulation removes explicit control dependence from the problem

statement thereby reducing the dimension of the parameter space of the resulting nonlinear

programming problem. They presented three interplanetary trajectory examples: an Earth-

Mars constant specific impulse transfer, an Earth-Jupiter constant specific impulse transfer, and

an Earth-Venus-Mars variable specific impulse gravity assist. The work was later extended by

Hargens and Coverstone [194]. They implemented DIFINC in terms of the modified equinoctial

orbital elements and applied it to solve several missions including both nuclear electric and solar

electric propulsion systems. The results obtained showed good agreement between this method

and solutions obtained with industry-standard software, such as VARITOP.
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2.5.4 Predefined Control Laws

In this section, the direct methods that have approximated the control law by predefined guid-

ance schemes will be detailed. They yield to sub-optimal solutions but are faster. The first class

of the investigated control laws implement the COV-based guidance, and includes HYTOP [142]

(HYbrid Trajectory Optimization Program) and the work done by Gao [143]. The former was

developed in 1994 by Ilgen, uses orbital averaging and can calculate time-optimal and minimum

propellant orbit raising transfers, constrained by Earth shadowing and oblateness. The soft-

ware has been also applied to obtain a wide range of maximum-payload transfers to GEO using

combined-chemical-electric propulsion. It has been also used to provide initial guesses to the

indirect optimization software ITOP. In the work presented by Gao [143], a multiple-shooting

scheme combined with orbital averaging was used to solve a series of minimum-time LEO-GEO

and GTO-GEO transfers were solved using MEE, oblateness and a cylindrical shadow model.

Results showed good agreement with the unaveraged dynamics.

The second class of methods include BC. In 1998, Kluever and Oleson proposed SEPDOC

[63] (Solar Electric Propulsion Direct Optimal Control), which includes three extremal laws for

changing semi-major axis, eccentricity and inclination. It includes averaging, power degrada-

tion models, oblateness and shadow. It exhibits better convergence than SEPSPOT in typical

minimum-time LEO-GEO and GTO-GEO transfers. A COE correction scheme was developed

by Ruggiero et al. [180], including coasting arcs but neglecting environmental perturbations.

Gao’s [64] employed three types of steering laws: perigee-centered tangential, apogee-centered

inertial, and piecewise constant yaw. He derived analytic expressions for the averaged EOM

in COE including shadow, coasting, and J2. The weighting parameters were optimized using

a deterministic algorithm for min-time and min-fuel transfers. In [144] Zuiani et al. proposed

two-tangential control laws for planar transfers: perigee and apogee centered respectively. The

parameters where optimized with a multi-objective GA with respect to the time of flight, total

engine operation time, time within the radiation belt, and longest eclipse duration.

Hudson and Sheeres [65] represent each component of the thrust acceleration as a Fourier

series (FS) in eccentric anomaly, and then average EOM in COE over one orbit to define a

set of secular equations. The equations are a function of only 14 of the thrust FS coefficients,

regardless of the order of the original Fourier series. Thus the continuous control is reduced to a

set of 14 parameters. She solved a targeting problem using a least square method to solve for the

unknown coefficients. Then, Ko and Sheeres [195] identified minimal sets of six FS parameters

to represent the perturbing acceleration effectively, instead of 14. Given the initial and desired

final orbital state, a set of six FS coefficients can be computed analytically, and the required

control accelerations can be constructed to achieve any orbital maneuver. The method was

demonstrated in [196] on two types of low-thrust spiral maneuvers: a repositioning maneuver

in GEO and a maneuver to simultaneously change orbit radius and inclination. Results were

successfully used as an initial guess for the STK optimization engine.
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A different approach utilizes closed form feedback control laws derived from Lyapunov func-

tions. For instance, Ilgen [69] developed a Lyapunov guidance law based on MEE. Gao [143]

used it as an initial guess for his COV-based method. Petropoulos [70] presented the Proximity

Quotient guidance law (Q-Law), which is expressed in terms of MEE, implements shadow and

oblateness effects, and a coasting mechanism without averaging. A multi-objective GA was used

to optimize the free parameters and was implemented in the tool GA-Qlaw. It proved to permit

a rapid trade-off evaluation and to provide reasonable performance estimates for the preliminary

design of planetocentric transfers [73, 74]. Additionally, it was integrated into the high-fidelity

tool Mystic [45] to assist in generating starting guesses. Another well-known Lyapunov function

was introduced and rigorously proved by Chang et al. [197]. The controller is expressed in CSV

and was used by Betts [55] to generate initial guesses for a direct collocation scheme imple-

mented in SOCS for transfers to GEO and Molniya orbits. Gurfil [198] developed a Lyapunov

controller in terms of COE and used it to determine orbital transfer between elliptical orbits.

Some of the analyses may be described as shape-based, that is, the trajectory shape is directly

assumed, with the requisite thrust computed a posteriori. Notably, the first shape-based method

was the logarithmic spiral presented as early as 1950 by Forbes [199] and 1959 by Tsu [200] and

Bacon [58]. A remarkable variant on the logarithmic spiral was given by Pinkham [201] and

Lawden [202]. Pinkham’s spiral can be used, for example, to escape from an initially circular

orbit, or from any point on an elliptic orbit. Although Lawden’s spiral was developed with

transfer between two arbitrary states in mind, the spiral does not offer enough degrees of freedom

to accomplish this. Therefore, despite the various analytic results available for the logarithmic

spiral, the solution essentially has a constant flight path angle. In an attempt to correct these

shortcomings, the exponential sinusoid was developed Petropoulos and Longuski [47], which has

two parameters, apart from the scaling and phase parameters. Izzo [203] explored the potential

of exponential sinusoids for solving the accelerated multi-revolution Lambert’s problem. These

early works are extensively reviewed by Petropoulos and Sims [36].

In Ref. [47], Petropoulos and Longuski apply a broad search algorithm with pruning criteria

along with exponential sinusoids to generate candidate trajectories for GALLOP. The technique

was implemented in the software STOUR-LTGA (Satellite Tour Design Program for Low-Thrust

Gravity-Assist trajectories), which automatically searches for low-thrust, gravity-assis trajec-

tories using a heuristic broad search algorithm. The user has to specify a sequence of gravity

assist bodies, a range of launch dates, and a range of launch velocities for trajectories, subject to

various constraints, such as time of flight and propellant consumption limits. They solved a ren-

dezvous mission to Ceres via a Mars flyby, and a flyby mission to Jupiter via Venus-Earth-Mars

flybys. However, the cost estimated by exponential sinusoid methods does not properly estimate

the optimal value. It is due to the fact that neither coasting nor rendezvous phases have been

included in the model. Vasile et al. [204] study the optimality of the exponential sinusoid and

concludes that this model is far from satisfying the necessary condition of optimality.



Chapter 2. State of the Art: Low-Thrust Trajectory Optimization 58

Later works include Wall and Conway [48], who modeled the trajectory as an inverse polyno-

mial with unbounded tangential thrust. The advantage of this approach compared to Petropou-

los and Longuski’s is the possibility to satisfy all boundary conditions. A GA was used in both

works to select the unknown launch date, the time of flight, and the number of heliocentric

revolutions to optimize a multi-rendezvous asteroid problem. Wall [49] extended their approach

to three dimensional case by using cylindrical coordinates. De Pascale and Vasile [50], Novak

and Vasile [51], Taheri and Abdelkhalik [52], and Gondelach and Noomen [53] created ingenious

three-dimensional shape-based models incorporating pseudo-equinoctial elements, spherical co-

ordinates, finite Fourier series, and hodographic shaping respectively. These approaches can

handle boundary, time of flight and thrust constraints and were used to solve various ren-

dezvous problems without intermediate flybys via grid search over the free parameters. In

fact, the pseudo-equinoctial approach was implemented in the tool IMAGO [50] (Interplanetary

Mission Analysis Global Optimization), an successfully used as initial guess for DITAN.

Previous methods, except for the hodographic method, assumed a tangential thrust. In

order to improve the versatility of the solution, Roa et al. [205] found an entire new family of

Generalized Logarithmic Spirals based on the thrust profile of the logarithmic spirals. Therefore,

it is a planar shape with unbounder thrust levels. The flexibility of this approach was later

improved by adding an additional degree of freedom in the solution [206] and modeling the

transversal motion with a polynomial shaping approach [207]. By using a thrust-coast-thrust

sequence for rendezvous legs, and thrust-coast sequence for flybys legs, he was able to solve

a rendezvous problem to Ceres via Mars flyby. Recently, Roa et al. opted in [88] to use his

shaped-based method together with a branch and prune algorithm for the direct exploration

of the search space to generate as many candidate trajectories as possible for a multiple-flyby

mission to Jupiter. However, in his approach he predefined the sequence of flybys and did not

include coast arcs. Candidate trajectories were used as initial guesses for GALLOP.

The last class of predefined control laws explores artificial neurocontrollers. The tool InTrance

(INtelligent spacecraft TRAjectory optimization using NeuroController Evolution) was designed

by Dachwald [208] only for heliocentric single-phase trajectory optimization problems. InTrance

was later extended by Carnelli et al. [146] to include intermediate gravity assisted maneuvers

in InTrance-GA. Dynamics is expressed in terms of patched two-body problems, where the

flybys are unpowered but not instantaneous. It implements an artificial neural network to act

as neucontroller and combine it with evolutionary algorithms (a GA) to train the NC and to

determine the optimal spacecraft steering strategy that minimizes the total transfer time. The

targeting constraints are handled by penalizing the objective function. This combination is

known as evolutionary neurocontrol. Results are presented for a Mercury rendezvous with a

Venus gravity assist and for a Pluto flyby with a Jupiter gravity assist. Computing times were 11

hours for the former case and 6 hours for the latter scenario. They found a very good agreement

with other software standards as IMAGO, GALLOP and DITAN.
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2.5.5 Dynamic Programming Methods

Whiffen [42] presented the Static/Dynamic Control (SDC) algorithm, a class of Differential Dy-

namic Programming (DDP) method. The algorithm was implemented in the generic tools for

high-fidelity trajectories Mystic. It implements multi-body dynamics and is able to naturally

obtain the optimal sequence of flybys, including escape, capture phases. The tool itself can be

seen as the state-of the art for the design of low-thrust trajectories and it has been success-

fully used to design NASA’s cancelled Jupiter Icy Moon Orbiter (JIMO) and also to design

and navigate the NASA’s DAWN discovery mission to asteroid Vesta and Ceres. Results from

this algorithm has been published in numerous papers, such as [209, 210]. However, Mystic

uses a pure penalty method to account for the constrained violation, which may lead to unfea-

sible trajectories, slow convergence, or no convergence at all. Additionally, its application to

solve multi-revolution planetocentric transfers is limited by its computation time to about 250

revolutions [42]. Last but not least, it requires a good initial guess to run.

A faster yet less accurate algorithm was presented by Lantoine and Russell [148] and imple-

mented in the tool HDDP (Hybrid Differential Dynamic Programming). It is an extension of

the classic DDP algorithm that combines DDP with some well-proven nonlinear mathematical

programming techniques. It exploits second-order derivative information, and includes two op-

tions for the Dynamical modeling: the Stark model and the Kepler model. In [211], Lantoine

and Russell presented a maximum final mass Earth-Mars rendezvous transfer and a 17 revolu-

tion minimum-fuel Earth-orbit transfer. Computational times were 60 sec for the former, and

20 min for the latter. A more appropriate method for handling high revolutions was developed

by Aziz [147]. The proposed method discretize the trajectory in terms of MEE and the control

schedule with respect to an orbit anomaly and perform the optimization with DDP. He included

spherical gravity and third- body perturbations. He solved geocentric transfers up to 2,000 rev-

olutions. He was able to generate a Pareto front trading time-off flight and propellant mass, by

independent runs of his single-objective algorithm within a matter of hours.
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3.1 Introduction

Let a spacecraft be equipped with either a low-thrust engine, chemical propulsion or a combi-

nation of both, and/or subject to the possibility of performing gravity assisted maneuvers. The

dynamics, and consequently the trajectory, can be modeled as a hybrid dynamical system, i.e.,

a system with interacting continuous and discrete dynamics. The continuous dynamics deter-

mines the trajectory during the thrusting and coasting phases of the electric engine. Each phase

represents a different working condition and consequently a different continuous dynamical de-

scription of the system. The discrete dynamics characterizes the discontinuous behavior of the

system such as the on/off switchings of the low-thrust engine, the instantaneous firings of the

chemical engine or the effect of performing a gravitational slingshot (when considered instanta-

neous). This interconnection between discrete and continuous dynamics allows to formally pose

the optimization problem as a Hybrid Optimal Control Problem (HOCP).

Unlike the classical Continuous Optimal Control Problem formulation introduced in chapter

2, the HOCP framework can be generally extended to any spacecraft trajectory optimization

problems that include, not only the determination of the low-thrust control history, yet also

decision-making or mission planning processes as part of the optimal solution. General frame-

works for the description of HOCPs and its corresponding mathematical formalism have been

presented, e.g., by Branicky et al. [212] and Buss et al. [213]. Particular frameworks for space

mission planning have been proposed by Chilan and Conway [38] and Ross and D’ Souza [39].

In this chapter, the general mathematical framework for hybrid dynamical systems is presented

and the Multi-Objective HOCP based on the one proposed by Buss et al. [213] is formulated.

Thereafter, two of the major elements of our proposed solution approach, i.e., genetic algorithms

and the direct Hermite-Simpson transcription scheme will be described.

3.2 Hybrid Dynamical Systems

The state of a hybrid dynamical system is determined by the continuous state vector x(t) ∈
X ⊂ Rnx , which is constrained to be in the set X of permissible continuous states and the

discrete state vector q(t) ∈ Q ⊂ Znq , which is constrained to be in the set Q of permissible

discrete states. The system can be controlled by a continuous input vector u(t) ∈ U ⊂ Rnu ,

which belongs to the set U of permissible continuous controls, and by a discrete input vector

v(t) ∈ V ⊂ Znv , which belongs to the set V of permissible discrete controls. Both input vectors1

can be dynamical variables or static parameters depending on whether they are time-varying or

time-independent respectively. Therefore, the evolution of the state vector with respect to the

independent time variable t ∈ R is given by its hybrid dynamics as follows:

1Input vectors can be also termed as control vectors, control inputs, control variables, controls or decision
variables
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ẋ = f(x, q,u,v, t) if sj(x, q,u,v, t) 6= 0, j = 1, . . . , ns. (3.1)

[x(t+i ), q(t+i )] = φj(x, q,u,v, t
−
i ) if sj(x, q,u,v, t

−
i ) = 0, j ∈ {1, . . . , ns} . (3.2)

The continuous behavior of the hybrid dynamical system is described by the set of dif-

ferentiable equation f : X ×Q× U × V × R −→ Rnx , whereas the discontinuous behavior is

characterized by the set of discrete event functions, which includes the ns discontinuity surfaces

sj : X ×Q× U × V×R −→ R and transition map functions φj : X ×Q× U × V×R −→ X ×Q
for j = 1, . . . , ns. Discontinuity surfaces pose the condition that both state and controls must

satisfy for a discrete event to be triggered. In case the discontinuous surface depends only on the

state vector, it represents an autonomous event, whereas if it depends uniquely on the controls,

it defines a controlled event.The times ti at which these events occur, are called event transition

times. The successor states x(t+i ) and q(t+i ) just after a discrete event is given by the transition

map functions. In case only the discrete state is changed after a discrete event, it is called a

switching event, whereas if it is the continuous state experience a discrete jump, it is known as

impulsive event. As long as all discontinuity surfaces sj(x, q,u,v, t) 6= 0 for j = 1, . . . , ns, the

system trajectory evolves continuously according to Eq.(3.1).
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(a) Autonomous switching
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(b) Controlled switching

Figure 3.1: Illustration of switching discrete events
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(a) Autonomous impulse
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(b) Controlled impulse

Figure 3.2: Illustration of impulsive discrete events

Therefore, in a hybrid dynamical system, four basic types of discrete events can be found: au-

tonomous switching, controlled switching, autonomous impulses, and controlled impulses [212].

Note that a general discrete event, as expressed in Eq.(3.5), would comprise a combination of

all of them. As an example, let us consider a hybrid system defined by a continuous state x, a

discrete state q, and a discrete control v, and subject to Eqs.(3.1)-(3.5). Each type of discrete

events have a different effect in the hybrid dynamics as it is illustrated in Figs. 3.1-3.2. Further

discussion is provided in the following lines.

• Autonomous switching: An autonomous switching occurs when the continuous state

trajectory crosses the discontinuity surface in the continuous state-time space (see Fig.

3.1a). In this case, the discontinuity surface depends only on the continuous state and

on time, i.e., s = s(x, t). The switching causes the discrete state to change, whereas

the continuous states before and after the switching are equal, i.e., x(t+i ) = x(t−i ) and

q(t+i ) = φ(x, q,v, t−i ) . In the new discrete state, the continuous state trajectory follows

different equation of motions than in the previous discrete state. In spacecraft systems,

autonomous switching occurs, for example, when the electric engine is switched-off due to

power availability constraints (e.g., the spacecraft crosses through the Earth-shadow or it

is very far from the Sun).
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• Controlled switchings: Controlled switching differs from autonomous switching in that

the discontinuity surface is not a function of the continuous state but it depends on the

controls, i.e., s = s(v, t). Therefore, the discrete event occurs in the control-time space

(see Fig. 3.1b). Controlled switching models logical decisions that can be made at a

desired point of time to change the system dynamics, e.g., switching-off the electric engine

for propellant savings reasons.

• Autonomous impulses: An autonomous impulse resets the value of the continuous

state, when the continuous state trajectory hits the discontinuity surface (see Fig. 3.2a).

In a similar fashion than autonomous switching, the discontinuity surface depends only on

the continuous state and on time, i.e., s = s(x, t). However, after an autonomous impulse,

the discrete state and thus the differential equations remains unchanged, whereas the con-

tinuous state jumps according to the transition maps function, i.e. x(t+i ) = φ(x, q,v, t−i )

and q(t+i ) = q(t−i ). Examples for autonomous impulses in spacecraft dynamics are gravity

assisted-maneuvers, since a discrete change is the heliocentric velocity is experienced when

it encounters a planet in space and time.

• Controlled impulses: The difference of controlled impulses to autonomous ones is that

the impulse is triggered by a discontinuity surface that depends on the controls, i.e.,

s = s(v, t). Similarly to controlled switchings, the event occurs in the control-time space

(see Fig. 3.2b). Incrementing the velocity of a spacecraft by an instantaneous firing of a

chemical engine is an example of a controlled impulse.

3.3 Multi-Objective Hybrid Optimal Control Problem

The Multi-Objective HOCP is to find the set of feasible continuous u(t) and discrete v(t)

control inputs belonging to the Optimal Pareto front that minimizes the multi-objective function

J(u,v, t), typically a vector-valued function of the hybrid system state, control and time:

min J(u,v) =M+

∫ tf

t0

L(x,u, q,v, t)dt, (3.3)

subject to

ẋ = f(x,u, q,v, t) if sj(x,u, q,v, t) 6= 0, j = 1, . . . , ns, (3.4)
[
x(t+i ), q(t+i )

]
= φj(x,u, q,v, t

−
i ) if sj(x,u, q,v, t

−
i ) = 0, j ∈ {1, . . . , ns} , (3.5)

u(t) ∈ U ⊂ Rnu , v(t) ∈ V ⊂ Znv , ∀t ∈ [t0, tf ] , (3.6)

x(t) ∈ X ⊂ Rnx , q(t) ∈ Q ⊂ Znq , ∀t ∈ [t0, tf ] , (3.7)

0 ≤ g(x,u, q,v, t), t ∈ [t0, tf ] , (3.8)

x(t0) = x0(x, q,u,v, t0), q(t0) = q0(x, q,u,v, t0) (3.9)

x(tf ) = xf (x, q,u,v, tf ), q(tf ) = qf (x, q,u,v, tf ) (3.10)
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In the above, the Lagrange integrand term L : X ×Q× U × V × R −→ Rnj is a vector real-

valued function of the state and control variables and of time, and nj is the number of objective

functions. The Mayer type partM : X ×Q×R −→ Rnk is a general vector function of the event

transition times ti for i = 0, . . . , N and of the continuous x(t−i ) and the discrete q(t−i ) states

just before the discrete events and the continuous x(t+i ) and the discrete q(t+i ) states just after

the discrete events. Thus, it is expressed as:

M :=M
(
x(t+0 ), . . . ,x(t−N ); q(t+0 ), . . . , q(t−N ); t0, . . . , tN

)
(3.11)

Here, t0 and tN = tf are the beginning and final times, which are associated to an initial and

final event function respectively, whereas the remaining N − 1 transition times are related to

interior event functions. The minimization of the multi-objective function in Eq.(3.3) is subject

to initial and terminal conditions on the state vector (3.9)-(3.10), admissible values for the

continuous and discrete control and state variables (3.6)-(3.7) and further inequality constraints

(3.8) given by the function g : X ×Q× U × V × R −→ Rng . Obviously, valid hybrid optimal

trajectories must obey both the continuous and discrete dynamics (3.4)-(3.5). Let us define the

optimal sequence of discrete events as:

σ = [(t1, sk), . . . , (ti, sj), . . . , (tN , sm)], for k, j,m ∈ 1, . . . , ns (3.12)

The key challenge when solving HOCPs is that the optimal sequence of discrete events σ

is not known a-priori. Therefore, it has to be determined as part of the solution. Note that,

in Eq.(3.12) the sequence of discontinuity functions may have an arbitrary order, and even a

discontinuity function can be activated more than once during the trajectory, unless otherwise

specified, thus increasing the combinatorial complexity of the problem. Additionally, when

facing multi-objective problems, instead of searching for a unique optimal law for the continuos

and discrete control inputs as in single objective optimization, the aim is to obtain a whole set

of different solutions that are equally optimal in terms of Pareto efficiency.

As an illustration, let us define the HOCP where a spacecraft is to travel from Earth to

Saturn benefiting from as many gravity assisted maneuvers as desired and limited to a max-

imum time-of-flight. The patched conics approach is used and flybys are considered instan-

taneous, i.e., as discrete events. In such case, there are nine discontinuity functions, i.e.,

(s1, s2, s3, s4, s5, s6, s7, s8, s9) representing a planetary encounter with Mercury, Venus, Earth,

Mars, Jupiter, Saturn, Neptune, Uranus and Pluto respectively. Multi-objective solutions with

respect to propellant mass and flight of time are to be obtained. In this case an optimal com-

promise sequence of gravity assists σ1 is obtained, such that:

σ1 = [(t1, s3), (t2, s2), (t3, s3), (t4, s5)] (3.13)

where t1, t2, t3, t4 represent the optimal flyby maneuver times of the sequence Earth-Venus-

Earth-Jupiter. A different compromise solution would result in a different optimal sequence.
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3.4 Hermite-Simpson Collocation Scheme

Hermite-Simpson method is a basic form of collocation [126] that may be used to transcribe

multiphase OCPs and continuous OCPs to a standard NLP problem. Multiphase OCP are

simplified cases of Hybrid Optimal Control Problems (HOCP), where the number and sequence

of active discrete events σ is known a-priori. Each discrete event occurs at the discrete event

time tk, which may be known or free. The time interval between two consecutive discrete events

defines a phase, i.e. [tk, tk+1]. If all the controls involved are continuous, the resulting NLP

is continuous. Conversely, if any control input is integer, the Hermite-Simpson transcription

results in a Mixed Integer NLP. For the sake of clarity, only continuous state and control variables

will be considered, as it is the case of this thesis. The detailed procedure can be derived as

follows. The time interval for each phase [tk, tk+1] is subdivided into n subintervals [ti, ti+1] for

i = 1, . . . , n. It holds that t1 = tk, and tn+1 = tk+1. Let the continuos state x(t) of the system

be approximated on each segment [ti, ti+1] by a cubic polynomial of the form:

x(t) = a0 + a1t+ a2t
2 + a3t

3 (3.14)

whose time derivative can be represented by the second-order polynomial:

ẋ(t) = a1 + 2a2t+ 3a3t
2 (3.15)

where (a0, a1, a2, a3) are the coefficients of the polynomial. Let the continuos control u(t) of the

system be approximated on each segment [ti, ti+1] by a linear segment of the form:

u̇(t) = b0 + b1t (3.16)

where (b0, b1) are the coefficients of the segment. The parameters representing the state and

controls at the endpoints xi = x(ti), ui = u(ti), xi+1 = x(ti+1), and ui+1 = u(ti+1) are

assumed to be the unknowns of the NLP problem. They are denoted as nodes. Knowing them

implies that fi = f(xi,ui, ti) and fi+1 = f(xi+1,ui+1, ti+1) are also known.

tk =t1 tk+1=tnti ti+1 tc,i tn-1 

x(t) 

u(t) 

fi 
fi+1 

fc,i 

ui ui+1 uc,i 

xi 

xi+1 

xc,i

…

Figure 3.3: Hermite-Simpson collocation scheme illustration
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Let [xi,C ,ui,C ] be the state and control at tc, the middle point of [ti, ti+1]. They are called

“collocation points” and their numerical expression are:

xi,C =
1

2
(xi + xi+1) +

∆ti
8

( fi − fi+1), (3.17)

for the state collocation point and

uc =
ui + ui+1

2
(3.18)

for the control collocation point. Here, ∆ti = ti+1 − ti. The time derivative of the state

collocation point is:

ẋi,C = − 3

2∆ti
(xi − xi+1)− 1

4
( fi + fi+1), (3.19)

The difference between the interpolated and calculated derivatives at the collocation point,

i.e. ẋi,C − f(xi,C ,ui,C), defines the Simpson’s system defect constraint

di(xi,xi+1,ui,ui+1) = xi − xi+1 +
∆ti

6
( fi + 4 f(xi,C,ui,C) + fi+1) (3.20)

These constraints are known as Hermite-Simpson defect constraints. The NLP solver will

select (xi,ui,ui+1,xi+1) to drive the defect constraint to zero. In this way the interpolating

polynomial will approximate the true dynamics within the accuracy of the numerical integration.

Additionally, the states x(tk) and controls u(tk) at the endpoints of each phase tk must satisfy

the event transition equation of Eq.(3.5), which can be expressed as a set of non-linear constraint.

For instance, this method can be applied to transcribe and HOCP when the sequence of flybys

is known.The reader is referred to [126] for more details.

3.5 Genetic Algorithm

A genetic algorithm (GA) is a stochastic optimization technique for solving NLPs based on

the biological principles of Darwinian evolution [214]. GAs incorporates probabilistic transition

rules on a population and are capable of optimizing problems without gradient information,

such as combinatorial or mixed-integer nonlinear problems (those combining continuous and

discrete variables). Unlike gradient-based methods, GAs were developed as a framework for

global searches of the design space. That is, the candidate solutions are not confined to the

locally optimal solution in the vicinity of the initial guess. Moreover, GAs does not require

a user-defined initial guess to start the optimization procedure and can be initiated without

any prior knowledge of the design space. For many problems, especially low-thrust trajectory

optimization problems, developing a suitable initial guess is an overwhelming difficult task. In

GAs, the initial population can be generated randomly by using a uniform random number

generator, which ensures a broad initial sampling of the solution space. Last but not least,

GAs can operate both over single-objective or multi-objective design spaces, providing a set of

optimal Pareto optimal solutions in just one run of the algorithm.
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Figure 3.4: Genetic algorithm flowchart

Nevertheless, the GA is computationally expensive. It often requires many function evalua-

tions to achieve a good solution. For purely continuous problems, or problems in which a local

search is acceptable, classical gradient-based techniques can be significantly more efficient. The

latter typically require fewer function evaluations because of their use of gradient information

to perform the iterative search. Furthermore, because GAs do not use gradient information to

guide the search, there is no proof of convergence such as the Karush-Kuhn-Tucker conditions

for gradient-based methods and it may be difficult to meet complex constraints. In fact, GAs

were originally designed for unconstrained problems, and thus may not be effective on tightly

constrained problems with small feasible regions [137]. Therefore, GAs are a powerful tech-

nique for difficult yet unconstrained optimization problems where the design space is broad,

multi-objective, mixed-integer, discontinuous or non-intuitive. Notably, they have found wide

acceptance for the conceptual or preliminary design of space missions.

GAs incorporate operators that mimic natural selection and reproduction using a probabilistic

search. More specifically, They operate with an entire population of designs and incorporate

probabilistic transition rules executed by three key genetic operators: selection, crossover, and

mutation. The algorithm starts with a random or user-provided initial population and iteratively

evolve it, construct a new, and hopefully better population with each successive generation,

until a stopping criteria is met (typically a maximum number of generations). The location and

sequence of the core operators in the algorithm are illustrated in the flowchart of a simple GA

depicted in Figure 3.4. These operators have to be defined in such a way that solutions whose

objective values (or fitness value in GA terminology) are close to the real Pareto frontier should

be selected to generate the next population and to ensure diversity, i.e., the obtained subset of

Pareto solutions should distribute uniformly over the real Pareto frontier. In addition to the

three standard operators, there are auxiliary operators that may be incorporate to model other

genetic phenomena, or to improve convergence properties [137].
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One of the most known and effective multi-objective evolutionary algorithms is the Non-

dominated Sorting Genetic Algorithm II (NSGA-II). The NSGA-II attempts to achieve broad

coverage of the Pareto front by emphasizing the designs that are closest to the Pareto front [86].

The fitness value of an individual in the population is based on the number of solutions that

dominates it, which is known as non-dominated sorting. Because the designs that are closer to

the Pareto front are associated with a lower fitness value and, the evolution of the population

is biased towards the Pareto front. Furthermore, the NSGA-II includes a strategy to develop a

wide set of solutions along the Pareto front by affording preference to less crowded designs in two

different locations within the algorithm. Initially, the parent population is created randomly,

consistent with the standard GA, and then the GA operators apply. Hereafter, a conceptual

description of the selection, crossover and mutation operators is provided:

• Selection: This operator determines which individuals (also known as genes) from the

population will survive to form the “parents” of the next generation. Individuals with a

lower fitness value are more likely to survive. Several methods of selection exist but one of

the most effective is tournament selection [215]. In tournament selection, two individuals

are randomly selected from the population to compete against each other. The fitness

values of the competing designs determine which individual wins the tournament and is

placed in a parent pool. Those two individuals are then set aside and the tournament is

continued until all designs in the population have competed, and the winners placed in the

parent pool. Additionally, the NSGA-II algorithm also distinguishes between designs with

the same fitness by sorting each front in the population in terms of crowding distance.

• Crossover: Whereas selection determines which individuals should reproduce, crossover

creates new designs to explore the design space. To form new combinations, the crossover

operator mates individuals from the set of parents to produce offspring. This process

allows the individuals from the parent pool to be passed on to a new generation while

generating new patterns that may be advantageous. The NSGA-II algorithm implements

uniform crossover, which is very effective for the discovery of new patterns by producing

diverse offspring [216]. Like most other crossover methods, uniform crossover begins with

a random selection of two parents from the parent pool created by selection. The two

parents are then mated to produce two children (two new individuals) that will comprise

part of the next generation. Once parents have mated, they are discarded and two new

parents are selected at random from the parent pool to generate additional offspring.

• Mutation: After crossover, the mutation operator encourages diversity by randomly

altering some of the variables of each individual of the newly created population [86].

Such an operator introduces new variations into the gene, which highly increases the

capacity of exploring non-intuitive parts of the design space. Mutation typically occurs

at a low probability rate, randomly switching a small percentage of variables.
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It is worth-mentioning that equality and inequality constraints can add significant complexity

to the optimization problem, and several different techniques for the accommodation of con-

straints in GAs have been devised. The basic genetic operators are not formulated to explicitly

manage constraints and thus, most popular constraint handling methods involve penalizing the

fitness value corresponding to infeasible designs. By application of the penalty method, the

problem is transformed into one that is unconstrained. Hence, the fitness function becomes a

combination of the objective function and a penalty function. The genetic operators previously

mentioned apply over the new fitness value.
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4.1 Introduction

In this chapter, we present a solution approach for a spacecraft that has to travel from a

given departure orbit to a a selected target orbit within the Earth’s gravitational field by

means of its onboard propulsion system. This scenario well fits the case of telecommunication

satellites that are injected into GTO and has to transfer to GEO. The satellite may perform

a fully-chemical transfer (FCT), fully-electric transfer (FET) or a combined chemical-electric

transfer (CCET). It may be equipped with any propulsive system defined on a list of available

options. Operational constraints to arrive at a certain slot in the target orbit, the avoidance

of the geostationary ring during the transfer or slew rate limitations may apply. The goal is

to efficiently and simultaneously explore such design space. As described in chapter 1, efficient

means that a good compromise between computational time and accuracy is met. Simultaneous

means that the optimization of each transfer case with propulsive options is performed with the

same algorithm and at the same time, avoiding the need to run them independently.

The aforementioned problem is formulated as a Multi-Objective Hybrid Optimal Control

Problem (MO-HOCP). Chemical engine firings and the on-off switchings of the electric engine,

if required, are modeled as discontinuous events. Conversely the continuous dynamics is repre-

sented by the geocentric coasting and thrusting arcs. The interconnection between continuous

and discrete dynamics is represented in Figure 4.1 as a finite state machine diagram. A solution

algorithm termed MOLTO-OR (Multi-Objective Low Thrust Trajectory Optimizer for Orbit

Raising) is proposed. It consists on two sequential steps: MOLTO-OR Step 1 and MOLTO-

IT Step 2. Each of them solves the problem at different degrees of fidelity and with different

computational performances: the former provides a low-fidelity solution with low-computational

effort, whereas the latter produces medium-fidelity trajectories that require more computational

time. Both steps are interconnected since the solution from MOLTO-OR Step 1 is used as an

initial guess for MOLTO-OR Step 2. Hereafter, the modeling of the hybrid dynamics, along

with the solution approach applied at each stage will be introduced separately.

Coast
q = 0

Thrust
q = 1

Eclipse

φoff soff2

Switching off
φoff soff1

Switching on

φonson

∆V
Impulses

φc

sc

Figure 4.1: MOLTO-OR: Spacecraft Hybrid Dynamical System Diagram
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4.2 Modeling

4.2.1 MOLTO-OR Step1

The continuous state vector of the spacecraft is determined by the set of modified equinoctial

elements (p, f, g, h, k, L). Here, the true longitude L is treated as the independent variable,

instead of the physical time t. Additionally, the evolution of the spacecraft mass m is needed

to fully describe its dynamics. Consequently, the set of continuous state variables results in

x = [p, f, g, h, k, t,m]. The working condition of the electric propulsion system is determined by

the discrete state variable q ∈ {0, 1}, where ’0’ designates the coasting mode and ‘1’ indicates

the thrusting mode.

The spacecraft is controlled both by acting with the electric or chemical engine. The former

produces a continuous thrust force when switched on. Its steering law and the on/off switchings

are determined by u(t) = [Wp,Wf ,Wg,Wh,Wk, ηa,th, ηr,th,mQ, nQ, rQ]. They are a set of con-

tinuous static controls and will be described through this section. In particular, they determine

the orientation angles α and β. Here, α is the azimuth angle measured in the orbit plane from

the circumferential direction and positive away from the gravitational centre, whereas β is the

declination angle measured out of the orbital plane and positive along the angular momentum.

The chemical engine provides n-instantaneous velocity changes on the spacecraft. They are de-

termined by the set of continuous static controls uc,j = [ϑj ,∆Vj , ᾱj , β̄j ] for j = 1, . . . , n, where

ϑj represents the true longitude at which the jth impulse of magnitude ∆Vj and direction ᾱj

and β̄j is performed. Here ᾱj is the in-plane angle measured from the tangential direction and

positive away from the gravitational centre and β̄j is the declination angle. An illustration of

the geometry of the problem is displayed in Figure 4.3.

The transfer type: FCT, FET or CCET is selected by the discrete static control Θ ∈ Z,

whereas the propulsive system is selected by the static control Π ∈ Z. The simultaneous coex-

istence of a chemical and a electric module creates some constraints to the system. Throughout

this work, and much of the literature, it is assumed that the chemical firings are executed

fully before the electric phase begins. This constraint arises because the high amount of power

required by the electric propulsion may require deployed solar array panels [217]. The large

appendages of the solar panels, when deployed, may suffer instabilities due to the high forces

applied by the chemical propulsion.
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Figure 4.2: MOLTO-OR: Transfer Sequence
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Figure 4.3: Chemical Burns (left) and Low-Thrust (right) steering angles

Continuous Dynamics

The continuous evolution of the continuous state vector of the system with respect to the true

longitude is given as:

f :





dp

dL
=

1

Γ

√
p

µ

2p

w
aθ

df

dL
=

1

Γ

√
p

µ

(
sinLar +

1

w
{(w + 1) cosL+ f} aθ −

g

w
{h sinL− k cosL} ah

)

dg

dL
=

1

Γ

√
p

µ

(
− cosLar +

1

w
{(w + 1) sinL+ g} aθ +

f

w
{h sinL− k cosL} az

)

dh

dL
=

1

Γ

√
p

µ

l2 cosL

2w
ah

dk

dL
=

1

Γ

√
p

µ

l2 sinL

2w
ah

dt

dL
=

1

Γ

dm

dL
= − q

Γ
ṁ

(4.1)

where the auxiliary parameters are defined as:

Γ =

√
p

µ

1

w
{h sinL− k cosL} ah +

√
µp

(
w

p

)2

(4.2)

w = 1 + f cosL+ g sinL (4.3)

l2 = 1 + h2 + k2 (4.4)

χ2 = h2 − k2 (4.5)

In the above, µ represents the gravitational constant of the Earth , ṁ is the propellant consump-

tion rate of the electric engine and (ar, aθ, ah) are the components of the perturbing acceleration

ap projected onto the rotating radial frame, whose unitary vectors are:

i =
r

r
, k =

r× v

rv
, j = k× i (4.6)
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Here, r ∈ R3 is the cartesian position vector, v ∈ R3 is the cartesian velocity vector, r = ||r||
is the radial distance and v = ||v|| is the magnitude of the velocity. Expressions to convert from

the modified equinoctial elements to the cartesian state vector are as follows:

r =




r/l2(cosL+ χ2 cosL+ 2hk sinL)

r/l2(sinL− χ2 sinL+ 2hk cosL)

2r/l2(h sinL+ k cosL)


 (4.7)

v =




−1/l2
√
µ/p(sinL+ χ2 sinL− 2hk cosL+ g − 2fhk + χ2g)

−1/l2
√
µ/p(− cosL+ χ2 cosL+ 2hk cosL− f + 2ghk + χ2f)

2/l2
√
µ/p(h cosL+ k sinL+ fh+ gk)


 (4.8)

For the purpose of this thesis, the only non-two-body accelerations are due to Earth J2 and

thrust. Adding different perturbations is as simple as converting them to the rotating radial

frame and including them in ap. The Earth oblateness is accounted in a similar manner to [55]:

aJ2 =




−3J2/(2r4)(1− 12(h sinL− k cosL)2/l4)

−12J2/r
4(h sinL− k cosL)(h cosL+ k sinL)/l4

−6J2/r
4(h sinL− k cosL)(1− h2 − k2)/l4


 (4.9)

where J2 = 0.0010826.

The perturbing acceleration due to thrust aT and the mass flow rate ṁ used in Eqs.(4.1)

have different expressions depending on the discrete state of the spacecraft. Assuming that the

thrust produced by the electric engine is T , it holds that:

aT , ṁ :





aT =
T

m
d, ṁ = − T

g0Isp
if q = 1

aT = 0, ṁ = 0 if q = 0
(4.10)

Here, Isp is the specific impulse and g0 is the Earth’s gravitational acceleration at sea level.

The unitary vector d points toward the direction of the thrust vector and can be projected onto

the rotating orbital frame and is expressed as a function of the steering angles as follows:

d = cosβ sinα i + cosβ cosα j + sinβ k (4.11)

The thrust magnitude T of the electric engine and its fuel consumption rate ṁ depends on

the specific propulsion system. Here, it is expressed as function of the power available to the

engine Pa and its efficiency η as follows:

T =
2ηPa
g0Isp

(4.12)

It is assumed that Pa is equal to power generated by the solar arrays and constant during

sunlight. When the spacecraft transverses the Earth shadow, the solar arrays do not generate

any power. It is also considered that the solar arrays are degraded by the absorption of particles

within the Van Allen radiation belts. Their models will be presented later in this section.
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The thrust vector azimuth and declination angles, α and β respectively, are obtained using a

Lyapunov feedback control method called the Q-law. It was originally proposed by Petropoulos

[70] using orbital elements, yet in this work we use the formulation presented by Gávor and José

M. in [74] with modified equinoctial elements. It solves the orbit transfer in an inverse square

field where there is no constraints on the final true anomaly. The Q-law is based on a proximity

quotient, Q, which captures the interdependencies between the orbital elements by means of

scaling functions that quantify the proximity of the osculating orbit to the target orbit. During

the transfer at each instant the Q-law method chooses the thrust angles that reduce the Q value

the most quickly. A coasting mechanism that is based on variable effectivity of the thrust in

reducing Q at different true anomalies is incorporated. The modified Lyapunov function, or Q

function, is defined as:

Q =
∑

œ

SœWœ

(
œ−œt

œ̇xx

)2

(4.13)

Using the semi-major axis as the first variable instead of the semilatus rectum proved to yield

a better control when using the equinoctial orbital elements to formulate the Q-law. However,

for the propagation of the orbit, the latter is used (p), as the right hand side of the differential

equation is less expensive to evaluate. In Eq.(4.13) œ are the current, while œt are the desired

orbital elements, whereas œ̇xx are the maximum rate of change of the corresponding variable

over the thrust direction and true anomaly on the osculating orbit. The remaining terms are

Wœ the scalar weighting factors for each of the equinoctial orbital elements, and Sœ scaling

factor. Here, Sœ = 1 for œ = f, g, h, k and

Sa =

[
1 +

(
|a− at|
mQat

)nQ
]1/rQ

(4.14)

The latter has been introduced to prevent convergence to a =∞, since for a =∞ all the œ̇xx

tend as well to an infinity value. Here, the set (mQ, nQ, rQ) are named the scaling factors. The

classical Q-law supplies these values analytically, however they are expensive to evaluate due

to their complexity and trigonometric expressions. In this formulation analytical expressions

are found for a, h, and k, yet not for f and g in closed form. However a moderately good

approximation is used for these values to avoid computing them numerically. The maximum

rate of change of the MEE are computed as follows:

ȧxx = 2a
T

m

√
a

µ

√
1 +

√
f2 + g2

1−
√
f2 + g2

(4.15)

ḟxx ≈ 2
T

m

√
p

µ
(4.16)

ġxx ≈ 2
T

m

√
pµ (4.17)

ḣxx =
1

2

T

m

√
pµ

s2

√
1− g2 + f

(4.18)

k̇xx =
1

2

T

m

√
pµ

s2

√
1− f2 + g

(4.19)
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The time derivative of Q can be determined as:

dQ

dt
=
∑

œ

∂Q

∂œ
œ̇, œ = a, f, g, h, k (4.20)

The Q-law method is based on choosing the thrusting angles α and β at each instant during

the transfer such that Q̇ is the most negative, therefore ensuring the most rapid decrease of

the“distance” Q to the target orbit. These angles can be computed analytically, as Q̇ can be

rewritten as:
dQ

dt
= D1 cosβ cosα+D2 cosβ sinα+D3 sinβ (4.21)

where D1, D2 and D3 are parameters obtained from the derivatives present in Eq.(4.20) and

can be calculated as:

D1 =
∑

œ

∂Q

∂œ

∂œ̇

∂at
(4.22)

D2 =
∑

œ

∂Q

∂œ

∂œ̇

∂ar
(4.23)

D3 =
∑

œ

∂Q

∂œ

∂œ̇

∂an
(4.24)

To obtain the optimal thrusting angles, Eq.(4.21) has to be differentiated with respect to α

and β, which results in:

∂Q̇

∂α
= −D1 cosβ sinα+D2 cosβ cosα (4.25)

∂Q̇

∂β
= −D1 sinβ cosα−D2 sinβ sinα+D3 cosβ (4.26)

The solution of this problem is:

α = arctan(−D2,−D1) (4.27)

β = arctan(
−D3√√
D2

1 +D2
2

) (4.28)

Therefore, the continuous thrusting angles are determined as a function of the continuous

static controls: (Wa,Wf ,Wg,Wh,Wk), which are named the weighting factors , and (mQ, nQ, rQ),

which are called the scaling factors.

Discrete Dynamics

The discrete dynamics of the system are governed by controlled events, i.e. the discrete velocity

impulses of the CP and the discrete on/off switchings of the EP system, and by autonomous

events, i.e. the electric engine shut down during eclipse. The discrete event functions associated

to them, including discontinuity surfaces and transition map functions, will be formally defined

in the following lines.
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Chemical Propulsion Burns: The effect of a chemical engine, modeled as instantaneous,

translates into discrete changes of the continuous state vector that are given by the transition

map functions φc. The discontinuity surfaces sc constrain the firings to occur when the spacecraft

reaches the true longitude selected by the control parameter ϑ as long as the electric engine is

switched off. Note that, the discrete state of the spacecraft is not affected by this maneuver,

i.e. q(L+
j ) = q(L−j ). Therefore, the discrete dynamics is expressed as follows:

Burn:

{
sc,j : L−j = ϑj , j = 1, . . . , n

φc,j : q(L+
j ) = q(L−j ), x(L+

j ) = C(x(L−j ),uc,j), j = 1, . . . , n
(4.29)

where n is the number of allowed impulses and C : X × U × R −→ X is the procedure to

compute the successor continuous state x(L+
j ) of the spacecraft after the jth chemical maneuver

as a function of the predecessor continuous state x(L−j ) and the continuous static controls

uc,j = [θj ,∆Vj , ᾱj , β̄j ]. This procedure consists on the following steps:

• Obtaining the pre-maneuver cartesian position and velocity vectors of the spacecraft from

the equinoctial elements using Eq.(4.7).

• The demanded impulse is added to the velocity vector projecting them onto the same

reference frame as v(L+
i )) = v(L+

i )) + ∆Vj .

• The post-maneuver equinoctial elements are computed by converting the post-maneuver

cartesian and velocity vectors to equinoctial elements.

• Compute the post-maneuver mass as m(L+
i ) = m(L−i )e∆Vj/(g0Isp,c).

Here, Isp,c is the specific impulse of the chemical engine. Let us defined σc as the time-ordered

sequence of chemical firings:

σc = [. . . , (Lj , sc,j), . . . ] (4.30)

which is not known a-priori and have to be determined as part of the solution.

Electric Engine on/off switching: In order to account for the on/off switchings during

sun light, two quantities are introduced to measure the effectivity of thrust at a given point on the

transfer. This allows differencing between thrusting and coasting arcs. Critical values of these

coefficients can be predetermined to cut thrust at certain areas of the orbit, increasing travel

time and reducing the used propellant mass. In order to calculate the effectivity coefficients,

first the maximum and minimum Q̇ has to be calculated with respect to the thrusting angles

and the orbital position.

Q̇min = min
L,α,β

Q̇ (4.31)

Q̇max = max
L,α,β

Q̇ (4.32)
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The extrema of Q̇ over α and β can be easily determined:

min
α,β

Q̇ = −
√
D2

1 +D2
2 +D2

3 (4.33)

max
α,β

Q̇ = +
√
D2

1 +D2
2 +D2

3 (4.34)

The numerical Brent’s method is used to find the extrema on L = (0, 2π). The absolute and

relative effectivity coefficient are defined as:

ηa =
Q̇

Q̇min
(4.35)

ηr =
Q̇− Q̇max

Q̇min − Q̇max
(4.36)

These values are computed at each integration step and compared to the cut-off values ηa,th

and ηr,th. Thrusting takes place in the optimal direction if the calculated efficiencies are above

the threshold. They are modeled by the discontinuity surfaces son and soff,1 and by the tran-

sition maps φon and φoff . Additionally, the spacecraft shutdown during eclipse is represented

by the discrete event function soff,2 and transition map φoff , as follows:

Switching on:

{
son : q(L−i ) = 0, ηa(L

−
i ) > ηa,th, ηr(L

−
i ) > ηr,th, Ξ(x, L−i ) = 1

φon : q(L+
i ) = 1, x(L+

i ) = x(L−i )
(4.37)

Switching off:





soff1 : q(L−i ) = 1, ηa(L
−
i ) < ηa,th, ηr(L

−
i ) < ηr,th

soff2 : q(L−i ) = 1, Ξ(x, L−i ) = 0

φoff : q(L+
i ) = 0, x(L+

i ) = x(L−i )

(4.38)

In previous Eqs.(4.54)-(4.55), the effect of the eclipse is included via the shadow function

Ξ(x, L−i ) : X × R −→ Z. It represents a binary-valued function that takes the value ’1’ when

the spacecraft is in sunlight and ’0’ when it is in umbra conditions. Let us defined σsw as the

time-ordered sequence of the on-off switchings of the electric engine:

σsw = [. . . , (Li, son/off ), . . . ] (4.39)

which is not known a-priori and have to be determined as part of the solution.

Transfer Type and Propulsive System selection: The transfer type is selected by

the integer static control Θ ∈ Z. Here the CP, EP and CCEP are represented by Θ = 1, 2, 3

respectively. The selection of the propulsive system and solar arrays are modeled by the static

discrete control Π ∈ Z. Such parameter contains the list of available propulsive options. Thus,

parameters such as the specific impulse Isp,e and mass me of the electric engine, the specific

impulse Isp,ch and mass mch of the chemical engine , and the solar array parameters are functions

of Π. As a consequence, the initial mass of the system is composed of the following:

m0 = me(Π) +mch(Π) +mp(Π) +mpayload (4.40)

where mp is the propellant mass required for the transfer, including the electric and chemical

engine, and mpayload is the payload mass.
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Figure 4.4: MOLTO-OR: Eclipse Geometry

Earth Shadow: It is reasonable to assume that both the Sun and Earth are spherical bodies

as suggested in Ref. [55]. It is further assumed that the Sun is infinitely far away from the

Earth resulting in a cylindrical shadow. The geometry of the eclipse, under the cylindrical

shadow approximation, is depicted in Figure 4.4 including the spacecraft orbit. The radius of

the cylinder is therefore equal to the radius of the earth Re and is axis is determined by the

unitary vector from the Earth to the Sun ŝs. Let us define r⊥ as the distance of the spacecraft

to the axis of the cylinder and it can be obtained as:

r⊥ =
√

r2 − rTŝ (4.41)

where r = ||r||. The condition for the spacecraft to be inside the cylinder can be simply expressed

as r⊥ ≤ Re. In addition to this, in order to be inside the shadow region of the cylinder, the

constraint rTs ≤ 0 must be fulfilled. Combing both conditions, a necessary and sufficient

condition for an eclipse to happen is derived as:

rT ŝ +
√

r2 −R2
e ≤ 0 (4.42)

Thus, the binary shadow function Ξ has the following form:

Ξ =

{
0 if rT ŝ +

√
r2 − R2

e ≤ 0

1 otherwise
(4.43)

Radiation Environment: Following the same approach as in Ref. [87], the geomagnetic

field is modeled by considering a magnetic dipole with an axis parallel to the Earth’s magnetic

axis passing through its center of mass. The omnidirectional radiation flux is defined as the flux

of all particles averaged over all directions at any location owing to charged particles, namely

protons and electrons, and it can be computed as a function of the McIlwain’s coordinate Λ

and the latitude φe. The parameter Λ represents the distance to the magnetic field line at the

equator and it has the following expression:

Λ =
r

Re sin2
(π

2
− φe

) (4.44)
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Figure 4.5: Analytic Integral Proton Flux for Energy levels greater than 1 MeV

There exits suitable radiation models such as the NASA AP-8 and AE-8 model [218] or the

more recent NASA AP-9 and AE-9, which provide tabulated data for the flux values for various

energies. However, usage of tabulated values does not lend itself well for optimization purposes.

To this end, approximate analytical expressions are derived in Ref. [87]. Furthermore, it is

known that the inner Van Allen belt, which is mainly composed of protons, is significantly more

hazardous compared to the outer belt, which is mainly composed of electrons. In fact, it has

been shown that the radiation damage from electrons during orbit-raising represents a small

fraction of what the satellite undergoes in GEO over a period of 10-15 years [87].

Hence, in this work, only the radiation damage caused by protons is considered. The omni-

directional flux of protons of energy equal or greater than E can be expressed by the following

analytical form derived in Ref. [87]:

Φp(Λ, φe, E) = a(Λ, E)e−b(Λ,E)φ2e (4.45)

where a(Λ, E) and b(Λ, E) are given by:

a(Λ, E) = a0e(a1E+a2(a3+Λ)2) (4.46)

b(Λ, E) = b0 + b1E + b2Λ + b3EΛ + b4Λ2 + b5Λ3 (4.47)

Radiation models like AP-8 or AP-9 can be used to find the values of the fitting parameters

aj and bj that best approximate the radiation data. In our approach we will use the AP-8 data

[87]. The fitting parameters obtained are summarized in Table 4.1 and the proton flux for energy

levels equal or greater than 1 MeV is plotted in Figure 4.5. Given that the coordinates (Λ, φe)

depends uniquely on the position of the spacecraft, the radiation flux can be expressed in terms

of the continuous state vector x and the true longitude L, so that Φp(x, L,E) = Φp(Λ, φe, E).

Therefore, the total fluence of protons of all energy levels greater than or equal to E encountered

along the orbit-raising trajectory until a certain time t is given by:

Ψp(x, L,E) =

∫ t

t0

Φp(x, L,E)dt (4.48)



Chapter 4. MOLTO-OR: Orbit Raising 84

a(L,E) Units b(L,E) Units

a0 = 2.094× 108 cm−2 s−1 b0 = −0.00971 -
a1 = −1.673 MeV−1 b1 = 0.0000982 MeV−1

a2 = −2.07 - b2 = 0.01484 -
a3 = −2.825 - b3 = 0.0001561 MeV−1

b4 = −0.004581 -
b5 = 0.0004356 -

Table 4.1: Van Allen Radiation Belts: AP-8 Fitting Parameters

Radiation Damage: The long term radiation effects important to be considered for instru-

ment and spacecraft design fall into two main categories: ionizing and non-ionizing effects.

The latter is also known as Displacement Damage Dose. Both causes degradations of micro-

electronics, optical components and solar cells. In terms of solar-cell degradation, ionization

effect has little effect, whereas Displacement Damage Dose is the major source of degradation.

The radiation damage that may occur to the payload or other on-board electronics is not as-

sessed here, but it should be less than that encountered by the array as better shielding can be

used to protect them.

The amount of degradation is a function of the type of solar cells, amount and material of

the shielding provided, the energies of radiation encountered along the path an the number of

particles for each energy level. We utilize the parametric relationships from Ref. [219] in terms

of the displacement damage dose and non-ionizing energy loss in order to compute the power

Pa available to the spacecraft:

Pa
P0

= 1− C log

(
1 +

Dd

Dx

)
(4.49)

where Dd is the displacement dose of protons for given solar cells, Dx and C are constants

specific to the type of solar cells. The displacement damage dose, according to Ref. [87], is

defined as:

Dd =

∫ Eu

El

∂Ψp

∂E
SP (E)dE (4.50)

In the above, SP (E) is the non-ionizing energy loss. Then, it holds that:

∂Ψp

∂E
=

∂

∂E

∫ t

t0

Φp(x, L,E)dt =

∫ t

t0

∂Φp(x, L,E)

∂E
dt (4.51)

Hence, we have

Dd =

∫ t

t0

∫ Eu

El

∂Φp(x, L,E)

∂E
SP (E)dEdt (4.52)

The rate of change of the radiation flux with respect to the energy levels can be obtained

analytically from Eq.(4.45) as:

∂Φp(x, L,E)

∂E
= [a1 − φ2

e(b1 + b3Λ)]Φp(x, L,E) (4.53)

Thus, in order to obtained the accumulated radiation flux, Eq.(4.52) can be integrated with

respect to the true longitude, instead of the physical time t, at the same time that the dynamics
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of the spacecraft (Eq.(4.1)). Note that the maximum thrust T during the EP phase diminishes

with input power P accordingly with Eq.(4.49), unless the system is designed so that there is

always enough power to the EP at full-power. The minimization of the power loss is critical

because it determines the power at the beginning of the operational life of the satellite.

4.2.2 MOLTO-OR Step2

In a similar fashion as MOLTO-OR Step 1, the continuous state vector of the spacecraft is

determined by the set x = [p, f, g, h, k, t,m], where the true longitude L is the independent

variable. Also, the discrete state of the spacecraft is described by the variable q ∈ {0, 1},
where ‘0’ designates the coasting mode and ‘1’ indicates the thrusting mode. The chemical

engine provides n-instantaneous velocity changes on the spacecraft, which are determined by

the set of continuous static controls uc,j = [ϑj ,∆Vj , ᾱj , β̄j ]. However, in this step, the electric

engine is controlled by the set of dynamic continuous controls: α and β, being the azimuth and

declination angles respectively as described in the previous section. Additionally, the controlled

on/off switchings of the electric engine during sunlight are managed by the binary control input

ve ∈ {0, 1}. The coasting state is required when ’0’, while a burning phase is demanded for ‘1’.

Continuous Dynamics

The evolution of the continuous state vector of the system with respect to the true longitude is

given as in Eqs.(4.1), where the thrust acceleration is directly controlled by the azimuth α and

declination β angles.

Discrete Dynamics

The discrete event functions associated to the discrete dynamics, including discontinuity surfaces

and transition map functions for the chemical propulsion firings and the on/off switchings of

the electric engine, will be formally defined in the following lines.

Chemical Propulsion Burns The chemical engine firings discontinuity surface sc,j and tran-

sition map functions φc,j are modeled as in the previous step in Eq.(4.29).

Electric Engine on/off switching In this case, the electric engine switchings are controlled

by the dynamic discrete input ve as long as the spacecraft is in sunlight conditions. They

are modeled by the discontinuity surfaces son and soff,1 and by the transition maps φon and

φoff . Additionally, the spacecraft shutdown during eclipse is represented by the discrete event

function soff,2 and transition map φoff .
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Therefore, the following equations are included for a complete descriptions of the system:

Switching on:

{
son : q(L−i ) = 0, ve(L

−
i ) = 1, Ξ(x, L−i ) = 1

φon : q(L+
i ) = 1, x(L+

i ) = x(L−i )
(4.54)

Switching off:





soff1 : q(L−i ) = 1, ve(L
−
i ) = 0

soff2 : q(L−i ) = 1, Ξ(x, L−i ) = 0

φoff : q(L+
i ) = 0, x(L+

i ) = x(L−i )

(4.55)

As in MOLTO-OR Step 1, the effect of the eclipse is included via the binary shadow function

Ξ(x, L−i ) : X × R −→ Z. Note that, an explicit relation between the discrete state of the

spacecraft, the discrete input vector and the shadow function can be deduced:

q(ve,x, L) = veΞ(x, L) (4.56)

Transfer Type and Propulsive System selection: The transfer type and propulsive sys-

tem is provided by MOLTO-OR Step 1. Therefore, in this step, no optimization of the propulsive

system or the transfer type is performed.

Earth Shadow and Radiation environment: The same models as in MOLTO-OR Step 1

are considered for this step.

Constraints

During a typical transfer to the Geostationary orbit, several operational constraints can apply.

Hereafter, the models used for imposing slew-rates limits, avoiding the geostationary ring for

imposing slot-phasing constraints will be presented.

Slew Rate Limits: As a practical matter, limits are often imposed on the angular rate

of change of the thrust direction vector as a requirement from the attitude subsystem. An

unconstrained steering law may not be realizable by the space system. For a small true longitude

interval ∆L, the angle θT between two unit direction vectors is defined by:

dT (L)d(L+ ∆L) = cos θT (4.57)

It then follows that an approximate rotation rate, assuming a linear variation, can be com-

puted as:

θ̇T ≈
1

t(L+ ∆L)− t(L)
cos−1

[
dT (L)d(t+ ∆L)

]
≤ θ̇T,lim (4.58)

In the above, θ̇T,lim is the maximum allowed rotational velocity. The value of ∆L is typically

chosen to coincide the integration step of the dynamical equations.
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Figure 4.6: MOLTO-OR: GEO Ring Geometry

GEO Ring Avoidance: The GEO belt or GEO ring is understood as the volume in space

where most of the operational satellites in GEO are located. The region is also populated by

uncontrolled objects that are subject to variations in altitude due to orbit perturbations. During

the transfer, any crossing of the GEO ring poses a certain collision risk with high value assets.

In general, a spacecraft might cross the GEO ring at the beginning, mid of the transfer, and

at the end. Especially at the end of a low-thrust orbit transfer to the GEO the spacecraft may

cross the GEO belt several times since the spacecraft targets zero eccentricity and inclination

at GEO altitude.

The GEO Ring considered in our study is defined as a toroid around Earth with a rectangular

cross-section centered at GEO (see Figure 4.6). The rectangular cross-section is termed GEO

box and its width and height are 2lr and 2lz respectively. The inner rGEO− and outer rGEO+

radius of the toroid are defined as:

rGEO− = rGEO − lr (4.59)

rGEO+ = rGEO + lr (4.60)

Here, rGEO is the radius of the GEO orbit. Additionally, we define the North and South

boundaries as the planes parallel to Equatorial plane but located at a distance lz above and

below respectively. The intersection of the spacecraft’s trajectory with such planes determines

rN and rS , where the subscript N and S refers to the North and South boundary respectively

and the symbol rNS is used to refer to both indistinctly.

The conditions to avoid crossing the GEO ring can be evaluated as a function of the projec-

tions onto the Equatorial plane of the radii at the north/south boundary of the GEO arc as a

set of complementary non-linear constraints:

rNS cosφSN ≤ rGEO− or rNS cosφSN ≥ rGEO+ (4.61)

where φNS is the elevation angle, measured out of the Equatorial plane, for rNS and it is

computed as:

φNS = ± sin−1 lz/rNS (4.62)
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In the above, it is select the + sign for rN and the − sign for rS . The previous complementary

Eqs.(4.61) can be reformulated as a set of nonlinear inequality constraints as follows:

(rGEO− − rN cosφN )(rGEO− − rS cosφS) ≥ 0 (4.63)

(rGEO+ − rN cosφN )(rGEO+ − rS cosφS) ≥ 0 (4.64)

(rGEO − rNS cosφSN )2 − (2lr)
2 ≥ 0 (4.65)

Note that the previous expression are not valid for small inclinations, where no crossings of

the trajectory with the north/sound boundaries occurs. In such case, the value of lz can be

reduced and the constraints could be applied until the inclination reaches zero. Also, at least

the last orbit must be unconstrained in order to allow targeting of the final orbit.

Boundary and Phasing constraints: Typically, the design of an orbit raising trajectory

constrains the spacecraft to depart from a specific orbit (a0, e0, i0, w0,Ω0, v0) and at a certain

initial epoch t0. These orbits are typically defined by their orbitals elements but the constraints

can be expressed equivalently in terms of the equinoctial elements as:

p(L0) = a0(1− e2
0), h(L0) = tan(i0/2) sin(Ω0)

f(L0) = e0 cos(w0 + Ω0), k(L0) = tan(i0/2) cos Ω0,

g(L0) = e0 sin(w0 + Ω0), L0 = Ω0 + w0 + v0,

m(L0) = m0, t(L0) = t0.

(4.66)

Similarly, the spacecraft has to arrive at the target orbit (af , ef , if , wf ,Ωf ). The associated

constraint in equinoctial elements can be expressed as Eq.(4.66) but changing the suffix ‘0’ to

‘f’. The final transfer epoch tf = t(Lf ), final mass mf = m(Lf ) and final true longitude Lf can

be constrained to a specific value or may be free and subject to optimization. In case satellite

is to be transferred to GEO, it will have to occupy a single slot above the equator. Phasing is

the operation to target the certain longitude of the assigned slot. This constraint is applied to

the final longitude as:

cosLf = cosLT (tf ), sinLf = sinLT (tf ) (4.67)

where LT is the target final true longitude, which is a function of the arrival time, as the

Earth rotates with respect to the inertial reference frame. Note that, the previous constraint

is expressed as a trigonometric relation in order to make it independent of the number of

revolutions. Typically, the slot-phasing condition is given as a function of a target longitude δT

with respect to the Greenwich meridian. The position of the Greenwich meridian is computed

by assuming a constant rotational velocity for the Earth. Thus, the target true longitude can

be computed as follows:

LT (tf ) = δT + δG(t0) + wE(tf − t0) (4.68)

where wE = 7.2722 · 10−5 rad/sec is the mean Earth’s rotational velocity and δG(t0) is the

longitude of the Greenwich meridian with respect to the first point of Aries at the initial epoch.
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4.3 Solution Approach

We present MOLTO-OR, which is a two-step solution approach for the multi-objective HOCP

problem under consideration. The algorithm is schematically depicted in Figure 4.7. In MOLTO-

OR Step 1 we incorporate a parametric model of the low-thrust control law based on the Lya-

punov function Q-law [70], pursuing the goal of developing a flexible and robust algorithm able

to rapidly find solutions, which would approximate the optimal performances as well as the

mission design variables, needing minimum information from the user. In MOLTO-OR Step 2

we include the complete model of the trajectory and control seeking for accuracy and robustness

in addition to the possibility of including complex constraints with ease.

User Defined Parameters

MOLTO-OR STEP 2MOLTO-OR STEP 1

Multi-objective Genetic Algorithm 
+ 

Q-law control law
Direct transcription 

+ 
Gradient-based solver

INITIAL GUESS

MOLTO-OR
Muti-objective Low-Thrust Optimizer for Orbit Raising

•  Set of Pareto sub-optimal solutions in one run
•  Rapid trade-offs  for  preliminary design

•  Single optimized trajectory in one run
•  Accurate solutions for the detailed design

Figure 4.7: MOLTO-OR: Algorithm Scheme

Table 4.2: MOLTO-OR Step 1 VS MOLTO-OR Step 2 main features

MOLTO-OR Step 1 MOLTO-OR Step 2

Problem type Multi-objective MINLP Multiphase OCP
Solution Approach Genetic Algorithm Hermite-Simpson +

Gradient-based solver

Dynamical Model 3D + J2 + shadow + radiation 3D + J2 + shadow + radiation
Control Model Lyapunov Q-law Optimal control
Propulsive system Free Fixed
Transfer Type Free Fixed
Thrust Model Constant Constant
Isp Model Constant Constant
Ephemerides Analytic approximation Analytic approximation

Programming Language C++ AMPL
Heuristic solver NSGA-II N/A
Gradient-based solver N/A Ipopt
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4.3.1 MOLTO-OR Step1

In this step, we convert the multi-objective HOCP into an unconstrained multi-objective mixed-

integer parameter optimization problem with a small set of design variables. Due to that fact

and to the requirement of evaluating many different scenarios simultaneously, a population-

based heuristic algorithms has been chosen as the most adequate technique to solve it. In

particular, a Genetic Algorithm based on the well-known NSGA-II (Non-dominated Sorting

Genetic Algorithm) has been selected. MOLTO-OR Step1 has been fully implemented in C++,

given that this step requires the rapid evaluation of FCT, FET and CCET. In the following

lines, we describe the particular design variables and evaluation procedure separately for each

transfer case. Thereafter, the complete optimization algorithm will be explained.

Fully Chemical Transfer (FCT): During a FCT, a series of n-chemical maneuvers are

performed sequentially. Solar-cell degradation is not considered for this transfer as the crossing

of the radiation belts is very fast. The location, magnitude and direction of the jth impulse is

defined by uc,j = [ϑj ,∆Vj , ᾱj , β̄j ] for j = 1, . . . , n− 2. The trajectory between the (jth− 1) and

the jth impulses is assume to follow a Keplerian arc and is computed analytically between ϑj−1

and ϑj . A Lambert’s arc is assumed for the last two impulses in order to guarantee that the

satellite is inserted into the final orbit exactly. Three additional design variables are included

to define the last two-impulses: the parameter ϑn−1 that represents the true longitude on the

orbit where the first Lambert’s impulse occurs; the parameter tc that represents the time of

flight on the transfer arc; and ϑn that is the true longitude on the final orbit at the time of the

satellite arrival. Therefore, the set of parameters C defining the FCT is:

C = (uc,1, . . . ,uc,n−2, ϑn−1, tc, ϑn) (4.69)

Note that the number of impulses n is not a design variable. Instead, it is assumed to be

equal to the maximum number of allowable impulses nmax defined by the user. The number of

impulses is then optimized by driving to zero the magnitude of the unnecessary ∆V ’s.

Fully Electric Transfer (FET): In the case of a FET, the parametric feedback control

naturally drives the spacecraft to the final orbit. The dynamics are satisfied by integrating the

differential equations using a time-marching algorithm. Let us define the set of parameters E
that defines the low-thrust guidance as:

E = (Wp,Wf ,Wg,Wh,Wk, ηa,th, ηr,th,mQ, nQ, rQ) (4.70)

Here, (Wp,Wf ,Wg,Wh,Wk) are the weighting factors associated to each equinoctial element,

(ηa,th, ηr,th) are the absolute and relative effectivity coefficients, which allow introducing coasting

arcs and finally (mQ, nQ, rQ) are the scaling factors.
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Let the Qlaw function be defined as the procedure that computes the spacecraft thruster

orientation as a function of E the actual state x and the desired final state xf using the Q-law

as guidance. Hence, it holds:

[ue, ve, Q] = Qlaw(E ,x,xf , L) (4.71)

The dynamical system in Eq.(4.1) is integrated using a Runge-Kutta Fehlberg 7(8) scheme

until the proximity quotient Q reaches a threshold Qth, which means that the spacecraft has

already targeted the orbit. Note that transfer time and final true longitude are not design

variables and are obtained after the integration of the trajectory. During the integration of

the equations of motion, the displacement damage dose at every instant has to be computed,

updating the power available to the spacecraft and the magnitude of the thrust when necessary.

To compute the radiation damage caused to the solar arrays, a discrete set of energy levels

E = (E1, E2, ..., Em) is considered, such that E1 = El and Em = Eu with El and Eu being

respectively the lower and the upper bounds of the set of m energy levels under consideration.

This is reasonable as the non-ionizing energy loss SP (E) is typically provided as tabular data.

Based on this discretization the energy integral in Eq.(4.52) can be approximately obtained as

the following sum:

m−1∑

i=1

1

2

[
∂Φp(x, L,Ei)

∂E
SP (Ei) +

∂Φp(x, L,Ei+1)

∂E
SP (Ei+1)

]
(Ei+1 − Ei) (4.72)

Combined-Chemical-Electric Transfer (CCET): The CCET consists on a chemical seg-

ment followed by an electric phase. The chemical phase is obtained following the same procedure

as for the FCT, except for the last lambert arc. In this case, the last two impulses are regarded

as optimization variables and applied in a similar manner as the nth − 2 previous firings. The

final state after the nth impulse is used to define the initial orbit for the electric phase. There-

after, the Q-law is applied to target the desired orbit with EP thruster. Thus, the set H of

parameters that determines a CCET is defined by:

H = (uc,1, . . . ,uc,n,Wp,Wf ,Wg,Wh,Wk, ηa,th, ηr,th,mQ, nQ, rQ) (4.73)

Optimization Algoritm: The complete algorithm has to select the optimal propulsive sys-

tem and transfer type as well as to optimize the corresponding steering law. The type transfer

is selected by the integer variable Θ and the propulsive system is determined by the integer vari-

able Π. Let us define Z and P as the set of transfer options and propulsive systems respectively.

Thus, the set O of design variables for the complete algorithm is represented by:

O = C ∪ E ∪ H ∪ Z ∪ P (4.74)

where the sets C, E and H of control parameters are the above-mentioned for each case. The

complete optimization problem is thus defined as finding the set of parameters O such that the

following multi-objective fitness function is minimized:

J = (−mf , tf ,−Pf ) (4.75)
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Table 4.3: MOLTO-OR Step 1 Variables

Variable Meaning Lb Ub

θi True Longitude for ith CP maneuver 0 2π
∆Vi Magnitude of for ith CP maneuver 0 ∆Vmax
ᾱi In-Plane angle of the ith CP maneuver −π π
β̄i Out-of-Plane angle of the ith CP maneuver −π/2 π/2
tc Transfer time to last CP maneuver tc,max tc,min

Wp,f,g,h,k Q-law weighting factors 1 100
ηa,th, ηr,th Q-law effectivity coefficients 0 0.98
mQ, nQ, rQ Q-law scaling factors 0.01 10

Θ Transfer options 1 3
Π Propulsion subsystem option - -

Table 4.4: MOLTO-OR: User-Defined parameters

Variable Meaning

t0 Initial Launch date
a0, e0, i0, ω0,Ω0 Initial Orbital elements
af , ef , if , ωf ,Ωf Final Orbital elements

nmax Max number of chemical impulses
tc,max, tc,min Max/Min transfer time to last CP maneuver

m0 Initial Spacecraft mass
Isp,e,i, me.i, ηi Parameters for the ith available electric engine

Isp,ch,i, mch,i, ∆Vmax,i Parameters for the ith available chemical engine
P0,i, Ci, Dx,i, SP (E)i Parameters for the ith available solar array

Here, mf , tf , Pf are respectively the mass, time and power of the solar arrays at the end

of the transfer. A summary of the optimization variables can be found in Table 4.3, along

with their lower bounds (Lb) and upper bounds (Ub). The objective function for the Genetic

Algorithm is computed following the flow chart depicted in Fig. 4.8.

The user only needs to provide information about the initial and final orbit along with the

mass, propulsive and power generation system characteristics. The user-defined parameters and

summarized in Table 4.4. Note that, the algorithm used to compute the lambert arc at the end

of a FCT may not converge. In this case, a penalty vector is associated to lead the heuristic

solver to discard them for the next generations. Similarly, the convergence of the proximity

quotient Q to Q < Qth is not always assured. Thus, a maximum number of integration steps is

imposed to avoid the integration scheme from running indefinitely. If this value is exceeded, a

penalty is added to the fitness function.

J = (−mf − ρ, tf + ρ,−Pf − ρ) (4.76)

In the above, ρ is a sufficiently large value with respect to the value of fitness function for the

feasible trajectories, such that infeasible trajectories will be pruned out by the genetic algorithm

during the selection process. Alternatively, the propellant mass consumed mp can be considered

as objective instead of the final mass mf .
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Figure 4.8: MOLTO-OR Step1: Flow chart of the fitness function

4.3.2 MOLTO-OR Step2

In MOLTO-OR Step 2, the goal is to reduce the multi-objective HOCP to a single-objective

Large-scale Nonlinear parameter optimization problem and solve it with robust classical gradient-

based solvers. For such purpose, we assume that the propulsive system and the number of

chemical firings is known and provided by MOLTO-OR Step 1. However, the thrust/coast se-

quence of the EP is not imposed. It will be optimized by the algorithm instead. As shown in

Eq.(4.56) the sequence is determined by the binary control ve and the binary shadow function

δ. However, gradient-based solvers only accept continuous variables and continuous and differ-

entiable functions within the search domain. The binary control ve is relaxed so that it can

continuously vary within the [0, 1] interval. This is not problematic, as the optimal solution for

minimum-fuel fixed-time problems is known to be bang-bang.
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Table 4.5: MOLTO-OR Step 2 Variables

Variable Meaning Lb Ub

θi True Longitude for ith CP maneuver 0 2π
∆Vi Magnitude of for ith CP maneuver 0 ∆Vmax
ᾱi In-Plane angle of the ith CP maneuver −π π
β̄i Out-of-Plane angle of the ith CP maneuver −π/2 π/2

pj , fj , gj , hj , kj Modified equinoctial elements at the jth node - -
tj Elapsed Time at the jth node 0 ToF
mj Spacecraft Mass at the jth node 0 m0

αj In-Plane angle of the EP at the jth node −π π
βj Out-of-Plane angle of the EP at the jth node −π/2 π/2
vj Throttle parameter at the jth node 0 1
Lk True Longitude of the kth north/south bound - -

L0, Lf Initial/Final true Longitude - -

Additionally, the binary shadow function Ξ is approximated by a smoothing function, where

ε is the smoothing parameter, as:

Ξ =
1

1 + e−ε(r
T ŝ+
√
r2−R2

e)
(4.77)

As a result, the discrete state q of the spacecraft is no longer a binary function. We discretize

the continuous states xj = x(Lj) and control inputs uj = u(Lj) and vj = v(Lj) on a selected

uniform grid Lj , for j = 1, . . . , n, where n is number of grid points. The dynamical equations

are imposed as defect constraints based on the Hermite-Simpson collocation scheme [126] that

has been explained in Section 3.4. The energy integral in Eq.(4.52) is evaluated with the same

scheme shown in Eq.(4.72) , whereas the time integral uses the Hermite-Simpson discretization.

Slew rates limits are imposed as path constraints at each node as formulated in Eq.(4.58).

The value δL = Lj −Lj−1 is chosen as the spacing between grid-points. The phasing constraint

(see Eq.(4.67)) is imposed as a terminal constraint at the last node Ln. The application of the

GEO ring avoidance constraints in Eqs.(4.63)-(4.65) requires the determination of the spacecraft

radii at the North/south boundary of the GEO box. Thus, interior point constraints have to

applied at Lk, for k = 1, . . . ,m, as follows:

rz(Lk) = ±lz (4.78)

where rz is the vertical projection of the position vector r onto the cartesian reference frame.

Then, it holds that rNS = r(Lk). Design variables at this stage are summarized in Table 5.6.

Note that gradient-based solvers only accept scalar functions to be minimized or maximized.

Therefore, the user has to select to optimize time of flight, propellant mass, final power available

or a weighted sum of them. MOLTO-OR Step 2 uses the Interior Point solver Ipopt [109] to

solve the resulting Large-scale NLP and the AMPL [220] programming language as interface,

which employs automatic differentiation to compute gradients of the objective and constraint

functions of the pertinent optimization problem.
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4.4 Results

In this section, MOLTO-OR will solve two different orbit raising problems to deploy a satellite

into GEO. The two most common injection orbits, GTO and LEO, will be used as departure

orbits. The classical orbital elements for the orbits involved are presented in Table 4.6. The

spacecraft mass, and the solar array characteristics for each case are summarized in Table 4.7.

The solar arrays are comprised by Gallium Arsenide (GaAs) cells [221]. The proton non-ionizing

energy loss SP (E) values for different energy levels are determined from Ref. [222]. The solar

array shielding is capable of stopping protons of all energies less than or equal to 5 MeV. The

contribution of energies greater than 1000 MeV is neglected. Two different electric thrusters

and one chemical engine are considered. They are summarized in Table 4.8. The magnitude of

the chemical firings are limited up to 3 km/s. The initial date is set for 1 January 2000 for all

the simulations, which are performed using a Intel Core i7 (2,5GHz) computing system.

The proposed scenarios, i.e., GTO-GEO and LEO-GEO will be used to carry out four main

analysis. Firstly, the unconstrained fully electric transfer for the GTO-GEO case is studied

in detail. The use of the Q-law Lyapunov function will be evaluated and compared to other

promising near-optimal low-thrust control law in terms of runtime and optimality. In particular,

the approaches developed by Gao [64] and by Hudson and Sheeres [65] will be considered.

Secondly, the penalties in the objective function associated to the imposition of operational

constraints will be evaluated for the GTO-GEO case using MOLTO-OR Step 2. Thirdly, the

capabilities of MOLTO-OR to concurrently optimize CP, EP and CCEP with respect to time

of flight, propellant mass and solar-cell degradation will be studied for the LEO-GEO case.

Finally, MOLTO-OR Step 1 will be allowed to optimally select the propulsion system and the

transfer type for both the LEO-GEO and the GTO-GEO transfer cases.

Table 4.6: Orbit Parameters

Orbits a/Re e i (deg) Ω (deg) ω (deg)

LEO 1.086 0 28.5 0 0
GTO 3.820 0.731 27 99 0
GEO 6.6107 0 0 – –

Table 4.7: Spacecraft parameters and transfer cases

Transfer m0 (kg) P (kW) C Dx

GTO-GEO 450 5 0.2904 1.10E+9
LEO-GEO 1200 10 0.2904 1.10E+9

Table 4.8: Propulsive system options

Name Type m (kg) Isp (s) η

E1 Electric 50 3300 0.65
E2 Electric 50 1500 0.65
C1 Chemical 200 330 -
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4.4.1 Case 1: GTO-GEO Unconstrained Fully Electric Transfer

In this first case, the GTO-GEO transfer case is solved with MOLTO-OR Step 1 considering only

a fully electric transfer with engine E1. Trajectories are optimized with respect to propellant

mass and time of flight. Thereafter, the set of solutions corresponding to a mission duration

of approximately 75, 100, 120, 150, 200 days was selected for feeding MOLTO-OR Step 2 .

Fixed-time minimum-fuel solutions were obtained without applying any operational constraint.

Results are compared with those obtained from implementing other predefined control laws. In

particular, the blended control law proposed by Gao [64] and the Fourier-based approximation

presented by Hudson and Sheeres [65] were implemented in MATLAB and IPOPT was used

for obtaining minimum-fuel fixed-time transfers. They are compared with MOLTO-OR Step 1

in terms of performances for the same mission flight times. Finally, solutions from Gao’s and

Hudson’s approach are used as initial guesses for MOLTO-OR Step 2 and results are compared

with those obtained by using the initial guess provided by MOLTO-OR Step 1.

MOLTO-OR Step 1 solutions were obtained using the Genetic Algorithm parameters sum-

marized in Table 4.9. Mutation and Crossover fractions were selected after a manual tuning

process. Several runs were performed and the average total computational time, as well as per

generation and per population are shown in Table 4.10. Note that the computational speed

could be improved if more cores were used during the simulation. After all simulations reached

the maximum number of generations, equally Pareto-optimal solutions were obtained. On aver-

age, the entire population was feasible by completing the 3th generation. At the 10th generation,

75% of the population lied along a distinct non-dominated front, whereas from generation 10 to

20 the front was progressively shifted towards lower times of flight and propellant masses. From

generation 20 to 30, solutions spread along the Pareto front to generate a more uniform set.

After 40 generations were completed, members of the population were uniformly distributed

along the front and no later improvement, in terms of non-domination, was observed.

An example of one of the obtained Pareto fronts is shown in Figure 4.9. Note that increasing

the time of flight implies decreasing the propellant mass required. Trajectories performances

range from 60 days and 35.15 kg of propellant mass to 200 days and 28.1 kg of propellant. From

the minimum time solution up to 90 days, the propellant required decreases at a rate of 228

grams per day. From 90 days to 120 days, it decreases at a rate of 56 grams per day. From 120

days to 200 days, it diminishes at a rate of 1.25 grams per day. In order to feed MOLTO-OR

Step 2, five different solutions were selected: the closest ones to the the flight times 75, 100,

120, 150 and 200. Note that MOLTO-OR Step 1 does not allow to impose constrains to match

a specific time of flight. However, due to the well spread Pareto front computed, solutions were

found in the neighborhood of the selected times within a margin of the order of hours. The

selected trajectories and their performances in terms of flight time and propellant mass are

displayed in Table 4.11 along with the number of revolutions.
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Figure 4.9: MOLTO-OR Step 1: GTO-GEO Pareto front

Table 4.9: MOLTO-OR Step 1: GTO-GEO Genetic Algorithm Parameters

Population size 100
Max. Generations 50
Mutation Fraction 0.3
Crossover Fraction 0.8

Table 4.10: MOLTO-OR Step 1: GTO-GEO Computational Time

Variable Avg. CPU Time

Population 0.41 s
Generation 10.12 s

Total 8.54 min

Table 4.11: MOLTO-OR Step 1 selected solutions

Time (days) 67.621 74.912 100.072 120.010 149.931 199.572
Mass (kg) 35.158 33.321 28.821 28.475 28.264 28.134

Revolutions 95.26 101.68 156.91 184.76 229.27 279.84

MOLTO-OR Step 2 was run to obtain the minimum-propellant trajectory for each of the

mission times under consideration. Two different grids were selected: one with a node spacing

of 20 degrees in true longitude and the other one with 10 degrees separation in true longitude.

Results are shown in Table 4.12 and Table 4.13 respectively. It can be noted that the finer

the grid the more optimal the solution and the more computationally expensive the solutions.

On average, MOLTO-OR Step 1 with 20 degrees node spacing consumes 1 kg less propellant.

Solutions with the 10 degrees grid improves on average 37.8 grams with respect to the 20 degrees

grid at the cost of doubling the computational time. Obtained trajectories for the 10 degrees

grid are shown in Figures 4.13. The red color represents the shadow region, the clear blue the

thrusting arcs, and the dark blue the coasting arcs. Note that when increasing the time of flight,

the coasting arcs last longer, while the thrusting arcs are grouped around the apogee to both

decrease the inclination and increase the perigee altitude more efficiently.
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Table 4.12: MOLTO-OR Step 2 with Q-Law Initial Guess ∆L = 20

Time (days) 67.64 75 100 120 150 200
Mass (kg) 35.080 31.357 28.098 27.364 27.173 26.941

Revolutions 95.40 101.48 156.25 184.84 229.26 279.81

Iter. 63 83 144 162 110 170
Runtime (min) 1.96 1.98 5.62 6.92 6.18 10.74

Variables 19,363 22,439 34,558 40,531 50,067 60,896
Constraints 16,125 17,237 26,536 31,057 38,259 46,301

Table 4.13: MOLTO-OR Step 2 with Q-Law Initial Guess ∆L = 10

Time (days) 67.27 75 100 120 150 200
Mass (kg) 34.883 31.386 28.056 27.319 27.122 26.919

Revolutions 95.49 101.47 156.29 185.08 229.30 279.81

Iter. 62 67 157 278 227 191
Runtime (min) 3.73 2.58 11.17 20.42 22.03 22.58

Variables 37,055 42,958 66,338 78,33 97,285 119,343
Constraints 30,879 33,034 51,008 60,187 74,446 90,810
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Figure 4.10: GTO-GEO: Propellant Mass vs Time of Flight

Now, the parametric control law proposed by Gao [64], and by Hudson and Sheeres [65] were

implemented and optimized for the selected mission times, i.e. 75, 100, 120, 150 and 200 days, by

means of propellant mass reduction. The former uses analytical orbital averaging and a blended

control law including J2 and Earth shadow effects. The latter models the thrust as a Fourier

series to obtain analytical expressions without Earth oblateness of shadow effects. Both methods

resulted in a nonlinear optimization problem that was solved with IPOPT. Each minimum-fuel

fixed-time problem was solved independently, i.e. without using a genetic algorithm. Obtained

performances in terms of flight time and propellant mass are compared with those obtained

with MOLTO-OR Step 1 in Figure 4.10. It can be seen that solutions obtained by the Q-law

outperforms those obtained with the other approximate methods. It is generally able to obtain

a lower propellant mass for the same transfer time than Gao’s or Hudson’s approach.
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Figure 4.11: GTO-GEO: Number of Iterations vs Number of Revolutions

Table 4.14: MOLTO-OR: Number of revolutions

Case 75 days 100 days 120 days 150 days 200 days

MOLTO-OR Step 1 101 156 184 229 279
Gao [64] 101 164 197 240 288

Hudson [65] 114 159 202 243 296
Global Optimum 105 156 183 218 277

MOLTO-OR Step 2 algorithm was fed by the previous solutions obtained from the implemen-

tation of the Gao’s and Hudson’s method. The grid was chosen to be uniformly spaced in true

longitude with a separation of 10 degrees. The running performances in terms of computational

time are shown in Figure 4.11. It can be seen that MOLTO-OR Step 2 converges faster when

using the initial guess provided by MOLTO-OR Step 1, especially for long transfers. Addition-

ally, different performances in terms of flight time and propellant masses were obtained even

though for the same mission time. It was found that the NLP solver did not vary the number

of revolutions provided by the initial guess. In order to further investigate the influence of the

number of revolutions for each case, a parametric study was performed. For such purpose, an

additional constraint was imposed on the final true longitude, forcing the solver to deviate to a

solution with a different number of revolutions. Results obtained are plotted in Figure 4.12.

Performances obtained and the number of revolutions predicted by the three methods are

highlighted. When the number of revolutions was fixed, MOLTO-OR Step 2 converged to the

same solution regardless of the initial guess. Therefrom, it can be deduced that for fixed-time

minimum propellant mass problems, there exits a local optimal solution per each feasible number

of revolutions. Furthermore, there is an optimal number of revolutions for which the propellant

mass is globally minimal. The number of revolutions of each approach are compared in Table

4.14 along with the globally optimal value found in the parametric search. Trajectories obtained

with the Q-law are closer to that optimum, differing less than a 0.5% in propellant mass. The

existence of multiple local minima was previously addressed by Betts [55], and by Graham and

Rao [223]. It can be attributed to the periodic nature of the trajectories and to the interaction

of the nonlinear and non-convex constraints.



Chapter 4. MOLTO-OR: Orbit Raising 100

-5 -2.5 0 2.5 5 7.5 10

0

0.5

1

1.5

2

2.5
M

as
s 

P
en

al
ty

 (
%

)

(a) ToF = 75 days
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(b) ToF = 100 days
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(c) ToF = 120 days
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(d) ToF = 150 days
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(e) ToF = 200 days

Figure 4.12: GTO-GEO: Locally optimal solutions for a fixed number of revolutions

Finally, the evolution of the semi-major axis, eccentricity and inclination for the trajectories

obtained with the Q-law, Hudson’s and Gao’s approach are displayed in Figures ??-4.20 respec-

tively for 75, 100, 120, 150 and 200 days. They are compared with the best trajectory found

during the parametric search with MOLTO-OR Step 2. Notably, the evolution of the orbital

elements predicted by Hudson is the most different with respect to the optimal one presenting a

completely different evolution of the semi-major axis. On the other hand, although the number

of revolutions provided by the Q-law is the closest to the optimal number of revolutions, it

cannot be stated that the evolution of the orbital elements provided by the Q-law is closer to

the optimal one than the Gao’s approach. The time history of the in-plane and out-of-plane

thrusting angles from MOLTO-OR Step 1 and MOLTO-OR Step 2 are compared in Figs. 4.14

and Figs. 4.15 for the 75 days and 200 days transfers respectively. It can be noted that solu-

tions from MOLTO-OR Step 2 exhibit a different thrust/coast sequence during sunlight than

MOLTO-OR Step 1. Additionally, a maximum difference of 1 deg is observed. This fact may

explain why the trajectories from both steps are significantly different.
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(a) ToF = 75 days (b) ToF = 100 days

(c) ToF = 120 days (d) ToF = 150 days

(e) ToF = 200 days

Figure 4.13: MOLTO-OR Step 2: GTO-GEO Fully Electric Transfer
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Figure 4.14: MOLTO-OR Step 1 (lines) and MOLTO-OR Step 2 (dots) steering laws for
GTO-GEO: ToF = 75 days
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Figure 4.16: GTO-GEO: ToF = 75 days
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Figure 4.17: GTO-GEO: ToF = 100 days
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Figure 4.18: GTO-GEO: ToF = 120 days
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Figure 4.19: GTO-GEO: ToF = 150 days
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Figure 4.20: GTO-GEO: ToF = 200 days

4.4.2 Case 2: GTO-GEO Constrained Fully Electric Transfer

In this second case, the previously solved unconstrained GTO-GEO transfer is now tackle impos-

ing operational constraints. An analysis on how the application of constraints in MOLTO-OR

Step 2 affects the objective function will be performed. The operational restrictions under

consideration are: avoidance of the geostationary ring, a slew rate limitation of 25 deg/h and

phasing at a longitude of 90 degrees. Each of them will be evaluated independently for the

GTO-GEO transfer scenario for a series of fixed-time minimum fuel cases. We have selected

the same trajectories as in the previous examples from MOLTO-OR Step 1 as initial guesses for

the selected flight times: 75, 100, 120, 150 and 200 days. All simulations converged to a local

optimal solution and the performances obtained are summarized in Table 4.15. The number of

GEO ring crossings, the maximum angular velocity during the transfer, the final longitude in

the GEO orbit, the computational time and the propellant mass penalty with respect to the

unconstrained or nominal case are shown.

Regarding the GEO ring avoidance, it can be seen that the nominal trajectory with 150 days

has the maximum number of crossings and therefore suffers from the largest penalty in the fuel

mass. The avoidance of the 104 crossing can be accomplished by carrying less than 1% more

fuel. It can be highlighted that avoiding crossings also increments the maximum angular velocity

and it changes the arrival longitude. Illustrations of the trajectories nearby the GEO ring for
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Table 4.15: GTO-GEO with Operational Constraints

Transfer Time (days)

Variable 75 100 120 150 200

Case 1 GEO ring crossings 0 24 11 104 4

No Active θ̇max(deg /h) 100.16 52.62 52.31 43.19 45.41
Constraints lon(deg) 255.60 81.85 282.77 120.72 324.76

mp(kg) 31.28 28.05 27.31 27.04 26.91
Runtime (min) 1.98 5.62 6.92 6.18 10.74

Case 2 GEO ring crossings 0 0 0 0 0

Active GEO θ̇max(deg /h) 100.16 55.78 55.86 53.47 46.57
Avoidance lon(deg) 255.60 81.26 345.93 217.14 320.10

∆mp(%) 0 0.45 0.67 0.94 0.57
Runtime (min) 3.23 9.22 10.45 12.23 13.47

Case 3 GEO ring crossings 1 24 11 104 4

Active Slew θ̇max(deg /h) 25 25 25 25 25
Rate Limits lon(deg) 255.65 81.94 264.31 89.03 285.63

∆mp(%) 1.3164 0.0057 0.0044 0.0007 0.0037
Runtime (min) 4.32 6.21 8.72 7.38 13.72

Case 4 GEO ring crossings 1 25 11 105 4

Active Slot θ̇max(deg /h) 105.07 63.51 47.71 54.95 61.19
Phasing lon(deg) 90 90 90 90 90

∆mp(%) 0.21 0.035 0.73 0.11 0.038
Runtime (min) 4.12 5.94 9.72 7.67 12.95

Case 5 GEO ring crossings 0 0 0 0 0

Active All θ̇max(deg /h) 25 25 25 25 25
Constraints lon(deg) 90 90 90 90 90

∆mp(%) 4.07 3.02 5.37 6.37 2.01
Runtime (min) 4.67 11.82 13.34 15.61 18.95

the nominal cases and without crossings are represented in Figures 4.23a-4.23h. The trajectory

is projected onto a rotating radial frame. It can be seen how the algorithm is able to eliminate

all the crossings, except for the last one that is required to reach GEO. Trajectories crosses the

GEO Ring at the beginning, mid and end of the transfer. The combination of increasing the

argument of perigee while reducing inclination makes the radius of the ascending node increase

and decrease continuously. This region tends to be above GEO as the time of flight increases

due to the change of inclination starting at a higher apogee.

Imposing slew limits constraints has a more clear effect in the case of higher angular velocity,

i.e., the minimum time case. For that case, the penalty is 1.31%, whereas for the others is three

orders of magnitude less. As an illustration, in Figure 4.21 it can be compared the angular

velocity of the thrust vector for the nominal case with the constrained one. As one may expect,

the angular velocity is higher at the the beginning the transfer, as the orbital periods are smaller

and maneuvers have to be performed faster. In the constrained case, it can be seen how the

optimal solution consists on a saturated profile. Note that, the limitation in the angular velocity

for the cases under consideration did not increase the number of GEO crossings.



Chapter 4. MOLTO-OR: Orbit Raising 107

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

(a) Unconstrained TO:

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

(b) Constrained

Figure 4.21: MOLTO-OR Step 2: Slot phasing constraint for ToF = 75 days
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Figure 4.22: MOLTO-OR Step 2: slot phasing constraint for ToF = 100 days

An illustration of the application of the slot phasing constraint is depicted in Figure 4.22,

where the cross-mark represent the arrival location. The trajectory is shifted from an optimal

arrival longitude of 81 degrees to 90 degrees. The phasing constraint was found to have a

larger penalty for the 120 days case. This can be explained as we are forcing the spacecraft

to arrive almost at a complimentary slot, i.e. differing 180 degrees, to the locally optimal one,

which in fact, is the worst case. In the last scenario all afore-mentioned constraints are imposed

simultaneously. The 150 days transfer was found to be the most penalized. Note that the

combined effect of all the constraints, i.e. Case 5, has a greater impact in propellant mass

than just adding the penalties of each constraint separately, i.e. Case 2, 3 and 4. Furthermore,

computational times for the constrained case double the ones for the unconstrained scenario.
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Figure 4.23: MOLTO-OR Step 2: GEO Ring Detail
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4.4.3 Case 3: LEO-GEO Free Transfer Type

In this third example, MOLTO-OR Step 1 is used to obtain the full 3D Pareto Front for the

LEO-GEO transfer case using the E1 and C1 engines. Its capability to concurrently optimize

FC, FET and CCET will be exploited. The objectives under consideration are the total time

of flight, propellant mass consumed and radiation damage. The radiation damage is measured

as the power loss of the solar array due to the displacement damage dose. The electric engine

is assumed to use all the power available to the spacecraft. Thus, the thrust decreases with

the radiation displacement dose. The chemical engine is constrained to provide a maximum of

two impulses. The parameters selected for the genetic algorithm are summarized in Table 4.16,

whereas the mean execution times of the simulation are shown in Table 4.17. Note that the

computational time per population is lower than in the fully electric GTO-GEO case. This is

due to the fact that hybrid transfer with reduced flight times are faster to compute. However, a

fully electric LEO-GEO trajectory is more computationally expensive to evaluate than a purely

fully-electric GTO-GEO, because the former typically implies a higher number of revolutions.

Table 4.16: MOLTO-OR Step 1: LEO-GEO Genetic Algorithm Parameters

Population size 200
Max. Generations 100
Mutation Fraction 0.3
Crossover Fraction 0.8

Table 4.17: MOLTO-OR Step 1: LEO-GEO Computational Time

Variable Avg. CPU Time

Population 0.1920 s
Generation 9.8 s

Total 16.8 min

1
0.7

0

0.8

0.5100

0.9

200

1

300
0400

Figure 4.24: MOLTO-OR Step 1: 3D Pareto Front View for LEO-GEO
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Figure 4.25: MOLTO-OR Step 1: Final power vs propellant mass Pareto for LEO-GEO
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Figure 4.26: MOLTO-OR Step 1: Propellant mass vs mission time Pareto for LEO-GEO
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Figure 4.27: MOLTO-OR Step 1: Final power vs mission time Pareto for LEO-GEO
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Results of the 3D Pareto Front and its corresponding projections are shown in Figures 4.24-

4.27. It can be seen that FCT are optimal for short transfer times (less than 1 day), avoiding the

Van-Allen radiation Belts at the cost of consuming propellant mass fractions higher that 73%.

Therefore, the power of the solar arrays is not degraded. FET are optimal for transfer times

longer than 250 days for minimum fuel trajectories whereas for minimum radiation damage they

are not optimal until 300 days. Propellant mass fractions are within the range of 18-20% and

they decrease at a rate of 0.006% per day. The solar array power losses are between 18-24%

and increase at a rate of 0.12% per day. Intermediate performances are obtained with CCET

consisting on 2 chemical impulses followed by a low-thrust arc for trajectories shorter than one

month, and on 1 chemical impulse before the electric phase for longer transfers. It can be seen

that the propellant mass consumed for CCET decreases at a constant rate of 0.18% per day

of transfer time increased. However, regarding the radiation damage two different regimes are

identified: until 125 days the power loss increases at a rate of 0.17% per day, whereas for longer

transfers it occurs at a rate of 0.03% per day.

The different total ∆V ′s for each propulsion system, i.e. chemical and electric, are represented

in Figure 4.28 as a function of time. Two different cases are considered: minimum radiation

damage trajectories and minimum propellant mass solutions. Note that in this scenario, the

maximum ∆V for the CP is 5500 m/s whereas for the electric engine is 6700 m/s. Additionally, it

can be seen that, for the same time of flight, dedicating more ∆V , i.e. more fuel for the chemical

engine, and for the EP is desirable to reduce the radiation damage instead of the propellant

mass. The difference between the ∆V of the electric engine for reducing the radiation damage

and for minimizing the propellant mass is maximum for 200 days with a value of 1000 m/s.

Finally, at 50 days transfer time the ∆V dedicated for the electric transfer exceeds the quantity

dedicated for the chemical phase.
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Figure 4.28: ∆V of the CP and EP vs Time of Flight for the minimum propellant mass and
minimum radiation damage solutions
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Figure 4.29: MOLTO-OR Step 1 and MOLTO-OR Step 2 Pareto fronts

In Figure 4.29, the minimum fuel-time performances obtained from MOLTO-OR Step 1 are

shown and compared with the ones outputted from MOLTO-OR Step 2. In MOLTO-OR Step

2 different fixed-time minimum fuel problems were solved, using the trajectories from MOLTO-

OR Step1. No operational constraints were considered. A detailed view of the fully chemical

transfer is shown, where the point at 0.2 days corresponds to the Hohmann transfer and the

solution at 0.05 days correspond to the minimum time solutions with a maximum allowable ∆V

of 3 km/s. The average gain in terms of fuel by reoptimization with MOLTO-OR Step2 is 3%.

As it can be noted that results provided by MOLTO-OR Step 1 are close to the optimal ones

and makes the NLP solver converge within less than 1000 iterations and a tolerance of 10−6.

Regarding the computational time, it increases as the number of revolutions of the trajectory

increases, ranging from a couple of minutes for FCT up to one hour for the FET with 350 days

transfer, due to the number of variables that results from the discretization scheme.

In Figures 4.30a-4.30f, a set of representative trajectories are displayed, including FCT, CCET

and FET. The red color represent the shadow region, the clear blue the thrusting arcs, and the

dark blue the coasting arcs. Note that, a minimum-fuel hybrid transfer with a fixed flight

time incorporates coasting arcs during the electric orbit raising. Therefore, as many authors

previously did, it is not optimal to assume a constant thrust after the chemical phase. Trajectory

4.30b includes two-chemical impulses. The former raises the apogee higher than GEO, and the

second one decreases the eccentricity of such orbit. In trajectory 4.30c a chemical firing raises the

apogee to a lower value than GEO, and the electric engine then raises it above GEO. Trajectory

4.30e correspond to the minimum time fully electric transfer, and it consists on thrusting arcs

during sunlight. In this case, the apogee always remain below GEO. Finally, trajectory 4.30f

extends the transfer time up to 300 days, including coasting arcs in a region centered at the

ascending and descending nodes to change the altitude more efficiently.
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(a) ToF = 0.2 days (b) ToF = 20 days

(c) ToF = 60 days (d) ToF = 110 days

(e) ToF = 250 days (f) ToF = 300 days

Figure 4.30: MOLTO-OR Step 2: Equatorial projection of the LEO-GEO Hybrid Transfer
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4.4.4 Case 4: LEO-GEO and GTO-GEO Free Transfer Type and Propulsion

In this fourth case, the previous LEO-GEO and GTO-GEO transfers are solved with MOLTO-

OR Step 1 with respect to final dry mass, time of flight and radiation damage. The algorithm

is allowed not only to select the optimal transfer type but also is in charge of choosing among

the electric engines E1 and E2 summarized in Table 4.8. Note that the latter exhibit a higher

thrust yet a lower specific impulse, and thus a lower fuel efficiency than the former. It is also

assumed that the chemical engine is jettisoned after the chemical phase and is constrained to

produce two chemical firings at maximum. The Genetic Slgorithm parameters summarized in

Table 4.16 were used for both cases. Similar computational times as the ones presented Table

4.17 were observed. The obtained Pareto fronts projections are displayed in Figures 4.31a-4.31c

for the LEO-GEO case and in Figures 4.32a-4.32c for the GTO-GEO case.

For the LEO-GEO case, the hybrid transfer presents two different areas. From 25 to 50

days, the E1 propulsive system is more optimal to reduce the radiation damage, whereas E2 is

preferred for maximizing the final mass. For the remaining part of the hybrid transfer, i.e. up

to 150 days, E2 is optimal for both cases. Considering the fully electric transfer, E2 provides

shorter transfer times, ranging from 150 to 275 days and final masses ranging from 700 to 800

kg. On the other hand, E1 provides longer transfer times, ranging from 250 to 400 days and

final masses ranging from 900 to 1000 kg. These two propulsive systems compete within the

time of flight interval ranging from 250 to 275 days. In such region of the Pareto, E2 provides

better performances in terms of radiation damage than E1 for the same flight time, whereas E1

is more efficient in terms of maximizing final mass.

For the GTO-GEO case, the hybrid transfer is optimal with E2 for maximizing the final mass

between 10 and 35 days, while E1 is optimal for minimizing the radiation dose between 10 and

60 days. Regarding the fully electric transfer, E2 provides shorter transfer times, ranging from

35 to 65 days and final masses ranging from 300 to 350 kg. In such region, a trajectory lasting

47 days, can deliver 345 kg and it will arrived with 0.98% power ratio, whereas a different

steering law can deliver 295 kg, while arriving with 0.96% propellant ratio. On the other hand,

E1 provides longer transfer times, ranging from 65 to 170 days and final masses ranging from

350 to 375 kg. In such region, a trajectory lasting 100 days, can deliver 370 kg and will arrive

with 0.945% power ratio, whereas a different steering law can deliver 350 kg, while arriving with

0.978% propellant ratio.
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Figure 4.31: MOLTO-OR Step 1: GTO-GEO Pareto
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Figure 4.32: MOLTO-OR Step 1: GTO-GEO Pareto
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5.1 Introduction

In this chapter, we present a solution approach to solve the second problem that is considered

in this thesis. In this case, a spacecraft is to travel from a given departure planet to rendezvous

or flyby a target body within the solar system. The spacecraft may benefit from gravity assisted

maneuvers of other planets, as well as from the continuous thrust provided by an electric engine.

These scenario well fits the case of deep-space probes that are injected into an Earth’s hyperbolic

space orbit to transfer to travel to far destinations. The goal is efficiently find the set of

optimal Pareto solutions in terms of flight time and propellant mass consumption as described

in chapter 1. Efficient means that a good compromise between computational time and accuracy

of the solution is met. The solution has to comprise the optimal launch and arrival date, the

sequence and configuration of the planetary encounters, as well as the time-history of the thrust

magnitude and direction. Additionally, the initial mass of the spacecraft may be free and

subject to optimization. Operational constraints to comply with launch asymptote declination

constraints and fixed reorientation times during the transfer may apply.

In a similar fashion to chapter 4, the problem under consideration is formulated as a Multi-

Objective Hybrid Optimal Control Problem (MO-HOCP). Gravity assists and the on-off switch-

ings of the electric engine are modeled as discrete events. Conversely the continuous dynamics

is represented by heliocentric coasting and thrusting arcs. The interconnection between contin-

uous and discrete dynamics is represented in Figure 5.1 as a finite state machine diagram. A

solution algorithm termed MOLTO-IT (Multi-Objective Low Thrust Trajectory Optimizer for

interplanetary transfers) is proposed. It consists on two sequential steps: MOLTO-IT Step1

and MOLTO-IT Step2. Each of them solves the problem at different degrees of fidelity and

with different computational performances: the former provides a low-fidelity solution with

low-computational effort, whereas the latter produces a medium-fidelity solution with more

computational time. Both steps are interconnected since the solution from MOLTO-IT Step

1 is used as an initial guess for MOLTO-IT Step 2. Hereafter, the modeling of the hybrid

dynamics, along with the solution approach applied at each stage will be introduced separately.

Coast
q = 0

Thrust
q = 1

Switching off
φoff soff

Switching on
φonson

∆V
Flybys

φfb

sfb

∆V
Flybys

φfb

sfb

Figure 5.1: MOLTO-IT: Spacecraft Hybrid Dynamical System Diagram
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5.2 Modeling

5.2.1 MOLTO-IT Step 1

The spacecraft is assumed to always lie in the same orbital plane. Its continuous state vector

is represented by the set of intrinsic coordinates x(t) = [r(t), v(t), ψ(t), θ(t)]. Here r ∈ R is the

distance to the Sun, v ∈ R is the velocity with respect to an inertial reference frame, which,

without loss of generality, is centered in the Sun, ψ ∈ R is the flight path angle and θ is the

polar angle with respect to principal direction of the inertial frame. Besides, the categorical state

variable q(t) ∈ {0, 1} determines the working condition of the electric engine, when ‘0’ implies

coasting and ‘1’ demands thrusting. Additionally, when thrusting, the magnitude and direction

of the acceleration vector can be adjusted as required by the continuos control parameter ξ ∈ R.

Continuous Dynamics

The evolution of the continuous state of the spacecraft, x(t) = [r(t), v(t), ψ(t), θ(t)], is modeled

as a particle moving in a central gravity field under the action of a perturbing acceleration ap,

i.e., as a Perturbed Two-Body-Problem. The equation of motions are described by the following

set of differential equations:

f :





dv

dt
= −µs

r2
cosψ + ap · t

v
d

dt
(ψ + θ) =

µs
r2

sinψ + ap · n

dr

dt
= v cosψ

dθ

dt
=
v

r
sinψ

(5.1)

In the above, µs represents the gravitational constant of the Sun and ap is the perturbing

acceleration. The perturbing acceleration ap has different expressions depending on the discrete

state of the spacecraft:

ap :





ap =
µs
r2

(ξ cosψ t + (1− 2ξ) sinψ n), if q = 1

ap = 0, if q = 0
(5.2)

Note that, when thrusting, the spacecraft is subject to a predefined acceleration profile. The

one presented here was introduce by Roa et a. [205, 206]. The acceleration is projected onto an

intrinsic reference frame, which is defined by the following unitary vectors:

t =
v

||v||
, b =

r× v

||r× v||
, n = b× t (5.3)

where v ∈ R3 is the velocity vector of the spacecraft. The vectors t ∈ R3 and n ∈ R3 are

directed along the tangential and normal direction respectively and are contained in the orbital

plane. Figure (5.2) depicts the geometry of the problem referred to the inertial reference frame.
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Figure 5.2: MOLTO-IT Step 1: Geometry of the problem

Notably, Roa et al. [205] derived two constants of motion K1 ∈ R and K2 ∈ R using the

continuous dynamical equations of Eqs.(5.1) and the predefined control law of Eq.(5.2). They

are extensions of the laws of conservation of energy and angular momentum respectively. In

particular, they can be solved from the initial conditions (r0, v0, ψ0):

K1 = v2
0 −

2µ

r0
(1− ξ) (5.4)

K2 = r0v2
0 sinψ0 (5.5)

Making use of K1, K2 and ξ, they obtained closed-form analytical solutions for the trajectory

and time, as a function of the polar angle θ, avoiding the need to explicitly or implicitly impose

the constraints related to the continuous equation of motion. Depending on the sign value of

the constant K1, three families of solutions are obtained: elliptic (K1 < 0), parabolic (K1 = 0),

and hyperbolic (K1 > 0). There are two types of hyperbolic spirals: spirals of type I correspond

to K2 < (2(1− ξ)), whereas spirals of type II satisfy K2 > (2(1− ξ)). Each spiral type exhibits

different properties:

• Elliptic spirals (K1 < 0),: the trajectory is bounded and never escapes to infinity.

• Parabolic spirals (K1 = 0): the particle reaches infinity with zero velocity along a spiral

branch.

• Hyperbolic spirals (K1 > 0): the trajectory exhibits an asymptote when approaching

infinity, where the velocity is finite and nonzero

An example of each spiral type is illustrated in Figure 5.3. The analytical solutions for the

trajectory are summarized in Table 5.1 as a function of the constants c1, c2, c3, c4, c5, c6, c7 and

c8, which can be derived from the initial conditions and the control parameter ξ, and of the

$(θ) that represents the spiral anomaly. For a complete analytical representation and detailed

derivations the reader is referred to [206].
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Figure 5.3: Families of controlled generalized spirals

Table 5.1: MOLTO-IT Step 1: Parametric shape-based model

Family Trajectory

Elliptic r(θ) =
1

c1 + c2 cosh$(θ)

Parabolic r(θ) = c3e
(c4θ−1)

Hyperbolic I r(θ) =
1

sinh
$(θ)

2
(c5 sinh

$(θ)

2
+ c6 cosh

$(θ)

2
)

Hyperbolic II r(θ) =
1

c7 + c8 cos$(θ)

Therefore, the continuous state of the spacecraft is completely determined as a function of

the polar angle θ by providing K1, K2 and ξ, or, in other words, by the initial states x0 =

[r0, v0, ψ0, t0] at θ0 and ξ. Hence, it holds:

x(θ) = XT (x0(θ0), θ0, ξ; θ) (5.6)

where XT is a closed-form analytical representation of the trajectory when thrusting. Addi-

tionally, when the spacecraft is coasting mode, another analytical solution can be derived from

Eqs.(5.1): a Keplerian arc. Therefore, its state can be easily determined as a function of the

polar angle given the state x0 and θ0 when the coasting begins as follows:

x(θ) = XC(x0(θ0), θ0; θ) (5.7)

where Xc is a closed-form analytical representation of the trajectory when coasting.
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Additionally, an estimate of the propellant consumption can be made by assuming a constant

specific impulse Isp for the low-thrust engines. This simplification permits the required propel-

lant mass to be expressed as a fraction of the initial spacecraft mass, based on the time integral

of the thrust acceleration and the rocket equation:

mp

m0
= 1− e−∆V/(g0Isp), ∆V =

∫
|ap|dt (5.8)

where g0 is the gravity of Earth at sea level. However, due to the computational cost of

evaluating the elliptic integrals included in the definition of t, the integrand in Eq.(5.8), can be

expressed in terms of the angular variable θ, resulting in a faster procedure:

∆V =

∫
|ap|

r

v sinψ cosψ
dθ (5.9)

Discrete Dynamics

The discrete dynamics of the spacecraft allows to characterize the effect of both performing

flyby maneuvers and turning the engine on and off. In the following lines we define the set of

discrete event functions, including discontinuity surfaces and transition map functions, necessary

to include such effects in the model.

Engine on-off switching: In this work we predefine a thrust-coast sequence for an inter-

planetary leg where the target is to flyby the next planet. We assume that the spacecraft first

traverses a generalized logarithmic spiral from θ0 to an intermediate point θA, and then describes

a Keplerian orbit from θA to θF (see Fig. 5.4a). Nevertheless, if the target is to rendezvous

a planet the transfer leg will be decomposed in three arcs instead of just two (see Fig. 5.4b):

a generalized logarithmic spiral from θ0 to θA, a coast arc from θA to θB, and a second spiral

segment from θB to θF . Therefore, the discrete on/off switchings events can be defined as:

Switching-on :





φon : q(t+i ) = 1, r(t+i ) = r(t−i ), θ(t+i ) = θ(t−i ),

v(t+i ) = v(t−i ), ψ(t+i ) = ψ(t−i )

son : θ − θ0 = 0 or θ − θB = 0

(5.10)

Switching-off :





φoff : q(t+i ) = 0, r(t+i ) = r(t−i ), θ(t+i ) = θ(t−i ),

v(t+i ) = v(t−i ), ψ(t+i ) = ψ(t−i )

soff : θ − θA = 0

(5.11)

They are modeled by the discontinuity surfaces son and soff , and by the transition maps φon

and φoff . They express the condition of switching on the engine (q = 1) at the beginning of

the leg (θ0), then switch off (q = 0) when the spacecraft reaches θA, and finally switch on again

when the polar angles equals θB. Consequently, the interplanetary leg for a trajectory to flyby

on a planet can be analytically expressed as:

x(θ) = XF (x0(θ0), θ0, ξ1, θA; θ) (5.12)
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Figure 5.4: MOLTO-IT Step 1: Transfer strategy

Similarly, the interplanetary leg for a trajectory to rendezvous with a planet can be expressed

as a closed-form analytical function, such that:

x(θ) = XR(x0(θ0), θ0, ξ1, ξ2, θA, θB; θ) (5.13)

. where XR is a closed-form analytical representation of the trajectory to flyby a planet.

Flybys: Let us define xb,j(t) = [rb,j(t), vb,j(t), ψb,j(t), θb,j(t)] as the continuous state vector

of a planet bj , where rb,j(t) ∈ R, vb,j(t) ∈ R, vb,j(t) ∈ R and θb,j(t) ∈ R represent their

intrinsic coordinates respectively, as defined by the spacecraft. Flybys are assumed to produce

an instantaneous change in the heliocentric velocity of the spacecraft, given by the transition

map φfb,j and occurring when the state vector of the spacecraft intersects the discontinuity

surface sfb:

Flybys :





φfb,j : [v(t+i ), ψ(t+i )] = ∆j(v(t−i ), ψ(t−i ),pj , vb,j(t
−
i ), ψb,j(t

−
i ), µb,j , t

−
i ),

q(t+i ) = q(t−i ), r(t+i ) = r(t−i ), θ(t+i ) = θ(t−i ).

sfb,j : r− rb,j(t) = 0, and θ − θb,j(t) = 0, j ∈ {1, . . . , ns}
(5.14)

where µb,j is the gravitational constant of the corresponding planet bj . As modeled by the

discrete event function sfb,j , a flyby is only possible if the spacecraft heliocentric distance and

polar angle matches the heliocentric distance of polar angle of a planet. Note that, the there

are as many discontinuity surfaces as nfb available planets to flyby. Following a planar model

for the flyby, if a planet bj is encountered at ti, the heliocentric post-flyby velocity v(t+i ) and

flight-path angle ψ(t+i ) can be obtained assuming a hyperbolic trajectory around the planet.

The flyby trajectory is a function of the pre-flyby velocity v(t−i ) and flight-path angle ψ(t+i ), the

planet heliocentric velocity vb,j(t
−
i ) and flight path angle ψb,j(t

−
i ), and additional static control

variables or parameters pj = [δ], which are subject to optimization. Hence, it holds:
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Figure 5.5: MOLTO-IT Step 1: 2D Flyby geometry

∆j :





v̂(t−i ) =

√
(v(t−i ) cosψ(t−i )− vb(t

−
i ) cosψb(t

−
i )

2
+ (v(t−i ) sinψ(t−i )− vb(t

−
i ) sinψb(t

−
i ))2

α = atan
v(t−i ) sinψ(t−i )− vb(t

−
i ) sinψb(t

−
i )

v(t−i ) cosψ(t−i )− vb(t
−
i ) cosψb(t

−
i )

+ δ

v(t+i ) =
√

(vb(t
−
i ) sinψb(t

−
i ) + v̂(t−i ) sinα)2 + (vb(t

−
i ) cosψb(t

−
i ) + v̂(t−i ) cosα)2

ψ(t+i ) = atan
vb(t

−
i ) sinψb(t

−
i ) + v̂(t−i ) sinα

vb(t
−
i ) cosψb(t

−
i ) + v̂(t−i ) cosα

(5.15)

Here, v̂(t−i ) is the spacecraft incoming relative velocity to the planet, which rotates an angle

δ on the orbital plane of the hyperbola to scape. An illustration of the planar flyby model is

provided in Figure 5.5. The angle δ is typically constrained by the minimum allowable flyby

radius rp,min. They are related by the following equation:

δmax/min = ±2 arcsin(1/(1 + rp,minv̂2(t−i )/µb,j)) (5.16)

Finally, let us define σfb,i as the time-ordered sequence of flyby events:

σfb = [(t1, sfb,j) . . . , (ti, sfb,j), . . . , (tn, sfb,j)] (5.17)

The previous sequence is not known a-priori and has to be determined as part of the solution,

including the number and the planetary bodies.
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Launch Event: The launch event is characterized by an instantaneous change in the initial

heliocentric velocity and flight path angle, given by the transition function φla that is performed

by the launcher at the departure epoch, as defined by the event surface sla. Then, it holds:

Launch :





φla : [v(t+0 ), ψ(t+0 )] = ∆la(xb,1, t
−
0 ), r(t+0 ) = r(t−0 ),

θ(t+0 ) = θ(t−0 ), , q(t+0 ) = q(t−0 ).

sla : t0 − t∗0 = 0.

(5.18)

The state of the spacecraft after the launch event is given by:

∆la :





v(t+i ) =
√

(v(t−i ) sinψ(t−i ) + v∞,0 sinψ∞,0)2 + (v(t−i ) cosψ(t−i ) + v∞,0 cosψ∞,0)2

ψ(t+i ) = atan
v(t−i ) sinψ(t−i ) + v∞,0 sinψ∞,0

v(t−i ) cosψ(t−i ) + v∞,0 cosψ∞,0

(5.19)

In the above, v∞,0 and ψ∞,0 are the departure hyperbolic excess velocity and flight path

angle respectively. The launch hyperbolic excess velocity magnitude must be constrained to the

maximum available by the launcher vehicle, hence it is problem specific.

Constraints

Hereto, the continuous and discrete variables, the continuous control parameter, as well as the

modeling of the continuous and discrete dynamics have been presented. In order to fully describe

the HOCP, the constraints applicable in our approach have to be defined. Fundamentally, as

this stage uses low-fidelity models only boundary conditions and a simple approach for limiting

the maximum control effort of the shape-based method are considered.

Boundary conditions: A spacecraft has the state x0 at θ0 and at t0. It has to travel in a

certain time of flight (ToF) to a target planet that has an angular position θP , radial distance

rP , velocity vP and flight path angle ψP at t0 + ToF . The elements of the state vector of the

planets are obtained by assuming constant orbital elements for each leg. Therefore, a flyby

trajectory to the planet must satisfy two non-linear constraints:

rF (x0(θ0), θ0, ξ1, θA; θP )− rP = 0 (5.20)

tF ((x0(θ0), θ0, ξ1, θA; θP )− ToF = 0 (5.21)

Note that, in the previous expressions there still remain one free parameter, either the control

parameter ξ1 or the switching-off polar angle θA that can be subjected to optimization.



Chapter 5. MOLTO-IT: Interplanetary Trajectories 126

On the other hand, if the trajectory is to rendezvous a planet, four constraints, involving

position, velocity, and time have to be imposed:

rR(x0(θ0), θ0, ξ1, ξ2, θA, θB; θP )− rP = 0 (5.22)

tR(x0(θ0), θ0, ξ1, ξ2, θA, θB; θP )− ToF = 0 (5.23)

vR(x0(θ0), θ0, ξ1, ξ2, θA, θB; θP )− vP = 0 (5.24)

ψR(x0(θ0), θ0, ξ1, ξ2, θA, θB; θP )− ψP = 0 (5.25)

In this case, there exits no additional free parameter, although no corrective maneuver is

needed at the encounter.

Propulsive constraints: The presented shape-based method provides a predefined acceler-

ation for the trajectory, without considering any limits on the thrust or the power available

to the spacecraft. Consequently, a trajectory computed by this method may not be realizable.

Typically, because the acceleration profile of the spirals exceeds the capabilities of the real

engine. However, an estimation can be made. Let us consider an interplanetary leg between

two celestial bodies. The shaped-base method connects both bodies with a trajectory given by

rs = rs(θ), and the acceleration profile aT (t). Let us consider a spacecraft with initial mass m0,

and equipped with low-thrust engine, whose maximum thrust produced is modeled as a general

function of the distance to the Sun and and time, i.e., T = T (r, t). We assume that a trajectory

is feasible if the following constraints is satisfied:

∆Vs =

∫
|aT |

r

v sinψ cosψ
dθ ≤ ∆Va =

∫
T (rs(θ), t)

m0
dt (5.26)

The previous conditions states that the trajectory would be realizable if the total ∆Vs provided

by the spirals is lower that total ∆Va that the real engine could provide continuously thrusting

along the same trajectory.

5.2.2 MOLTO-IT Step 2

In this case, more accurate dynamical and hardware models are used. The continuous state

x = [r,v,m] of the spacecraft is determined by its position r(t) ∈ R3 and velocity v(t) ∈ R3

vectors with respect to an inertial reference frame, which, without loss of generality, is centered

in the Sun. Besides, the evolution of the spacecraft mass m(t) is needed to fully determine its

dynamics. The discrete state variable q(t) ∈ {0, 1} determines the working condition of the

electric engine. When thrusting, the engine can only operate at its maximum available thrust

level T and its orientation can be controlled by the dynamical continuous input vector u = [α, β],

where α and β represent the azimuth and declination angles respectively. Additionally, the

switch between modes of operation can be managed by the binary control input v(t) ∈ {0, 1}.
The coasting state is required when ‘0’, while the thrusting state is required with ‘1’ as long as

the power system requirements are satisfied.
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Continuous Dynamics

The evolution of the continuous state of the spacecraft x = [r,v,m] is modeled as a particle

moving in a central gravity field under the action of a perturbing acceleration ap, i.e., as a

Perturbed Two-Body-Problem. The equation of motions are described by the following set of

differential equations:

f :





v̇ = −µs
r3

r + ap(x, q,u, t)

ṙ = v

ṁ = ṁ(x, q,u, t)

(5.27)

where µs represents the gravitational constant of the Sun. The perturbing acceleration ap and

the mass flow rate ṁ have different expressions depending on the discrete state of the spacecraft.

Assuming that the thrust produced by the electric engine T is the only external force, it holds:

ap, ṁ :





ap =
T

m
d, ṁ = − T

g0Isp
if q = 1

ap = 0, ṁ = 0 if q = 0
(5.28)

Here, Isp is the specific impulse and g0 is the Earth’s gravitational acceleration at sea level.

The unitary vector d points toward the direction of the thrust vector and can be projected onto

the orbital frame and expressed as a function of the control inputs as follows:

d = cosβ sinα i + cosβ cosα j + sinβ k (5.29)

where the unitary vectors are defined as:

i =
r

r
, k =

r× v

rv
, j = k× i (5.30)

In the above, r = ||r|| is the radial distance and v = ||v|| is the magnitude of the velocity.

An illustration of the geometry of the problem is depicted in Figure 5.6.
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Figure 5.6: MOLTO-IT Step 2: Geometry of the problem
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The thrust T of the specific impulse Isp can be modeled as constants or as polynomials

functions of the power available Pa to the spacecraft of the form:

T = cT0 + cT1Pa + cT2P
2
a + cT3P

3
a + cT4P

4
a (5.31)

ṁ = cm0 + cm1Pa + cm2P
2
a + cm3P

3
a + cm4P

4
a (5.32)

where the coefficients cT,i and cm,i are obtained from curve fits from laboratory tests data. Each

thruster has an associated minimum power Pmin and maximum power Pmax. If Pa < Pmin, the

thruster cannot operate. If Pa > Pmax, the performance polynomials are evaluated at Pmax. In

this tool, Pa is given as a function of the power generated by the solar panels Pg :

Pg =
P0

r2

(
γ0 + γ1/r + γ2/r

2

1 + γ3r

)
(5.33)

where γi are user-defined parameters for the solar panel and P0 is the nominal power, which in

turn is a function of the time since launch:

P0 = P0−BOL(1− τ)t (5.34)

In the above, P0−BOL is the base power delivered on the day of launch, τ is the decay rate

of the solar arrays measured as a percentage per year, and t is the time since launch in years.

Equation (5.34) may also be used to model the decay of a radioisotope thermal generator.

Finally, he available power Pa is then obtained as the difference between the power generated

by the spacecraft Pg and the power required to operate the spacecraft bus Ps/c, such that:

Pa = (1− δpower)(Pg − Ps/c) (5.35)

where δpower is a user-defined power margin.

Discrete Dynamics

As for MOLTO-IT Step 1, the discrete dynamics of the spacecraft allows to characterize the

effect of both performing flyby maneuvers and turning the engine on and off. Hereafter, we

define the set of discrete event functions, including discontinuity surfaces and transition map

functions, necessary to include such effects in the model of MOLTO-IT Step 2.

Engine on-off switching: The switch between the thrust/coast modes of operation can be

described by a controlled discrete event or by an autonomous event. The former occurs as a

consequence of a controlled decision, for propellant savings reasons, whereas the latter happens

as a consequence of the power subsystem requirements (when there is not enough power available

for the engine to operate, e.g., Pa < Pg). Both are summarized in the following functions:
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Switching-on :





φon : q(t+i ) = 1, v(t+i ) = v(t−i ),

r(t+i ) = r(t−i ), m(t+i ) = m(t−i )

son : q(t−i ) = 0, v(t−i ) = 1, 0 ≤ Pa(x, t−i )− Pg(x, t−i )

(5.36)

Switching-off :





φoff : q(t+i ) = 0, v(t+i ) = v(t−i ),

r(t+i ) = r(t−i ), m(t+i ) = m(t−i )

soff,1 : q(t−i ) = 1, v(t−i ) = 0

soff,2 : q(t−i ) = 1, 0 ≥ Pa(x, t−i )− Pg(x, t−i )

(5.37)

Here, the event surface son refers to the controlled switching-on whereas soff,1 and soff,2

represents the event surface for the controlled and autonomous switching-off respectively. Let

us defined σsw as the time-ordered sequence of the on-off switchings of the engine:

σsw = [. . . , (ti, son/off ), . . . ] (5.38)

which is not known a-priori and have to be determined as part of the solution.

Flybys: Let the continuous state vector of a planet bj be defined as xb,j(t) = [rb,j ,vb,j ], where

rb,j(t) ∈ R3 and vb,j(t) ∈ R3 represent its position and velocity heliocentric vectors respectively.

Flybys are assumed to produce an instantaneous change in the heliocentric velocity vector of

the spacecraft, given by the transition map φfb,j and occurring when the position vector of the

spacecraft intersects the discontinuity surface sfb:

Flybys :





φfb,j : v(t+i ) = ∆j(v(t−i ),pj ,vb,j(t
−
i ), µb,j , t

−
i ),

q(t+i ) = q(t−i ), r(t+i ) = r(t−i ), m(t+i ) = m(t−i )

sfb,j : ||r− rb,j(t)|| = 0, j ∈ {1, . . . , ns}
(5.39)

In the above, µb,j is the gravitational constant of the corresponding planet bj .

Figure 5.7: MOLTO-IT Step 2: 3D Flyby geometry
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The spacecraft’s mass is are assumed not to change because powered flybys are not considered.

Hence, if a planet bj is encountered at ti, the heliocentric post-flyby velocity v(t+i ) is obtained

assuming a hyperbolic trajectory around the planet, which is a function of the pre-flyby velocity

v(t−i ), the planet heliocentric velocity vb,j(t
−
i ) and additional parameters pj = [rp,j , ζj ], that

includes the minimum distance of approach rp,j and the B-Plane angle ζ. Hence, it holds:

∆j :





v̂(t−i ) = v(t−i )− vb,j(t
−
i )

δ = 2 arcsin(1/(1 + rp,j v̂
2(t−i )/µb,j))

v̂(t+i ) = cos δ̂i + cos ζ sin δ̂j + sin ζ sin δk̂

v(t+i ) = vb,j(ti) + v̂(t+i )

(5.40)

where the unit vectors are

î =
v̂(t−i )

v̂(t−i )
, ĵ =

î× vb,j(t
−
i )

||̂i× vb,j(t
−
i )||

, k̂ = î× ĵ (5.41)

Here v̂(t−i ) is the spacecraft incoming relative velocity to the planet, which rotates an angle

δ on the orbital plane of the hyperbola to scape as v̂(t+i ). The orbital plane is determined by

the angle ζ measured on the B-plane with respect to the vector F, which is contained on the

B-plane and is parallel to ecliptic plane (see Fig. 5.7). The B-plane is defined as the plane

passing through the center of the planet and normal to the arrival asymptote v̂(t−i ). In this

case, the time-ordered sequence of flyby events, σfb,i, is known-priori:

Launch event: The launch event is characterized by an instantaneous change in the initial

heliocentric velocity vector, given by the transition function φla that is performed by the launcher

at the departure epoch, as defined by the event surface sla. Then, it holds:

Launch :





φla : v(t+0 ) = ∆la(xb,1, t
−
0 ), r(t+0 ) = r(t−0 ),

m(t+0 ) = m(t−0 ), q(t+0 ) = q(t−0 ).

sla : t0 − t∗0 = 0.

(5.42)

The velocity of the spacecraft after launch is given by:

∆la = vb,1(t−0 ) + v∞,0




cosRLA cosDLA

sinRLA cosDLA

sinDLA


 (5.43)

where v∞,0 is the departure hyperbolic excess velocity and RLA and DLA are two angles that

describe the right ascension and declination of the launch asymptote respectively. Typically,

limits on the DLA are imposed, due to limitations of the launch site. Moreover, the modulus

of the impulse v∞,0 is typically defined as polynomial functions of the delivered mass of the

spacecraft and C3 = v2
∞,0 as:

m0 = a0 + a1C3 + a2C32 + a3C33 + a4C34 + a5C35 (5.44)

where the coefficients ai are chosen by a curve fit to launcher performance data available.
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Constraints

Similar to MOLTO-IT Step 1, boundary conditions for satisfying the flyby conditions, i.e.,

r(tf ) = rb,n(tf ) or to meet the rendezvous constraints, i.e., v(tf ) = vb,n(tf ). An additional

constraint to account for fixed reorientations is included.

Fixed re-orientation times constraint: Let us consider a thrusting arc that occurs within

the time interval [t0, tf ]. During this arc, an unknown number of reorientations is desired to

happen subject to a minimum period of time tmin. Let us break up the time internal into N

subintervals [ti, ti+1]. For each of them, a fixed inertial orientation is imposed such that αi = cte

and βi = cte. However, these sub-arcs may not fulfill with the reorientation time constraint.

Thus, some of these intervals may have to be enlarged, while others may have to be deleted

because of being unnecessary. Therefore, a new decision parameter, δ ∈ [−1, 1], is introduced

do each subinterval to model this decision process. Note that this parameter is continuous, and

therefore useful for being used in continuos optimization models. However, it is not suitable for

modeling decision processes. Thus, the following relation is defined:

σi =
2

π
atan(εδi) + 1 (5.45)

where ε is tuning parameter that has to be set by the user. Here, σ is a continuous approximation

of a binary function that can only take the discrete values 0 or 1. Let us define the following

set of re-orientation times non-linear equations:

(1− σi)2(ti+1 − ti − tmin) > 0, for i = 1, . . . , N (5.46)

σ2
i (ti − ti+1) = 0, for i = 1, . . . , N (5.47)

Note that, when σ = 1, the interval is forced to collapse, whereas when σ = 0, the minimum

reorientation time has to be meet. An illustration of the process is depicted in Fig, 5.8.
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Figure 5.8: MOLTO-IT Step 2: fixed reorientation time constraint model
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5.3 Solution Approach

In this section, MOLTO-IT (Multi-Objective Low-Thrust Trajectory Optimizer for Interplane-

tary Transfers) is presented. It consists on a two-step solution approach to tackle the problem

under consideration. The algorithm is schematically depicted in Figure 5.9 and an overview of

its main elements is presented in Table 5.2. In the first step, namely MOLTO-IT Step 1, the

shaped-based parametric model of the trajectory is incorporated. It pursues the goal of being

a flexible and robust algorithm able to rapidly find solutions for LT-MGA trajectories defined

by a user input. The sequence of gravity assists is automatically determined by the tool. The

outputted results would approximate the optimal performances as well as the mission design

variables. They also served as an initial guess for the second step, called MOLTO-IT Step.

It includes more accurate dynamical and propulsion models to improve fidelity. In addition,

operational constraints can be included with ease. Hereafter, both steps are described in detail.

User Defined Parameters

MOLTO-IT STEP 2MOLTO-IT STEP 1

Multi-objective Genetic Algorithm 
+ 

Gradient-based solver
Direct transcription 

+ 
Gradient-based solver

INITIAL GUESS

MOLTO-IT
Muti-objective Low-Thrust Optimizer for Interplanetary Trajectories

•  Set of Pareto sub-optimal solutions in one run
•  Rapid trade-offs  for  preliminary design

•  Single optimized trajectory in one run
•  Accurate solutions for the detailed design

Figure 5.9: MOLTO-IT: Algorithm Scheme

Table 5.2: MOLTO-IT Step 1 VS MOLTO-IT Step 2 main features

MOLTO-IT Step 1 MOLTO-IT Step 2

Problem type Multi-objective MINLP Multiphase OCP
Solution Approach Genetic Algorithm + Hermite-Simpson +

Gradient-Based solver Gradient-based solver

Dynamical Model Planar + patched conic 3D + patched conic
Control Model Generalized Logarithmic Spirals Optimal control
Flyby Model Planar + Instantaneous 3D + Instantaneous
Flyby sequence Free Fixed
Thrust Model Unconstrained Polynomial approximation
Isp Model Constant Polynomial approximation
Ephemerides Constant orbital elements NAIF-SPICE toolkit

Programming Language MATLAB MATLAB
Heuristic solver NSGA-II N/A
Gradient-based solver fmincon Ipopt
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5.3.1 MOLTO-IT Step1

MOLTO-IT Step 1 makes use of the Controlled Generalized Logarithmic Spirals and of the

predefined thrusting sequence described in Section 5.2.1. Therefore, the infinite dimensional

multi-objective Hybrid Optimal Control Problem (MO-HOCP) is reduced to a multi-objective

Mixed-Integer Nonlinear Programming problem (MO-MINLP). The real and integer nature

of the variables and the requisite of evaluating many different scenarios simultaneously, make

population-based heuristic algorithms, such as genetic algorithms or particle swarm optimiza-

tion, the most adequate techniques to solve it. However, they are not well suited for handling

the nonlinear constraints arising from both the flyby and rendezvous conditions. This kind of

constraints can be tackled much more efficiently with off-the-self gradient-based solvers. Con-

sequently, MOLTO-IT Step 1 consists on two nested optimization loops.

A genetic algorithm and a gradient-based solver optimize the outer loop and the inner loop

respectively. The genetic algorithm is based on the well-known NSGA-II (Non-dominated Sort-

ing Genetic Algorithm) and has been implemented in MATLAB, while the inner loop solver uses

the sequential quadratic solver implemented in fmincon, a built-in function of MATLAB. The

process begins when the user provides the information summarized in the Table 5.3. It mainly

includes information about the departure and arrival planets, the mission type (i.e., flyby or ren-

dezvous), along with the list of available planets to flyby, the minimum and maximum number

of allowed flybys, the launch window opening and closing dates, maximum and minimum flight

time limits, the modulus of the launch hyperbolic excess velocity at departure, and optionally,

the launcher performance model. The algorithm schematically depicted in Figure 5.10.
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Figure 5.10: MOLTO-IT Step 1: Algorithm scheme
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Table 5.3: MOLTO-IT Step 1: User Defined Parameters

Description Variable

Departure/Arrival Body bo, bf
Mission type Flyby/Rendezvous

Launch Window opening/closing Date t0,min, t0,max
Minimum/Maximum Flyby Number nfb,min, nfb,max

Flyby bodies -
Minimum/Maximum Revolution Number nmin,nmax

Minimum Flyby radius rfb,min
Minimum/Maximum Time of Flight Tmin,Tmax

Minimum/Maximum Launch Hyperbolic velocity v∞0,min, v∞0,max

The outer loop

The outer loop algorithm has two main assignments: on the one hand, it is in charge of opti-

mizing the discrete design variables associated to the flyby sequence with respect to a multi-

objective fitness function; on the other hand, it runs as an automatic initial guess generator for

the gradient-based solver in the inner loop, providing starting values for the launch date and

the transfer times for each interplanetary leg. The solution of the inner-loop, if exists, will be

in the vicinity of the initial guess provided by the outer-loop. The decision vector defining the

population of the GA, consists on the variables summarized in Table 5.4. The departure epoch

and the transfer time per leg are real decision variables, whereas the number of revolutions and

the flyby bodies are represented by integer variables. The user has to provide a list of available

planets to flyby, e.g., (Jupiter, Mars, Earth). Then, each planet is identified by a positive integer

number, e.g., Jupiter (1), Mars (2), and Earth (3). Therefore, a sequence of planetary flybys

can be defined by a sequence of integer variables, b1, b2, . . . , bnfb,max
, where bi is defined as:

bi ∈ {1, . . . , nb} ⊂ Z, for i = 1, . . . , nfb,min (5.48)

bi ∈ {0, . . . , nb} ⊂ Z, for i = nfb,min, . . . , nfb,max (5.49)

where nb is the number of available planets. Note that in the above, the number 0 represents

a “null-flyby”, which means that no flyby is desired. Thus, the total number of flybys for each

sequence b is determined by the number of non-zero entries, and it may be different for each

member of the population. This technique is called the ’null-gene’ method as introduced in

[224] and [225]. When the algorithm parses a decision vector, it skips over the null values and

construct a trajectory only from the values that represent planets. Then, each population in the

outer loop defines a different sequence of inner loop problems that are solved by the gradient-

based solver. Finally, if the sequence of NLP problems are successfully solved, the resulting cost

for each interplanetary leg, typically in terms of time of flight and propellant mass, is recovered

by the outer loop and provided as the fitness value for the genetic algorithm:

J = [

n+1∑

i=1

∆Vi,

n+1∑

i=1

Ti] (5.50)
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where n is the number of flybys. In case the NLP solver for the inner-loop does not converge, a

flag is sent to the outer loop, which assigns a penalty to the objective function depending on the

interplanetary leg that failed. Assuming that the ith leg did not converged, the cost function

takes the following form:

J = [(n+ 2− i)ρ, (n+ 2− i)ρ] (5.51)

where ρ is a sufficiently large value in comparisons with the value of fitness function for the

feasible trajectories. Thus, trajectories that fails at the fist leg re more likely to be pruned than

those that fail at the last leg. Another type of penalization is included when the propulsive

constraint of Equation ?? is applied. In this case it is included as an equality constraint for the

genetic algorithm:

c =
n+1∑

i=1

(∆Vi −∆Va,i), if ∆Va,i ≤ ∆Vi (5.52)

Therefore, only trajectories that comply with the constraint for all legs will remain in the Pareto

front. Additionally, the number n of flybys can be included as a third objective. This pursues the

goal of preserving diversity during the generations and to force the algorithm to keep exploring

all possible number of flybys.

The inner loop

For each interplanetary leg defined by the outer-loop and inner-loop problem is defined. The

number of variables for the NLP and the number of constraints depends on the type of transfer

leg under consideration. The inner-loop variables and its bounds are summarized in Table 5.5

as a function of the type of event at each end point: Launch (L), Flyby (F) or Rendezvous

(R). The launch epoch and the transfer time per leg are subjected to lower and upper bounds

centered in the value provided by the outer loop. The widths of such intervals are 2Tlim for the

transfer time and 2tlim for the launch date. They have a twofold purpose: they improve the

convergence of the solver and they maintain the diversity in the solutions, helping to produce a

well-spread Pareto front. The larger the widths, the less spread the Pareto front, although each

population has more chances to converge to a feasible solution. A good value for 2Tlim can be

determined as half of the synodic period of the departure and arrival planet for this leg.

The angular variables θA and θB are defined as a fraction of the total travelled angle for

each leg, in order to avoid variable limits. The initial guess for ψ∞0 is selected depending on

the semi-major axis of the next body., i.e. π/2 for outer planets, −π/2 for inner planets and 0

for resonant flybys. Regarding the computation of the state of the different bodies at different

epochs, constant and planar orbital elements are assumed for each leg, given that accurate

ephemerides are provided in tabular data which may not be differentiable and lead to non-

convergence. The osculating orbital elements of each body are computed at the starting epoch

using JPL NAIF-SPICE ephemerides. As the trajectories considered in this model are planar,

the position and velocity of the target bodies are projected onto the ecliptic plane. The general

form of the fitness and constraint function for the NLP solver is described in Algorithm 1.



C
h

a
p

ter
5
.

M
O

L
T

O
-IT

:
In

terp
la

n
eta

ry
T

ra
jecto

ries
136

Table 5.4: MOLTO-IT Step 1: Outer-loop Variables

Variable Meaning Lower Bound Upper Bound

t̃0 Departure Epoch Guess t0min t0max

T̃i Transfer Time per leg Guess Timin Timax

bi Flyby Body - -
ni Leg number of revolutions nmin nmax

Table 5.5: MOLTO-IT Step 1: Inner-loop Variables

Variable Meaning Lower Bound Upper Bound Initial Guess Event1 Event2
t0 Departure Epoch t̄0 − tlim t̄0 + tlim t̄0 L R/F

v∞0 Initial Excess Velocity Module v∞0,min v∞0,max v∞0,max L R/F

ψ∞0 Initial Excess Velocity Angle −π π
π

2
,−π

2
, 0 L R/F

δ Flyby Deflection Angle -1 1 0 F R/F
T Leg Transfer Time T̄i − Tlim T̄i + Tlim T̄i L/R/F R/F
ξ1 Spiral Control Parameter 0 1 0.4 L/R/F R/F
θA Thrust to Coast switching angle 0 1 0.01 L/R/F R/F
ξ2 Spiral Control Parameter 0 1 0.4 L/R/F R
θB Coast to Thrust switching angle 0 1 0.99 L/R/F R

Table 5.6: MOLTO-IT Step 2: Variables

Variable Meaning Lower Bound Upper Bound
t0 Initial Date 0 2π

RLA Right ascension of the launch asymtote -180 deg 180 deg
DLA Right ascension of the launch asymtote -90 deg 90 deg
v∞ Launch excess velocity v∞0,min v∞0,max

rx,j , ry,j , rz,j Spacecraft position at the jth node - -
vx,j , vy,j , vz,j Spacecraft velocity at the jth node - -

mj Spacecraft Mass at the jth node 0 m0

αj In-Plane angle at the jth node -180 deg 180 deg
βj Out-of-Plane angle at the jth node -90 deg 90 deg
vj Throttle parameter at the jth node 0 1
ti Date of the ith flyby 0 ToF
rfb,i Flyby radius of the ith flyby rfb,min rfb,max

ζi B-angle of the ith flyby -180 deg 180 deg
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Algorithm 1 Step 1 inner-loop Fitness and Constraint function for leg ith

Input : (t0, v∞0, ψ∞0), {δ}, Ti, ξ1, θA(ξ2, θB)
Ouput : ∆V , c

1: . Obtain Initial Transfer State
2: if Event-1 = Launch then
3:

4: Compute state of planet b1: xb,1(t0)
5: Add launcher Impulse: x(θ0) = ∆la(xb,1, v∞0, ψ∞0) [Eq.(5.43)]
6:

7: else
8:

9: Obtain initial state x(θ0) from leg (i− 1)th

10: Compute state of planet b1: xb,1(t0)
11: Compute state after Flyby: x(θ0) = ∆fb(x(θ0),xb,1, δ) [Eq.(5.40)]
12:

13: end if
14:

15: Compute final time: tF = t0 + Ti
16: Compute state of planet b2: xb,2(tF )
17: . Obtain Final Transfer State
18: if Event-2 = Flyby then
19:

20: Compute thrust arc from θ0 to θA: x(θ) = XT (x(θ0), ξ1; θ)
21: Compute ∆V1 for the spiral arc [Eq.(5.9)]
22: Compute coast arc from θA to θF : x(θ) = XC(x(θA); θ)
23:

24: else if Event-2 = Rendezvous then
25:

26: Compute thrust arc from θ0 to θA: x(θ) = XT ((x(θ0), ξ1; θ)
27: Compute ∆V1 for the spiral arc [Eq.(5.9)]
28: Compute coast arc from θA to θB: x(θ) = XC((x(θA); θ)
29: Compute thrust arc from θB to θF : x(θ) = XT ((x(θB), ξ2; θ)
30: Compute ∆V2 for spiral arcs [Eq.(5.9)]
31:

32: end if
33: . Compute Constraints
34: if Event-2 = Flyby then
35:

36: c1 : rb,2(tF )− r(θF ) = 0
37: c2 : Ti − t(θF ) = 0
38:

39: else if Event-2 = Rendezvous then
40:

41: c1 : rb,2(tF )− r(θF ) = 0
42: c2 : Ti − t(θF ) = 0
43: c3 : vb,2(tF)− v(θF) = 0
44: c4 : ψb,2(tF )− ψ(θF ) = 0
45:

46: end if
47: . Compute Cost
48: Compute summation of all ∆Vi from spiral arc
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5.3.2 MOLTO-IT Step 2

MOLTO-IT Step 2 pursues the goal of re-optimizing selected trajectories from MOLTO-IT

Step 1 incorporating more accurate models. In fact, it should be noted that the global search

algorithm is biased towards the solutions that the shape-based parameterization represents and

they may not be realizable with the real propulsion subsystem. In this step, the multi-objective

HOCP is reduced to a single-objective Large-scale NLP. For such purpose, it is assumed that

the sequence of gravity assisted maneuvers is fixed and provided by MOLTO-IT Step 1. The

thrust/coast sequence is not imposed, yet it is optimized by the algorithm using the initial guess

of the previous step. As shown in Eq.(5.37) the sequence is determined by the binary control v.

However, gradient-based solvers only accept continuous variables. Therefore, the binary control

v is relaxed so that it can continuously vary within the [0,1] interval. This is not problematic,

as the optimal solution is known to be bang-bang for fixed-time minimum fuel problems.

The state vector rj = r(tj), vj = v(tj), mj = m(tj) and the control inputs uj = u(tj) and

vj = v(Lj) are discretized on a selected grid tj , for j = 1, . . . , n, where n is number of nodes

on the grid. Additional parameters related to the launch and flyby events are included. All

variables are listed in Table 5.6. The dynamical equations are imposed as defect constraints

based on the Hermite-Simpson collocation scheme [126] described in Section 3.4. The dynamical,

power and propulsive models described in Section 5.2.2 are included. In this step, only a single-

objective function is allowed per run. Typically, either the time of flight, propellant consumed,

dry mass or a weighted combination of them are considered. Further constraints can be added

to the problem, such as limiting the time that the spacecraft needs for reorienting as given by

Eq.(5.46). MOLTO-IT is fully coded in MATLAB and make use of the interior point solver

IPOPT [109]. Derivatives are provided by finite differences and the state of the planets are

directly obtained by the JPL NAIF-SPICE ephemerides.

5.4 Results

In this section, the capabilities and features of MOLTO-IT to assist interplanetary mission

designers in terms of flexibility, accuracy, optimality and computational cost will be evaluated.

As representative missions, we present a rendezvous mission from Earth (E) to the asteroid

Ceres (C). This is a compelling example due to the challenge of matching the state of Ceres

(i.e., position, velocity, and time) with the state of the spacecraft when compared to the less

restricted flyby case (i.e., position and time). Thereafter a flyby mission from Earth to Jupiter

(J) will be solved. This is a challenging scenario due to the large amount of flybys available.

Finally, an hypothetical rendezvous mission from Earth to Pluto (P) is considered. In this

case, the initial mass of the spacecraft becomes an optimization variable, which is related to

the launch hyperbolic excess velocity via the launcher’s performance model. All examples were

run in a Intel Core i7 (2,5GHz) computing system. The GA implemented in MOLTO-IT Step

1 uses the MATLAB parallel toolbox and four cores.
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Missions to Jupiter and Ceres have been previously addressed in the literature. For instance,

Petropoulos and Longuski [47] presented solutions with a two-step approach. Firstly, they apply

the tool STOUR-LGTA, which models the trajectory as an exponential sinusoid, to conduct a

broad search of the design space. Then, they provide the best trajectories as initial guesses for

the Sims-Flanagan based [226] program GALLOP [131]. Thus, we compare MOLTO-IT Step

1 with STOUR-LGTA, and MOLTO-IT Step 2 with GALLOP. Even though Petropoulos and

Longuski [47] optimize over a predefined sequence of gravity assists, we allow the algorithm

to automatically search for the optimal sequence. To facilitate proper comparisons, we select

the same propulsion model in our MOLTO-IT Step 2 than Petropoulos and Longuski [47] for

GALLOP. The parameters used are described in Table 5.7. Additionally, the reference power P0

is 10kW and the thruster is assumed to need at least 0.649kW to operate, while not being able

to use power in excess of 2.6kW. These were introduced by Williams and Coverstone-Carroll

[227] for recreating the NSTAR engine used on Deep Space 1. A constant Isp value of 3000s is

chosen for MOLTO-IT Step 1, similarly to Petropoulos and Longuski [47] for STOUR-LGTA.

The mission to Pluto is inspired by the recent success of New Horizons. Unlike New Horizons,

which was a fast flyby, the notional mission presented here would rendezvous with the Pluto

system, enabling in depth science. The same scenario has been solved by Englander and Conway

[192] using EMTG. This software is based on a two-nested loops approach. The outer-loop is

based on the“null-gene” transcription presented by Englander, Conway, and Williams [228]

and a discrete GA. The inner-loop is based on the Sims-Flanagan transcription [226] combined

with the monotonic basin hopping global search algorithm. In a similar manner that in our

approach, their algorithm is able to automatically find optimal sequences of gravity assists,

while optimizing the low-thrust control law and other design parameters. To allow proper

comparisons, the same propulsive system than in [192] is used. The spacecraft for these mission

has been given a VSI electric thruster with a nuclear power source. Their characteristics are

summarized in Table 5.8. A constant Isp value of 2000s is chosen for the simulations with

MOLTO-IT Step 1, since it corresponds to the average value the engine can provide.

Table 5.7: Propulsion and power system 1

Variable Value

Propulsion System cT0 = −1.9137 N, cT1 = 36.242 N/kW
cm0 = 0.47556 kg s−1, cm1 = 0.90209 kg s−1/kW

Power System P0 = 10 kW, Pmin = 10 kW, Pmax = 10 kW
γ0 = 1.1063, γ1 = 0.1495 AU,

γ2 = −0.299 AU2, γ3 = −0.0432 AU−1

Table 5.8: Propulsion and power system 2

Variable Value

Propulsion System VSI with 60% efficiency and Isp in [1000,3000]s
Power System 1kW radioisotope with 2% decay per year

Pmin = 200 W
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5.4.1 Case 1: Earth to Ceres Rendezvous

The first case is a low-thrust rendezvous mission to the asteroid Ceres. Both, direct and via Mars

(M) flyby trajectories are allowed. Firstly, MOLTO-IT Step 1 searches for optimal trajectories

over the year 2003 with a mission duration between 200 and 1400 days with respect to transfer

time and propellant mass. The launch hyperbolic excess velocity is fixed to 1.6 km/s and the

initial spacecraft mass is 568 kg. In order to estimate the propellant consumed, a constant

specific impulse of 3000 s is chosen and Eq.(5.9) is applied. Thereafter, the minimum propellant

mass solution of the Pareto front is refined in MOLTO-IT Step 2. The transfer time, launch

velocity and initial mass are maintained, while the required propellant mass is optimized. The

engine thrust, mass consumption and power available laws presented for the NSTAR engine are

used. Finally, results from both steps are compared with each other, and with the solutions

that Petropoulos and Longuski [47] reported for the same mission scenario. A summary of the

problem characteristics and involved parameters is outlined in Table 5.9.

MOLTO-IT Step 1 was run several times with the GA parameters set to the values presented

in Table 5.10. The mutation and crossover fractions were selected during a tuning process. After

all simulations reached the maximum number of generations, equally Pareto-optimal solutions

were obtained. On average, the entire population was feasible by completing the 10th genera-

tion. At the 20th generation, 80% of the population lied along a distinct non-dominated front,

whereas from generation 20 to 30 the front was progressively shifted towards lower times of flight

and propellant masses. After 30 generations were completed, members of the population were

uniformly distributed along the front and no later improvement, in terms of non-domination,

was observed. The average evaluation time per individual and per generation along with the

total time to complete the 50 generations are shown in Table 5.11. Note that the computational

speed could be improved if more cores were used during the simulation.

Table 5.9: E-C Problem definition

Description Value

Optimization Objective Transfer Time vs Propellant mass
Launch Window open date Jan 01, 2003
Launch Window close date Dec 31, 2003
Mission type Rendezvous
Launch v∞ 1.6 km/s
Launch asymptote declination bounds Free
Minimum Flyby number 0
Maximum Flyby number 1
Available Flyby Bodys Mars
Minimum Flyby Radius 200 km
Minimum Flight Time 200 days
Maximum Flight Time 1400 days
Launch mass 568 kg
Isp (MOLTO-IT Step1) 3000 s
Propulsion and Power (MOLTO-IT Step 2) NSTAR
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Figure 5.11: MOLTO-IT Step1: E -C Pareto front.

Table 5.10: MOLTO-IT Step 1: E-C Genetic algorithm parameters

Population size 100
Max. Generations 50
Mutation Fraction 0.3
Crossover Fraction 0.3

Table 5.11: MOLTO-IT Step 1: E-C Computational time

Variable Avg. CPU Time

Population 0.46 s
Generation 6.5 s

Total 5.4 min

As an illustration, the last Pareto front solutions obtained from one of the simulations are

presented in Figure 5.11. Trajectories with propellant fractions higher than 0.6 were pruned out

during the optimization. It can be noted that a well spread set of solutions is obtained in just

one run. They cover flight times ranging from 1 year to 2.8 years, and propellant mass fractions

from 0.55 to 0.22. Additionally, results comprise both direct and via Mars flybys trajectories.

Direct trajectories are optimal for flight times lower than 1.6 years, whereas trajectories with

the intermediate flyby are preferable for longer times and lower propellant masses. Promising

launch dates are revealed in early June 2003 for both direct and flyby transfer. The optimal

Mars flyby date remains constant for all solutions in early February 2004. However, the day of

encounter with Ceres is delayed as the transfer time increases. The earliest rendezvous option

is in July 2004, whereas the latest chance can be accomplished in February 2006. Therefore,

MOLTO-IT Step 1 provides the user with a wide variety of trajectories and the possibility of

exploring various criteria at once, while requiring minimal information and interaction.
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(a) MOLTO-IT Step 1 (b) MOLTO-IT Step 2

Figure 5.12: E-M-C Minimum fuel trajectory for 2.8 years

Table 5.12: MOLTO-IT Step 2: E-M-C parameters and performances

Nodes 100
Tolerance 10−6

Iterations 50
Computational Time 3.2 min

Table 5.13: E-M-C Minimum propellant mass detailed solution

MOLTO-IT Petropoulos and Longuski [47]

Parameter Units Step 1 Step 2 STOUR-LGTA GALLOP

Launch Date - Jun 12, 2003 May 13, 2003 May 6, 2003 May 6, 2003
Launch v∞ km/s 1.6 1.6 1.6 1.6
Initial Mass kg N/A 568 N/A 568

M Flyby Date - Feb 10, 2004 Dec 31, 2003 Feb 01, 2004 Feb 01, 2004
M Flyby v∞ km/s 2.65 2.16 1.43 1.92
M B-Plane angle deg 0 54.68 2.3 82.3
M Flyby Altitude km 200 200 5432 200
Mass kg N/A 531 N/A N/A

C Arrival Date - Feb 20, 2006 Jan 20, 2006 Jun 12, 2006 Feb 09, 2006
C Arrival v∞ km/s 0 0 0.237 0
Mass kg N/A 437 N/A N/A

Prop. fraction - 0.224 0.229 0.256 0.233

The minimum propellant solution of the Pareto front of Fig. 5.11 was chosen as an initial

guess for MOLTO-IT Step 2. A grid of 50 nodes per leg uniformly distributed along time were

used to discretize the trajectory and the tolerance for the NLP-solver was set to 10−6, both for

optimality and constraints infeasibility. Initially, the NLP infeasibility was 10−2, mainly due to

the mismatch between the out-of-plane position and velocity of Ceres and the one provided by

the planar model of the guessed trajectory. In spite of this, MOLTO-IT Step 2 converged to

an optimal and feasible solution after 50 NLP-iterations and after 3.2 min. In Table 5.12, the

aforementioned parameters and performances of MOLTO-IT Step 2 are summarized.
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Figure 5.13: Time history of thrust acceleration for E-M-C trajectory
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Figure 5.14: Time history of in-plane thrust angles for E-M-C trajectory

The geometry of the trajectories from MOLTO-IT Step 1 and MOLTO-IT Step 2 are shown

in Figs. 5.12a and 5.12b respectively. The dashed lines represent the coast arcs, whereas the

continuos lines denotes the thrusting arcs. Note the ability of MOLTO-IT Step 2 to automati-

cally change the thrusting schedule provided by the initial guess. This feature si also observed

in Figs. 5.13 and 5.14, where the thrust acceleration and in-plane steering angle are presented

for both solutions. As an example, a coast arc is automatically introduced after the Mars flyby.

Additionally, the last thrust arc is significantly shorten after the second step. This is because

the acceleration profile of the shape-based method during this arc is lower than the maximum

acceleration, thus it requires a longer thrusting period to rendezvous with Ceres. Notably, the

peak acceleration obtained in MOLTO-IT Step 1 doubles the maximum acceleration available

in MOLTO-IT Step 2. Nevertheless, this fact has not prevented the algorithm to converge.

A detailed description of the aforementioned trajectories are presented in Table 5.13. Note

that the optimal launch occurs 1 month before predicted by MOLTO-IT Step 1. Additionally,

MOLTO-IT Step 2 is able to adjust the B-plane flyby angle to perform a plane change at Mars.

These solutions are compared with the results presented by Petropoulos [47] using STOUR-

LGTA and GALLOP. The solution from STOUR-LGTA is dominated by the trajectory from

MOLTO-IT Step 1, exhibiting a 14% higher propellant mass fraction for a 143 days longer

transfer. Remarkably, STOUR-LGTA solution does not fulfill the rendezvous condition, i.e. an

additional maneuver is required at arrival, whereas MOLTO-IT Step 1 solution does. Similarly,

the solution from MOLTO-IT Step 2 outperforms the trajectory from GALLOP defining a

1-month earlier flyby on Mars, arriving 20 days earlier at Ceres and consuming 1.72% less fuel.
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5.4.2 Case 2: Earth to Jupiter Flyby

In this second case, a low-thrust mission to flyby the planet Jupiter (J) is addressed. Direct

trajectories, as well as those involving up to 3 intermediate gravity assists on Mars (M), Venus

(V) and Earth (E) are considered. The goal is to search for optimal trajectories with respect

to transfer time and propellant mass and within the launch window starting in January 2029

and closing in December 2030. The minimum duration for the mission is 100 days, while the

transfer time must not exceed 1500 days. The launch hyperbolic excess velocity is fixed to 2

km/s and the initial spacecraft mass is 568 kg. In order to estimate the propellant consumed

during the simulations for MOLTO-IT Step 1, a constant specific impulse of 3000 s is chosen and

Eq.(5.9) is applied. During the optimizations with MOLTO-IT Step 2, the engine thrust, mass

consumption and power available laws presented for the NSTAR engine are used. A summary

of the problem characteristics and involved parameters is outlined in Table 5.14.

Firstly, four different simulations are performed with MOLTO-IT Step 1, considering a fixed

number of 0, 1, 2 and 3 flybys respectively, yet letting the optimizer select the optimal bodies

at which the gravity assisted maneuvers are performed. From each simulation a different set

of Pareto fronts are obtained. Secondly, from each of the previous four Pareto fronts, a set of

solutions is chosen. They are used as initial guess for running MOLTO-IT Step 2 to generate

four new refined Pareto fronts. Solutions from both steps, including important event dates,

flyby velocities and maximum accelerations, are compared. Thirdly, a new run of MOLTO-IT

Step 1 is carried out, where the optimal number and sequence of flybys is now determined by

the optimizer. The resulting Pareto front is juxtaposed with those obtained in the cases with

fixed flybys numbers. Finally, the minimum propellant mass solutions obtained with MOLTO-

IT Step 1 and with MOLTO-IT Step 2 are compared with each other, and with the solutions

that Petropoulos and Longuski [47] reported for the same mission scenario.

Table 5.14: E-J Problem definition

Variable Value

Optimization objective Transfer time vs Propellant mass
Launch Window open date Jan 01, 2029
Launch Window close date Dec 31, 2030
Mission type flyby
Launch v∞ 2 km/s
Launch asymptote declination bounds Free
Minimum Flyby number 0
Maximum Flyby number 3
Available Flyby Bodys Mars, Venus, Earth
Minimum Flyby Radius 200 km
Minimum Flight Time 100 days
Maximum Flight Time 1500 days
Launch mass m0 360 kg
Isp (MOLTO-IT Step1) 3000 s
Propulsion and Power (MOLTO-IT Step 2) NSTAR
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Table 5.15: MOLTO-IT Step 1: E-J GA Parameters for fixed flyby cases

Population size 50
Max. Generations 50
Mutation Fraction 0.3
Crossover Fraction 0.3

In the following pages, the results obtained from running MOLTO-IT with a fixed number of

flybys are shown: In Fig. 5.15 for direct trajectories, in Fig. 5.16 for trajectories with 1 flyby,

in Fig. 5.17 for trajectories with 2 flybys and in Fig. 5.18 for trajectories with 3 Flybys. Firstly,

MOLTO-IT Step 1 was run using the GA parameters summarized in Tab. 5.15. During these

simulations the following sequences have been reported to be optimal: EJ, EVJ, EMJ, EVEJ

and EVEMJ, which agrees with the results available in the literature [47]. Computational times

for each scenario are summarized in Tabs. 5.16-5.22. It can be seen how the average time

required to evaluate one member of the population increases as the number of flybys increases

from 0.14 s for direct trajectories to 0.45 s for trajectories with three flybys. This result agrees

with the fact that in the former case, the inner loop only solves 1 NLP per population, whereas

in the latter case 4 NLPs need to be tackled, one per each interplanetary leg. Consequently, the

total time also increases, from 1.53 min to 4.85 min.

Thereafter, Pareto fronts were obtained with MOLTO-IT Step 2. For such purpose, a time

grid of 0.1 years was defined between the minimum and maximum mission time. For each

discrete time in the grid and for each flyby configuration, a minimum-fuel fixed-time problem

was solved. As initial guess, the closest candidate from MOLTO-IT Step 1 in terms of time of

flight was chosen. Results have been displayed in Figs. 5.15-5.18 for comparing the re-optimized

performances with the solutions from the previous step. The average number of NLP-iterations

and computational times for obtaining a single-point solution of the Pareto with MOLTO-IT

Step 2 are outlined: in Tabs. 5.17- 5.23 for trajectories from 0 to 3 flybys respectively. It can

be noticed that the number of required NLP-iterations rises from 23 to 108 as the number of

interplanetary legs increases, as well as the execution times from 0.74 min to 12.5 min.

Pareto fronts for EJ trajectories approximately match. For the remaining cases MOLTO-

IT Step 2 reduces on average 30% the propellant mass obtained with MOLTO-IT Step 1.

Additionally, other plots comparing solutions from both steps are included: event dates (i.e.,

launch, flybys and arrival), flybys relative velocities, and peak acceleration and total ∆V for

each interplanetary leg. Optimal launch dates in December 2030 are found for EJ transfers, in

April 2030 for EVJ, in April 2029 for EMJ, and in October 2029 for EVEJ and EVEMJ. Notably,

the predicted flyby dates by using the shape-based strategy approximately coincide with the

optimal ones obtained with the complete dynamical model, except for the EVJ sequence. In this

case, the trajectory obtained by MOLTO-IT Step 1 arrives faster at Venus, in particular, one

period of Venus earlier. The remaining parameters do not typically agree, due to the different

dynamical formulations between both steps. Nevertheless, solutions from MOLTO-IT Step 1

represent a good initial estimation for MOLTO-IT Step 2.
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Figure 5.15: MOLTO-IT Step 1 (lines) and MOLTO-IT Step 2 (dots) for direct transfers.

Table 5.16: MOLTO-IT Step 1: E-J 0 flyby case computational time

Variable Avg. CPU Time

Population 0.14 s
Generation 1.9 s
Total 1.53 min

Table 5.17: MOLTO-IT Step 2: E-J 0 flyby case parameters

Nodes 50
Tolerance 10−6

Avg. Iterations 23
Avg. Computational Time 0.74 min
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Figure 5.16: MOLTO-IT Step 1 (lines) and MOLTO-IT Step 2 (dots) for 1 flyby.

Table 5.18: MOLTO-IT Step 1: E-J 1 flyby case computational time.

Variable Avg. CPU Time

Population 0.23 s
Generation 3.1 s
Total 2.6 min

Table 5.19: MOLTO-IT Step 2: E-J 1 flyby case parameters.

Nodes 100
Tolerance 10−6

Avg. Iterations 46
Avg. Computational Time 2.9 min
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Figure 5.17: MOLTO-IT Step 1 (lines) and MOLTO-IT Step 2 (dots) for 2 flybys.

Table 5.20: MOLTO-IT Step 1: E-J 2 flybys case computational time.

Variable Avg. CPU Time

Population 0.33 s
Generation 4.3 s
Total 3.63 min

Table 5.21: MOLTO-IT Step 2: E-J 2 flybys case parameters.

Nodes 150
Tolerance 10−6

Avg. Iterations 81
Avg. Computational Time 5.8 min
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Figure 5.18: MOLTO-IT Step 1 (lines) and MOLTO-IT Step 2 (dots) for 3 flybys.

Table 5.22: MOLTO-IT Step 1: E-J 3 flybys case computational time

Variable Avg. CPU Time

Population 0.45 s
Generation 5.7 s
Total 4.85 min

Table 5.23: MOLTO-IT Step 2: E-J 3 flybys case parameters

Nodes 200
Tolerance 10−6

Avg. Iterations 108
Avg. Computational Time 12.5 min
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Figure 5.19: MOLTO-IT Step 1: E -J Pareto front for fixed and free number of flybys.

Table 5.24: MOLTO-IT Step 1: E-J Free flyby number case computational time

Variable Avg. CPU Time

Population 0.33 s
Generation 4.12 s
Total 4 min

Thereafter, the problem was solved again applying MOLTO-IT Step 1 without setting a fixed

flyby number, i.e., the algorithm was in charge of automatically obtaining the optimal amount

of gravity assists for each region in the Pareto front. The same parameters for the GA indicated

in Tab. 5.15 were selected. Besides, the number of flybys was included as the third objective

in the fitness function. This technique has been incorporated to maintain the diversity in the

solution, forcing the algorithm to keep at least one member of the population for each possible

configuration. Without this approach, trajectories with long flyby sequences may be pruned

out early in the process, because feasible and low-cost trajectories are more difficult to find

as the number of flybys increases. A different method would imply increasing the number of

population. However, this strategy would result in unnecessarily large execution times.

Figure 5.19 illustrates the population of Pareto optimal trajectories obtained therefrom. It

can be seen that the algorithm converged to three different flyby sequences: EVJ, EVEJ and

EVEMJ for an increasing time of flight respectively. Note that, in this case EJ and EMJ

configurations are not part of the Pareto solution. In order to corroborate that the algorithm

outputted the globally optimal sequences of flybys, solutions from the previous fixed flybys cases

are also displayed. It can be observed that the free flyby solution corresponds to the envelope

of the fixed flyby cases. Notably, the total time needed to compute all the fixed flyby solutions

was 12.6 min, whereas the free flyby case terminated successfully after 4 min (see Table 5.24).

Hence, the automatic algorithm is able to find the same solutions in terms of Pareto optimality

three times faster than running the four fixed flyby cases independently.
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Figure 5.20: MOLTO-IT Step 1 Pareto vs MOLTO-IT Step 2 Pareto

In Figure 5.20, the non-dominated solutions obtained from MOLTO-IT Step 1 and MOLTO-

IT Step 2 from the previous simulations are compared. It is clear that MOLTO-IT Step 2

Pareto is mainly below the one obtained in MOLTO-IT Step 1, because in the former the control

profile is not constrained to follow the one of the shape-based method. The relative reduction

in propellant mass achieved after MOLTO-IT Step 2 ranges from 20% to 40%. Additionally, it

is worth noting that the switching point from EVEJ to EVEMJ is well predicted in MOLTO-IT

Step 1 in terms of flight time. However, the region corresponding to one flyby is not so well

predicted as it has already been discussed. Previous comparisons suggest that the shape-based

solution provides a good starting point for the direct optimizer without any a-priori knowledge

of the optimal solution and that performances obtained are close to the true optimal trajectories,

even for long flyby sequences. This approximation works better for transfers to the outer planet

than for those to the inner solar system.

The geometry of the trajectories with minimum fuel expenditures from MOLTO-IT Step 1

and MOLTO-IT Step 2 are displayed in Fig. 5.21a and Fig. 5.21b respectively. They correspond

to a 3.2 years EVEMJ configuration. Both results are listed and compared in Table 5.25 with

those obtained by Petropoulos and Longuski [47] using STOUR-LGTA and GALLOP for the

same flyby sequence. It can be seen that the solution from MOLTO-IT Step 1 exhibits a 55%

lower propellant mass than STOUR-LGTA for a 552 days shorter transfer mission. Remarkably,

the average thrust acceleration for each leg predicted by the spirals is much lower than the one

predicted by the exponential sinusoids. Besides, a purely coasting leg from Venus to Mars is

found in our solution. Similarly, MOLTO-IT Step 2 solution presents a 66% lower propellant

mass than the one obtained by GALLOP. Probably, the solution found by STOUR-LGTA

corresponds to a local minimum, thus GALLOP could only converge in the neighborhood of

this trajectory. This fact highlights the importance of selecting a good initial guess trajectory.
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(a) MOLTO-IT Step 1 (b) MOLTO-IT Step 2

Figure 5.21: E-V-E-M-J Minimum fuel trajectory for 3.2 years

Table 5.25: E-V-E-M-J Minimum propellant mass detailed solution.

MOLTO-IT Petropoulos and Longuski [47]

Parameter Units Step 1 Step 2 STOUR-LGTA GALLOP

Launch Date - Oct 1, 2029 Sept 28, 2029 Sept 3, 2029 Sept 3, 2029
Launch v∞ km/s 2 2 2 2
Initial mass kg N/A 360 360 360

V Flyby Date - Feb 22, 2030 Mar 19, 2030 Feb 15, 2030 Feb 15, 2030
V Flyby v∞ km/s 2.59 5.15 3.64 3.77
V Flyby Altitude km 119,985 15,720 6,533 30,000
V B-Plane angle deg 180.0 69.6 178.3 60.7
Avg. thrust accel. mm/s2 0.03 0.10 0.12 N/A
Mass kg N/A 344.47 N/A N/A

E Flyby Date - Jan 04, 2031 Jan 11, 2031 Jan 15, 2031 Dec 30, 2030
E Flyby v∞ km/s 8.33 8.32 6.50 5.18
E Flyby Altitude km 201 200 655 1,035
E B-Plane angle deg 180.0 -175.5 -180.0 -176.5
Avg. thrust accel. mm/s2 0.15 0.01 0.16 N/A
Mass kg N/A 339.66 N/A N/A

M Flyby Date - May 09, 2031 May 13, 2031 May 26, 2031 May 26, 2031
M Flyby v∞ km/s 15.21 15.43 13.70 11.26
M Flyby Alttitude km 200 200 200 200
M B-Plane angle deg 0.0 -9.0 -1.8 -5.5
Avg. thrust accel. mm/s2 0.00 0 .00 0.10 N/A
Mass kg N/A 339.66 N/A N/A

Arrival Date - Aug 14, 2033 Aug 21, 2033 Jan 20, 2035 Jan 20, 2035
Arrival v∞ km/s 5.65 5.62 5.85 6.25
Avg. thrust accel. mm/s2 0.09 0.02 0.14 N/A
Mass kg N/A 328.92 N/A N/A

Prop. fraction - 0.132 0.088 0.294 0.256
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5.4.3 Case 3: Earth to Jupiter Flyby with Fixed Reorientation Times

This example is based on the results obtained for the Jupiter flyby mission in the previous

section. In those tests, the spacecraft was allowed to continuously reorient for performing

the low-thrust maneuvers. However, at this time the spacecraft is constrained to maintain

the inertial attitude during a given minimum period of time to comply with the operational

constraint. For running this tests the EVEJ configuration for a mission duration of 2.9 years is

selected. The geometry of the trajectories obtained from MOLTO-IT Step 1 and MOLTO-IT

Step 2 are displayed in Fig. 5.22a and Fig. 5.22b respectively. Detailed results for both mission

profiles are presented in Table 5.26. The trajectory from the second step consumes 43.9 kg of

propellant. The profile consists on a thrust-coast sequence from Earth to Venus, a coast phase

From Venus to Earth and a thrust/coast arc to encounter Jupiter. The duration of the first

thrust arc is 50 days, while the duration of the second arc is 100 days.

The unconstrained solution from MOLTO-IT Step 3 was used to feed MOLTO-IT Step 2

again but with the operational constraint activated. Four different simulations were carried

out. Each of them imposed a minimum re-orientation time of 10, 15, 20, 40 days respectively.

The number of re-orientations is not imposed but optimized by the software. The initial date is

fixed and the mission duration is constrained to be 2.9 years to agree with the initial guess and

properly evaluate the penalty in the propellant mass consumed. The thrust arcs provided by

the initial guess are divided into sub-arcs of the same duration. For these simulations, the first

and second thrust arcs were divided in 5 and 14 phases respectively. Then, at each sub-arc a

constant orientation angle is assumed and the nonlinear condition defined in Eq. ?? is applied.

The algorithm is in charge of selecting which sub-arcs has to be enlarged to fulfill with the

conditions and which ones have to be deleted because of being unnecessary. Solutions were

obtained on an average of 50 NLP-iterations and 6 minutes.

The obtained in-plane and out-of-plane thrusting angles, measured with respect to the in-

ertial reference frame, for each case are plotted in Figs 5.23a-5.23d and compared with the

unconstrained case. In all cases, the total duration of the thrust arcs do not vary with respect

to the free case, i.e. the optimal on/off switching dates do not vary even though the minimum

re-orientations times are fixed. More detailed information is presented in Tables 5.28-5.31,

where the notation Mi refers to the ith maneuver. Information regarding the duration of the

maneuver, and the fixed inertial in-plane and out-of-plane angles is incorporated. The optimal

inertial angles correspond to the average value of the free case for the same time-period. Note

that the longest maneuvers are found when the angular velocity of the free solution is lower.

In this example, it happens at the beginning of the first arc and at the end of the second one.

In Table 5.27 the propellant mass fractions for each case are shown. It can be be seen that the

required propellant mass increases as the reorientation time increases, because the less freedom

to maneuver the less optimal the trajectory. Notably, the mission can be accomplished with

only three re-orientations carrying 1.31% of additional propellant mass, i.e. 576 grams more.



Chapter 5. MOLTO-IT: Interplanetary Trajectories 154

(a) MOLTO-IT Step 1 (b) MOLTO-IT Step 2

Figure 5.22: E-V-E-M-J Minimum fuel trajectory for 3.2 years

Table 5.26: E-V-E-J Minimum propellant detailed solution

MOLTO-IT

Parameter Units Step 1 Step 2

Launch Date - Oct 1, 2029 Oct 12, 2029
Launch v∞ km/s 2 2
Initial mass kg N/A 360

V Flyby Date - Feb 20, 2030 Mar 24, 2030
V Flyby v∞ km/s 2.49 5.36
V Flyby Altitude km 11,285 16,285
V B-Plane angle deg 180 -62
Mass kg N/A 287

Earth Flyby Date - Jan 06, 2031 Jan 15, 2031
E Flyby v∞ km/s 9.05 9.13
E Flyby Altitude km 200 200
E B-Plane angle deg 180 180
Mass kg N/A 287

Arrival Date - Oct 29, 2032 Sep 05, 2032
Arrival v∞ km/s 10.62 10.68
Mass kg N/A 263

Propellant mass fraction - 0.20 0.12

Table 5.27: E-V-E-J Propellant mass fractions for different reorientation times

Case Propellant mass fraction

Free 0.1220
10 days 0.1220
15 days 0.1223
20 days 0.1224
40 days 0.1236
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Figure 5.23: MOLTO-IT Step 2: Steering angles for free fixed reorientations times
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Table 5.28: E-V-E-J Maneuver plan for minimum 40 days reorientation times

Variable M1 M2 M3
Duration (days) 50.27 41.13 58.97
In-plane ang. (deg) -55.56 -131.02 -99.16
Out-of-plane ang. (deg) -32.37 -1.12 -7.20

Table 5.29: E-V-E-J Maneuver plan for minimum 20 days reorientation times

Variable M1 M2 M3 M4 M5 M6
Duration (days) 25.36 24.65 20.81 21.18 23.75 33.22
In-plane ang. (deg) -61.34 -49.69 -138.67 -122.19 -106.77 -92.62
Out-of-plane ang. (deg) -34.41 - 30.87 0.10 -2.38 -5.07 -8.47

Table 5.30: E-V-E-J Maneuver plan for minimum 15 days reorientation times

Variable M1 M2 M3 M4 M5 M6 M7 M8 M9
Duration (days) 17.19 16.48 16.29 10.00 15.00 15.00 15.11 17.02 21.62
In-plane ang. (deg) -63.18 -55.14 -47.64 -141.08 -129.23 -117.69 -107.36 -98.35 -90.19
Out-of-plane ang. (deg) -34.84 -33.03 -30.03 0.49 -1.28 -3.07 -4.89 -6.84 -9.10

Table 5.31: E-V-E-J Maneuver plan for minimum 10 days reorientation times

Variable M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14
Duration (days) 10.00 10.00 10.00 10.00 10.00 10.43 10.46 10.47 10.58 10.78 11.14 11.32 11.33 11.79
In-plane ang. (deg) -64.98 -60.14 -55.28 -50.56 -46.23 -142.69 -134.37 -126.05 -117.98 -110.44 -103.59 -97.50 -92.38 -88.24
Out-of-plane ang. (deg) -35.16 -34.31 -33.17 -31.59 -29.29 0.74 -0.50 -1.74 -3.00 -4.29 -5.63 -7.01 -8.37 -9.67
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5.4.4 Case 4: Earth to Pluto Rendezvous

The last example considers a low-thrust rendezvous mission to Pluto. The goal is to search for

trajectories that maximizes the dry mass at arrival within the launch window opening in January

2025 and closing in January 2035 for a flight time up to 25 years. The algorithm is allowed to

choose up to four flybys of Venus (V), Earth (E), Mars (M), Jupiter (J), Saturn (S), or Uranus

(U). The spacecraft is equipped with the nuclear propulsion system of Table 5.8. Unlike in the

previous examples, the initial mass and launch velocity are not fixed. Instead, the spacecraft

launches on an Atlas V 551 with a Star 48 upper stage. Thus, the initial mass becomes an

optimization variable, and the launch velocity is obtained from the launcher performance model

shown in Eq.(5.44), where the fitting coefficients are taken from Ref. [229]. A Newton’s method

solves the resulting non-linear equation. Standard preliminary design margins are applied as

Englander and Conway [192]: 15% power margin, 10% propellant margin and 90% duty cycle.

Firstly, two different tests are run with MOLTO-IT Step 1: one applied the shaped-based

method as default, whereas the other imposes a propulsion constraint of Eq.(5.26) to help to

prune out infeasible trajectories. The pruning criteria also account for the power and propellant

margins as well as for the duty cycle. To estimate the propellant consumed, a constant specific

impulse of 2000 s is chosen and Eq.(5.9) is applied. Secondly, the maximum dry mass solution

of each Pareto front is refined in MOLTO-IT Step 2 including launch asymptote declination

bounds. The initial mass remains an optimization variable which relates with the launch velocity

via the launcher performance and only the flight time is limited up to 25 years. The time history

for the Isp is also optimized by the algorithm. It has been found that trajectories without the

propulsion constraint are infeasible, whereas the one with the constraint fairly approximate the

optimal solution. Results are compared with those reported by Englander and Conway [192].

Table 5.32: E-P Problem definition

Variable Value

Optimization objective Transfer Time vs Dry Mass
Launch Window open date Jan 01, 2025
Launch Window close date Jan 01, 2035
Mission type Rendezvous
Maximum Flight Time 25 years
Launcher vehicle Atlas V 551 with Star 48 upper stage
Launch asymptote declination bounds [-28.5,28.5] (Kennedy Space Center)
Minimum Flyby number 0
Maximum Flyby number 4
Flyby Bodys Venus, Earth, Mars, Jupiter, Saturn, Uranus
Minimum flyby Radius 200 km
Launch mass bounds [1400, 3500] kg
Propulsion and Power system VSI with 60% efficiency and Isp in [1000,3000]s
Power margin 15%
Propellant margin 10%
Duty cycle 90%
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Table 5.33: MOLTO-IT Step 1: E-P GA parameters for fixed flyby cases

Population size 50
Max. Generations 100
Mutation Fraction 0.3
Crossover Fraction 0.3

19 20 21 22 23 24 25

1200

1300

1400

1500

1600

1700

1800

1900

Figure 5.24: MOLTO-IT Step 1: E-P Pareto front solution without propulsion constraint
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Figure 5.25: MOLTO-IT Step 1: E-P Pareto front solution with propulsion constraint

MOLTO-IT Step 1 was run with the GA parameters presented in Table 5.33 and without

applying the propulsion constraint. The Pareto front after 1000 generations is displayed in

Figure 5.24. Two mission profiles have been found to be optimal: trajectories with one flyby

on Mars, and trajectories with one flyby on Saturn. Dry masses range from 1300 kg to 1850 kg,

while all solutions reached the maximum allowed value of 3500 kg for the launch mass. However,

when this trajectories were used as initial guess for feeding MOLTO-IT Step 2, the algorithm did

not converge for any case. It can be concluded that the shaped based solutions were infeasible

for the real mission scenario. Therefore, a new simulation was run with MOLTO-IT Step 1 but

incorporating the propulsion constraint for each leg. In Figure 5.25 the solutions obtained after

10 min are shown. Now, the optimal sequences comprise trajectories to Pluto via Mars, and via

Jupiter. Dry masses range from 550 kg to 1135 kg, while launch masses range from 1700 kg to

2100 kg. Notably, the use the propulsion constraint has oriented the GA to different optimal

sequences, as well as the obtained performances have significantly changed.
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Figure 5.26: MOLTO-IT Step 2: E-J-P Minimum fuel trajectory planar view

Figure 5.27: MOLTO-IT Step 2: E-J-P Minimum fuel trajectory 3D view

Table 5.34: E-J-P Maximum delivered mass detailed solution

MOLTO-IT Englander and Conway [47]

Parameter Units Step 1 Step 2 EMTG

Launch Date - Dec 13, 2028 Dec 12, 2028 Dec 15, 2028
Launch v∞ km/s 8.4 9.15 8.77
DLA deg - 1.20 4.5
Initial mass kg 1923 1734 1870

Jupiter Flyby Date - Aug 28, 2030 Sep 30,2030 Oct 6, 2030
Jupiter Flyby v∞ km/s 957022 857022 788039
Jupiter Flyby Altitude km 8.567 9.285 6.533
Jupiter B-Plane angle deg 0 -22.78 4.3
Mass kg 1798 1674 1703

Arrival Date - Dec 03,2053 Dec 06,2053 Dec 13, 2053
Arrival v∞ km/s 0 0 0
Delivered Mass kg 1187 1061 1064
Dry Mass kg 1135 994 984
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The maximum delivered mass solution was used as initial guess for MOLTO-IT Step 2. In

this case 100 uniformly distributed nodes along time were used for the discretization of each

interplanetary leg. This value is higher than in the previous examples because the uniform

discretization with 50 nodes did not provide enough resolution close to Pluto, since most nodes

are gathered close to Jupiter. A non-uniform grid with respect to time would have produced

more efficient results. The trajectory converged after 13 min, 120 NLP-iterations with a NLP-

tolerance of 10−6. The geometry is displayed in Fig. 5.26 and in Fig. 5.27. It is noted that

two optimal thrusting arcs are found: one after leaving Earth and lasting for 1.5 years to adjust

the trajectory for the flyby with Jupiter, and the other one starting 15 years before arriving to

Pluto. Fig. 5.28 shows the time history of power and propulsion parameters over the course of

the mission. Notably, the optimizer chooses the Isp to be close to the lower bound of 1000 s at

the beginning and end of the mission, but prefers a higher Isp and therefore a lower thrust for

the end of the first thrust arc and at the beginning of the second one.

In Tab. 5.34 a detailed description of the solutions from MOLTO-IT are shown along with

the EJP trajectory found in [192]. Note the ability of MOLTO-IT Step 1 to find the optimal

launch date within the ten years launch window, as well as to estimate the launch mass with

a 10% error. The dry mass at Pluto is predicted with less than 15% error. Notably, without

the propulsion constraints the launch mass predicted by MOLTO-IT Step 1 was 3500 kg, which

implies a 252% error. Then, looking at the solutions from MOLTO-IT Step 2 and from EMTG

it is found that our trajectory delivers 1% more dry mass. This difference may be due to the

fact that EMTG used a different set of parameters for the launcher’s performances. The author

did not have access to those data and searched for a different, yet reliable source. Remarkably,

the EMTG solution was found after 67 hours. They claimed that the optimal solution was

identified in less than half of that time. Instead, our solution was found after 10 min of running

MOLTO-IT Step 1 and 13 min of running MOLTO-IT Step 2. Therefore, assuming 33 hours

for EMTG, our methodology found the same solution 86 times faster.
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Figure 5.28: MOLTO-IT Step 2: Time history of propulsion for E-J-P Trajectory
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Figure 5.29: E-M-P Minimum fuel trajectory ecliptic projection

Table 5.35: E-M-P Maximum delivered mass detailed solution

MOLTO-IT

Parameter Units Step 1 Step 2

Launch Date - Dec 5, 2026 Dec 15, 2026
Launch v∞ km/s 8.78 9.23
DLA deg - 27.56
Initial mass kg 1807 1700

Mars Flyby Date - Feb 27, 2027 Mar 19, 2027
Mars Flyby v∞ km/s 13.23 15.92
Mars Flyby Altitude km 200 200
Mars B-Plane angle deg 0 0
Mass kg 1750 1680

Arrival Date - Sep 01, 2051 Dec 09, 2051
Arrival v∞ km/s 0 0
Delivered Mass kg 765 514
Dry Mass kg 650 395
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Figure 5.30: MOLTO-IT Step 2: Time history of propulsion for E-M-P Trajectory
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Finally, the maximum dry mass trajectory obtained for the EMP sequence is re-optimized

in MOLTO-IT Step 2. The resulting trajectory is shown in Figure 5.29. In this case, 50 nodes

were used for the discretization of the EM leg, and 200 nodes for the MP leg. The trajectory

converged after 23 min and 125 NLP-iterations with a NLP-tolerance of 10−6. It is noted that

two optimal thrusting arcs are found. The first one starts two months after leaving Earth and

lasts 8 years after the Mar Flyby. The second thrust arc starts 10 years before arriving to Pluto.

Fig. 5.30 shows the time history of power and propulsion parameters over the course of the

mission. In a similar fashion than in the previous example, the optimizer chooses lower values

for Isp at the beginning and end of the mission, but prefers a higher Isp and therefore a lower

thrust for the end of the first thrust arc and for the beginning of the second one. In Tab. 5.35 a

detailed description of the solutions from MOLTO-IT are shown. Notably, the estimate launch

mass by the shape-based method differs 6% from the optimal one, whereas the dry mass differs

40%. However, the main events days are better predicted. In this case, Jacob and Conway

[192] did not provided detailed results for this sequence, but reported to have obtained a EMP

trajectory with a dry mass of 329 kg. Therefore, our solution delivers 16% more dry mass.
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6.1 Conclusions

In this dissertation, two novel multi-objective optimization algorithms for designing low-thrust

space missions have been presented and tested. The main goals of this thesis were threefold: 1)

increase the efficiency of searching wide design spaces, 2) reduce the amount of necessary human

involvement in the process, and 3) enhance the capabilities to automatically include complex

operational constraints in the optimization solution. For such purpose, an in-depth literature

review of available methodologies and software tools for tackling the problem of optimizing low-

thrust trajectories has been presented in chapter 2. It has been noted that current techniques

could be improved towards more flexible and rapid tools, able to not only optimize the control-

history of the low-thrust engine under complex operational restrictions, yet also to optimize

decision-making processes and mission planning in an automatic manner and with respect to

multiple conflicting criteria. Such enhanced capabilities would allow to design more ambitious

and cost-effective space missions.

In light of the previous gaps, three main contributions have been identified in this thesis.

Firstly, a general mathematical framework based on multi-objective Hybrid Optimal Control

have been introduced in chapter 3. Secondly, a numerical solution approach called MOLTO-

OR (Multi-Objective Low-Thrust Trajectory Optimizer for Orbit Raising) able to concurrently

optimize fully electric, fully chemical and combined chemical-electric transfers between Earth-

centered orbits has been presented in chapter 4. It is based on a sequential two-step procedure,

which consists on MOLTO-OR Step 1 and MOLTO-OR Step 2. Thirdly, a numerical solution

approach termed MOLTO-IT (Multi-Objective Low-Thrust Trajectory Optimizer for Interplan-

etary Trajectories) able to automatically optimize the number and sequence of gravity assists for

low-thrust interplanetary transfers has been introduced in chapter 5. It is based on a sequential

two-step procedure, which consists on MOLTO-IT Step 1 and MOLTO-IT Step 2. From each

contribution a set of conclusions have been derived:

• The multi-objective Hybrid Optimal Control Problem is a suitable framework for modeling

low-thrust trajectory optimization problems including design-making processes or mission

planning. In this thesis, the selection of the optimal number and sequence of gravity assists

maneuvers, chemical engine firings, and electric engine on-off switchings, as well as the

selection of the optimal transfer type (fully electric, fully chemical or combined chemical-

electric) and propulsion system have been included as discrete events in the formulation

of the problem. Additionally, the determination of the trajectory and the optimal steering

law of the electric engine have been incorporated in the model as continuous dynamics.

Therefore, the proposed model increases the flexibility of mathematically formulating low-

thrust trajectory optimization problems and widens the design space to address different

missions profiles within a single framework.
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• Regarding MOLTO-OR algorithm:

* The predefined Q-law steering law implemented in MOLTO-OR Step 1 was proven to

provide more efficient GTO-GEO fully electric transfers when compared to other ap-

proximate methods available in the literature in terms of propellant mass consumed

and time-of-flght. The Q-law approximated the optimal number of revolutions ob-

tained with MOLTO-OR Step 2 with a maximum error of 11 orbits and a maximum

penalty of 0.3% in propellant mass. The benchmark methods lead to a maximum

error of 22 revolutions with respect to the optimal solution, and a maximum penalty

of 2% in propellant mass.

* MOLTO-OR Step 2 successfully imposed operational restrictions to avoid the GEO

ring, to arrive at a certain slot, and to limit the spacecraft slew rate in fully electric

transfers. Results were obtained for a GTO-GEO transfer. Operationally constrained

trajectories were obtained with computational times ranging from 4.67 min to 18.95

min, while unconstrained solutions were found from 1.98 min to 10.74 min. Notably,

constrained solutions were able to avoid 104 crossings of the GEO ring, while match-

ing a final Earth’s longitude of 90 deg, and reducing a 75% the maximum slew rate

velocity. Obtained penalties with respect to the unconstrained case were below 6.37%

in terms of propellant mass.

* MOLTO-OR Step 1 was tested on a LEO-GEO transfer to simultaneously optimize

fully electric, fully chemical and combined chemical-electric transfers with respect to

propellant mass, time of flight and final power ratio. The algorithm was run during

16.8 min to obtain a well-spread Pareto front. Results show that minimizing the

radiation damage requires more propellant mass dedicated for the chemical phase

than for minimizing the propellant mass. Obtained trajectories were used to feed

MOLTO-OR Step 2 for solving a series of fixed-time min-fuel problems. The average

gain in terms of fuel mass by re-optimization with MOLTO-OR Step 2 was 3%.

The computational times for this step range from a couple of minutes for chemical

transfers to one hour for the electric transfer.

* MOLTO-OR Step 1 solved the previous GTO-GEO and LEO-GEO scenarios. In

this case, the algorithm was also able to select the optimal propulsive system among

a user-provided list of available options, consisting on two electric engines and one

chemical thruster. Well spread Pareto front solutions were obtained in terms of flight

time, delivered mass and final power ratio after 17 min for the LEO-GEO case and

after 9 min for the GTO-GEO case. Different strategies were found for the hybrid

transfers under considerations in this thesis. Low-thrust-high-efficient electric engines

are preferred to minimize the radiation absorbed when the transfer times are short

(i.e., the magnitude of the chemical firings is high). On the contrary, high-thrust-

low-efficient electric engines are better for minimizing propellant usage.
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• Regarding MOLTO-IT algorithm:

* MOLTO-IT Step 1 was able to automatically find direct and via Mars flyby transfers

to rendezvous with Ceres for a one year launch window. A well-spread Pareto front in

terms of flight time and propellant mass consumed were obtained after 3.2 min. The

most propellant optimal solution found with MOLTO-IT Step 1 exhibits a 12% lower

propellant mass fraction than STOUR-LGTA (Satellite Tour Design Program Low-

Thrust Gravity-Assist) for a 143 days shorter transfer mission. For the same scenario,

MOLTO-IT Step 2 reduces 1.7% the propellant mass compared to GALLOP (Gravity

Assisted Low-Thrust Local Optimization Program) for a 20 days shorter mission.

* MOLTO-IT Step 1 successfully solved a flyby mission to Jupiter the algorithm, au-

tomatically finding trajectories with up to three flybys, including Venus, Earth and

Mars gravity assists for a two year launch window. A well-spread Pareto fronts in

terms of flight time and propellant mass consumed were obtained after 4 min. The

most propellant optimal solution from MOLTO-IT Step 1 exhibits a 55% lower pro-

pellant mass than STOUR-LGTA for a 552 days shorter transfer mission. For the

same scenario, MOLTO-IT Step 2 reduces 65% the propellant mass of GALLOP.

* MOLTO-IT Step 2 capability to impose fixed reorientation times constraint was

tested on an Earth-Venus-Earth-Jupiter trajectory. It has been noted that the longest

maneuvers are found when the angular velocity of the free solution was lower. Addi-

tionally, it was found that the required propellant mass increased as the reorientation

time increased. Notably, the mission can be accomplished with only three reorienta-

tions carrying 1.31% of additional propellant mass with respect to the free case.

* MOLTO-IT Step 1 feature to account for thrust constraints was demonstrated on a

rendezvous mission to Pluto where the initial spacecraft mass is free. A well spread

Pareto front with respect to time of flight and delivered mass was obtained after 10

min. The optimal launch date for an Earth-Jupiter-Pluto mission was found within

the ten years launch window, and the launch mass was estimated with a 10% error.

The dry mass at Pluto is predicted with less than 15% error. Notably, without the

propulsion constraints the launch mass predicted by MOLTO-IT Step 1 exhibited a

252% error. The solution from MOLTO-IT Step 2 were compared with those obtained

with the tool EMTG (Evolutionary Mission Trajectory Generator). It delivers 1%

more dry mass and was obtained 86 times faster in terms of computing time.

Overall, we can conclude that the solution approaches studied in this dissertation have a

strong potentiality in assisting mission designers toward concurrent engineering designs, due to

their proven features to provide fast results with minimal user interaction, to allow for deep

insights of the trades between different mission concepts, and to include complex operational

constraints in the optimization process.
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6.2 Future Work

The work carried out within this thesis opens up numerous avenues of research. In this section,

we will proceed to explore the most prominent ones:

• The capability of optimizing the propulsion subsystem in MOLTO-OR Step 1 could be ex-

tended to include other subsystems such as power (e.g., solar array size, material), attitude

(e.g. maximum slew rate velocity) or the selection of the optimal launcher (e.g., initial

mass, initial orbit). In case the parameters are to be optimized within a given continuous

interval, they can be treated as a set of continuous variables by the genetic algorithm.

In case they are to be selected among a user-provided list available options, they would

be model as a set of integer variables to be optimized by the heuristic algorithm. Such

methodology would provide mission designers in one run with a set of complete spacecraft

designs and transfer trajectories that are optimal with respect to various criteria.

• Increase the number of operational constraints and the accuracy of dynamical model

implemented in MOLTO-OR Step 2. For instance, including thrust pointing constraints

would allow the spacecraft to comply with constraints deriving from the need of having

the solar panels facing the Sun, or avoiding the blinding of the star-trackers if necessary.

Additionally, limiting the time spent in eclipse may allow the spacecraft to comply with

power subsystem constraints. These restrictions can be incorporated into MOLTO-OR

Step 2 without changing the previous formulation. Such results would allow to avoid

the need to perform non-optimal maneuvers during the real mission, thus optimizing the

propellant usage during the mission and enhancing its success.

• Improve the features of MOLTO-IT Step 1 to compute interplanetary transfers by in-

cluding additional thrust-coast arcs. This configuration would be suitable for optimizing

multi-revolution transfers, such as those typically required to visit the planets of the inner

solar system. Additionally, an heuristic estimation of the required out-of-plane thrust

could be included in the model to improve the quality of the performance calculations.

Furthermore, allowing the optimizer to select the optimal arrival body would permit to

tackle the problem of exploring and mining asteroids where the optimal target is free, yet

subject to mission requirements and constraints. The target body may be modeled as an

integer variable and optimized by the genetic algorithm.

• Finally, the algorithm MOLTO could be extended to solve other important problems is

astrodynamics, such as low-thrust transfers within the three-body dynamics following

a similar approach consisting on two sequential step. In the first step, and heuristic

algorithm along with simplified dynamical models would allow to obtain quick performance

estimates. In the second step, candidate trajectories would be re-optimized using more

accurate models. A gradient-based solver would be in charge of optimizing the NLP

resulting from the direct collocation of the problem.
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