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Abstract

This work focuses on the problem of precise, aggressive and safe Micro

Aerial Vehicle (MAV) navigation as well as deployment in applications which

require physical interaction with the environment.

To address these issues, we propose three different MAV model based con-

trol algorithms that rely on the concept of receding horizon control. As a

starting point, we present a computationally cheap algorithm which utilises an

approximate linear model of the system around hover and is thus maximally

accurate for slow reference maneuvers. Aiming at overcoming the limitations of

the linear model parameterisation, we present an extension to the first control-

ler which relies on the true nonlinear dynamics of the system. This approach,

even though computationally more intense, ensures that the control model is

always valid and allows tracking of full state aggressive trajectories. The last

controller addresses the topic of aerial manipulation in which the versatility of

aerial vehicles is combined with the manipulation capabilities of robotic arms.

The proposed method relies on the formulation of a hybrid nonlinear MAV-arm

model which also takes into account the effects of contact with the environ-

ment. Finally, in order to enable safe operation despite the potential loss of an

actuator, we propose a supervisory algorithm which estimates the health status

of each motor. We further showcase how this can be used in conjunction with

the nonlinear controllers described above for fault-tolerant MAV flight.

While all the developed algorithms are formulated and tested using our spe-

cific MAV platforms (consisting of underactuated hexacopters for the free flight

experiments, hexacopter-delta arm system for the manipulation experiments),

we further discuss how these can be applied to other underactuated/overactu-

ated MAVs and robotic arm platforms. The same applies to the fault tolerant

control where we discuss different stabilisation techniques depending on the

capabilities of the available hardware.

Even though the primary focus of this work is on feedback control, we

thoroughly describe the custom hardware platforms used for the experimental

evaluation, the state estimation algorithms which provide the basis for control

as well as the parameter identification required for the formulation of the various

control models.

We showcase all the developed algorithms in experimental scenarios de-

signed to highlight the corresponding strengths and weaknesses as well as show

that the proposed methods can run in realtime on commercially available hard-

ware.
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Platform design . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Model based control . . . . . . . . . . . . . . . . . . . . 3

1.2.3 Fault tolerant control . . . . . . . . . . . . . . . . . . . . 6

1.2.4 Aerial manipulation . . . . . . . . . . . . . . . . . . . . 7

1.2.5 Learning based frameworks . . . . . . . . . . . . . . . . 9

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Paper I: Linear MPC with soft constraints. . . . . . . . 10

1.3.2 Paper II: Fault tolerant NMPC . . . . . . . . . . . . . . 11

1.3.3 Paper III: NMPC for aerial manipulation . . . . . . . . 13

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1 Motivation

During the past years, MAVs have obtained significant popularity in the robotics

community and have attracted the attention of both the academic and industrial

world. The latest technological advancements in areas ranging from battery and

computer systems design to the software-related engineering optimisation, computer

vision and automatic control have enabled the cheap and successful MAV deployment

in civil applications. Among those are: (i) search and rescue [Doherty and Rudol,

1



1. Introduction

2007], (ii) agricultural monitoring [Zhang and Kovacs, 2012, Sa et al., 2018b], (iii)

infrastructure inspection [Liu et al., 2014, Ozaslan et al., 2017] and (iv) parcel

delivery [Rose, 2013, Dorling et al., 2017].

From a research perspective, development of aerial vehicles and their deployment

in the unstructured real world, requires combination of multiple scientific topics,

ranging from the actual hardware design to the software related algorithms that en-

able autonomous navigation. In this work, we discuss topics related to: (i) platform

design, (ii) state estimation and (iii) control.

Particularly, a focus on MAV control will be given, with the emphasis on: (i)

the design and implementation of algorithms which exploits the specific system’s

capabilities and constraints, (ii) the robust operation under actuator faults and (iii)

the integration of physical interaction capabilities. Regarding the state estimation,

we mainly rely on existing works appropriately re-purposed to fit our needs and

sensor setups while the same applies to the platform design, where we use already

proposed platforms to showcase our algorithms.

1.2 Background

In this Section we provide a brief overview of the research topics discussed in this

work in order to set the scene for the contributions listed in the next Section. A

more specific comparison of the contributions of this work with related research is

provided in the individual Chapters.

1.2.1 Platform design

Depending on the target application numerous different platform designs have been

proposed, ranging from simple quadrotors [Castillo et al., 2003], multirotors with

non collinear motors [Rajappa et al., 2015, Brescianini and D’Andrea, 2016], more

complex designs which actively control the per-motor thrust direction [Papachristos

et al., 2016, Ryll et al., 2016, Kamel et al., 2018] or even platforms which can –on

command– adapt their morphology [Riviere et al., 2018, Falanga et al., 2019, Bucki

and Mueller, 2019].

Since the main focus of this work in on the software side and not the platform

design by itself, we adopt the most common type of multirotors, those equipped with

collinear motors and fixed pitch propellers. Control of these underactuated vehicles,

2



1.2. Background

(a) Tracking and landing on a moving target.
Two cameras were used for localisation and
target detection. [Tzoumanikas et al., 2019]

(b) Fault detection and recovery despite the
loss of an actuator. MAV maintains control of
position and yaw. [Tzoumanikas et al., 2020b]

(c) Indoor exploration of an unknown area us-
ing a depth sensor for online mapping. [Dai
et al., 2020]

(d) Joint MAV-aerial manipulator control for
tasks including contact. [Tzoumanikas et al.,
2020a]

Figure 1.1: Four snapshots of our MAVs performing autonomous missions.

is solely achieved by varying the speed of each motor which results in a change of

the produced thrust and torque. A few illustrative examples of our MAVs executing

autonomous missions are shown in Figure 1.1.

Regarding the required payload such as onboard sensors and computers which is

also part of the platform design, we use commercially available products. When

this is not possible e.g. the MAV mounted robotic arm for interaction tasks, we use

already proposed in literature platforms modified to meet our needs.

1.2.2 Model based control

In early MAV control works such as [Castillo et al., 2003, Bouabdallah et al.,

2004, Bouabdallah, 2007] simple Proportional Integral Derivative (PID) or Linear

Quadratic Regulator (LQR) controllers based on linearised system models were pro-

posed. These works relied on using Euler angles as a parameterisation for rotation.

Aiming at overcoming the singularities introduced by the use of Euler angles and

3



1. Introduction

using the nonlinear MAV model, [Lee et al., 2010] proposed a geometric tracking

controller operating on SE(3) which is nowadays one of the commonly used con-

trol approaches as it has been successfully deployed with appropriate modifications

(e.g. including extra feedforward and integral terms) in various different vehicles

and applications with examples in [Mellinger and Kumar, 2011, Rajappa et al.,

2015, Richter et al., 2016, Invernizzi and Lovera, 2017, Bodie et al., 2018, Ryll

et al., 2019].

While the aforementioned approaches rely on some MAV model they lack the

capability of explicitly handling specific state, input or actuator constraints. An

indirect way of ensuring minimum state constraint violation (e.g. maximum linear

velocity) is by providing the controller a constraint-safe trajectory [Achtelik et al.,

2013] obtained by a separate path planning module. Regarding infeasible input or

actuator commands, this is usually handled by re-projecting them onto the boundary

of the admissible input set [Schneider et al., 2012, Brescianini and D’Andrea, 2018].

A generic model based approach, also capable of handling constraints, adopted

in this work is Model Predictive Controller (MPC) [Garcia et al., 1989, Morari and

Lee, 1999, Findeisen and Allgöwer, 2002]. Briefly, the control input is computed

by minimizing a cost function which is a metric of the system performance over a

time horizon. The future system state is predicted by forward simulation using the

latest system state x0 and the system dynamics fd which are incorporated in the

optimisation as appropriate equality constraints. The concept is illustrated bellow:

u∗ = argmin
u0,...,uN−1

N∑
n=0

Φ(xn,un), (1.1a)

s.t. : xn+1 = fd(xn,un), (1.1b)

x0 known, (1.1c)

where x, u denote the control state and input respectively and N the discrete time

horizon. The reference for the state and input is included in the function Φ. Given

a computed optimal input sequence u∗ = [u>0 ,u
>
1 , . . . ,uN−1]>, u0 is applied to the

system and the whole optimisation is repeated using an updated system state x0 at

a constant rate.

Main advantages of MPC compared to traditional techniques include:

4



1.2. Background

• Straightforward formulation for multivariate control systems.

• Explicit use of the control model.

• Additional state and input constraints can be easily included in the optimisa-

tion problem.

• Ability of the controller to anticipate future events and react accordingly in

advance. This is because both the predicted system states and the future

references are used in the optimisation.

Another advantage, often neglected, is the capability of incorporating some high level

system behaviour rather than precise tracking of some desired reference. Examples

include the works in [Kamel et al., 2017] where an MPC enabled reference tracking

while simultaneously avoiding obstacles as well the works in [Vlantis et al., 2015,

Falanga et al., 2018] where the used MPC included a perception objective aiming

at minimising the risk of state estimation failure.

It becomes clear that the precision of the control model used in the optimisation

plays a crucial role in the closed loop performance. As a result, significant effort has

been applied on the MAV system modelling as well as the experimental identification

of specific model parameters [Bähnemann et al., 2017, Sa et al., 2018a, Burri et al.,

2018]. In the simplest form, a linear control model as in [Bangura and Mahony,

2014, Baca et al., 2016, Beul et al., 2017, Tzoumanikas et al., 2019] results in a

computationally cheap (usually a Quadratic Program (QP)) optimisation problem.

Whereas, the use of a nonlinear model resulting in a Nonlinear Model Predictive

Control (NMPC), e.g. in [Neunert et al., 2016, Kamel et al., 2017a, Falanga et al.,

2018], offers a better approximation of the true system dynamics in the expense of a

more complex optimisation problem usually solved using a Newton type optimisation

algorithm. An alternative approach aiming at combining the best from both worlds

is approximating the nonlinear dynamics as a sequence of linear systems (obtained

through linearisation around different operating points) resulting in a switching

model linear MPC [Alexis et al., 2011, Alexis et al., 2012, Papachristos et al., 2016].

Additional to the classification based on the type of control model (linear/non-

linear), another criterion is the separation or not of the MAV dynamics into indi-

vidual subsystems controlled by different controllers. The most common approaches

are that of separate position and attitude control [Darivianakis et al., 2014, Kamel
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et al., 2017a, Tzoumanikas et al., 2019], separate position and rotational rate control

[Falanga et al., 2018] as well as the less popular unified approaches [Neunert et al.,

2016]. The dynamics separation is often introduced to simplify the control model

as well as enable low rate control updates since the fast attitude/rate dynamics are

independently controlled.

In this thesis, we present three different MPC controllers. The first one relies on

a linear control model and is based on the position-attitude dynamics separations.

This makes it applicable to any MAV platform equipped with a tuned attitude

controller and suitable for simple, non aggressive maneuvers. The second controller

is an NMPC, with the body moments and collective thrust as control inputs, that

jointly controls the full MAV state. The use of a nonlinear model which also captures

coupling between the different Degrees of Freedom (DoFs) enables flying aggressive

maneuvers while fully exploiting the dynamic capabilities of the system. The last

one is an NMPC jointly controlling the motion of an MAV-arm system targeted for

aerial manipulation applications. As it will be shown later it is able of handling the

effects of the arm movement and its interaction with the environment in the MAV

dynamics.

1.2.3 Fault tolerant control

A desirable property for every MAV operating in the real world is the ability to

return to a home position and perform a safety landing in the event of a motor

failure. Here, we use the term motor failure for the case of either an actual motor

malfunction or a propeller snap which results in thrust loss. While the problem of

a partial loss (i.e. when the produced thrust is a fraction of the commanded one)

has also been studied in literature [Ranjbaran and Khorasani, 2010, Izadi et al.,

2011, Giribet et al., 2017, Nguyen and Hong, 2018], here we focus on the more

challenging and more realistic event of complete thrust loss.

There exist two distinct approaches of handling this in practice. The first one is

by using MAV platforms which can withstand a motor failure. Examples include,

octacopters [Marks et al., 2012, Saied et al., 2015, Saied et al., 2017], hexacopters

with unconventional motor layouts [Schneider et al., 2012, Michieletto et al., 2018] or

tilted motors [Ryll et al., 2016, Michieletto et al., 2017] which with the appropriate

software adaptations (i.e. distributing the control effort to the functional motors) can

withstand a motor failure. The second approach is entirely software-based and relies
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on the prioritisation of position control over other –possibly uncontrollable– DoFs

such as yaw. Examples of the latter applied on quadcopters is given in [Freddi et al.,

2011, Mueller and D’Andrea, 2014, de Crousaz et al., 2015, Wu et al., 2019, Sun

et al., 2020] and hexacopters with symmetric motor layout in [Kamel et al., 2015].

Additionally, fault tolerant control requires the existence of a supervisory al-

gorithm which monitors the health status of the actuators and accordingly signals

a failure. In other words, a motor failure can only be handled if it can be detec-

ted. We categorise the different proposed motor failure observers based on the input

data required for fault detection. We distinguish those which rely on direct actu-

ator measurements (e.g. encoder, current measurements) such as [Saied et al., 2017],

those which rely on the knowledge of the full MAV state [Nguyen et al., 2019, Nguyen

and Hong, 2019] and finally those that only require inertial measurements [Lu and

van Kampen, 2015, Saied et al., 2015].

In our work, we propose a software-based fault handling technique which can

be applied on any hexacopter irrespective of the motor layout. It further enables

full position and yaw controllability when this is physically possible while enabling

prioritisation of certain DoFs when full state tracking is not feasible. As far as the

fault detection is concerned, we adopt an actuator effectiveness metric similar to the

ones in [Izadi et al., 2011, Lu and van Kampen, 2015] while the designed observer

solely depends on inertial measurements and can thus be applied as an algorithmic

update to any MAV.

1.2.4 Aerial manipulation

Aerial manipulation aims at combining the maneuverability of MAVs with the pre-

cision and the fast dynamics of robotic manipulators. This union is particularly

useful for application requiring physical contact with the environment but comes at

the cost of increased control complexity due to the coupling of the dynamics of the

two systems.

The simplest approach, with examples in [Orsag et al., 2013, Jimenez-Cano et al.,

2013, Chermprayong et al., 2019], is to separate the problem into independent MAV

and arm control and totally ignore the existence of coupling. The effects of coupling

can be minimised by adopting clever manipulator designs such as [Ruggiero et al.,

2015, Ohnishi et al., 2017] which actively move the battery in order to counteract
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the torques acting on the MAV as a result of the arm displacement. In alternative

software-based approaches such as [Mellinger et al., 2011, Ruggiero et al., 2015, Fresk

et al., 2017, Suarez et al., 2018] the control problem remains separated but some

of the effects introduced in the MAV dynamics, such as payload mass or Centre

of Mass (CoM) displacement and internal torques, are estimated and compensated

online. Unifying the control problem, as for example in [Garimella and Kobilarov,

2015, Kamel et al., 2016b, Lunni et al., 2017] for free flight tasks, results in superior

performance compared to decoupled approaches since the effects of the arm motion

on the MAV dynamics are compensated prior to their propagation into tracking

errors. Additionally, systems and methods such as [Nguyen and Lee, 2013, Cataldi

et al., 2016, Ryll et al., 2019, Bodie et al., 2020] which were successfully used in

experiments that include contact with a surface, also considered the effect of the

contact forces in the control model. In these works the external forces and moments

(as a result of contact) acting on the MAV body were either directly measured or

estimated using appropriate observers.

Regarding the control of the system ability to exert desired forces in the environ-

ment, the different approaches vary depending on the type of the used MAV. For

example, omnidirectional vehicles [Bodie et al., 2019, Tognon et al., 2019, Ryll et al.,

2019] are capable of independently controlling the translational and angular accel-

eration and when in contact can exploit this property to apply a reference force at a

desired position and direction without the absolute need of the additional degrees of

freedom introduced by an attached arm. In contrast, approaches applied on under-

actuated MAVs [Lippiello and Ruggiero, 2012, Nguyen and Lee, 2013, Darivianakis

et al., 2014], irrespectively of the use of an arm or not, rely on the dynamical/inertial

coupling between the MAV and the end effector in order to counteract the vehicle

inability to exert lateral forces.

As mentioned in Section 1.2.2, in this work we propose a NMPC that jointly con-

trols our custom built MAV-arm system. Apart from the benefits of the coupled

control approach listed above, our approach further enables reference force track-

ing as the contact force acting on the end effector is expressed as a function of the

system states. We showcase our algorithm using our underactuated MAV and fur-

ther discuss how it can be applied on omnidirectional vehicles which have superior

capabilities for manipulation tasks.
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1.2.5 Learning based frameworks

In recent years there is a growing popularity of machine learning based robotic frame-

works compared to more traditional physics/geometry based ones. The application

of the former has become possible due to the computing hardware advances, the

accessibility and availability of training data as well the plethora of open-source

tools (e.g. multirotor simulators, photorealistic rendering software). As a result

numerous machine learning frameworks have been successfully applied on the topic

of autonomous MAV navigation. We categorise these in methods which i) tackle the

problem state estimation, ii) of control iii) or both as a unified end-to-end approach.

In terms of state estimation, there exist several visual odometry frameworks such

as [Clark et al., 2017, Wang et al., 2018, Zhan et al., 2018] which can compute the

system state given raw sensor measurements (e.g. input images, Inertia Measure-

ment Unit (IMU) data), show competitive with state-of-the-art methods perform-

ance without adopting any of the modules of traditional visual odometry frame-

works. More specific to MAVs, learning based frameworks have been particularly

successful in application-oriented experiments such as forest trail navigation [Giusti

et al., 2016, Smolyanskiy et al., 2017], drone racing [Jung et al., 2018, Kaufmann

et al., 2018, Loquercio et al., 2020] and collision free navigation [Gandhi et al.,

2017, Loquercio et al., 2018, Kouris and Bouganis, 2018]. In all the above, high

level commands (e.g. reference velocities, position or orientation) are generated us-

ing the learned policies and are executed using traditional motion planners and

controllers.

Control focused approaches such as [Hwangbo et al., 2017, Koch et al., 2019] aim

at learning policies which resemble the role of a conventional controller (mapping

state estimates to control inputs). In the works mentioned above, reinforcement

learning has been used for stabilising the position and attitude of a quadrotor re-

spectively. Unified end-to-end approaches such as [Zhang et al., 2016, Kahn et al.,

2017, Müller et al., 2018a, Kaufmann et al., 2020] attempt to learn a policy that

directly maps sensor readings (e.g. IMU and camera data) to control actions (e.g.

motor commands, MAV body rates and thrust). These methods have the benefit

that an explicit state estimation scheme might not be required during the testing

phase and can be potentially more efficient than optimisation based methods such as

MPC since only a forward network pass is required per control iteration. The main

challenge however is to ensure that policies which were entirely trained in simulation
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generalise well in real life in the presence of unmodeled disturbances and dynamics.

Our work follows the rather classic division between perception and control. Des-

pite the great works in learning based navigation, neither the state estimation nor

the control algorithms presented in this work rely on a learnt model. We believe

however that our MAV navigation pipeline can be used to provide optimal responses

which can be utilised during the training phase of a supervised learning framework.

1.3 Contributions

The main results presented in this work have been published in three different re-

search papers. The full list of publications done in conjunction with this work as

well as the video material that provides visualisation of the algorithms developed,

are given in Section 1.4.

1.3.1 Paper I: Linear MPC with soft constraints.

Tzoumanikas, D., Li, W., Grimm, M., Zhang, K., Kovac, M., and Leutenegger, S.

(2019). Fully autonomous micro air vehicle flight and landing on a mov-

ing target using visual-inertial estimation and model-predictive control.

Journal of Field Robotics. [Tzoumanikas et al., 2019].

In this paper we present an MPC for controlling the MAV position that relies on

an approximate linear model of the vehicle. Regarding the control model we follow

a very similar formulation to the ones presented in [Alexis et al., 2013, Darivianakis

et al., 2014, Kamel et al., 2017a] where it was assumed that the MAV position and

attitude dynamics can be controlled independently. Using this assumption, the full

state MAV response can be controlled by a cascade connection of a position and an

attitude controller with the latter receiving orientation and collective thrust com-

mands from the former. The desired orientation, parameterised using Euler angles,

as well as the collective thrust is thus considered the control input of the linear

MPC which is obtained by solving the corresponding optimisation problem as pre-

viously discussed. Compared to the aforementioned approaches we also incorporate

soft state constraints in the optimisation problem. These are used to prevent oper-

ation close to gimbal lock as well as impose operation within a safe state envelope

which further guarantees that the control model remains valid. Modelling the state

constraints as soft, which can be violated if necessary, ensures that the underlying
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optimisation solver will never face an infeasible problem. Additionally, we formulate

the resulting optimisation problem as a QP, in a canonical form, that can be solved

online using any generic QP solver without requiring pre-computation of an explicit

solution.

In addition to the MPC, we present a vision-based framework for tracking and

landing on a moving target as required from the MBZIRC1 challenge in which we

participated in March 2017. We showcase the performance of the MPC and the

vision based tracking in experiments resembling the challenge were our method

results in successful landings for target velocities up to 5.0 m/s.

We further evaluate the performance of the controller in the experiments conduc-

ted for the purposes of the AABM2 project where the main objective was tracking

precision. In particular, we show that the controller is capable of tracking slow

reference trajectories (umax ≤ 1 cm/s) with a maximum per-axis error of 1.5 cm.

The linear MPC and the corresponding experiments are presented in Chapter 3.

1.3.2 Paper II: Fault tolerant NMPC

Tzoumanikas, D., Yan, Q., and Leutenegger, S. (2020). Nonlinear MPC with

Motor Failure Identification and Recovery for Safe and Aggressive Mul-

ticopter Flight. In Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA). [Tzoumanikas et al., 2020b].

Drawing inspiration from approaches such as [Kamel et al., 2015, Falanga et al.,

2018, de Crousaz et al., 2015, Neunert et al., 2016] that rely on the non-linear model

of the system, we present a quaternion based NMPC designed in order to overcome

the limitations (i.e. use of Euler angles for the orientation, model is accurate for op-

eration around hover) of its linear counterpart presented in Chapter 3. Compared to

our linear MPC [Tzoumanikas et al., 2019] as well as similar in concept approaches

[Kamel et al., 2017a, Falanga et al., 2018, Faessler et al., 2017] our NMPC does

not rely on the existence of an attitude or rate controller. The full MAV state

is controlled by a single control block which enables full state tracking (given dy-

namically feasible trajectories) while allowing the same controller to be used as an

attitude, rate or mixed mode (e.g. altitude and orientation) controller by penalising

1
See https://www.mbzirc.com/challenge/2017. Accessed April 2020.

2
See http://www.aerial-abm.com/. Accessed April 2020.
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the appropriate optimisation terms. This approach further eliminates the need for

identification of approximate closed loop dynamics for the attitude or rate response

while it only requires the knowledge of physical quantities such as the MAV mass,

inertia matrix as well as motor thrust and moment coefficients.

In order to ensure that our method can be easily transferred to any underactu-

ated MAV we select the MAV body moments and collective thrust as the control

input. This choice yields a constant computational complexity for the NMPC op-

timisation problem irrespectively of the number of motors. The control input is

then transformed into motor commands using a separate algorithm which we refer

to as control allocation. We propose an optimisation-based control allocation which,

compared to traditional approaches [Achtelik et al., 2013, Lee et al., 2010] that em-

ploy the pseudoinverse, can prioritise the tracking of certain control inputs and most

importantly produces feasible motor commands. We further show how our control

allocation algorithm can be used when bidirectional motors are present and we ex-

plain how it can be adapted in case of a complete failure of a single motor. Following

a controllability analysis of our MAV, we use these two properties to stabilise the

position and yaw of our hexacopter MAV under a complete failure of a single motor.

Compared to approaches such as [Schneider et al., 2012, Mazeh et al., 2018, Nguyen

et al., 2019] which rely on asymmetric motor layouts and can only handle a failure

of specific motors, our approach can also be applied on hexacopters with symmetric

motor layouts ensuring that failure of any motor can be handled equally well.

Finally, in order to handle a motor failure which may occur in mid-flight, we

developed an EKF observer which monitors the health status of all the motors

and accordingly notifies the control allocation block in the event of a failure. The

estimated health status corresponds to the percentage of motor thrust acting on

the MAV body, thus providing an easy to tune threshold for triggering the failsafe.

Our implementation relies on inertial measurements and can thus be applied as an

algorithmic only update to any MAV.

These algorithms and the corresponding experimental results with and without

failures are presented in Chapter 4.
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1.3.3 Paper III: NMPC for aerial manipulation

Tzoumanikas, D., Graule, F., Yan, Q., Shah, D., Popovic, M., and Leutenegger,

S. (2020). Aerial Manipulation Using Hybrid Force and Position NMPC

Applied to Aerial Writing. In Proceedings of Robotics: Science and Systems

(RSS). [Tzoumanikas et al., 2020a].

In this paper, we present an extension of the NMPC, briefly described above,

targeted for applications requiring interaction between the MAV and its environment

such as inspection through contact. We consider the case where the MAV is equipped

with a robotic arm with the main idea being the fast arm dynamics to compensate

for errors occuring on the MAV base. In our approach we tackle the control problem

in a model based way by using a NMPC that jointly controls the MAV-arm system.

This is done by formulating a hybrid control model where the MAV is modeled

as a single rigid body object and the quasi-static forces introduced by the arm

and its interaction with the environment are taken into account. Compared to

approaches such as [Darivianakis et al., 2014, Kamel et al., 2016b, Lunni et al., 2017]

which either use two models (one for free flight and another for physical interaction)

or only consider the free flight case, including the effect of contact forces into a

single control model, eliminates the need of a switching mode controller, allows the

NMPC to reason about contact before it actually happens and to natively handle

the disturbance forces and moments (as a result of contact) acting on the MAV

body. This approach further enables automatic compensation of the effects of the

arm motion on the MAV dynamics such as the system’s CoM displacement due to

arm movement.

Similar to the NMPC presented in Chapter 4 the controller does not rely on the

existence of a closed loop attitude/rate controller as we consider the MAV body mo-

ments, the collective thrust and the end-effector position as the control input. For

the MAV related inputs we use the same control allocation algorithm also described

in Chapter 4 while the end-effector position is transformed into actuator commands

using the arm-specific forward kinematics which are separately described in Section

2.3.1. The specific choice of the control input enables easy adaptation to similar sys-

tems and omnidirectional vehicles [Bodie et al., 2019, Ryll et al., 2019, Brescianini

and D’Andrea, 2018b] which have superior force exertion capabilities, since the con-

trol allocation and forward kinematics are the only platform-dependent components.
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We evaluate the accuracy of the MAV-arm system using our custom built under-

actuated MAV and delta arm in aerial writing experiments that require multiple

transitions between free flight and contact. Our system shows accuracy in the order

of millimeters and repeatability in tracking trajectories of different type, size and

with different velocity and acceleration profiles.

These algorithms and the corresponding experimental results are presented in

Chapter 5.

1.4 Publications

The work described in this thesis resulted in the following publications:

• Tzoumanikas, D., Li, W., Grimm, M., Zhang, K., Kovac, M., and Leutenegger,

S. (2019). Fully autonomous micro air vehicle flight and landing on a

moving target using visual-inertial estimation and model-predictive

control. Journal of Field Robotics. [Tzoumanikas et al., 2019].

• Tzoumanikas, D., Yan, Q., and Leutenegger, S. (2020). Nonlinear MPC

with Motor Failure Identification and Recovery for Safe and Ag-

gressive Multicopter Flight. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA). [Tzoumanikas et al., 2020b].

• Tzoumanikas, D., Graule, F., Yan, Q., Shah, D., Popovic, M., and Leuteneg-

ger, S. (2020). Aerial Manipulation Using Hybrid Force and Position

NMPC Applied to Aerial Writing. In Proceedings of Robotics: Science

and Systems (RSS). [Tzoumanikas et al., 2020a].

The following video material provides visualisation of some of the algorithms de-

veloped in this thesis:

• Landing on a moving target using visual-inertial estimation and model pre-

dictive control, https://youtu.be/0RW68FGHVX8.

• Nonlinear MPC with autonomous motor failure identification and recovery,

https://youtu.be/cAQeSZ3tIqY.

• Nonlinear MPC for aerial manipulation, https://youtu.be/iE--MO0YF0o.
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While not described directly, the following publications were done in conjunction

with this thesis:

• Dai, A., Papatheodorou, S., Funk, N., Tzoumanikas, D. and Leutenegger S.

(2020). Fast Frontier-based Information-driven Autonomous Explor-

ation with an MAV.In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA). [Dai et al., 2020].

• Xu, B., Li, W., Tzoumanikas, D., Bloesch, M., Davison, A. and Leutenegger

S. (2019). MID-Fusion: Octree-based Object-Level Multi-Instance

Dynamic SLAM. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA). [Xu et al., 2019].

• Zhang, K., Chermprayong, P., Tzoumanikas, D., Li, W., Grimm, M., Smentoch,

M., Leutenegger, S. and Kovac, M. (2019). Bioinspired design of a land-

ing system with soft shock absorbers for autonomous aerial robots.

Journal of Field Robotics. [Zhang et al., 2019].

• Saeedi, S., Carvalho, E., Li, W., Tzoumanikas, D., Leutenegger, S., Kelly, P.

and Davison, A. (2019). Characterizing Visual Localization and Map-

ping Datasets. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA). [Saeedi et al., 2019].

• Li, W., Saeedi, S., McCormac, J., Clark, R., Tzoumanikas, D., Ye, Q., Huang,

Y., Tang, R. and Leutenegger, S. (2018). InteriorNet: Mega-scale Multi-

sensor Photo-realistic Indoor Scenes Dataset. British Machine Vision

Conference (BMVC). [Li et al., 2018].

1.5 Thesis structure

The remainder of this thesis is structured as follows:

Chapter 2 introduces basic notation, the multirotor platforms and their sensor setup

as well as the different state estimation algorithms used in this work.

Chapter 3 describes a simple linear model predictive controller that relies on de-

coupling of the position and attitude dynamics. Its capabilities and limitations are

15



1. Introduction

illustrated through experiments including tracking and landing on a fast moving tar-

get (as required in MBZIRC 2017 Challenge 1) and following trajectory commands

for the purposes of the AABM project

Chapter 4 describes a non-linear model predictive controller developed to overcome

the limitations of the one presented in Chapter 3. Additionally, it is shown how

motor failures can be identified and handled by the developed algorithm. Its flight

performance is evaluated on experiments with and without motor failures.

Chapter 5 extends the controller presented in Chapter 4 for aerial manipulation

tasks. A hybrid model for the combined MAV-manipulator system is formulated that

also takes into account the interaction forces from the environment. The combined

system is jointly controlled by a single control block. The achieved accuracy and

repeatability are shown in a series of “aerial-writing” tasks.

Chapter 6 concludes this thesis with a summary of the results presented and sug-

gestions for future work.

16



Chapter 2

Preliminaries
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In this Chapter, we present the software and hardware components that form the

foundations for the algorithms presented ahead. In terms of layout, we start with

the mathematical notation and continue with the presentation of the main MAV

and payload hardware components. We conclude with the pipelines used for MAV

state estimation.
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2.1 Notation

In this work we use the following notation:

2.1.1 General notation

a A lower-case symbol denotes a scalar apart from common capital exceptions.

a A bold lower-case symbol denotes an m-dimensional column vector with ai the

ith element as:

a =


a1

a2

...

am

 ,a> = [a1, a2, . . . , am]. (2.1)

We use ai:j to denote the vector consisting of the elements of a with indices in

the [i, j] range.

a A bold italic lower-case symbol represents an homogeneous vector defined as:

a = [a, 1]>.

A A bold capital symbol denotes an m × n matrix with ai,j the element at the

ith row and jth column:

A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
... . . .

...

am,1 am,2 · · · am,n

 (2.2)

I The identity matrix, optionally with dimensions as subscript.

0 The zero matrix, optionally with dimensions as subscript.

[·]× The cross-product matrix that produces a skew symmetric matrix from a 3D

vector such that a×b = [a]×b. Given the vector a = [ax, ay, az]
>, [a]× can be

computed by:

[a]× =


0 −az ay

az 0 −ax
−ay ax 0

 . (2.3)

A A calligraphic capital symbol denotes a set.
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2.1.2 Spaces and manifolds

R The set of real numbers.

R+ The set of positive real numbers.

Rm The vector space of real m-dimensional vectors.

Rm×n The vector space of real m× n-dimensional matrices.

Z The set of integers.

N (µ,Σ) The Normal distribussion with mean µ and covariance Σ.

S3 The 3-sphere group.

SO(3) The group of 3D rotations.

SE(3) The group of 3D rigid transformations.

� The “box-plus” operator that applies a perturbation expressed in a tangent

space to a manifold state.

� The “box-minus” operator that expresses the difference of two manifold states

in the tangent space.

2.1.3 Frames and transformations

F−→A A cartesian coordinate frame in R3.

Av A vector v expressed in the frame F−→A.

ArP The position vector from the origin of F−→A to the point P represented in the

coordinate frame F−→A.

ArP The position vector represented in homogeneous coordinates: ArP = [Ar>P , 1]>.

AvBC The linear velocity of F−→C with respect to F−→B expressed in F−→A.

AωBC The rotational velocity of F−→C with respect to F−→B expressed in F−→A.

φ The roll angle.

θ The pitch angle.
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ψ The yaw angle.

CAB The rotation matrix that transforms the vector Bv expressed in F−→B to one

expressed in F−→A as: Av = CAB Bv. The inverse rotation CBA can be computed

as: CBA = C−1
AB = C>AB .

q The quaternion following the Hamiltonian convention with vector part qv and

real part qw give by: q = [q>v , qw]>. When used for representing orientation,

the unit length qAB represents the quaternion equivalent of the rotation matrix

CAB .

q∗ The conjugate of the quaternion q defined by: q∗ = [−q>v , qw]>. For the

rotation quaternion qAB , its conjugate represents the inverse rotation as:

q∗AB = q−1
AB = qBA .

⊗ The quaternion multiplication such that qAC = qAB ⊗ qBC .

[·]+ The left-hand quaternion matrix such that qAC = [qAB ]+ qBC . In matrix

form [q ]+ is given by:

[q ]+ =

[
qw −q>v
qv qwI + [qv ]×

]
. (2.4)

[·]⊕ The right-hand quaternion matrix such that qAC = [qBC ]⊕ qAB . In matrix

form [q ]⊕ is given by:

[q ]⊕ =

[
qw −q>v
qv qwI− [qv ]×

]
. (2.5)

TAB The transformation matrix that transforms homogeneous vectors from F−→B to

F−→A as ArP = TAB BrP . The relationship between TAB , the rotation matrix

CAB and the position vector ArB is given by:

TAB =

[
CAB ArB
01×3 1

]
, (2.6)

while the inverse transformation TBA can be computed as:

TBA = T−1
AB =

[
C>AB −C>AB ArB
01×3 1

]
(2.7)
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2.2 Multirotor platforms

In this section, we present the main hardware components of the MAV platforms

used in the experiments presented in this work. As our main focus is not the platform

design by itself, we briefly describe the essential hardware components while we put

special emphasis on the identification of physical quantities (e.g motor coefficients)

that are crucial for our system’s performance when operating with our model based

controllers.

Two different vehicles were built, based on the same frame shown in Figure 2.1,

using off the shelf components and 3D printed parts. They were designed according

to the following general specifications:

• The MAV including the extra payload (e.g. cameras, manipulator) has to be

small enough ( < 1.0 m in diagonal) and thus suitable for indoor operation.

• Its thrust to weight ratio should ideally exceed 2 : 1 in order to enable suffi-

ciently fast closed loop response and allow for additional payload.

• It should be equipped with sufficient onboard computing resources in order to

be able to run the state estimation and control algorithms.

• It should support additional sensors required for completely autonomous nav-

igation e.g. cameras, Global Positioning System (GPS).

Hexacopters (i.e. vehicles with six motors) were preferred due to their payload

capacity and compact size compared to heavy lift quadcopters. Additionally, as

discussed in Chapter 4 when equipped with bidirectional motors and the appropriate

software, they can maintain full position and yaw controllability despite the loss of

a single motor.

2.2.1 Onboard computer

All the developed algorithms run on an Intel NUC-7567U onboard computer run-

ning Ubuntu Server 16.04 shown in Figure 2.2. Its Intel Core i7 Central Processing

Unit (CPU) coupled with 32GB of RAM provide enough computational capabilit-

ies for the estimation and control algorithms developed, while providing additional

overhead if required.
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Figure 2.1: The custom-built platforms use a 0.55 m wide frame while the overall
diameter (which depends on the propeller choice) is less than 0.8 m.

In order to maximise performance the CPU governor is permanently set to the

performance mode. Additionally, we have modified the Operating System (OS)

kernel to enable faster communication with the peripherals connected through serial.

Finally, all the OS related power management settings (e.g. the WiFi adapter power

saving mode) have been disabled in order to minimise delays. All these modifications

come at the cost of increased power consumption. However, even at full load this

remains bellow 40 W (not including the power consumption of connected peripherals

e.g. cameras) which is a fraction of the power consumed by the motors (up to

6×170 W).

All our algorithms are implemented using C++, where when required we use

multithreading, vectorisation and appropriate compiler optimisation flags in order

to boost performance.

2.2.2 Flight controller

With the term flight controller, we refer to the board which contains the absolute

necessary sensors for stable flight (such as the IMU) and which also interfaces with

the motors. It is essentially the main hardware component of every commercially

available MAV that can be remotely controlled with a joystick. It mainly consists

22



2.2. Multirotor platforms

Figure 2.2: The MAV onboard computer.

of the following elements:

• Sensors required for MAV state estimation such as IMUs, magnetometers,

barometer, GPS.

• Necessary hardware for interfacing with the MAV motors such as: PWM or

I2C drivers.

• Communication ports (e.g. UART, USB) required for data exchange with

external devices (e.g additional sensors, onboard computers, RC receivers).

• An onboard CPU handling the interface with the sensors and motors as well

as running the necessary estimation and control algorithms.

In all our platforms, the commercially available mRo PixRacer1 flight controller,

shown in Figure 2.3, was preferred for two main reasons: (i) its compact size

(36 mm×36 mm) and low weight (< 11 g) without compromising functionalities of

a complete autopilot system (i.e. 168 MHz Cortex M4 CPU, 5×UART, 6×PWM

outputs, 2×IMU for redundancy) (ii) its capability to be flashed with widely used

in research open-source software such as PX42 or ArduPilot3.

1
See https://docs.px4.io/v1.9.0/en/flight_controller/pixracer.html. Accessed April

2020.
2
See https://github.com/PX4/Firmware. Accessed April 2020.

3
See https://github.com/ArduPilot/ardupilot. Accessed April 2020.
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Figure 2.3: The mRo PixRacer flight controller used in both MAVs.

Special attention was paid on how the flight controller was mounted on the MAV.

In order to reduce the high frequency vibrations (originating from the motor ro-

tation) that affect the natively noisy IMU measurements, the device was rigidly

attached on the onboard computer which was soft-mounted on the MAV frame.

Another possible solution adopted in the MAV shown in Figure 2.11 (right) is to

soft-mount the motors on the frame and thus preventing the transfer of vibrations

on the frame.

On the software side, we flashed the flight controller with a modified PX42 firm-

ware. Briefly, we kept the main software components such as the EKF-based state

estimator, the attitude-rate controllers and device drivers while our modifications

included:

• Reducing the CPU load and minimising communication delays.

• Modifying the IMU drivers in order to accessing the raw measurements at the

highest possible rate.

• Adding support for bidirectional capable motors.

The PX4 firmware comes with a wide variety of pre-implemented estimation and

control algorithms and can be deployed for autonomous missions without the need

of additional software. However, in our work we mainly used the flight controller

as a middleware used for reading of the IMU measurements and interfacing with

the motors. Apart from the algorithms presented in Chapter 3 where the pre-

implemented attitude controller was used, the algorithms in Chapters 4 and 5 do
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not use any of the estimators or controllers of PX4. In these experiments, the flight

controller which runs independent estimation and control algorithms (than the ones

implemented on the onboard computer), acted as a safety backup in the event of a

malfunction of the primary software/hardware stack.

2.2.3 Propulsion system

Two different propulsion systems were employed depending on the desired applic-

ation. The individual components of each one, consisting of the Electronic Speed

Controller (ESC), motor and propeller are shown in Figure 2.4.

(a) Propulsion system #1 is sold as a single kit and consists of the DJI
420 ESC, the DJI 2312E 960Kv motors and the self tightening DJI 9450
propellers.

(b) Propulsion system #2 consists of the bidirectional capable DYS 35A
Aria ESC, the DJI 2312E 960Kv motors and the carbon reinforced Aero-
naut CAMcarbon Light 9545 propellers. In order to cope with the large
angular acceleration/deceleration due to direction change, the propellers
were secured with elastic stop nuts.

Figure 2.4: The two different propulsion systems used in our MAVs.

Main difference between the two is that propulsion system #2 can reverse the

direction of motor rotation in mid-flight. Based on that the motors can either

rotate in a normal or inverted direction and thus generate thrust and moment in

two directions. This property was used for stabilising the yaw in the event of a motor

failure (experiments presented in Chapter 4). Unlike, conventional system designs

that use symmetrical propellers (which have identical characteristics irrespectively

of direction of rotation), we preferred propellers that are optimised for rotation in

one direction.
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Figure 2.5: Per motor absolute thrust versus power consumption of the two propul-
sion systems. System #1 and system #2 (normal rotation) are very similar in terms
of power consumption with system #1 being slightly more efficient. As expected
system #2 is the least efficient when the motors are commanded to rotate in the
opposite direction. This is because the propellers are aerodynamically optimised for
rotation in one direction.

Based on the efficiency curves obtained from experimental data, this choice results

on very similar efficiency curves for propulsion system #1 and system #2 (normal

rotation). Propulsion system #1 is marginally more efficient and was thus preferred

for task requiring significant payload (experiments presented in Chapters 3 and

5). Not surprisingly, the efficiency of propulsion system #2 (inverted rotation) is

significantly lower than others. However, in this work inverted rotation was only

used in the event of a motor failure and was completely disabled during failure-free

operation.

The total power consumption Ptotal plotted in Figure 2.5 is the sum of the mech-

anical Pmech and the electrical power loss Pel: Ptotal = Pmech + Pel. Based on the

analysis given in [Brescianini and D’Andrea, 2018a] the mechanical power dominates

the power losses and is characterized by a third order polynomial in angular velocity

resulting in: Ptotal ∝ |f |
3
2 , with f the motor generated thrust.

Regarding the relationship between the generated thrust f , moment M and the

motor rotational velocity ω, we use the following model:

f = kT sgn(ω)ω2, (2.8a)

M = −kM sgn(ω)f, (2.8b)
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Figure 2.6: Identification results of the thrust and moment coefficients of propulsion
system #1. Each dot corresponds to an average of 100 measurements and the solid
line to the fitted model as defined in (2.8). The least squares fit error for the thrust
and moment model is 4.8× 10−2 N and 5.3× 10−4 N m respectively.

with kT , kM thrust and moment constants. These were estimated using a load cell

and an optical encoder for accurate rotational measurements. Figures 2.6 and 2.7

show the results of the experimental identification for system #1 and #2 respect-

ively. The numeric values of the identified constants are given in Table 2.1. Note

that in propulsion system #2 (which can switch direction of rotation on demand)

we use non symmetrical propellers which results in different coefficients depending

on the direction of rotation. We thus identified two sets of parameters, with k+
T , k+

M

and k−T , k−M corresponding to normal and inverted rotation respectively.

Unfortunately, conventional ESCs do not directly control the angular velocity

of the motor. They are responsible for swtiching on and off the transistors that

supply the motor coils with a fixed proportion (based on the PWM command) of

the battery voltage. Consequently, the achieved angular velocity depends on the

PWM command and the battery voltage which gradually decreases during flight.

In our application we are interested in controlling the motor angular velocity and

consequently the thrust and moment as accurately as possible. To achieve this

with our sensorless ESC-motor setup, we experimentally determined the relation-

ship between a PWM command and the achieved thrust and moment. Our model
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Figure 2.7: Identification results of the thrust and moment coefficients of propulsion
system #2. Each dot corresponds to an average of 100 measurements and the solid
line to the fitted model as defined in (2.8). Since non symmetrical propellers were
used two sets of coefficients corresponding to normal (k+

T , k+
M ) and inverted rotation

(k−T , k−M ) were identified. The least-squares fit error for the thrust and moment
model for normal motor rotation is 5×10−2 N and 8.5×10−4 Nm respectively. The
same quantities for inverted rotation are 4.4× 10−2 N and 1.3× 10−3 Nm.

Description Symbol Value Unit

Propulsion system #1

Thrust coefficient kT 1.1090× 10−5 N/(rad/s)2

Moment coefficient kM 1.5864× 10−2 Nm/N

Propulsion system #2

Normal rotation thrust coefficient k+
T 9.7408× 10−6 N/(rad/s)2

Normal rotation moment coefficient k+
M 1.4873× 10−2 Nm/N

Inverted rotation thrust coefficient k−T 6.3309× 10−6 N/(rad/s)2

Inverted rotation moment coefficient k−M 2.7928× 10−2 Nm/N

Table 2.1: Thrust and moment coefficients of the two propulsion systems.
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also takes into account the effect of the varying battery voltage. Regarding, the

relationship between the rotational velocity ω and the PWM command c this was

approximated using the following second order polynomial:

ω = aV,2c
2 + aV,1c+ aV,0, (2.9)

where the coefficients aV,i were identified for different battery voltage levels V , stored

in lookup tables and used online depending on the measured battery voltage. The

identification results of the model defined in (2.9) for the two propulsion systems

are shown in Figure 2.8 where for visualisation purposes we only show the identified

curves for 12 different voltage levels.

To summarise, given a desired motor force f , the desired angular velocity ω is

computed using the model defined in (2.8) and the identified coefficients in Table

2.1. The desired angular velocity ω is then converted to a PWM command c us-

ing the model in (2.9) with the coefficients aV,i that correspond to the measured

voltage V . We would like to highlight that our approach is open loop and thus

natively inferior to closed loop approaches such as [Papachristos et al., 2012] or

[Brescianini and D’Andrea, 2018b] where the velocity loop was closed using encoder

feedback. However, it is superior than open loop approaches that do not include

voltage compensation. An easier way of tackling the same problem would be to

use commercially available hardware able to perform closed loop angular control.

Unfortunately, these motors4 are mainly designed for small MAVs and not ones like

ours that carry significant payload.

2.2.4 Cameras

In this work we used cameras for two different purposes. The first being running

SLAM for navigation not requiring external sensors (e.g motion capture system) and

the second for generic environment perception (e.g. detecting, following and landing

on a moving target as shown in Chapter 3). The cameras used for navigation,

shown in Figure 2.9, are also equipped with an onboard IMU as the used SLAM

algorithms also require inertial measurements. For simpler tasks, we used global

shutter cameras as the ones shown in Figure 2.10.

Regarding the relationship between a 3D point CrP := [rx, ry, rz]
> in space and

its corresponding projection u := [u, v]> onto the camera plane, we use a standard

4
See https://iq-control.com/. Accessed April 2020.
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Figure 2.8: Experimental identification of the relationship between the PWM com-
mand and the achieved angular velocity for system #1 (top) and system #2 (bot-
tom). For visualisation purposes we only show 12 different curves that correspond
to different voltage levels.

(a) The Skybotix Visual-Inertial (VI)-
sensor with modified drivers that enable
the use of one of its pins as an external
trigger for data synchronisation with ex-
ternal devices.

(b) The Intel Realsense ZR300 Red Green
Blue Depth (RGBD)-inertial sensor.

Figure 2.9: Camera sensors used for SLAM.
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(a) FLIR Chameleon3
supporting resolutions
up to 1288 × 964 @ 30
FPS.

(b) UI-1221LE sup-
porting image resolu-
tion up to 752× 480 @
87 FPS.

Figure 2.10: Cameras used for the target tracking experiments presented in Chapter
3.

pinhole camera model. This is done in the following steps:

1. Projection onto the unit plane: r′P = 1
rz

[
rx

ry

]
.

2. Apply the distortion model d: r′′P = d(r′P ).

3. Scale and translate: u =

[
fx 0

0 fy

]
r′′P +

[
cx

cy

]
.

The projection model is not invertible and the point CrP can only be recovered

when the depth rz is known. In that case, CrP can be recovered by:

1. Convert the pixel coordinates to unit plane coordinates:

r′′P =

 1
fx

0

0 1
fy

(u−
[
cx cy

] )
.

2. Correct for lens distortion: r′P = d−1(r′′P ).

3. Convert to F−→C coordinates: CrP = rz

[
r′x r′y 1

]>
.

The camera intrinsics (fx, fy, cx, cy ), the distortion model parameters as well as the

transformation between the camera frame F−→C and the IMU frame F−→S were obtained

using Kalibr5 an open source calibration tool based on [Furgale et al., 2013].

5
See https://github.com/ethz-asl/kalibr. Accessed April 2020.
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2.2.5 Additional platforms and simulation environment

Even though not used for experiments presented in this work, the developed al-

gorithms have been also implemented and thoroughly tested on two additional plat-

forms. A commercially available AscTec Firefly hexacopter and a custom-built ra-

cing quadcopter shown in Figure 2.11.

(a) Vision based flight of an AscTec Firefly
equipped with an Intel i7-3612QE.

(b) A racing quadcopter equipped with an
Nvidia Jetson Tx1 computer.

Figure 2.11: Two additional platforms used during this research.

Prior to deployment on real systems, all our algorithms were thoroughly tested in

simulation. We used the open source MAV simulator RotorS6 described in [Furrer

et al., 2016] which apart from multirotor models, provides simulated measurements

of commonly used sensors (such as IMU, cameras, pose sensors). Conveniently, it

is equipped with a ROS interface plugin allowing seamless transition between the

simulation environment and the real system. A snapshot of our system executing

the same task in real life and in simulation is given in Figure 2.12.

Figure 2.12: A snapshot of our MAV-arm system performing the same “aerial-
writing” task in reality (left) and in the simulation environment (right).

6
See https://github.com/ethz-asl/rotors_simulator. Accessed April 2020.
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2.3 Aerial manipulator

For the experiments requiring physical interaction with the environment, we use a

custom built 3DoF delta arm robot [Pierrot et al., 1990]. As shown in Figure 2.13

it consists of the arm base, the end effector and three identical and symmetrically

placed arms. By construction, the end effector is always parallel to the arm base.

Figure 2.13: The delta arm used in the aerial manipulation experiments.

It is equipped with 3× Dynamixel AX-18A servo actuators which at the most pre-

cise control setting achieve closed loop position control with an accuracy –assuming

no load– of ±0.29°. Conveniently, they are equipped with position encoders and can

provide position feedback in realtime. Communication is achieved through a half

duplex serial channel which supports connection of multiple servos with unique IDs.

Due to servo working principle, the actuators are less accurate (especially under

load) than stepper motors which are widely used in applications that require preci-

sion (e.g 3D printers). However, given the limited payload capacity of our MAVs,

they were preferred due to their compact size and low weight (55 g).

Another unique feature of our design is the use of magnetic universal joints. They

consist of two parts, a 10 mm in diameter neodymium countersunk magnet which

provides a pulling force of ≈ 2 kg and an 8 mm in diameter steel ball. Compared to

standard universal joints, they provide significant wider range of motion (resulting

in an increased workspace) while backlash and friction are minimised. They further

enable tool free and fast assembly/disassembly of the different links of the arm.

Most importantly, they provide a mechanical point of failure allowing the arm links

to disassemble instead of breaking in the event of a crash. Main disadvantage of this
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design is that the maximum pulling force acting on the end effector should be less

than the combined pulling force of the magnetic joints.

The reachable workspace of the end-effector with a total volume of 1.51× 10−2 m3

is visualised in Figure 2.14. For its computation we consider the mechanical lim-

itations of all the joints (revolute and universal) and not just the maximum and

minimum servo motor angles.

Figure 2.14: The reachable workspace of the end-effector from two different views.
We ensure that the workspace volume (1.51× 10−2 m3 in this setup) is maximised by
considering the mechanical limitations of every single joint (revolute and universal)
and not just limiting the motion based on the servo motor angle bounds.

2.3.1 Forward kinematics

The forward kinematics problem (i.e. determining the position of the end effector

ArE given the joint angles θ1, θ2, θ3) can be solved by computing the intersection

points of three spheres 2.15 of radius l with the following centers:

ArJ1 =
(
R− r + L cos(θ1)

)
Aex − sin(θ1)Aez, (2.10a)

ArJ2 = Cz(120o)
((
R− r + L cos(θ2)

)
Aex − sin(θ2)Aez

)
, (2.10b)

ArJ3 = Cz(240o)
((
R− r + L cos(θ3)

)
Aex − sin(θ3)Aez

)
, (2.10c)

where R, r, L correspond to the arm physical parameters shown in Figure 2.15

with their numeric values given in Table 2.2, Aex = [1, 0, 0]>, Aez = [0, 0, 1]> and

Cz(120o),Cz(240o) rotation matrices of 120o and 240o degrees around Aez. The
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solutions can be then obtained by solving the following system of equations:

(x− xJ1)2 + (y − yJ1)2 + (z − zJ1)2 = l2, (2.11a)

(x− xJ2)2 + (y − yJ2)2 + (z − zJ2)2 = l2, (2.11b)

(x− xJ3)2 + (y − yJ3)2 + (z − zJ3)2 = l2, (2.11c)

with AxJi ,AyJi ,AzJi∀i = {1, 2, 3} the corresponding components of ArJi defined

in (2.10). As an implementation trick, we can simplify the solution of (2.11) by

expressing the centers ArJi of the spheres in a coordinate frame F−→T with its origin

located at ArJ1 and its orientation relative to the frame F−→A given by:

CAT =
[
xT yT zT

]
=
[

ArJ2−ArJ1
‖ArJ2−ArJ1‖

zT × xT
(ArJ2−ArJ1 )×(ArJ3−ArJ1 )

‖(ArJ2−ArJ1 )×(ArJ3−ArJ1 )‖

]
.

(2.12)

The sphere centers expressed in the frame F−→T are computed using:

T rJi = C>AT ArJi − C>AT ArJ1 ,∀i = {1, 2, 3}, (2.13)

and the system of equations (2.11) is transformed to:

x2 + y2 + z2 = l2, (2.14a)

(x− xJ ′2)2 + y2 + z2 = l2, (2.14b)

(x− xJ ′3)2 + (y − yJ ′3)2 + z2 = l2, (2.14c)

Front View Side View

Figure 2.15: Two different views of a 3D model of the delta arm used. The green
areas show the virtual spheres and disks used for the solution of the forward and
inverse kinematics.
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with yJ ′i
, zJ ′i
∀i = {2, 3} the corresponding components of T rJi . The end effector

position ArE can be then computed as:

T rE =
[
xE yE zE

]>
=

[
x
J
′
2

2

x
2

J
′
3
+y

2

J
′
3
−x

J
′
3
x
J
′
2

2y
J
′
3

±
√
l2 − x2

E − y
2
E

]>
, (2.15a)

ArE = CAT T rE + ArJ1 (2.15b)

Equation 2.15 has up to two solutions (depending on the value of l2 − x2
E − y

2
E)

corresponding to end effector positions above the arm base or bellow. In our system,

configurations with the end effector above the arm base are mechanically impossible

and thus eliminated by our kinematics solver.

Description Symbol Value Unit

Arm base radius R 7.2 cm
End effector radius r 2.5 cm
Servo link length L 6.5 cm
Rod length l 20.2 cm

Table 2.2: Dimensions of the delta arm components.

2.3.2 Inverse kinematics

For the inverse kinematics the intersection between a sphere with radius l and a

circular disk with radius L has to be computed for every joint angle. For the

first joint as shown in Figure 2.15 the centre of the sphere is ArP1
= ArE + rAex

with Aex = [1, 0, 0]> while the center of the circular disk is ArS1
= RAex. Their

intersection ArI1 is computed using the following steps:

1. The 3D sphere is projected onto the plane defined by the circular disk resulting

another circular disk with center Ar′P1
and radius l′.

2. The intersections between the two circular disks that lie on the same plane,

are computed.

This process results in up to two intersection points. Given an intersection point

ArI1 , the joint angle can be recovered as:

θ1 = arcsin(zI1/L), (2.16)

with zI1 the z component of ArI1 . Similarly to the forward kinematics case, solutions

that produce mechanically impossible configurations are eliminated.
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The joint angles θ2 and θ3 can be computed by performing the same procedure

for the spheres with centers ArP2
,ArP3

, same radius l and the unit disks centered at

ArS2
and ArS3

with radius L. The points ArPi
,ArSi

∀i = 2, 3 can be easily computed

as follows:

ArP2
= ArE + r Cz(120o)Aex, (2.17a)

ArP3
= ArE + r Cz(240o)Aex, (2.17b)

ArS2
= Cz(120o)ArS1

, (2.17c)

ArS3
= Cz(240o)ArS1

. (2.17d)

2.4 State estimation

Precise MAV control relies on accurate state estimation that has to run at a rate

equal or greater than the control rate. In this work, depending on the application,

we use two different approaches for MAV state estimation. The first is an EKF able

to fuse data from the onboard IMU and a generic pose sensor, mainly used in indoor

flights with a motion capture system providing the pose measurements. While the

second is visual-inertial SLAM used in outdoor operation or when a motion capture

system or GPS signal is not available.

2.4.1 EKF for IMU and pose sensor fusion

For fusion of inertial measurements and pose estimates, we use a rather standard

error-state Kalman filter formulation similar to the ones presented in [Lynen et al.,

2013, Leutenegger et al., 2014]. In short, we aim to estimate the true system state

given by:

xR := [W r>S ,W v>S ,q
>
WS ,b

>
ω ,b

>
a ]> ∈ R6 × S3 × R6, (2.18)

which consists of the position, linear velocity and orientation of the IMU with frame

F−→S with respect to the World fixed frame F−→W as well as the sensor biases. The

true system state xR is the composition of a nominal state and an error-state δxR.

The high frequency IMU measurements can be integrated into the nominal system

state that does not take into account the model uncertainty. The update step of the

EKF is performed at the arrival of new pose data and yields a Gaussian estimate

for the error-state. After this, the error-state mean is incorporated into the nominal

state and the whole process is repeated.
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IMU model

In our EKF we use the following model for the true IMU dynamics:

W ṙS = W vS , (2.19a)

W v̇S = CWS (ã− ba +wa) + Wg, (2.19b)

q̇WS =
1

2
Ω(ω̃ − bω +wω)qWS , (2.19c)

ḃω = wbω
, (2.19d)

ḃa = −1

τ
ba +wba

, (2.19e)

where Wg := [0, 0,−9.81]> represents the gravitational acceleration. We assume

that the IMU accelerometer ã and gyro ω̃ measurements are biased and disturbed

by white Gaussian noise wa and wω with densities σa and σω respectively. We

model the gyro bias bω as random walk and the accelerometer bias ba as bounded

random walk with time constant τ > 0. The nominal state dynamics correspond to

the equations in (2.19) but without the noise terms.

An expression for the error state dynamics can be found using its definition as

the difference between the true and the nominal state δxR := xR � xR and solving

for δẋR. In order to obtain a minimal representation for the error state, we express

the orientation error as the quaternion δq = q∗ ⊗ q which for small errors can be

approximated using the angle vector δθ as δq ≈ [1
2δθ

>, 1]>. We obtain a minimal

error-state representation δxR := [δr>, δv>, δθ>, δb>ω , δb
>
a ]> ∈ R15 around the state

xR with the following non linear dynamics:

δ ṙ = δv , (2.20a)

δ v̇ = −CWB [̃a− ba]
×δθ − CWB δba + CWB wa, (2.20b)

δθ̇ = −[ω̃ − bω]×δθ + δbω +wω, (2.20c)

δḃω = wbω
, (2.20d)

δḃa = −1

τ
δba +wba

. (2.20e)

Since the zero mean accelerometer noisewa is uniform in all directions, its covariance

ellipsoid is a 3D sphere centered at the origin and thus invariant to rotation. Based

on that, substituting CWB wa with wa in (2.20b) results an equivalent expression.

Linearising the expressions in (2.20) with respect to δxR around xR yields:

δẋR = FcδxR + Lcw, (2.21)
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with w := [w>ω ,w
>
a ,w

>
bω
,w>ba ]> the noise vector with covariance Qc := diag(σ2

a, σ
2
ω,

σ2
bω
, σ2

ba
) and the Jacobians evaluated at xR given by:

Fc =
∂δẋR
∂δxR

, Lc =
∂δẋR
∂w

. (2.22)

Observation model

We perform the EKF updates using 6DoF pose estimates originating from a motion

capture system. As the motion capture system tracks the pose of an object with an

attached frame F−→V which may or may not be perfectly aligned with the IMU frame

F−→S , we introduce additional calibration states SrV , qSV that have no dynamics for

the propagation phase. The augmented state and error state are now given by:

xR := [W r>S ,W v>S ,q
>
WS ,b

>
ω ,b

>
a , Sr>V ,q

>
SV ]> ∈ R6 × S3 × R9 × S3, (2.23a)

δxR := [δr>, δv>, δθ>WS, δb
>
ω , δb

>
a , δr>, δθ>SV]> ∈ R21. (2.23b)

The observation model for the position and orientation is given by:

zr = W rV + vr̃ = CWS SrV + W rS + vr̃, (2.24a)

zq = qWV ⊗ δq̃ = qWS ⊗ qSV ⊗ δq̃ , (2.24b)

with vr̃ ∼ N (0, σ2
r̃I), δq̃ = [1

2δθq̃, 1], δθq̃ ∼ N (0, σ2
q̃I) modelling the position and

orientation measurement noise respectively. We define the position and orientation

residuals y = [y>r ,y
>
q ]> as:

yr = zr − W rV (2.25a)

yq = 2[q∗WV ⊗ zq]1:3 (2.25b)

which given the pose measurements W r̃V , q̃WV is computed as:

ỹr = W r̃V − W rV = W r̃V − (CWS SrV + W rS), (2.26a)

ỹq = 2[q∗WV ⊗ q̃WV ]1:3 = 2[(qWS ⊗ qSV )∗ ⊗ q̃WV ]1:3 (2.26b)

where overbar indicates quantities evaluated using the filter’s current estimate.

The Jacobians H and V with respect to δxR and v := [v>r̃ ,v
>
q̃ ]> used in the filter

update are computed by:

H =
∂y
∂δxR

, V =
∂y
∂v
. (2.27)

39



2. Preliminaries

The EKF prediction and update steps are outlined bellow, where we use subscripts

of the form m|n to represent estimated quantities at time m given observations up

to time n with n ≤ m :

Prediction

1. Given the IMU measurements ã, ω̃ propagate the state x using (2.19).

2. Calculate the discrete equivalent Fk, Lk of the Jacobians defined in (2.22).

3. Compute the propagated covariance using: Pk|k−1 = FkPk−1|k−1F
>
k +LkQkL

>
k

with Qk the discrete equivalent of the covariance matrix Qc.

Update

1. Given the pose measurements W r̃V , q̃WV and the current estimate x, compute

the residual ỹk defined in (2.26).

2. Compute the innovation Sk|k = HkPk|k−1H
>
k + VkRkV

>
k .

3. Compute the Kalman gain Kk = Pk|k−1H
>
k S−1

k|k.

4. Update the state estimate xk|k = xk|k−1 �Kkỹk.

5. Update the state covariance Pk|k =
(
I−KkHk

)
Pk|k−1.

Even though our implementation relies on pose measurements originating from

a motion capture system, it can be accordingly modified to fuse information from

different sensors (e.g. GPS, pressure sensor, magnetometer). In this case the correct

measurement model (depending on the type of sensor) has to be used and if necessary

the filter state has to be augmented with sensor-intrinsic and/or calibration states.

An example includes the work presented in [Weiss et al., 2012] where a visual SLAM

was used as a 6D pose sensor resulting in a loosely coupled visual SLAM capable of

providing estimates at IMU rate.

2.4.2 Simultaneous Localisation and Mapping (SLAM)

For operation in environments where a motion capture system or GPS signal is not

available, we use Open Keyframe-based Visual Inertial SLAM (OKVIS)7 as a basis

for our MAV state estimation. We made, however, several extensions in order for it

to be usable with a low cost RGBD camera.

7
Available open-source at http://ethz-asl.github.io/okvis/.
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OKVIS jointly estimates the robot state xR defined in (2.18) as well as the land-

marks xL by minimising the following cost function consisting of camera reprojection

errors ei,j,kr and IMU errors eks :

J(x) :=

I∑
i=1

K∑
k=1

∑
j∈Jv(k)

ei,j,kr

T
Wi,j,k

r ei,j,kr +

K−1∑
k=1

eks
T

Wk
s eks , (2.28)

with x := [x>R, x
>
L ]>, i the camera index of the I-camera setup, k the camera frame

index, j the landmark index, Wi,j,k
r the information matrix of the corresponding

landmark observation and Wk
s the information matrix of the kth IMU error. The

set Jv(k) contains the indices of the landmarks visible in the kth frame.

In this work, we use a dual camera setup (I = 2) which either consists of a Red

Green Blue (RGB) stereo pair or an RGB-Depth camera setup shown in Figure 2.9

left and right respectively. For the RGB cameras we use the reprojection error as

in the original OKVIS implementation in [Leutenegger et al., 2014]:

ei,j,kr = zi,j,k − h(TCiS
T kSW W lj), (2.29)

with z denoting the measurement in image coordinates, h(·) the camera projection

model and W lj the position of the landmark j in World coordinates.

In the RGB-Depth camera setup, we incorporate the depth information by ad-

opting the approach of ORB-SLAM 2 [Mur-Artal and Tardós, 2017] and creating

a virtual stereo camera. We obtain virtual keypoint measurements by projecting

3D points into the virtual second camera with frame F−→Cv
. Let u = h(CrP ) and

CrP = h−1(u,D) be the RGB camera projection and back-projection from image

coordinates to a homogeneous point as defined in Section 2.2.4. We can now create

virtual keypoint measurements zj,kv from actual measurements zj,k, iff depth is given

for said pixel, as:

zj,kv = hv(TCvC
h−1(zj,k,D)), (2.30)

where the transformation TCvC
, and hv(·) stands for the virtual camera projection

model that we define as hv(·) := h(·) for convenience.

Given the virtual keypoint measurements zj,kv , the reprojection error is defined

identical to (2.29). Note that this scheme allows for easy compatibility with a

multi-camera system assumed in [Leutenegger et al., 2014]. Furthermore, since the

depth map of the camera we use was indeed obtained through stereo triangulation,
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formulating reprojection errors in a stereo setup (even if virtual), correctly accounts

for noise in image space.
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3.1 Introduction

Due to its simple formulation as well as the benefits listed in Chapter 1, the concept

of linear MPC has been successfully applied to a variety of aerial vehicles ranging

from fixed wing aircraft [Oettershagen et al., 2016] to more relevant to this work

multirotor platforms [Alexis et al., 2011, Alexis et al., 2012, Darivianakis et al.,

2014, Kamel et al., 2017a, Kamel et al., 2017b]. Its successful deployment on real

systems has been enabled by the existence of efficient toolboxes used to solve the

underlying optimisation problem either online [Mattingley and Boyd, 2012, Ferreau

et al., 2014, Frison and Diehl, 2020] or as an explicit solution in the form of lookup

tables [Kvasnica et al., 2004, Herceg et al., 2013].

Here we present a simple linear MPC originally developed for our participation

in the MBZIRC competition in 2017 as well as for the purposes of the AABM pro-

ject. In the control design, we adopt the position-attitude separation discussed in

Chapter 1 with the position MPC generating reference attitude commands tracked

by an already implemented attitude controller. The control model was built, with

minor adaptations, based on previously published works backed up with experi-

mental results.

In addition to the position controller, we further present the experimental setup

used for our participation in MBZIRC. This includes a generic framework for vision

based detection and tracking, which although tested in an experimental scenario

resembling the MBZIRC Challenge 1, can be used in more generic tracking applic-

ations while exclusively relying on onboard sensors.

3.2 Related work

Amongst the first applications of linear MPC in MAVs, we find the work in [Alexis

et al., 2011] where an attitude controller was proposed. The MAV nonlinear attitude

dynamics were approximated as a sequence of linear systems (each one linearised

around different operating points) resulting in a switching mode MPC based on the

current MAV state and the active subsystem. The same dynamics approximation

principle was applied for the position and attitude control of an MAV in [Alexis

et al., 2012]. The two controllers were connected in a cascaded way with the po-

sition MPC providing the attitude references to the attitude MPC. The reference

attitude commands were assumed to be perfectly tracked by the attitude controller.
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A better approximation, as a second order system, regarding the closed loop atti-

tude dynamics was adopted in [Darivianakis et al., 2014]. There the same cascaded

control architecture was used, with the attitude controller being a pre-tuned PID.

In a very similar approach [Kamel et al., 2017a, Kamel et al., 2017b] the closed loop

attitude dynamics were approximated as a first order system. Another difference

between the approach in [Darivianakis et al., 2014] and [Kamel et al., 2017a, Kamel

et al., 2017b] is that the linearised position dynamics used in the former include

linear damping terms (e.g. to model the effect of aerodynamic friction) whereas the

latter approach relies on the model derived from linearisation at hover. A much

simpler modelling approach, but with very good experimental results, was adopted

in [Beul et al., 2017] where the position dynamics were modelled as a per-axis triple

integrator system with the position MPC producing jerk commands. These were

integrated into acceleration and subsequently, assuming near hover operation, to

orientation commands.

As far as the idea of landing aerial vehicles on moving platforms is concerned, this

has been documented in several works as it can be e.g. used as a failsafe mechanism in

case of a landing gear malfunction [Muskardin et al., 2016], or more relevant to MAVs

observation of moving objects [Thomas et al., 2017] and in package delivery [Murray

and Chu, 2015, Ham, 2018] where the aerial vehicle has to repeatedly takeoff from

and return to a delivery truck upon completing a delivery task. Traditionally, the

problem of landing on a moving platform has been either handled as a cooperative

control task (e.g. control of both vehicles in a centralised way or exchange of data

between the two) or as a tracking problem using onboard sensors such as cameras

which is also the focus of our work.

Regarding the vision based tracking, the proposed methods rely on the specific

experimental setup with e.g. tracking of a spherical object in [Thomas et al., 2017],

In the most common scenario, determining the relative pose between the MAV and

the moving platform can be achieved using a single fiducial marker (e.g. [Kaess,

2013]) attached to the latter as in [Shuo Yang et al., 2015, Lee et al., 2012] or in a

different approach such as [Araar et al., 2017], multiple ones at different scales aim-

ing at handling occlusions and increasing the detection range. Alternative ways of

ensuring visibility of the landing platform after initial detection include the method

in [Vlantis et al., 2015] where the visibility requirement is considered by the track-

ing controller, the method in [Lee et al., 2012] where the control law (ensuring
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visibility) is formulated in image space as well as the hardware-enabled approach

in [Bhargavapuri et al., 2019] where the omnidirectional vehicle used can translate

without altering its orientation and thus not affecting the camera’s field of view. In

order to further increase detection robustness, most of the works with successful ex-

perimental results [Araar et al., 2017, Vlantis et al., 2015] rely on the fusion (usually

in an EKF framework) of the vision observations with some motion model of the

moving target. This further enables the estimation of the moving target velocity

which can be used in the tracking controller and plays a crucial role for successful

tracking and landing especially at high speed.

Finally, as examples of complete software and hardware frameworks, we would

also like to highlight the work of other Mohamed Bin Zayed International Robotics

Challenge (MBZIRC) participants [Bähnemann et al., 2017, Beul et al., 2017] with

a direct comparison of their approach to ours being provided in Section 3.6.5.

3.3 Contribution

In this Chapter we present a linear MPC for MAV position control with the objective

of accuracy (given the limitations of the linear modelling) and ease of use across

different platforms. In short, we show the following contributions:

• A position MPC which relies on a linear model similar to the one presented

in [Darivianakis et al., 2014, Kamel et al., 2017a], incorporates soft state con-

straints and is formulated as a QP in its canonical form that can be solved in

realtime using any generic QP solver.

• A generic framework for vision based detection, tracking and landing on a

moving target. We evaluate its performance in experiments emulating the

MBZIRC 2017 Challenge 1.

• Experimental evaluation of the tracking accuracy in slow maneuvers as re-

quired for the purposes of the AABM project.

3.4 System overview

A generic system overview which is common in both the experiments presented in

Section 3.6 as well as the ones in Section 3.7, is given in Figure 3.1. Main compon-
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ents include: (i) the state estimation block which provides full state estimates and

depending on the experiment’s environment (indoor/outdoor) either relies on vision

or on fusion of IMU and pose measurements provided by a motion capture system as

described in Section 2.4 (ii) the linear MPC which receives trajectory commands and

produces orientation and collective thrust reference commands which are forwarded

to (iii) the attitude controller which is run by the flight controller and produces

PWM commands.

Figure 3.1: A generic system overview of the various software components used in
the Experiments presented in Sections 3.6 and 3.7.

The coordinate frames used in the control formulation are shown in Figure 3.2.

All motion is referenced relative to a World-frame F−→W (Earth-fixed and tangential

to the surface with z-axis upward) that we approximate to be also an inertial frame.

We further consider an MAV body fixed frame F−→B with its origin at the CoM of the

vehicle. We formulate the MAV dynamics in a frame F−→N which is obtained when

the frame F−→W is rotated by the yaw angle ψ around its z axis and translated to the

origin of the body frame F−→B.

Figure 3.2: Illustration of the different coordinate frames from two different views.
F−→W : The World frame approximated as inertial where all motion is reference to.
F−→B: The MAV body fixed frame. F−→N : The frame used for the control model
formulation.
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3.4.1 Translational dynamics

The linear model used for control uses Euler angles (following the ZYX convention

with yaw ψ ∈ [−π, π], pitch θ ∈ [−π
2 ,

π
2 ], roll φ ∈ [−π, π]) as a parameterisation

for the MAV orientation. Throughout this work quaternions were always used for

the state estimation pipeline as this has to work for any possible motion or control

algorithm not bound to the application at hand. In the linear MPC case, Euler

angles were preferred as it was easier to derive the corresponding linear model. We

ensure that the MAV operates at angles far from the gimbal lock through appropriate

optimisation constraints.

Since the heading angle ψ does not contribute to the translational motion of the

MAV and in order to eliminate it from the model used for control, we express the

MAV position and linear velocities in the navigation frame F−→N shown in Figure 3.2.

We consider the following control state and input:

x := [x, ẋ, θ, θ̇, y, ẏ, φ, φ̇, z, ż]>, (3.1a)

u := [θr, φr, T r]>, (3.1b)

with NrB := [x, y, z]>,NvB := [ẋ, ẏ, ż]> the MAV position and linear velocity ex-

pressed in the frame F−→N and θ, φ, θ̇, φ̇ the Euler angles and their respective deriv-

atives. The superscipt r used in (3.1b) denotes the corresponding reference quantity

(e.g. θr is the pitch angle commanded to the attitude controller while θ the one

actually achieved). Estimates of NrB and NvB can be computed by appropriately

transforming the world frame expressed W rB, W vB while θ and φ by converting

the estimated quaternion qWB to Euler angles. Regarding the Euler angle time

derivatives θ̇, φ̇, these can be computed using the following:

[
φ̇

θ̇

]
=

[
1 sin(φ) tan(θ) cos(φ) tan(θ)

0 cos(φ) − sin(φ)

]
︸ ︷︷ ︸

J

Bω , (3.2)

with Bω the estimated rotational velocity of the MAV. Note that the Jacobian J is

undefined for the boundary case θ = ±π
2 further signifying the necessity of operation

away from the gimbal lock or ultimately the use of a quaternion based model such

as the one introduced in Chapter 4.
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Regarding the translational dynamics, we use the following linear model:

N v̇ =


gθ − cxẋ
−gφ− cyẏ
T r − cz ż

 , (3.3)

with g = 9.81 m/s2 the gravitational acceleration constant and T r the desired ver-

tical acceleration which we will define later. The linear model was derived by assum-

ing that the MAV is in a near hover operation and that the translational dynamics

are controlled by the projection of the MAV thrust force on the F−→N in order to

generate translational acceleration. The terms cii̇, ∀i ∈ {x, y, z} model the system

damping (approximated as linear) due to aerodynamic friction.

Regarding the closed loop attitude dynamics, we assume that these can be ap-

proximated by the following second order system:

θ̈ = −bθ̈θθ − bθ̈θ̇θ̇ + bθrθ
r, (3.4a)

φ̈ = −bφ̈φφ− bφ̈φ̇φ̇+ bφrφ
r. (3.4b)

Regarding the motor dynamics, it was assumed that these are significantly faster

than the close loop attitude and translational dynamics and can thus be ignored.

This means that a desired thrust command can be instantly achieved by the mo-

tors. The relationship between the desired vertical acceleration T r and the one

commanded to the flight controller T̃ r is given by:

T̃ r = T r + Tff , (3.5)

with Tff = g, a feed forward term which compensates the acceleration due to gravity

and can be easily identified by doing hovering experiments for which z̈ ≈ 0.

By combining (3.3) and (3.4) we can express the system dynamics in the following

continuous time state space representation:

ẋ =


ALon 04×4 02×2

04×4 ALat 02×2

02×4 02×4 AAlt


︸ ︷︷ ︸

A

x +


BLon 04×1 0

04×1 BLat 0

02×1 02×1 BAlt


︸ ︷︷ ︸

B

u, (3.6a)

y = Cx, (3.6b)
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where C = I10×10 and the submatrices ALon, ALat, AAlt, BLon, BLat, BAlt are given

by the following:

ALon =


0 1 0 0

0 −cx g 0

0 0 0 1

0 0 −bθ̈θ −bθ̈θ̇

 , BLon =


0

0

0

bθr

 , (3.7)

ALat =


0 1 0 0

0 −cy −g 0

0 0 0 1

0 0 −bφ̈φ −bφ̈φ̇

 , BLat =


0

0

0

bφr

 , (3.8)

AAlt =

[
0 1

0 −cz

]
, BAlt =

[
0

1

]
. (3.9)

Since the controller is implemented in discrete time the above equations are discret-

ised using zero order hold for the input u. The discrete equivalent of the matrices

A, B, C can be obtained by:

Ad = eAdt, (3.10a)

Bd =
(∫ dt

0
eAτdτ

)
B, (3.10b)

Cd = C. (3.10c)

3.4.2 System identification

The linear dynamics defined in (3.3) and (3.4) depend on the unknown constant

parameters ci and bi. These were experimentally identified using frequency domain

grey-box identification with data captured from manual flights. An accurate system

identification would require the application of a chirp signal, which would expose

the dominant frequencies of the system. This would yet lead to an unsafe experi-

ment where the MAV rotates according to the chirp input but its position remains

uncontrolled, and that is why the manual flight was preferred.

Figure 3.3 shows the real and the simulated response of the identified closed loop

attitude dynamics when the inputs of the validation dataset are used and also the

real and simulated response for the translational dynamics.
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Figure 3.3: Real and simulated response for θ, φ, ẋ, ẏ, ż, ẍ, ÿ and z̈. Despite the use of a linear model, the simulated and the real
attitude response (upper two plots) of the MAV almost always coincide. The simulated translational dynamics best match the real
ones in the low velocity (< 2.0 m/s) and low acceleration (< 1.0 m/s2) region.51
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Apart from the attitude and translational dynamics, we perform an experimental

identification of the thrust command T̃ r defined in (3.5) and the one actually

achieved by the MAV. This is necessary as the flight controller interface does not

support collective thrust commands in native units of thrust (i.e. Newtons) but only

allows normalised collective thrust commands in the [0, 1] range. Our model also

considers the effect (approximated as linear) of the varying battery voltage. An

example of the relationship between the normalised command for hovering thrust

T̃ r ≈ Tff and the battery voltage is given in Figure 3.4.

14 14.5 15 15.5 16

0.2

0.4

0.6

0.8

Figure 3.4: Experimental identification of the relationship between the normalised
normalised command for hovering thrust T̃ r ≈ Tff and the battery voltage.

3.5 MPC with soft constraints

The implemented MPC computes the optimal input sequence ū∗ = u∗0 . . . u
∗
N−1 which

is the solution of the following optimization problem:

ū∗ = argmin
u0...uN−1

J,

s.t. : xk+1 = Adxk + Bduk,

yk = Cdxk, (3.11)

x0 = x̂0,

ūmin ≤ ū ≤ ūmax,

where: xk ∈ Rn is the system state at time k, x̂0 ∈ Rn the estimated state at time

0, yk ∈ Rp the system output at time k, syk ∈ Rp the reference output at time k,

suk ∈ Rm is the reference input at time k, N ∈ Z+ the length of the prediction
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3.5. MPC with soft constraints

horizon and Ad ∈ Rn×n,Bd ∈ Rn×m,Cd ∈ Rp×nare the discrete state, input and

output transition matrices as defined in (3.10).

The cost function

J =
N−1∑
k=0

(∥∥Qk+1(yk+1 − syk+1)
∥∥2

2
+ ‖Rk(uk − suk)‖22

)
(3.12)

is the quadratic penalty function on the states and inputs commonly used in optimal

control, where the input and output gain matrices Rk ∈ Rm×m and Qk ∈ Rn×n are

tuning parameters. By concatenating the two squared 2-norms that appear in the

cost function J , we can rewrite it as:

J =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Q1(y1 − sy1)

Q2(y2 − sy2)
...

QN (yN − syN )

R0(u0 − su0)

R1(u1 − su1)
...

RN−1(uN−1 − suN−1)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

(3.13)

and by assigning ȳ = [y1, y2, · · · , yN ]T , ū = [u0,u1, · · · ,uN−1]T , s̄y = [sy1, s
y
2, · · · , s

y
N ]T ,

s̄u = [su0 , s
u
1 , · · · , s

u
N−1]T , Q̄ = diag(Q1,Q2, · · · ,QN ) and R̄ = diag(R0,R1, · · · ,RN−1)

the original optimization problem, takes the following form:

ū∗ = argmin
u0...uN−1

∥∥∥∥∥Q̄(ȳ− s̄y)
R̄(ū− s̄u)

∥∥∥∥∥
2

2

,

s.t. : xk+1 = Adxk + Bduk,

yk = Cdxk, (3.14)

x0 = x̂0,

ūmin ≤ ū ≤ ūmax.

We can eliminate the model equality constraints from (3.14) by substituting ȳ =

C̄x̄ = C̄Φx̂ + C̄Γū into the cost function J , where x̄ = [x1,x2, · · · ,xN ]T and the

matrices Φ ∈ RNn×n and Γ ∈ RNn×Nm can be obtained by applying the equations

xk+1 = Adxk + Bduk and yk = Cdxk to every element of x̄. Specifically, these are
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3. Linear Model Predictive Control

given by:

Φ =


Ad

A2
d

...

AN
d

 , Γ =


Bd 0 · · · 0

AdBd Bd · · · 0
...

...
. . .

...

AN−1
d Bd AN−2

d Bd · · · Bd

 . (3.15)

The optimization problem is transformed into the following equivalent QP with

inequality constraints:

ū∗ = argmin
ū

ūT
(

Q̄C̄Γ

R̄

)T (
Q̄C̄Γ

R̄

)
ū− 2

(
Q̄s̄y − Q̄C̄Φx̂0

R̄s̄u

)T (
Q̄C̄Γ

R̄

)
ū

s.t. : ūmin ≤ ū ≤ ūmax. (3.16)

In order to ensure operation within a safe state envelope, it is common in MPC

to impose additional state constraints. These can be modeled as hard constraints

similar to the input constraints ūmin ≤ ū ≤ ūmax. In this case the optimization

solver may face an infeasible problem since the set of admissible points as defined

by the problem constraints is empty e.g. when a large disturbance has occurred or

when the real and the estimated model used for control behave differently.

In order to avoid the case of infeasibility we model the state constraints Gx̄ ≤
h, with G ∈ RNl×Nn as soft constraints which can be violated if necessary. We

incorporate them into the cost function J following a similar approach discussed in

[Maciejowski, 2002] and [Kerrigan and Maciejowski, 2000].

The modified cost function Jm is:

Jm = J + λ1T(Gx̄− h)+. (3.17)

The subscript + implies that (Gx̄−h)+ = Gx̄−h when Gx̄−h ≥ 0 and 0 otherwise.

Overall, the term 1T(Gx̄ − h)+ is the sum of constraints violation while the gain

λ ∈ R is large enough in order to ensure that the modified optimization problem

with soft constraints, when none of the constraints is active, is equivalent to the

optimization problem where the state constraints are modeled as hard.

The optimisation problem with the soft state constraints can be rewritten as the

54



3.6. Experimental results: Landing on a moving platform at MBZIRC

following equivalent QP by introducing the slack variables s.

ū∗, s∗ = argmin
ū,s

J + λ1T s

s.t. :


I 0
−I 0
GΓ −I
0 −I


(

ū
s

)
≤


ūmax
−ūmin

h−GΦx̂0

0

 (3.18)

By introducing t = [ū, s]T ∈ RN(l+m) the above QP is written in its canonical form

as:

t∗ = argmin
t̄

t>


(

Q̄C̄Γ

R̄

)T (
Q̄C̄Γ

R̄

)
0

0 0

 t +

−2

(
Q̄s̄y − Q̄C̄Φx̂0

R̄s̄u

)T
λ1>

 t,

s.t. :


I 0
−I 0
GΓ −I
0 −I

 t ≤


ūmax
−ūmin

h−GΦx̂0

0

 . (3.19)

This can be solved in realtime using any generic QP solver. We use CVXGEN

[Mattingley and Boyd, 2012] which generates a tailored to the specific problem

interior-point based C code and in practice was the fastest QP solver tested. Ac-

cording to the authors of the optimization toolbox, nearly all the computational

effort in each iteration stems from the solution of two linear systems resulting in a

worst case computation complexity of O(n3) where n = N(l + m) corresponds to

the number of optimization variables in the final QP problem and N , l and m to

the length of the prediction horizon, the number of soft constraints and the number

of inputs, respectively, as introduced above.

3.6 Experimental results: Landing on a moving

platform at MBZIRC

In this Section we present the additional software components developed for the pur-

poses of the MBZIRC were we participated in 2017 and corresponding experimental

results. The challenge required an MAV to autonomously detect and land (within 15

minutes) on a flat ferrous target (1.5 m × 1.5 m) placed on top of a moving ground
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vehicle. The moving ground vehicle had a speed of 15 km/h for the first 8 minutes

and 5 km/h for the next 7. A landing was considered successful only if the MAV

neither had visible damage nor fell off from the target. Performing the task in an

autonomous way is challenging, as it requires fast response from sensing, precise

state estimation, as well as good synchronisation to other subsystems i.e. controller

and target tracking.

Rather than custom-tailoring an approach to the specific challenge, we developed

and integrated a suite of algorithms that allow us fully autonomous flight in a wider

range of scenarios and conditions, including the ones of MBZIRC. In the design

of both the platform and the software stack, we decided for a low-cost, yet robust

solution. Specifically, we adopt an extended visual-inertial odometry framework,

OKVIS [Leutenegger et al., 2014], providing the basis for control, even if GPS is

either not available or not reliable enough. A downward-looking fisheye camera is

used for detection and tracking of a moving target, formulated as a tracking problem

in 3D space. We close the position control loop with the MPC described in Section

3.5, which has proven extremely robust even in windy conditions. The overall system

performance is evaluated in outdoor test flights simulating the MBZIRC challenge.

We show that the proposed setup is capable of landing on a target moving at up to

18 km/h in presence of wind in the order of 15 km/h.

3.6.1 System overview

Coordinate frames

Apart from the World F−→W and body frame F−→B introduced in Figure 3.2, we fur-

ther introduce the moving target frame F−→T , the RGBD camera frame F−→C , the

downward-looking camera frame F−→D and the IMU coordinate frame F−→S . The dif-

ferent coordinate frames used are illustrated in Figure 3.5.

Hardware components

For the experiments presented in this Section, we use the custom built hexacopter

equipped with the onboard computer and flight controller described in Section 2.2.

In order to cope with the additional payload we used the more efficient propulsion

system #1 presented in Section 2.2.3.

We use two different camera sensors, one for MAV state estimation and an-
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3.6. Experimental results: Landing on a moving platform at MBZIRC

Figure 3.5: The different coordinate frames used. Namely, F−→W : the Earth fixed
frame, F−→B: the MAV body fixed frame, F−→C : the RGB-D camera frame, F−→S : the
IMU sensor frame, F−→D: the downward looking camera frame and F−→T : the moving
target frame.

other for estimating the target position and velocity. Specifically, the RealSense

ZR300 RGBD+IMU1 sensor is used for the state estimation scheme while a FLIR

Chameleon 32 is mounted on the lower plate of the MAV and is used for the

target tracking. Special attention was payed on the mechanical assembly of the

RGBD+IMU sensor which was soft mounted on the MAV frame to prevent the

mechanical vibrations of the motors from significantly affecting the natively noisy

IMU measurements which are used in OKVIS.

In order to absorb the impact energy when the MAV performs high speed landing

maneuvers, an origami-folding inspired landing pad made from soft materials was

designed using multi-material additive manufacturing techniques. The landing pad

is attached to each of the MAV arms, consists of compliant hinges with geometry in

single curvature shell and morphing shells which can be passively bent by the impact

forces when the six feet make contact with the landing target. The MAV with all

the extra hardware components including the landing mechanisms are illustrated in

Figure 3.6.

Software components

On the software side there are three main components. The visual-inertial odometry

is responsible for the estimation of the MAV position, orientation and the respective

velocities. A target tracking EKF is responsible for the estimation of the landing

target position and velocity. This information is later used by the MPC presented

in Section 3.5 in order to stabilize the MAV and navigate it accordingly to a desired

1
See https://click.intel.com/realsense.html. Accessed April 2020.

2
See https://www.ptgrey.com/chameleon3-usb3-vision-cameras. Accessed April 2020.
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3. Linear Model Predictive Control

Figure 3.6: Left: MAV hardware explained with most important components. Right:
The soft landing pad in its original configuration and the partially folded configur-
ation where the magnet attaches to the horizontal surface.

position. We use ROS3 as a middleware for the exchange of data between the indi-

vidual software components. An overview of the software components is illustrated

in Figure 3.7.

Figure 3.7: OKVIS [Leutenegger et al., 2014] is used in combination with the Intel
RealSense ZR300 for the visual-inertial estimation of the MAV state xR. A mono-
chrome FLIR Chameleon 3 is used for the detection of the moving target. The target
state xT and the MAV state xR are further used in the MPC which generates a refer-
ence quaternion qRWB and reference collective thrust T r for the attitude controller.
The attitude controller is implemented on an mRo PixRacer flight controller which
outputs the corresponding ω1, · · · , ω6 motor commands.

3
See http://www.ros.org/. Accessed April 2020.
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3.6. Experimental results: Landing on a moving platform at MBZIRC

3.6.2 Estimation of MAV and target state

As a basis for MAV state estimation we use OKVIS described in [Leutenegger et al.,

2014]. We additionally adopt the modifications described in Section 2.4.2 in order

to cope with RGBD camera in our sensor setup.

We track the landing target by means of an EKF, where we assume the MAV

pose is given by the estimator described above, and poses are accurate enough. The

dynamics employed for the prediction step consists of a constant velocity model for

linear translation, and a constant orientation model, since rotation speeds of the

target remain small. Inclusion of linear velocity of the target into its estimated

state, however, is crucial, since we need it for accurate tracking.

In maths, we estimate the following target state:

xT :=
[
W rT

T ,qWT
T ,W vWT

T
]T
∈ R3 × S3 × R3, (3.20)

and we consider the following prediction model:

W ṙT = W vWT , (3.21)

q̇WT =
1

2

[
wrot

0

]
⊗ qWT , (3.22)

W v̇WT = wvel, (3.23)

where wrot and wvel denote 3-dimensional uncorrelated Gaussian white noise pro-

cesses affecting orientation, and velocity, respectively. In our experiments, we set

the noise parameters of said processes to σrot = [0.02, 0.02, 0.2]T rad/
√

hz and σvel =

[0.1, 0.1, 0.1]Tm/(s
√

hz), respectively.

For the update step, we employ observations of pre-defined landing pattern key-

points. Please refer to Figure 3.8 for an illustration of the specific keypoint locations

on the target pattern at hand.

As the measurement function, we therefore use the predicted keypoint location of

the tth keypoint into the (undistorted) downward-looking fisheye camera:

ht(xT) = uD(T−1
WD TWT Trt), (3.24)

where uD denotes the (undistorted) projection model of the downward looking cam-

era, the transformation TWD is obtained through visual-inertial MAV state estim-

ation, and the location of the keyoint on the target, Trt, is a known constant.
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Note that in our implementation, we use a tangent space representation of the

orientation, δαWT , around the current estimate qWT analogous to [Leutenegger

et al., 2014], as

qWT = exp(δαWT )⊗ qWT =

 sinc
∥∥∥ δαWT

2

∥∥∥ δαWT
2

cos
∥∥∥ δαWT

2

∥∥∥
⊗ qWT , (3.25)

with exp(·) the exponential map.

In order to obtain the keypoint measurements to formulate the EKF update re-

sidual, we employ tracking in image space: we use 20 by 20 pixel patches around the

keypoints warped from the pattern template image using the predicted pose relat-

ive to the camera observing them. Then, using keypoint location predictions from

(3.24), we brute-force search their neighbourhood in the binarised image (60 by 60

pixel) by means of finding the square difference minimum w.r.t. the warped template

patches. In our implementation, we used a keypoint measurement standard devi-

ation of 5 pixels – partly accounting for the lack of proper hardware synchronisation

between the RealSense (used for OKVIS) and the downward looking fisheye camera.

For outlier removal, we discard keypoint measurements where this difference is two

high, and also those whose residuals don’t pass a Chi-square test (threshold: 9).

We illustrate these steps in Figure 3.8.

Figure 3.8: Top row: projected predicted keypoint neighbourhoods (search area) as
blue boxes, and actual found detections as green circles (right: zoomed in). Middle
row: binarised search neighbourhoods. Bottom row: respective warped templates
to match.
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Figure 3.9: The reference generation scheme. The incorporation of the reference
velocities and not only the position, improves the overall tracking performance of
the system. The low pass filters for the position and velocity are used in order to
filter out noisy target detections. The target position prediction by the tPrediction

time offset, is performed to counteract unmodeled delays, from target detection to
actual maneuver execution, that exist in the system.

3.6.3 High level mission profile

Reference generation

Although our controller can natively handle a time varying (over the prediction

horizon) input s̄u = [su0 , s
u
1 , · · · , s

u
N−1]T and output s̄y = [sy1, s

y
2, · · · , s

y
N ]T , for simpli-

fication, we do not explicitly generate time varying references but static ones which

remain constant over the prediction horizon.

The approach of position setpoint instead of trajectory control is sufficient for

waypoint navigation but insufficient when tracking of a moving target is required.

Generating a sequence of reference position setpoints based on the observed position

of the moving target will result in a constant offset, similar to the case of PD control,

between the position of the MAV and the target. This is the result of the zero

velocity requirement at each position setpoint which does not hold in the case of

a moving target. We tackle this problem by not only penalizing deviation from a

reference position but also from a reference velocity which in this case corresponds

to the estimated velocity of the target. It is also worth mentioning that in our

implementation, the prediction horizon is relatively short 0.1 s. Similarly, we can

penalize deviation from a reference acceleration by incorporating it in s̄u.

The scheme for the generation of the commanded setpoint (which includes both

reference position and velocity) is illustrated in Figure 3.9. For simpler tasks such

as waypoint navigation we follow the standard approach where position commands

with zero reference velocities are sent to the controller.

We use low pass filters for the reference position and velocity with cutoff frequen-
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cies fCutOffPosition, fCutOffVelocity to filter out the noisy target position and velocity

estimates. The target position prediction by the time offset tPrediction, assuming con-

stant velocity, is used in order to counteract the delay between a successful target

detection and the actual maneuver of the MAV. The use of such a time offset was

also motivated to compensate significant unmodeled delays that exist in the system

such as the one related to the downward looking camera vision processing which

arises from the lack of its hardware synchronization. Notice that the prediction

of the target position also depends on its estimated velocity, while the time offset

tPrediction was a constant parameter determined by tuning of the whole system before

conducting the series of reported experiments. Numeric values of the parameters

used are given in Table 3.2.

State machine

The overall behavior of the MAV is controlled by a state machine with the following

modes which in an ideal experiment, are triggered sequentially.

Idle Mode: This is the default mode when the mission is initially triggered. The

motors are disarmed and a zero thrust and orientation command T r = 0,

qrWB = [1, 0, 0, 0]T is sent to the MAV.

Taking Off Mode: This mode is triggered once the first valid state estimation

message becomes available. An arming command is sent to the motors and

the MAV takes off to the predefined altitude zTakeOffHeight with a predefined

ascending velocity żTakeOffVelocity.

Waypoint Mode: Immediately after take off, the MAV flies towards a predefined

waypoint which coincides with the cross point of the figure-eight trajectory

that the ground vehicle was following in the MBZIRC challenge.

Follow Mode: This mode is triggered when the landing pattern is successfully

detected for the first time. A position and velocity command based on the

procedure described in 3.6.3 is sent to the controller. When the difference

between the current time tCurrentTime and the time of the last target detection

tLastDetection is greater than the timeout parameter tDetectionTimeOut, we assume

that the target is not visible anymore and return back to the waypoint mode.

The tDetectionTimeOut has to be set high enough to allow the MAV to move close
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to where the target was detected but low enough to enable fast recovery to

the waypoint in the case of an actual detection loss.

Landing Phase 1: Once the MAV has properly caught up the moving target, it

starts descending towards it with a predefined velocity żDescendingP1. This

mode is triggered when

√
(xB − xT )2 + (yB − yT )2 ≤ dPositionThreshold and√

(ẋB − ẋT )2 + (ẏB − ẏT )2 ≤ dVelocityThreshold where xB, xT , yB, yT stand for

the x, y position and velocity, expressed in the F−→W , of the MAV and the tar-

get respectively. Similarly to the follow mode, if tCurrentTime − tLastDetection ≥
tDetectionTimeOut we consider that the target is not visible anymore and return

back to the waypoint mode.

Landing Phase 2: This is similar to the Landing Phase 1 mode apart from the

facts that the descending velocity is now żDescendingP2 and that the target

detection timeout check is ignored. This means that once the MAV enters

this mode when zB − zT ≤ zLandingP2Offset – where zB, zT are the z position

expressed in the F−→W of the MAV and the target – a landing that cannot be

canceled will be attempted. The above feature is necessary since reliable target

tracking cannot be guaranteed when the MAV is really close to the target (due

to partial visibility, blur, etc.).

Landed: This is the last operation mode which is triggered when zB − zT ≤
zSuccessfulLandingOffset. After successful landing a disarming command is sent

to the motors and the mission has ended.

Figure 3.10 shows a flowchart with the described operating modes including the

strategies in the case of target detection loss.

3.6.4 Field experiments

In order to validate the performance of our platform and the developed algorithms,

we performed a series of outdoor experiments replicating a similar to the MBZIRC

Challenge scenario. Note that we performed these experiments after our participa-

tion in MBZIRC, where the preliminary version of the described system proved too

unreliable, specifically in the extreme wind conditions, and triggered us to improve

several aspects of hardware, algorithms, and software.
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Figure 3.10: Flowchart indicating the transition between the various operating
modes.

The experimental flow is as follows: The MAV takes off from the starting point

location where it is initially placed on a 45cm height box. This is necessary in order

to make sure that OKVIS can detect and track salient points on the RGB image.

Once take off is completed, the MAV navigates to the predefined waypoint where it

hovers till the target gets detected. After successful detection, the MAV tries to fol-

low the target and land on it. The transition between the different operating modes

is the one described in Section 3.6.3. The MAV executes the whole task autonom-

ously and does not use any user provided information about the target position and

velocity but it exclusively relies on its onboard sensors and algorithms. A human

pilot triggers the start of the mission and can also manually intervene in order to

prevent a crash in case of an algorithmic failure. We annotate every experiment

as Successful or Failed based on whether the MAV managed to land successfully

on the target according to the MBZIRC Challenge specifications 4. Specifically, a

successful landing is when the MAV comes to a rest on the landing target, with the

MAV intact.

The landing target is identical to the one used in the MBZIRC Challenge and

was being pulled manually, in a random way, with a rope. We tested moving

the target with velocities between 1.3 m/s and 5.7 m/s which exceed the maximum

target velocity of 4.1 m/s during the MBZIRC Challenge. Table 3.1 contains the

results of the conducted experiments while Table 3.2 contains a list for all the

4
See https://www.mbzirc.com/faqs/2017. Accessed April 2020.
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parameters used in the developed algorithms. Alongside the outcome (Success-

ful/Failed) for each experiment, Table 3.1 contains the norm of the position error

exy =

√
(xB − xT )2 + (yB − yT )2 between the MAV and target position when the

MAV has landed and the time tTrackingDuration which corresponds to the time that

was needed for a successful landing from the time instant where the target was

initially detected.

Since no motion capture system or RTK GPS was used, we cannot provide ground

truth for the MAV and target position. All the data presented in this section

corresponds to the estimates from OKVIS and the target tracking EKF.

Table 3.1: Successful/unsuccessful landings

Experiment # 1 2 3 4 5 6 7 8 9 10 11 12

Average Velocity v̄ [m s−1] 1.3 1.7 2.0 2.0 2.3 2.4 3.5 3.8 4.0 4.6 5.0 5 .7
error exy [cm] 2.5 11.8 5.2 30.6 16.5 6.6 30.2 18.6 15.6 29.8 45.8 7.6
Duration [s] 5.1 4.8 5.6 7.7 7.1 5.7 5.0 5.9 7.5 6.1 5.6 5.0

Outcome* S S S S S S S S S F S F

S = Successful, F = Failed.

Table 3.2: Landing software parameters.

fCutOffPosition 30 hz zTakeOffHeight 5.2 m żTakeOffVelocity 0.5 m/s
fCutOffVelocity 30 hz dPositionThreshold 0.8 m dVelocityThreshold 0.8 m/s
tPrediction 0.1 s zLandingP2Offset 2.5 m żDescendingP1 1.3 m/s
tDetectionTimeOut 0.5 s zSuccessfulLandingOffset 0.35 m żDescendingP2 1.8 m/s

Selected experiments

We present the MAV and target position and attitude data for three selected ex-

periments. Specifically, two of them (Figures figs. 3.11 to 3.14) were successful (one

with low target velocity and another with high), whereas the third one (Figures 3.15,

3.16) was unsuccessful. The figures for the remaining nine experiments can be found

in [Tzoumanikas et al., 2019]. In all the figures presented, solid lines refer to the

estimated values given by OKVIS while the dashed ones refer to their corresponding

reference. Reference position xr, yr, zr was generated as described in Section 3.6.3

while θr, φr and T r were obtained by solving the MPC optimization problem. ψr

was always kept to zero. Also, notice that there is no solid line for T r (plotted in

Newtons) since – as explained in Section 3.4 – the dynamics of the motors were

ignored and it was assumed that the applied thrust coincides with the reference.
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Figure 3.11: Position and attitude data for experiment #11. A successful landing
on a target moving with 5.0 m/s was achieved. The dashed lines on the upper 3
plots correspond to the reference position which is generated based on the estimated
position and velocity of the target while the dashed lines on the lower 3 plots cor-
respond to the attitude angles and thrust generated by the MPC. The MAV lands
5.59 s after the first target detection and 45.8 cm away from the target center.
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Figure 3.12: Position and attitude data for experiment #1. A successful landing
was achieved on a target moving with 1.3 m/s. The MAV lands 5.06 s after the first
target detection and 2.5 cm away from the target center.
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Figure 3.13: The MAV and target position visualised as a 3D plot for the experiment
#11. Dashed lines indicate the corresponding target detection/tracking.

Figure 3.14: The MAV and target position in 3D for the experiment #1.
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Figure 3.15: Position and attitude data for experiment #12. A failed attempt of
landing on a target moving with 5.7 m/s was performed. Although that the final
position error exy between the target and the MAV is only 7.6 cm, the real MAV
position differs from the target position (See also Figure 3.17). Unreliable estimation
of the target position especially when flying close to it led to a landing on a predicted
target position different from the real one.
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Figure 3.16: The MAV and target position in 3D for the experiment #12.

3.6.5 Comparison with other MBZIRC teams

From the experimental results, we realize that our hardware and software framework

achieves the original goal that it was designed for with high repeatability. The

majority of the experiments (10/12) were successful whereas there were only 2 failed

attempts, both in the high velocity region 4.6 m/s and 5.7 m/s. The worst case

position error exy between the target and the MAV after landing was 45.8 cm which

corresponds to the fastest successful attempt #11. The worst case tracking accuracy

achieved by the controller was more than sufficient especially considering the size of

the MAV and the landing target and the fact that the experiments were conducted in

an outdoor environment. The position error is generally larger in the high velocity

experiments (No 7, 8, 9, 11) and lower in the slower ones (No 1, 2, 3, 4, 5, 6).

We consider the noisy and uncontrolled outdoor environment (presence of wind and

varying lighting conditions, which affect the target state estimation) to be the main

reason.

Concerning MAV state estimation, with appropriate settings of gain and bright-

ness on the Realsense RGB-D camera, we have not experienced any problems related

to lack of tracked keypoints, therefore leaving the visual-inertial estimation system

working flawlessly.

Regarding the attitude commands generated by the MPC, these are generally not

smooth in the high velocity Experiments but smoother for the low velocity ones.
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This was the result of over-penalizing the position/velocity error compared to the

penalization of the smoothness terms. In other words, the gains of the optimisation

problem are chosen in a way such that position/velocity tracking is prioritized over

smooth attitude changes. Regarding the MAV response to the attitude commands,

there exist a phase and amplitude difference between the commanded attitude angles

and the real ones. Since the linear model also includes an estimated model for the

closed loop attitude dynamics (Equation (3.4)), the difference between a command

and the actual response is taken into account by the MPC. We also observe that

although the ψr was always kept to zero, ψ was minimally affected when aggressive

θr, φr were required. This is the result of existence of coupling between the MAV

degrees of freedom; something not captured by the linear model used for control.

It is important to highlight that our controller does not contain any integral error

term and generally it is not aware of any not modeled disturbance acting on the

system. Hence, it is unable to counteract any constant position/velocity error offset

which is either the result of an external disturbance or imperfect system calibration.

The controller can only compensate non-persistent external disturbances due to the

feedback on the system. Rejection of constant disturbances would only be possible,

if these could be estimated and taken into account from the control model. In order

to make sure that the MAV will remain in a state envelope where the used linear

model remains valid, we use appropriate constraints in the optimization problem.

These also guarantee that the MAV operates far from the gimbal lock (since Euler

angles are used for the control formulation).

In all the successful experiments, the MAV managed to land within less than 7.65 s

after the first target detection.The final time in all the experiments did not exceed

30 s, and this is mainly dominated by the time required for take off and moving

to the waypoint. We cannot make a direct comparison with the performance of

the teams who participated in the real challenge, as the final time also depends on

when the target becomes visible for the first time. We can, however, compare our

approach with the ones by team ETH-MAV [Bähnemann et al., 2017] and NimbRo

[Beul et al., 2017] which both successfully landed on the moving target during the

MBZIRC competition within 56 s and 32 s, respectively.

• ETH-MAV team used two cascaded EKFs that combine data from an RTK

GPS and a Visual Inertial sensor for the MAV state estimation. A downward
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looking camera is used for the target detection. Target tracking and landing

is achieved through a non-linear MPC and a path planning algorithm which

also relies on the prior knowledge of the MBZIRC track shape. They also use

a Lidar sensor in order to check the distance between the MAV and the target

and trigger the final stage of the landing procedure.

• NimbRo team used a GPS + IMU fusion algorithm for the MAV state estim-

ation, along with a fast trajectory planning algorithm. In order to detect and

track the target they use two different cameras. One is looking downwards,

while the other forward-downward. The usage of such a camera configura-

tion, not only robustifies the target detection but also enables faster initial

detection of the moving target. Their MAV was programmed to wait at the

waypoint while rotating around its vertical axis at the same time. Mechanical

switches are placed on the legs of the MAV in order to detect contact and thus

successful landing on the moving target.

Both teams followed a mission profile similar to ours with Wait at waypoint – Follow

– Final approach and landing to be the main modes of operation, while the main

difference was the active rotating/searching performed by the NimbRo team MAV

which can greatly reduce the time needed for initial target detection. Our approach

does not rely on RTK-GPS making it appropriate for similar tasks in GPS denied

environments, and moreover removes the necessity for a ground station (which wire-

lessly sends the GPS corrections to the MAV). We consider our approach to be simple

and general enough to be implemented in similar scenarios. Regarding the software

developed, we consider the lack of dynamically feasible trajectories planning and

the usage of a linear MPC to be the main limitation of our approach compared to

the above. Regarding the hardware, we used – in our opinion – the absolute min-

imum number of sensors/components required for autonomous navigation. Since

we employ only the necessary hardware components, we don’t get the benefits of

more reliable target detection (through use of multiple cameras) and prevention of

unsuccessful landing attempts (through use of extra sensors such as Lidar).

As far as the failed attempts (experiment 10 and 12) are concerned, both of them

seem successful when we look at the position plots and the final position error after

landing. As shown in Figure 3.17 in both Experiment 10 and 12 the MAV landed

really close to the true target position. We argue that the reason behind the failed
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attempts is the quality of the estimated target state especially when the MAV flies

really close to the target. Specifically, in Experiment 12 (Figure 3.15) the target was

pulled sharply in a different direction while the MAV was in Landing Phase 2. Due

to the proximity between the MAV and target, the latter was partially or completely

invisible due to the horizontally mounted downward looking camera and MAV tilt.

Given the average target velocity in these experiments (4.6 m/s and 5.7 m/s) and

the fact that the frame rate of the downward looking camera was 20 hz, the target

position between two consecutive camera frames was changing by 23 cm and 28.5 cm

respectively. It becomes clear that in this frame rate and high target velocity, even

one frame of lost tracking can result a failed landing attempt.

Figure 3.17: The two failed landing attempts. Experiment #12 on the left and
experiment #10 on the right.

We consider that our approach has two main limitations. The first one is un-

reliable target tracking when the MAV flies close above the target. This could by

either fixed by improving the target tracking when it is partially visible or by mech-

anically rotating the downward looking camera such that the target always remains

in the field of view. The second limitation is the criterion used for triggering the

landing attempt when flying above the MAV. This depends only on the relative

height between the MAV and the target. It would be better to use a criterion which

takes into account the confidence/uncertainty of the estimated target states or use

additional hardware (e.g. Lidar sensor) for more accurate relative height estimation.

This would hopefully lead to higher probability for a successful landing. Never-

theless, we believe to have achieved a respectable success rate given the minimal

hardware/sensor complexity.
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3.7 Experimental results: Application to AABM

In this Section we present experimental results related to the AABM5 project which

aims at developing the hardware and software which will enable aerial robots to

autonomously 3D print small structures. Our role in the project was to provide the

required state estimation and control algorithms which will enable precise trajectory

tracking.

Briefly, the experimental setup consisted of two MAVs with a 4.5 kg payload ca-

pacity which can deposit building material, while flying, through an appropriate

extrusion mechanism. Trajectories containing multiple printing layers were com-

manded to the two MAVs which were serially executing the building task. In order

to enable precision and mainly cope with the limited material extrusion speed, the

maximum velocity of the commanded trajectories was limited to 5 cm/s.

An example of a 10-layer reference printing trajectory and the actual MAV re-

sponse in a virtual printing scenario (without extruding building material) is given

in Figure 3.18.

3.7.1 Linear MPC modifications

In order to cope with the increased need of precision for the AABM and handle

the slowly varying MAV mass due to building material extrusion, we have done the

following modifications to the linear MPC presented in Section 3.5:

1. We reduced the order of the closed loop attitude dynamics given in (3.4) from

a second order model to a first one given by:

θ̇ = −bθ̇θθ + bθrθ
r, (3.26a)

φ̇ = −bφ̇φφ+ bφrφ
r. (3.26b)

This approximation also adopted in similar works such as [Kamel et al., 2017a]

results in dimension reduction of the control state x := [x, ẋ, θ, y, ẏ, φ, z, ż]>,

while the control input remains unchanged u := [θr, φr, T r]>.

2. We increased the length of the prediction horizon to 1.0 s while keeping the

same discretisation timestep dt = 50 ms.

5
See http://www.aerial-abm.com/. Accessed April 2020.
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Figure 3.18: Three different views of a 10-layer virtual 3D printing experiment. In
order to enable precise tracking of the wavy reference trajectories and cope with the
limited material extrusion speed, the maximum velocity of the commanded traject-
ories was limited to 5 cm/s.

3. We augmented the reference orientation and thrust generated by the MPC u
with integral terms uI := [θI, φI, TI]

>. This was done in order to counteract

small orientation offsets (originating from imperfect MAV hover-orientation

calibration) and the MAV changing mass due to the deposition of print ma-

terial. The integral term uI is computed as follows:

uI(t) = QI

∫ t

0
(NrB − NrrB)dτ, (3.27)

with QI an experimentally tuned gain. As common practice in control, we

prevent the integral term from accumulating above pre-determined bounds.

Specifically we constraint the orientation components to be less than 1.5° and

the thrust component to be less than 1.0 kg (which coincides with maximum

possible change in the MAV mass).

4. Since precision is the main objective for the printing experiments, we provide

the controller with time varying full state s̄y and input s̄u trajectory commands

(starting from the current time instant till the end of the receding horizon).
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This way the controller can react in advance for upcoming references which is

particularly useful for e.g. maneuvers containing sharp turns.

3.7.2 Selected printing experiments

In Figures 3.19-3.20 we show the tracking performance achieved by our controller in

an indoors-performed printing experiment with MAV pose data being provided by

a motion capture system. Specifically, Figure 3.19 (left) shows the complete multi-

layer reference trajectory (subsampled for visibility purposes), while the tracking

performance for a single layer is shown in Figure 3.19 (right). Despite the saw-

tooth like x, y references, the controller enables centimeter-level tracking as at the

visualised scale the reference and actual MAV position are indistinguishable.

The boxplot in Figure 3.20, which contains the tracking statistics of the first ten

layers, reveals that the per-axis error does not exceed 1.5 cm.
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3.8 Discussion

In this Chapter we presented a linear MPC with soft state constraints formulated as

a QP that can be solved with any generic solver. As it can be seen from the exper-

imental results, it can be successfully used for dynamic tasks such as the tracking

and landing scenario while its performance is maximised when slow manoeuvres are

required. This is owing to the linear model being based on near hover operation

assumptions.

Despite the limitations that arise from the use of an approximate linear model, as

well as the use of Euler angles as a parameterisation for orientation, we would like

to comment on the specific advantages which become apparent from the presented

experiments as well as its use in multiple live demonstrations the past four years.

First and foremost, its easy adaptation to other platforms as the linear model is

platform agnostic. The same controller can be applied without modification to a

quadcopter, hexacopter or any other underactuated platform as the only requirement

is the existence of a closed loop attitude controller. Secondly, the position-attitude

dynamics separation allows the position loop to be run at a low update rate which

in our case was 20 Hz. This makes the system less sensitive to e.g. delays in the state

estimation scheme since the fast attitude dynamics are separately controlled using

the onboard IMU. Lastly, the resulting optimisation problem is computationally

cheap to solve (consistently less than 1 ms per control iteration with our hardware)

and is thus suitable for platforms with limited computing resources.

Regarding the possible extensions of the presented linear MPC, the generalisa-

tion to a NMPC is given in the upcoming Chapter. Future work, thus should be

focused on the engineering related improvements. As an example we consider the

use of the fastest QP solver [Frison and Diehl, 2020] currently available. Lastly, a

useful extension would be the online estimation of external forces and moments as in

[Kamel et al., 2017a] and their incorporation in the control model. This would allow

for offset free navigation without the need of additional integral terms and would

further enable the compensation of external disturbances before their integration

into position/velocity error.
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4.1 Introduction

The linear MPC presented in Chapter 3 is characterised by its ease of use and

its effortless adaptation to any type of multirotor without the absolute need of a

powerful onboard computer. Its per-axis tracking accuracy heavily depends on the

aggressiveness of the reference trajectories and varies from 1 cm for slow trajectories

(< 5 cm/s) to 50 cm for fast ones (> 5 m/s) as tested in the landing experiment. This

is mainly because the linear model is derived assuming a near hover operation which

does not hold when the MAV has to exert motion with significant linear velocity

and acceleration. Additionally, the linear model uses Euler angles for the represent-

ation of orientation and thus the orientation close to gimbal lock is prevented from

additional orientation constraints. Constraining the maximum tilting angle results

in limiting the maximum translational acceleration.

Another issue is the lack of robustness in the case of actuator failures such as

a partially or completely damaged motor/propeller. This is because it relies on

the existence of a stable attitude controller which on most occasions is based on

simple PID implementations and thus unable to handle an actuator failure without

appropriate modifications.

These problems can to some extend be eliminated when the true non linear MAV

model is taken into account in the control design and a unified controller is respons-

ible for the 6DoF motion of the MAV. This is a research topic that has become

particularly popular during the past years thanks to the increasing computation

capabilities and the open source availability of optimisation and control toolboxes

such as [Houska et al., 2011, Giftthaler et al., 2018, Mattingley and Boyd, 2012].

At the same time, robust performance under mechanical failures (such as motor

failures), can only be achieved when the failure can be correctly identified and ap-

propriately handled by the control design. To this purpose, the existence of a model

based supervisory algorithm that monitors the health of the system and accordingly

notifies the controller in the event of a failure, is necessary.

In this Chapter we propose a NMPC aiming at overcoming the limitations of its

linear counterpart. We further suggest an EKF based fault detection algorithm and

a specific to our MAV type stabilisation technique in the event of a motor failure.

An example of our MAV performing online fault detection and stable position and

yaw control despite the loss of a motor is shown in Figure 4.1.
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Figure 4.1: Our MAV experiencing a propeller loss. The fault is identified online,
the failsafe enabled and the MAV can still control its position and orientation.

4.2 Related work

As mentioned in Chapter 3, the most common approach regarding MPC in MAVs

is that of a cascade connection between a position and an attitude controller. In the

simplest form, a linear model can be used for the translational dynamics, resulting

in an optimisation problem whose solution can be solved online [Tzoumanikas et al.,

2019, Sa et al., 2018a] or pre-computed in the form of lookup tables [Darivianakis

et al., 2014, Papachristos et al., 2016]. The use of a non-linear model for the transla-

tional dynamics such as the one presented in [Kamel et al., 2017a] presents perform-

ance improvements especially when tracking of aggressive trajectories is required.

The approach of the cascaded position-attitude controllers has become popular due

to its ease of use, since most of the available platforms come with a pre-tuned atti-

tude controller. However, it relies on the assumption that the attitude dynamics can

be controlled independently, requiring bandwidth separation between the successive

loops, i.e. slow control of attitude. The aforementioned works furthermore use Euler

angles for the vehicle orientation which prohibits the operation close to gimbal lock.

Analogously to the position-attitude approach the authors of [Falanga et al., 2018]

and [Foehn and Scaramuzza, 2018] propose a quaternion based position controller

which uses the angular rates as control inputs. These were assumed to be tracked

perfectly by a separate angular rate controller.

The benefits of using the true non-linear model of the MAV has been successfully

illustrated in [Kamel et al., 2015] where an attitude NMPC was employed to stabilise

the position of a hexacopter with a motor failure while control of yaw was lost.

Additionally, the authors of [Neunert et al., 2016] proposed an Sequential Linear

Quadratic (SLQ) MPC algorithm able to run onboard an MAV and capable of
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following full state trajectory commands. Similarly, in [de Crousaz et al., 2015]

simulation results of an SLQ controller stabilizing a quadrotor with slung load and

a quadrotor with motor failure were presented.

For the control allocation problem – that is, the mapping of the body moments

and thrust to actuator commands – the most commonly used method employs the

pseudo-inverse or weighted pseudo-inverse of the allocation matrix (e.g. [Achtelik

et al., 2013, Lee et al., 2010]). The main advantage of this approach is its simplicity

since the pseudo-inverse has to be computed once and the actuator commands can

be obtained through a simple matrix by vector multiplication. However, the main

drawback is the fact that it can produce actuator commands that are not feasible

(e.g. greater thrust than what each motor can provide). Naively, this can be handled

by clipping the actuator command such that it lies in the achievable range. Control

allocation techniques that respect the actuator limits, such as the ones presented in

[Faessler et al., 2017, Brescianini and D’Andrea, 2018], result in better trajectory

tracking. This is partially due to the prioritisation of the roll/pitch moments and

collective thrust over the yaw moment which does not directly contribute to position

tracking.

Another alternative approach is the one presented in [Brescianini and D’Andrea,

2018b], where the minimum energy solution is obtained by solving an optimisation

problem. The authors exploit the structure of the allocation matrix nullspace in or-

der to transform the original optimisation problem into a computationally cheaper

one. Similar to our method, theirs can be used on platforms equipped with bid-

irectional capable motors but requires the use of symmetrical propellers. When non

symmetric propellers are used, the resulting allocation matrix is not constant but

depends on the direction of rotation of each motor.

Regarding the fault tolerant control, the different approaches vary based on whether

the hardware platform can natively handle a motor failure or not. Examples include

the cases of octacopters [Saied et al., 2015, Saied et al., 2017] or, more relevant

to our research, hexacopters with unconventional motor layouts such as [Schneider

et al., 2012, Mazeh et al., 2018, Nguyen et al., 2019] where it was shown that stable

position and yaw tracking can be achieved for failure occurring on specific motors.

When full position and yaw control is not physically possible by the hardware plat-

form (e.g. quadcopters, hexacopters with symmetric motor layout), software based

approaches such as [Mueller and D’Andrea, 2014, de Crousaz et al., 2015, Kamel
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et al., 2015] attempt to prioritise tracking of the controllable states (e.g. position)

over the uncontrollable ones (e.g. yaw). As far as the fault detection scheme is

concerned, a simple and accurate way of detecting failures is by using direct meas-

urements of motor speed and/or electrical current [Saied et al., 2017]. The deviation

between the speed measurements and the commanded ones can be used to identify

a motor stall/malfunction while the current measurements for detecting a propeller

loss. Alternative software-based methods [Saied et al., 2015, Nguyen et al., 2019]

rely on the formulation of residuals between the measured and predicted –assuming

no failure– system states such as orientation, angular rate or vertical velocity. The

sign of the residuals in combination with some lookup table (that covers all possible

sign combinations) are used for detecting motor failures. The underlying idea is that

losing thrust from a specific motor results in a specific system response which can be

directly compared to the nominal one e.g. a hovering MAV experiencing a sudden

thrust loss from the front-left motor will loose altitude and tilt in the forward left

direction.

4.3 Contribution

With respect to the related works described above, we present a series of algorithms

which address the problem of aggressive, precise and fault tolerant MAV navigation.

Our contributions are as follows:

• The design of a non-linear model predictive controller with body torques and

collective thrust as the control inputs which jointly controls the MAV’s 6D

DoFs. A quaternion based orientation parameterisation is chosen thus avoiding

problems related to gimbal lock while the unified control approach eliminates

assumptions related to the position/attitude dynamics separation since the

NMPC does not require the existence of a separate attitude or rate controller.

• The design of an optimisation based control allocation algorithm that maps

the desired control inputs into feasible thrust commands for each motor. We

consider the general case where the motors can generate both positive and

negative thrust. Our method aims at combining the advantages of the vari-

ous methods described above. Namely, the ability to: (i) prioritise certain

control inputs over others, (ii) generate feasible actuator commands, (iii) cope
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with bidirectional capable motors without the absolute need of symmetrical

propellers.

• The design of a stabilisation technique, based on reversing the motor direction

of rotation, which enables stable position and yaw control. This can be ad-

ditionally applied to hexacopters with symmetric motor layouts ensuring that

due to symmetry, failure in any motor can be handled equally well.

• The design of an EKF, exclusively relying on IMU measurements, which mon-

itors the health of each individual actuator (motor/propeller) which we use

for fast identification of an actuator failure. Compared to similar in concept

approaches, our EKF directly estimates the per-motor ratio of the observed to

commanded thrust (while also considering the motor dynamics), thus provid-

ing a natural way of signalling a motor/propeller failure.

4.4 System overview

The software pipeline presented in this Chapter consists of the following different

blocks: (i) the NMPC which receives the state estimates and reference trajectory

commands and produces body torques and collective thrust as the control inputs; (ii)

the control allocation block which transforms the control inputs to feasible actuator

commands; (iii) the failure detection algorithm which estimates the health status of

each motor and notifies the control allocation block in the case of a failure. We use

the state estimation algorithm outline in Section 2.4.1 which fuses data from the

onboard IMU and the motion capture system. An overview of the system is given

in Figure 4.2.

Figure 4.2: Overview of the various software components that run onboard the
MAV. The control loop runs at 100Hz while the failure detection EKF at 400Hz.
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4.5 Model based control

4.5.1 Nonlinear modelling

The Newton-Euler equations are used to model the MAV dynamics. We ignore

less significant phenomena such as the effect of the aerodynamic friction and the

gyroscopic moments due to the rotation of the propellers (but our model could be

extended accordingly with ease). The MAV dynamics can then be written in the

following form:

W ṙB = W vB , (4.1a)

q̇WB =
1

2
Ω(Bω )qWB , (4.1b)

W v̇B =
1

m
CWB BT + Wg, (4.1c)

Bω̇ = J−1(BM− Bω × JBω ), (4.1d)

Ω(Bω ) =

[
Bω
×

Bω

−Bω
> 0

]
, (4.1e)

where Wg := [0, 0,−9.81]> stands for the gravitational acceleration, m for the MAV

mass, and J for its inertia tensor. The thrust vector BT := [0, 0, T ]> acting on the

MAV CoM solely depends on the collective thrust T generated by the motors. This

together with the moments BM are considered as the control input u := [BM>, T ]> ∈
R4. The control state x := [W r>B,q

>
WB ,W v>B ,Bω

>]> ∈ R3×S3×R6, consists of the

MAV position, orientation, linear and angular velocities respectively. We consider

that the motor dynamics are significantly faster than the MAV body dynamics and

are thus neglected. Based on the analysis provided in Section 2.2.1, we use the

following model for the thrust and moment generated by the ith motor:

fi = kTω
2
i , (4.2a)

Mi = (−1)i+1kMfi. (4.2b)

Regarding the relationship between a PWM command and the generated thrust and

moment, we follow the method provided in Section 2.2.1 where the coefficients of

Equation (4.2) were identified using a thrust stand while the relationship between the

PWM command and the achieved angular velocity was identified for different input

voltage levels. As our approach also works for MAV platforms that can generate

both positive and negative thrust, we identified two sets of coefficients: (i) for normal
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motor rotation k+
T , k+

M corresponding to positive thrust; (ii) inverted motor rotation

k−T , k−M corresponding to negative thrust.

4.5.2 Nonlinear Model Predictive Control

For the control formulation, we define the following time-varying error functions for

the position, linear and angular velocity, orientation and control input respectively:

er = W rB − W rrB, (4.3a)

ev = W vB − W vrB , (4.3b)

eω = Bω − CBB
r
B

rωr, (4.3c)

eq = [q−1
WB ⊗ qrWB ]1:3, (4.3d)

eu = u− ur. (4.3e)

Apart from the orientation error which is obtained through quaternion multiplica-

tion, the rest corresponds to the Euclidean difference between the actual and desired

(here denoted with the superscript r) quantity.

We compute the optimal control input u∗ sequence online by solving the following

optimisation problem:

u∗ = argmin
u0,...,uNf−1

{
Φ(xNf

,xrNf
) +

Nf−1∑
n=0

L(xn,x
r
n,un)

}
, (4.4a)

s.t. : xn+1 = Fd(xn,un), (4.4b)

x0 = x̂, (4.4c)

ulb ≤ ui ≤ uub, i = 1, . . . , 4 (4.4d)

, where Nf is the number of time steps, x̂ the known initial state, Fd the discrete-time

version of the MAV dynamics given in (4.1) and ulb, uub lower and upper bounds for

the inputs ui. We use quadratic costs for the final and intermediate terms defined

as:

Φ(xNf
,xrNf

) = e>r Qrer + e>v Qvev + e>q Qqeq + e>ωQωeω, (4.5a)

L(x,xr,u) = e>r Qrer + e>v Qvev + e>q Qqeq + e>ωQωeω + e>uQueu, (4.5b)

with Q < 0 gain matrices of appropriate dimensions which are considered tun-

ing parameters. In our implementation we use a 10 ms discretisation step and a
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constant time horizon Tf = 2.0 s. For the online computation of the optimal in-

put we use the CT toolbox [Giftthaler et al., 2018] and the Gauss-Newton Mul-

tiple Shooting (GNMS) algorithm (outlined in [Giftthaler et al., 2017]) which res-

ult in an average computation time of 5.2 ms with standard deviation of 0.6 ms.

At each GNMS iteration dynamically feasible state and input increments δxn, δun
(for every stage n) around the state and input trajectories X̄ = {x0,x1, · · · ,xNf

},
Ū = {u0,u1, · · · ,uNf−1} are computed. We obtain the dynamics of the minimal state

perturbation δx := [δr, δθ, δv , δω ]> ∈ R12 around the state x̄ by introducing the

local quaternion perturbation q = q ⊗ δq with δq :=
[
sinc

∥∥ δθ
2

∥∥ δθ
2 , cos

∥∥ δθ
2

∥∥]>.

The dynamics for the rotation vector δθ ∈ R3 are given by: ˙δθ = Bω − 1
2Bω

×δθ,

while the rotation matrix CWB can be approximated as: CWB ≈ CWB (I + δθ×).

After each iteration we use the following rule for the state and input update:

x′ = [wrB + δr,qWB ⊗ δq ,W vB + δv ,Bω + δω ]>.

4.5.3 Control allocation

As stated earlier, the control allocation problem involves mapping the control inputs

u∗ to feasible actuator commands f := [f1, . . . , fN ]>. We tackle this by solving the

following QP:

f∗ = argmin
f

(∥∥Af− u∗
∥∥2

W + λ ‖f‖22
)
, (4.6a)

s.t. : fmin ≤ fi ≤ fmax, i = 1, . . . , N, (4.6b)

where N is the number of motors. The allocation matrix A ∈ R4×N , which we will

present later, depends on the MAV geometry and its motor coefficients, whereas

fmin, fmax correspond to the minimum and maximum attainable thrust. In order to

prioritise the roll/pitch moments and the collective thrust over the yaw moment, we

use the weighting matrix W ∈ R4×4. The scalar λ ∈ R+ is used such that solutions

with smaller norms are preferred. When a feasible control input is commanded,

solution of (4.6) coincides with the one obtained by using the pseudo-inverse of A,

namely f = A†u∗.

Since we are interested in solving the control allocation problem for the general

case where the motors can produce both positive and negative thrust, we introduce

the vector d := [d1, d2, · · · , dN ]> with di ∈ {0, 1}, ∀i = 1, . . . N . We thus use the

binary variables di to indicate whether the ith motor is spinning in its intended nor-
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mal direction–corresponding to positive thrust (di = 0)–or otherwise in the inverse

(di = 1).

The original optimisation problem (4.6) is transformed to:

f∗,d∗ = argmin
f,d

(∥∥A(d)f− u∗
∥∥2

W + λ ‖f‖22
)

(4.7a)

s.t. : f+
min(1− di) + f−mindi ≤ fi ≤ f

+
max(1− di) + f−maxdi, (4.7b)

where the superscript + or − in f+
min, f−min, f+

max, f−max has been used to indicate

normal and inverted rotation respectively. The binary vector d which encodes the

direction of rotation is now an optimisation variable and the allocation matrix A is

a function of d. For the case of the hexacopter with motor layout and normal motor

rotation as shown in Figure 4.3, A(d) takes the following form:

A(d) =


ls30 l ls30 −ls30 −l −ls30

−lc30 0 lc30 lc30 0 −lc30

kM (d1) −kM (d2) kM (d3) −kM (d4) kM (d5) −kM (d6)

1 1 1 1 1 1

 , (4.8)

where l stands for the MAV arm length, s30 = sin (30o), c30 = cos (30o), kM (di) =

(1− di)k
+
M + dik

−
M .

Figure 4.3: Motor layout of the hexacopter used in our experiments. Rotation arrows
show the direction of rotation that corresponds to positive thrust.

The resulting optimisation described in (4.7) is a Mixed Integer Quadratic Pro-

gramming (MIQP). However, since the possible values of d are finite (64 in the
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4.6. Motor failure in a hexacopter

case of a hexacopter), we can solve a single QP for every possible value of d. The

global optimum f∗ of Equation (4.7) corresponds to the solution of the QP with the

minimum cost. From a practical perspective solving 64 QPs instead of a single one

does not affect significantly the overall control computation time as this is domin-

ated by the computation of the optimal input u∗ as described in the Section 4.5.2.

This is owing to the small number of optimisation variables in a single QP tailored

to the solver, CVXGEN [Mattingley and Boyd, 2012]. In our implementation, solv-

ing 64 QPs, storing the results in a vector and finally sorting it in ascending order

consistently takes less than 0.4 ms. We acknowledge, however, that our method is

more resource demanding compared to methods using the pseudoinverse which can

be easily implemented on a microcontroller.

It was experimentally found that reverting the direction of rotation during flight

is particularly impractical. This is because the motor dynamics are significantly

slower when a direction change is commanded. As our control model does not

capture this behaviour, we can prevent unnecessary direction change commands by

augmenting the optimisation (4.7) similarly to [Brescianini and D’Andrea, 2018b]

with the f ∈ Fhyst constraint, where Fhyst is the set of rotor thrusts that does not

require a per motor direction change when this has already happened during the past

time interval thyst. The solution satisfying this constraint can be found with a single

iteration over the vector of 64 possibilities. The threshold thyst can be iteratively

decreased until a good (e.g.
∥∥Af− u∗

∥∥2

W < ε) solution is found.

4.6 Motor failure in a hexacopter

As mentioned earlier our control allocation can be used in multirotors that can

generate both positive and negative thrust. This capability can be used e.g. to fly

novel maneuvers as shown in Figure 4.4, or in order to increase the agility of the

vehicle by providing negative acceleration along the z-axis of the F−→B frame. In this

work we use this property to perform stable position and yaw control in the event

of a motor failure.

It is important to clarify a common misconception regarding the fault tolerant

capabilities of hexacopters with alternating rotor-turn directions as the one shown

in Figure 4.3. It is often assumed that a hexacopter can handle a motor failure by

simply switching off the opposite motor and consequently flying as a quadcopter.
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Figure 4.4: Potential uses of the reverse thrust capability. Left: provide negative
acceleration along the z-axis of the F−→B thus enabling flying novel maneuvers such
as inverted fligh. Right: stabilise the MAV position and yaw in the event of a motor
failure.

However, this is not possible in practice. This is because, compared to a normal

quadcopter where the opposite motors spin in the same direction, the opposite mo-

tors of a conventional hexacopter rotate in the inverse direction and thus introduce a

positive coupling between the roll/pitch control moments Mx,My and yaw moment

Mz. This can be verified by examining the set of feasible control inputs defined as:

V =
{

A(d)f ∈ R4| f ∈ R6, d ∈ Z6
2, fmin(di) ≤ fi ≤ fmax(di), ∀i ∈ 1, . . . , 6

}
, (4.9)

with A(d) the allocation matrix defined in (4.8) and f := [f1, . . . , f6]>, d := [d1, . . . , d6]>,

fmin(di) := f+
min(1 − di) + f−mindi, fmax(di) := f+

max(1 − di) + f−maxdi the quantities

introduced in Section 4.5.3.

The set of feasible control inputs V lies in a four dimensional space and we thus

visualise intersections with Mz = 0 in Figure 4.6, T = mg in Figure 4.7 and Mz =

0, T = mg in Figure 4.8 that correspond to operation around hover. In order to

assess the controllability in the event of a single motor failure, we set fmax = fmin = 0

for motor #1. We consider the following different cases (also shown in Figure 4.5)

depending on the capability of the remaining functioning motors to produce positive

and negative thrust:

1. All the functioning motors #2,. . . ,#6 are capable of producing both positive

and negative thrust (shown in the left side of Figures 4.6, 4.7, 4.8),

2. The opposite of the failed motor is capable of producing both positive and

negative thrust while the rest can only produce positive thrust (shown in the

middle of Figures 4.6, 4.7, 4.8),
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4.6. Motor failure in a hexacopter

3. The functioning motors #2,. . . ,#6 can only produce positive thrust (shown in

the right side of Figures 4.6, 4.7, 4.8).

For the maximum and minimum motor thrust as well as the moment coefficients,

we have used the ones corresponding to our platform and given in Table 4.2. More

specifically, we set f+
max = 7.5 N, f−min = −5.0 N, f+

min = f−max = 0.0 N, k+
M =

1.4873× 10−2 Nm/N, k−M = 2.7928× 10−2 Nm/N.

Figure 4.5: The three different cases considered for the controllability analysis. Left:
the remaining functioning motors #2,. . . ,#6 can produce both positive and negative
thrust. Middle: the opposite of the failed motor can produce both positive and
negative thrust while the rest only positive. Left: the remaining functioning motors
#2,. . . ,#6 can produce only positive thrust.

As it can be visually verified in Figures 4.6, 4.7, 4.8, the existence of bidirectional

capable motors results a volume increase of the admissible control input set which

can be interpreted as a metric of the vehicle’s agility. By observing the Figures

4.7, 4.8 (right), we verify our claim that the 6D position and orientation of the

vehicle are not controllable when the remaining functioning motors can produce

only positive thrust. This is because the red asterisk, which corresponds to the

nominal control input at hover [BM>, T ]> = [0>,mg]>, lies on the boundary of the

admissible set. Any deviation from that point caused by e.g. a small disturbance or a

model mismatch can result a control input outside the admissible set. An infeasible

control input, cannot be executed by any control allocation algorithm not only the

one presented in this work. In this case, our control allocation algorithm presented

in Section 4.5.3 will prioritise the execution of the roll/pitch moments (which are

crucial for position tracking) over the yaw and thus the yaw error will increase. This

indicates that a hexacopter with five functioning motors capable of producing only

positive thrust can perform a stable hover when it is initialised with exactly zero

position, orientation, velocity error, its real model and state are known perfectly
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and there are no external disturbances. Unfortunately, this cannot be achieved in a

real system. An alternative solution, also shown in [Kamel et al., 2015] is to drop

the control of yaw and perform position only control.

When the MAV is equipped with bidirectional capable motors as shown in left and

middle of Figures 4.7, 4.8, the nominal control input at hover [BM>, T ]> = [0>,mg]>

lies inside the admissible control set and away from its boundaries providing enough

control authority including the control of yaw. Clearly, enabling the bidirectional

mode for all the remaining motors instead of a single one (the opposite of the failed

one) increases the volume of the admissible set and thus the agility of the vehicle.

However, in order to keep the motor direction inversions to the absolute minimum,

the second option was preferred for the experiments presented in Section 4.8.2.

It is important to highlight that with our approach we can easily apply any of the

two strategies discussed above. Specifically: (i) drop the yaw control when bidirec-

tional motors are not available; (ii) enable the bidirectional mode for one or more

motors. In the first case, flying with free heading is achieved by setting zero gains for

the orientation term introduced in (4.3). In the latter case the bidirectional mode

for one or more motors should be enabled by appropriately setting the upper and

lower bounds in the optimisation defined in (4.7). An example of our MAV following

setpoint commands (despite the loss of a motor) using the these two different modes

is shown in Figure 4.9.

Another strategy for handling a motor failure was presented in [Schneider et al.,

2012] with more experimental results in [Mazeh et al., 2018] and [Nguyen et al.,

2019]. In these works, it is shown that a hexacopter with a non symmetric motor

layout as shown in Figure 4.10 (right) can –in some cases– handle up to two lost

motors without losing control of yaw. This approach has the clear advantage that

bidirectional motors are not required. However, due to its asymmetric layout it can

only handle a single failure of specific motors. Specifically, a failure of either motor

or #1 or #6 results in an uncontrollable configuration. This is not the case for

our chosen strategy since due to symmetry it can handle failure of any actuator.

This is a very important property for a real system since the failure probability is

similar for every actuator. Another disadvantage of any asymmetric layout is that

the volume (and thus the overall MAV agility) of the admissible set V is less than

the one corresponding to the symmetric one. This is why symmetric layouts are

preferred in most multirotor platforms.
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Figure 4.6: Visualisation of V defined in (4.9) cut at Mz = 0 for our hexacopter
experiencing a failure of motor #1. Left: Bidirectional mode enabled for the re-
maining functioning motors. Middle: Bidirectional mode enabled for the opposite
of the failed motor. Right: Bidirectional mode off. Volume of V (used as a metric
of the MAV agility) is maximised when bidirectional mode is on (left plot).
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Figure 4.7: V cut at T = mg for our hexacopter experiencing a failure of motor #1.
Left: Bidirectional mode enabled for all the motors. Middle: Bidirectional mode on
for the opposite of the failed motor. Right: Bidirectional mode off. The red asterisk,
which corresponds to the nominal control input [BM>, T ]> = [0,mg]> at hover, lies
on the boundary of the set when the bidirectional mode is off (right plot).
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Figure 4.8: V cut at Mz = 0, T = mg, for our hexacopter experiencing a complete
failure of motor #1. Left: Bidirectional mode enabled for all the functioning motors.
Middle: Bidirectional mode enabled for the opposite of the failed motor. Right:
Bidirectional mode off. The control input at hover (red asterisk) lies on the boundary
of the admissible set when the bidirectional mode is off (right plot). Any deviation
from that point will result in an infeasible control command which cannot be tracked.
The same point lies inside V when the bidirectional mode is on, providing enough
control authority for stable position and yaw control.
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Figure 4.9: Waypoint following despite the loss of a single motor. When bidirectional
motors are available (top) the MAV maintains control of yaw and position. Yaw
control is lost (bottom) when the remaining motors can only produce positive thrust.

Figure 4.10: Left: The symmetric motor layout used in this work. Right: The asym-
metric layout proposed in [Schneider et al., 2012] which can handle a single motor
failure for four out of the six motors, without reverting the direction of rotation. In
the event of no failure, the volume of the admissible set V is greater (resulting a
more agile MAV) in the symmetric layout compared to the asymmetric one. This is
why symmetric layouts are preferred in most multirotor platforms.
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To sum up, we consider that our algorithms are generic enough and can be applied

to any of the strategies of handling a single motor failure discussed above (e.g.

enable bidirectional mode or fly with free heading when bidirectional hardware is

not available). Additionally, they can be applied to a hexacopter with any motor

layout (including non symmetrical motor rotation, or tilted motors) as long as the

relationship between actuator forces f and control inputs u is given by u = Af with

A the allocation matrix that depends on the vehicle’s structure. Combination of

the above (e.g. asymmetric motor layout with bidirectional motors) is also possible

with the appropriate allocation matrix and actuator limits adaptation.

4.7 Fault identification

Our goal is to online estimate whether one or more motors have failed (consequently

resulting in applied moments and collective thrust different from the ones com-

manded). To do so, we introduce the health variable hi ∈ R for each individual

motor i and assume that the effective force acting on the MAV generated from the

ith motor is fei = L(hi)fi, where L(h) = 1.05

1+e
−h is the logistic function shown in

Figure 4.11 and fi corresponds to the respective motor thrust. Intuitively, we ex-

pect that L(hi) = 1 for a healthy motor and L(hi) → 0 for a stopped one. We

implemented an EKF that estimates the set of health variables hi online for each

individual motor. The effective body torques and collective thrust are now given

by: [
BM
T

]
= A

[
L(h1)f1 · · · L(h6)f6

]>
, (4.10)

where A is the allocation matrix defined in (4.8), which depends on the moment

coefficients and the motor direction of rotation.

-6 -4 -2 0 2 4 6

0

0.5

1

Figure 4.11: The logistic function used for the EKF. Notice, that it is appropriately
scaled such that h̄ = L−1(1) has finite value.
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In our EKF, we use the following prediction model :

Bω̇ = J−1(BM− Bω × JBω ) +wω, (4.11a)

ḟi =
1

τf
(f ri − fi + wf ),∀i = 1, . . . , 6, (4.11b)

ḣi =
1

τh
(h̄− hi) + wh,∀i = 1, . . . , 6. (4.11c)

The noises wω, wh, and wf are Gaussian white noise processes with densities σω,

σh, and σf , respectively. Equation (4.11a) corresponds to the MAV angular rate

dynamics while (4.11b) to the first order motor thrust dynamics with f ri the per-

motor reference thrust as given by the control allocation and τf the model time

constant. The first order health variables dynamics (4.11c) with time constant τh,

model how fast a failure can occur as well as ensure that h̄ is an attraction point for

the hi estimates.

The measurement model is given by:

zω = Bω + vω̃, (4.12a)

zT = T + vT , (4.12b)

with vω̃ ∼ N (0, σ2
ω̃I) and vT ∼ N (0, σ2

T̃ ) modelling the observation noise. The

measurements Bω̃ and T̃ required for the EKF update are obtained using the on-

board IMU. For Bω̃ we use the bias corrected gyro measurements and for measured

collective thrust T̃ we use T̃ ≈ maz with m denoting the known mass of the MAV

and az the accelerometer measurement along the z axis. Notice that our observation

model for the collective thrust does not account for the Bω × Bv term which ap-

pears in the Body frame expressed linear acceleration dynamics. This was a design

choice, allowing the EKF to rely exclusively on inertial measurements and thus able

to be implemented as an algorithmic only update on any multirotor.

The values for the noise parameters and model constants are given in Table 4.1.

In order to avoid false positives due to e.g. inaccurate model, we use the estimated

value of hi and its estimated uncertainty. We consider a motor failed when L(hi +

3σi) < 0.5 (with σi denoting the health state standard deviation obtained as a

marginal from the state covariance matrix). When the above inequality is true

we update the control allocation algorithm by setting fmin = fmax = 0 for the

failed motor and enabling the bidirectional mode for the opposite. In the event of

a detected failure, the number of functional motors is reduced by one. It makes
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Description Symbol Value Unit

Angular rate model noise density σω 3.16 rad/(s
√

Hz)

Thrust model noise density σf 0.94 N/
√

Hz
Thrust model time constant τf 0.01 s

Health variables model noise density σh 0.31
√

Hz
−1

Health variables model time constant τh 0.3 s
Health variables model constant h̄ 2.99 -
Angular rate measurement noise σω̃ 0.01 rad/s
Collective thrust measurement noise σT̃ 0.1 N

Table 4.1: Numeric values of the fault detection EKF Parameters.

sense then to continue estimating the health variables for the remaining functional

motors. This is done by introducing appropriate equality constraints f ri = fi = 0

for the failed motor which can be incorporated (following the approach discussed in

[Simon, 2010]) in the EKF through appropriate reduction of the model (4.11).

4.8 Experimental results

The experiments presented in this section were performed using our custom built

hexacopter described in Section 2.2 with the bidirectional propulsion system #2

described in Section 2.2.3. The state estimates are provided by the EKF described

in Section 2.4.1 with pose measurements obtained by a Vicon motion capture system.

The parameters of the control model and the control allocation are provided in Table

4.2.

In the following we present two different types of experiments. In Section 4.8.1

we show how the controller exploits the non-linear MAV model to perform step

commands in position and yaw. In Section 4.8.2, we further test the failure detection

and recovery strategy discussed previously by manually switching off a single motor

while flying.

4.8.1 Waypoint tracking

In both experiments presented, the MAV is first commanded to fly from a waypoint

with reference position W rrB = [1, 0, 3]> and orientation qrWB = [0, 0, 0, 1]> to a way-

point with reference position W rrB = [−1, 0, 1]> and orientation qrWB = [0, 0, 1, 0]>.

This corresponds to a 2 m position jump in x and z and 180° in yaw.
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Description Symbol Value Unit

MAV mass m 1.871 kg

MAV inertia in x axis Jx 0.032 kg/m2

MAV inertia in y axis Jy 0.034 kg/m2

MAV inertia in z axis Jz 0.070 kg/m2

Normal rotation thrust coefficient k+
T 9.7408× 10−6 N/(rad/s)2

Normal rotation moment coefficient k+
M 1.4873× 10−2 Nm/N

Inverted rotation thrust coefficient k−T 6.3309× 10−6 N/(rad/s)2

Inverted rotation moment coefficient k−M 2.7928× 10−2 Nm/N

Min thrust in normal motor rotation f+
min 0.0 N

Max thrust in normal motor rotation f+
max 7.5 N

Min thrust in inverted motor rotation f−min -5.0 N

Max thrust in inverted motor rotation f−max 0.0 N
Motor inversion hysteresis threshold thyst 0.1 s

Table 4.2: Numeric values of control model parameters.

Figures 4.12 and 4.13 show the position and orientation response for the same ex-

periment using low Qq = 5 I3×3 and high Qq = 65 I3×3 orientation gains respectively.

Both maneuvers are executed in less than 2.5 s with linear accelerations exceeding

15 m/s2. In the high gain case, the yaw step is mainly performed by a half flip in

roll and pitch as shown in Figure 4.14. This shows an advantage of the model based

design over traditional approaches (e.g. PID) where a yaw maneuver is achieved by

applying Mz moment and subsequently rotating around the zB axis. Additionally,

compared to approaches such as [Brescianini and D’Andrea, 2018] where the shortest

rotation (between the current orientation and the reference one is preferred), our

NMPC always chooses the fastest rotation (which does not always coincide with the

shortest) based on the MAV dynamics.

Figures 4.12 and 4.13 additionally show the position predictions computed by the

NMPC. The predictions are updated at every controller iteration and thus start

from different initial states. In an ideal scenario, where the control and real model

are identical, one would expect all the predicted and real trajectories to perfectly

overlap. In reality, these two are close to its other but never coincide perfectly, as

the control model is an approximation (e.g. control input set approximated as a 4D

hyperrectangle, gyroscopic moments and motor dynamics ignored) of the unknown

real one.

Another observation, is that regarding the predicted and actual response in the
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Figure 4.12: The MAV position while performing the 2 m and 180° jump in position
and yaw with low orientation gains. Top: Two different views of the position and
orientation response. Bottom: The per-axis position response (solid lines) alongside
the NMPC predictions (faint lines). For visualisation clarity, here we plot the NMPC
predictions at 20 Hz compared to their actual update rate of 100 Hz.

y axis. It can be seen that position in y temporarily deviates from its zero refer-

ence. This behaviour is also reflected in the corresponding predictions and is the

result of the existence of coupling between the vehicle’s position and attitude. Even

though not tested in this work, this shows the potential use of a similar optimisation

framework as a discrete time dynamically feasible planner.

4.8.2 Fault detection and recovery

We tested the failure detection and autonomous recovery in two different scenarios

where one motor was switched off (i) while hovering and another (ii) while the

MAV was following setpoint commands. In the first case motor #1 was manually

deactivated by overwriting the thrust command produced by the control allocation
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27 28 29 30 31 32 33

-1

0

1

2

3

Figure 4.13: The MAV position while performing the 2 m and 180° jump in position
and yaw with high orientation gains. Top: Two different views of the position and
orientation response. Bottom: The per-axis position response (solid lines) alongside
the NMPC predictions (faint lines). For visualisation clarity, here we plot the NMPC
predictions at 20 Hz compared to their actual update rate of 100 Hz.

Figure 4.14: The MAV orientation while performing the position-yaw step with high
orientation gains. Top: View from above (projection on the x-y plane). Bottom:
View from the side (projection on the x-z plane). The yaw step is mainly achieved
by a half flip in roll and pitch.
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and sending a zero one instead. For the setpoint case, motor #3 was automatically

deactivated once the MAV was at a specific point in space. Due to the symmetric

motor layout we claim that deactivating any other motor would result in very similar

behavior. The failure was detected automatically and the failsafe activated based

on the methods described in Sections 4.6 and 4.7.

Figures 4.15 and 4.16 show the MAV position, the absolute yaw error and the on-

line estimated health status of each motor for the failure while hovering experiment.

The failure was injected at t = 23.68 s and identified at t = 23.85 s resulting in an

overall height loss of 0.3 m. We claim that even this minimal height loss is mainly

because of the slow motor dynamics due to the direction inversion command. This

can be justified as in Figure 4.15 there is no visible red line (indicating operation

with a motor failure that has not been identified yet). The fast detection can be

also verified by the video1 of the conducted experiments where the opposite motor

switches direction of rotation before the failed motor comes to a full stop. We re-

peated the same experiment twice and provide the 3D position data in Figure 4.17.

For these two additional experiments, the worst case detection delay and altitude

loss was 0.18 s and 0.4 m respectively.

For the waypoint experiments, we used four distinct waypoint commands (forming

a 2.0 m wide square) which were passed consecutively to the controller. Yaw and

height reference were kept constant to 0° and 2 m respectively. We define a sphere

around every waypoint as a tolerance to signal a waypoint as complete. That is,

when the MAV is inside the corresponding sphere, the next waypoint is passed to

the controller. Figures 4.18 and 4.19 show the MAV position, the absolute yaw error

and the per-motor estimated health status. Similarly, to the hovering experiments

the failure was identified within 0.16 s and resulted in a 0.5 m height loss. Two

additional experiments are illustrated in Figure 4.20 with a worst case detection

delay and height loss of 0.18 s and 0.52 m.

In both cases tracking of position and yaw is maintained and the MAV can recover

to the hover point for the first case and fly to the next waypoints for the second.

Not surprisingly, the 5-motor asymmetric configuration results in degraded tracking

performance especially for yaw.

Regarding the health status variables of the functioning motors, these always

1
See https://youtu.be/cAQeSZ3tIqY
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Figure 4.15: Autonomous fault detection and recovery during hover. The failure
is identified within 0.17 s after the manual deactivation of motor #1. Position and
yaw tracking is maintained and the MAV recovers to the hovering spot.

0.5

1

0.5

1

0.5

1

0.5

1

0.5

1

24 26 28 30

0.5

1

Figure 4.16: The online estimates of the health status L(hi) and their correspond-
ing 3σ upper and lower bounds for the hovering experiment. The upper bound
L(h1 + 3σ1) for motor #1 drops below the 0.5 threshold within 0.17 s after the
motor deactivation at t = 23.68 s

102



4.9. Discussion

Figure 4.17: Autonomous fault detection and recovery for two additional hovering
experiments. The detection delay was 0.16 s for the experiment on the left and 0.18 s
for the right while the respective altitude loss was 0.35 m and 0.4 m respectively.

remain close to 1 for both types of experiments. However, in the setpoint case,

there exist some short-in-duration deviations from 1. These spikes correspond to

time instants when large angular accelerations were executed. We consider the

main reason for this behaviour to be the mismatch between the EKF prediction

model (which does not take into account less significant phenomena, such as the

gyroscopic moments) and the measurement model (which does not take into account

the Bω ×Bv ) and the real ones. Despite these temporary inaccuracies, the 3σ upper

bound was always greater than 0.8 and thus unable to trigger a false positive.

4.9 Discussion

In this Chapter we presented a nonlinear model based controller with the body

torques and collective thrust as the control input. We showed how this can be

used for aggressive maneuvers that fully exploit the dynamic capabilities of the

platform. Compared to other approaches such as [Kamel et al., 2017a, Falanga

et al., 2018], we drop the assumption regarding the lack of coupling between different

DoF. Consequently, there is no need for a separate attitude or rate controller and

the MAV position, velocity and orientation are controlled by a single control block.

This further enables the use of the same algorithm without any modifications as an

attitude, rate or mixed mode (e.g. linear velocity and yaw rate) controller by setting

non-zero gains Q to the terms in 4.5 which contain the states we are interested in

and zero for the rest. This property was particularly handy during the execution

of autonomous experiments, where the same algorithm was used as a safety backup
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Figure 4.18: Autonomous fault detection and recovery while following setpoint com-
mands. The failure is identified within 0.16 s after the manual deactivation of motor
#3. Position and yaw tracking is maintained and the MAV continues to follow the
setpoint commands.
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Figure 4.19: The online estimates of the health status L(hi) and their correspond-
ing 3σ upper and lower bounds for the setpoint experiment. The upper bound
L(h3 + 3σ3) for motor #3 drops below the 0.5 threshold within 0.16 s after the
motor deactivation at t = 26.80 s
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Figure 4.20: Autonomous fault detection and recovery for two additional setpoint
experiments. The detection delay was 0.17 s for the experiment on the left and 0.18 s
for the right while the attitude loss was 0.52 m and 0.5 m respectively.

attitude controller receiving orientation commands by a human operator.

We further proposed an optimisation based control allocation scheme that maps

the control inputs into feasible actuator commands. We showed how this can be

further extended for a platform capable of generating both positive and negative

thrust. We used this capability in order to stabilise the yaw of our hexacopter

experiencing a motor failure.

Finally, we developed an EKF that can be used for fast motor failure detection.

This solely relies on inertial measurements and can be implemented as an algorithmic

only update on any MAV and can be accordingly extended with motor speed and

current measurements.

We argue that all the algorithms presented in this section can be seamlessly imple-

mented on multirotors with different number or types of actuators. In that case the

allocation matrix A (used in the control allocation and the failure detection EKF)

has to be adapted based on the MAV geometry. Additionally, the strategy in the

event of an actuator failure has to be changed accordingly (e.g. no need for direction

inversion in the case of an octacopter or fly without yaw control in the case of a

quadrotor). An effective strategy on the MAV type, can be adopted by examining

the admissible set as discussed in Section 4.6. The NMPC block however, remains

the same irrespectively of the type of the underactuated MAV at hand. This has the
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clear advantage, that the computational complexity of the most resource demanding

part remains unaffected by the number of MAV actuators.

As part of future work, the extension of the model presented in this Chapter

with the effect of unmodeled – in the current implementation – phenomena (e.g.

gyroscopic moments, rotor drag) would be of high interest. Additionally, including

the motor dynamics in a control model with the individual motor thrust as control

input, will eliminate the need of the allocation algorithm. This will also eliminate

the case of not feasible control inputs introduced by the approximation of the feasible

control input set defined in (4.9) as a 4D hyperrectangle.
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Nonlinear Model Predictive

Control for aerial manipulation
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5.1 Introduction

In Chapter 4 we presented a collection of algorithms required for safe and aggress-

ive flight of an MAV for tasks which do not require physical interaction with the

environment. In a more complex scenario, an MAV apart from being able to safely

navigate in space, it should be able to physically interact with its environment by

carrying appropriate mechanisms. Example applications include inspection of in-

frastructure like bridges or manufacturing plants [Ikeda et al., 2017, Ángel Trujillo

et al., 2019, Bodie et al., 2019], physical interaction through MAV-attached tools

like grinding, welding, drilling and other maintenance work in hard-to-reach places

[Papachristos et al., 2014b, Bodie et al., 2019] and autonomous pick-up and trans-

port of objects [Kessens et al., 2016, Augugliaro et al., 2014]. Another possible

application includes the AABM scenario introduced in Chapter 3 where multiple

MAVs were used to 3D print a structure.

However, combining the maneuverability of aerial vehicles with the manipulation

capabilities of robotic arms comes at the cost of additional control complexity due to

the coupling of the dynamics of the two systems. The requirements for high precision

in real world aerial manipulation applications further increases the difficulty of the

task.

In this Chapter we extend the NMPC presented in the previous one for a combined

MAV-arm system performing an aerial manipulation task. We formulate a hybrid

control model for the combined system which incorporates interaction forces acting

on the end effector. We explain the practical implementation of our algorithm

and show extensive experimental results of our custom built system performing

multiple ‘aerial-writing’ tasks on a whiteboard revealing millimetre-level accuracy.

An instance of the conducted experiments is shown in Figure 5.1.

5.2 Related work

Aerial manipulation systems can be broadly distinguished based on the MAV type

(as being omnidirectional or underactuated) and the end effector (as being fixed

or moving). In general, using an omnidirectional MAV to fulfill complex aerial

tasks does not require a moving end effector as the necessary 6 DoFs are provided

by the MAV itself. Examples include the works presented by [Brescianini and

D’Andrea, 2016, Brescianini and D’Andrea, 2018a, Ryll et al., 2019]. [Brescianini

108



5.2. Related work

Figure 5.1: Our MAV-arm system performing an ‘aerial-writing’ task. Motion of
the MAV and arm is jointly controlled by a single control block.

and D’Andrea, 2016] show an omnidirectional MAV called OmniCopter that achieves

6-DoF motion by using eight fixed rotors in a non co-planar configuration. In a sub-

sequent study [Brescianini and D’Andrea, 2018a], this platform is used with a fixed

end effector to fetch moving objects. Using a similar approach with a fixed con-

figuration of tilted rotors, [Ryll et al., 2019] propose a novel paradigm to control

all 6 DoF of the MAV while using a rigid end effector to exert forces and torques

independently. The system is demonstrated in numerous experimental tasks, e.g.

surface sliding.

Following a different approach, [Kamel et al., 2018] develop a setup of six rotors

which tilt individually to control the direction of their thrust vector. [Bodie et al.,

2019] leverage this system, named Voliro, to solve a variety of aerial manipulation

tasks with a rigidly mounted, low complexity end effector. The authors further show

precise force control when in contact with unstructured environments while running

online visual-inertial state estimation. While this platform allows for accurate 6-DoF

flight and longitudinal force exertion with a relatively simplistic control method, it

is mechanically more complex and thus more costly compared to classical multirotor
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platforms. Recently, a similar approach was followed by [Ángel Trujillo et al., 2019],

who introduce AeroX, an omnidirectional octacopter for contact-based inspection.

Their end effector design minimises the torque caused by contact forces and features

wheels on its base to allow moving along a surface while remaining in contact.

In [Papachristos et al., 2014b, Papachristos et al., 2014a] the authors show a less

complex but highly capable tri-tilt-rotor MAV for surface grinding and obstacle

manipulation. The control model consists of two disjoint modes: one for free-flight

and another for physical interaction. The authors further discuss different force

exertion principles for under- and fully-actuated MAVs.

Employing an underactuated MAVs to perform aerial manipulation typically in-

creases the complexity of the end effector since it has to provide the additional DoFs.

To investigate this, many different end effector designs have been proposed over the

last years. We can categorise these works by the increasing complexity of the end

effector: [Darivianakis et al., 2014] use a fixed end effector on an under-actuated

MAV to perform contact-based tasks. The authors use a hybrid MPC method and

mode switching between a free-flight and in-contact model. Similarly to our work,

they benchmark their approach by performing “aerial-writing”. In [Mellinger et al.,

2011], the authors use different light-weight, low complexity grippers to perch, pick

up, and transport payload. Meanwhile,[Kessens et al., 2016] use a self-sealing suction

mechanism to pick up and carry objects. Moving up in terms of complexity,[Kim

et al., 2013] suggest mounting a 2-DoF robotic arm on a MAV to allow grasping

and transporting of objects. The authors propose an adaptive sliding mode control-

ler for the combined system. In [Orsag et al., 2014] the authors present an aerial

manipulator with two robotic 2-DoF arms to open a valve. The MAV and arms

are controlled as a coupled system which is modeled as a switched nonlinear system

during valve turning. In a more recent work,[Suarez et al., 2018] propose a light-

weight, human-sized dual arm system designed to minimise the inertia transferred

to the MAV. Each of the two arms add 5 DoFs to the system and the applied arm

control law takes into account that low-cost servo motors do not allow torque con-

trol but require position commands. Further, a torque estimator is used to predict

the torques produced by the servos and inform the MAV control algorithm accord-

ingly. In order to minimise such disturbances coming from the end effector, [Nayak

et al., 2018] propose a light-weight design which can produce longitudinal forces for

contact-based inspection using a switched system MPC method incorporating the

contact dynamics. While attaching a serial robotic arm on an MAV increases the
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number of tasks it can perform, they only provide limited precision when using low-

cost and light-weight actuators. Some previous efforts [Kamel et al., 2016a, Kamel

et al., 2016b] try to mitigate this by mounting a parallel delta arm on an MAV

instead.

As far as the control method is concerned, we distinguish three different ap-

proaches for controlling the motion of the MAV-arm system. The first one is de-

coupled control, with a few illustrative examples of an MAV equipped with a serial

link arm in [Orsag et al., 2013, Jimenez-Cano et al., 2013] and a parallel arm in [Cher-

mprayong et al., 2019]. In the decoupled control approach the MAV and arm motion

are independently controlled, and the effects of the arm on the MAV dynamics are

treated as unknown external disturbances. In the second approach, the control re-

mains decoupled but some of the effects introduced by the arm, are compensated in

a feed forward way. For example in [Mellinger et al., 2011] a mechanically simple

quadrotor-gripper system is used for aerial pick up and transport with the payload

mass and the CoM displacement being estimated by a batch least squares estimator

running online. Similarly in [Fresk et al., 2017] an EKF is used for online estimating

the CoM displacement caused by the arm motion of a hexacopter-arm system. In

both the aforementioned approaches the estimates are used in a feed forward fashion

by the MAV controller to improve tracking. In alternative work [Tognon et al., 2017]

the coupling effect is incorporated into feed forward terms computed exploiting the

differential flatness property of the system. The third approach includes forming a

unified model and controlling the system in a coupled way which overcomes the lim-

itations of the two methods described above. Examples include the work of [Mersha

et al., 2014, Yang et al., 2014] which employ feedback linearisation and LQR con-

trollers respectively and the works of [Garimella and Kobilarov, 2015, Lunni et al.,

2017] which –similar to our method– rely on an NMPC for free flight operation.

5.3 Contribution

In this work, we address the problem of precise aerial manipulation and employ our

underactuated MAV equipped with a 3DoF delta arm to showcase the capabilities

of our approach. In relation to the relevant work presented above, we show the

following contributions:

• The formulation of a hybrid model which captures the non-linear dynamics
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of the MAV and considers the quasi-static forces, including contact with the

environment, introduced by the attached manipulator. The control model is

derived using the Newton-Euler equations and can thus be easily extended to

any type of multirotor (underactuated/omnidirectional) and attached manip-

ulator.

• Use of this generic model in a NMPC which jointly controls the MAV and

arm motion. This natively handles the effects of the arm motion to the MAV

dynamics (e.g. displacement of CoM) as well as provides an easy way to control

the force (which is a function of the system states) exerted to the environment

during contact.

• Experimental evaluation of our method in “aerial-writing” tasks using our cus-

tom built system. Our results demonstrate high repeatability and millimeter-

level accuracy across multiple trajectories of varying difficulty.

5.4 System overview

The software components of the proposed system are outlined in Figure 5.2. The

state estimation block that fuses pose data from the motion capture system and the

onboard IMU is identical to the one presented in Section 2.4.1. Same applies to

the control allocation block described in Section 4.5.3 that transforms the control

inputs into actuator commands. As our focus is on precision rather than failure

detection and handling, we have deactivated the fault detection EKF presented in

Chapter 4. The NMPC is given full state trajectory commands for the MAV and

the end effector corresponding to a given aerial manipulation task. Based on these,

it produces the desired MAV body moments, collective thrust, and end effector

position. The desired end effector position is then transformed into joint angle

commands by solving the inverse kinematics problem for the delta arm described in

Section 2.3.1. All algorithms run onboard at a rate of 100 Hz.

In the free flight scenarios presented in previous chapters, equations of motion were

expressed using the MAV Body fixed frame F−→B and the World fixed frame F−→W .

For the setup presented in this Chapter we further introduce: (i) an arm frame F−→A,

an end-effector frame F−→E and the contact surface frame F−→T . An overview of the

different coordinate frames is given in Figure 5.3.
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Figure 5.2: An overview of the software running onboard our MAV in an aerial
manipulation task. The NMPC jointly controls the MAV and arm motion. The
desired moments and thrust are transformed into motor commands using the control
allocation described in Section 4.5.3 while the delta arm joint angles are computed
using the inverse kinematics described in Section 2.3.2.

Figure 5.3: The different coordinate frames used in the aerial manipulation task.
Specifically F−→W , F−→B, F−→A, F−→E , and F−→T stand for the World, MAV body, arm, end
effector, and contact frame, respectively.

5.5 Hybrid modelling

The derivation of the hybrid model used for control largely follows the one presented

in Section 4.5.2. It is appropriately augmented with the quasi-static forces intro-

duced by the arm dynamics and its interaction with the environment. Overall, the
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combined dynamics take the following form:

W ṙB = W vB , (5.1a)

q̇WB =
1

2
Ω(Bω )qWB , (5.1b)

W v̇B =
1

mc
CWB (BFr + BFe) + Wg, (5.1c)

Bω̇ = Jc
−1(BMr + BMe − Bω × JcBω ), (5.1d)

Ω(Bω ) =

[
Bω
×

Bω

−Bω
> 0

]
(5.1e)

where mc, Jc are the combined MAV-arm mass and inertia tensors, respectively.

Regarding the forces and moments BFi,BMi, we use the subscript i ∈ {r, e} to

distinguish the ones generated by the MAV motors r from the ones caused by the

end effector movement e and its potential contact with the environment. In our

system, the MAV motor-generated forces and moments are given by:

BFr :=
[
0, 0, T

]>
, T =

6∑
i=1

fi, (5.2a)

BMr :=
6∑
i=1

(
fiBri × Bez + (−1)i+1kmfiBez

)
, (5.2b)

with fi ∈ R the thrust produced by the ith motor, Bri its position with respect

to the MAV body frame, kM the known thrust to moment constant (as defined in

the motor model (2.8)) and Bez = [0, 0, 1]>. As shown in Section 4.5.3, Equation

(5.2) can be summarised as
[
BMr, T

]>
= A

[
f1 f2 . . . f6

]>
with A ∈ R4×6

the constant allocation matrix obtained from (4.8) when all the available motors

can produce positive only thrust. The forces and moments BFe, BMe introduced by

the end-effector are given by:

BFe := CBE EFc, (5.3a)

BMe := BrE × BFe + (BrE − BrE0
)× (CBW me Wg), (5.3b)

where EFc is the contact force acting on the end effector expressed in its frame

F−→E and BrE0
∈ R3 the nominal end effector position which results in no CoM

displacement. The two terms in (5.3b) represent the moments due to contact and

due to the displacement of the CoM respectively. The combined mass mc = m+me

is the sum of the MAV and end effector, respectively, while the combined rotational

inertia can be computed as Jc = J +mediag(BrE − BrE0
)2 with me being the mass
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of the end effector, J = diag(Jx, Jy, Jz) the inertia tensor of the MAV (including the

arm mass in nominal position) and diag(·) the corresponding diagonal matrix.

Regarding the contact force, we assume that this can be approximated with a

linear spring model as:

EFc = CET (ksT rEz
), (5.4)

where ks is a known spring coefficient and T rEz
is the normal component of the

contact surface penetration. This way, the controller can anticipate contact before

it even happens and there is no need for a switching mode controller (one for free

flight and another one for contact dynamics).

5.6 NMPC for aerial manipulation

For the control formulation we define the following control state and input:

x :=
[
W r>B,W v>B ,q

>
WB ,Bω

>
]>
∈ R6 × S3 × R3, (5.5a)

u :=
[
BM>r , T,Ar>E

]>
∈ R7. (5.5b)

The definition of the control state coincides with one in Section 4.5.1, whereas the

control input is augmented with the position of the end-effector ArE . Note that we

use BrE for the formulation of the control model, while ArE is used in the control

input. We use the constant and known homogeneous transformation TBA to change

the coordinate representation of these position vectors.

We use the following error functions for the position of the MAV, the position of

the end effector, the MAV linear and angular velocity, the orientation, the contact

force and the control input, respectively:

erB = W rB − W rrB, (5.6a)

erE = W rE − W rrE , (5.6b)

ev = W vB − W vrB , (5.6c)

eω = Bω − CBB
r
B

rωr, (5.6d)

eq = [q−1
WB ⊗ qrWB ]1:3, (5.6e)

ef = fc − f
r
c , (5.6f)

eu = u− ur, (5.6g)
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with fc :=
E

Fcz and the superscript r used to denote the time-varying reference

quantities. The optimal input sequence u∗ is obtained by the online solution of the

following constrained optimisation problem:

u∗ = argmin
u0,...,uNf

{
Φ(xNf

,xrNf
) +

Nf−1∑
n=0

L(xn,x
r
n,un)

}
, (5.7a)

s.t. : xn+1 = fd(xn,un), (5.7b)

x0 = x̂, (5.7c)

ulb ≤ ui ≤ uub, i = 1, . . . , 7, (5.7d)

where Nf is the discrete horizon length, fd is the discrete version of the dynam-

ics given in Equations 5.1-5.3, x̂ is the current state estimate and ulb, uub are the

appropriate lower and upper bounds of the control input defined in (5.5). For

the intermediate L and final terms Φ we use quadratic costs of the form e>i Qiei
∀ei ∈ {erB,erE ,ev,eω,eq, ef ,eu} as defined in (5.6) where the gain matrices Qi < 0

were experimentally tuned.

As in Chapter 4, the optimal control problem is implemented using a modified

version of the CT toolbox [Giftthaler et al., 2018] with a 10 ms discretisation step

and a 2 s constant prediction horizon. We use a Runge-Kutta 4 integration scheme

followed by a re-normalisation for the quaternion. As common in receding horizon

control, the first input u∗0 is applied to the system and the whole process is repeated

once a new state estimate x̂ becomes available.

Regarding the computation of the MAV motor commands, we use the control

allocation algorithm described in Section 4.5.3 with the bidirectional mode disabled.

Briefly, the motor commands f =
[
f1 f2 . . . f6

]>
for the MAV are obtained by

solving the following QP:

f∗ = argmin
f

(∥∥Af− u∗01:4
∥∥2

W + λ ‖f‖22
)
, (5.8a)

s.t. : fmin ≤ fi ≤ fmax, i = 1, . . . , 6, (5.8b)

where fmin, fmax ∈ R are the minimum and the maximum attainable thrusts, W ∈
R4×4 is a gain matrix and λ = 10−7 is the regularisation parameter.

The end effector position commands u∗05:7 are mapped into servo angle commands

θ1, θ2, θ3 by solving the inverse kinematics problem for the delta arm explained in

Section 2.3.2. In the case of an infeasible (e.g. outside the arm’s workspace) or
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unsafe end effector position command (e.g. one that results collision between the

MAV propellers and the arm’s links), the position command is reprojected onto the

boundary of the feasible and safe to operate workspace. In practice, this was rarely

the case as the MAV and end effector reference trajectories are designed (see Section

5.8) so that the end effector operates close to its nominal position. In this way the

usable workspace is maximised while the effect of the CoM displacement (which is

captured by our control model) is minimised.

Our C++ implementation of the above, requires 6.7 ms with a standard deviation

of 0.57 ms per iteration. On average, 98% of the computation time is spent on the

optimisation problems defined in (5.7) and (5.8).

We would like to highlight that our method is generic enough and can be eas-

ily applied on similar MAV-arm systems. In the case of an underactuated MAV

(similar to this work) the only part that has to be changed is the control allocation

method whcih depends on the vehicle type and its motor layout. In the case of an

overactuated MAV, the Equation 5.2a as well as the control input (5.5) should be

further augmented with the lateral forces. Regarding the arm, our method is arm

type agnostic as it only considers the end effector position. Additionally, the model

can easily be extended to capture aerodynamic friction, gyroscopic moments, handle

multiple contact points or use more sophisticated contact models (e.g. ones that in-

clude combination of linear springs and dampers). Similarly, the ‘aerial-writing’ task

which we use for the experimental evaluation of our framework, is just an example

application that requires precision. We believe that our algorithms are adaptable to

other tasks such as inspection through contact.

5.7 Extrinsics calibration

Apart from the various MAV related parameters (e.g. mass, inertia, motor coeffi-

cients), the control model depends on the arm F−→A to body F−→B frame transformation

TBA as well as the transformation TWT between the contact F−→T and world frame

F−→W . We experimentally observed that the system performance and mainly the

end-effector tracking accuracy are significantly affected by wrong estimates of these

transformations. We thus adopt an optimisation based calibration process.
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5.7.1 Arm to body frame transformation

Theoretically, getting an accurate estimate of the constant TBA can be done through

the detailed Computer Aided Design (CAD) of the system. In practice, precise

manufacturing of the aerial system with respect to the reference CAD model is

challenging. An alternative approach would be to separately track the F−→A and

F−→B pose using the motion capture system and compute their relative transform.

Unfortunately, the sideways mounted arm resulted in poor marker visibility for F−→A

and thus inaccurate results. To overcome this we follow an optimisation based

approach where the calibration process consists of the following steps:

1. We command the NMPC a constant position reference W rrE for the end ef-

fector.

2. With the MAV motors disabled, we manually move the MAV in various dif-

ferent positions and orientations. As the NMPC tries to keep the end effector

error as small as possible, the arm is constantly moving in order to counteract

the MAV movement.

3. We record the MAV position and orientation W rB, qWB as well as the end

effector position W rE using the motion capture system.

4. We compute the end effector position ArE expressed in F−→A using the encoder

measurements from the delta arm servos and the forward kinematics described

in Section 2.3.1.

Once the data collection is completed, we offline solve the following optimisation:

J = argmin
qBA ,BrA

( 1

N

N∑
i=1

∥∥TWBi
TBA ArEi

− WrEi

∥∥2
)
, (5.9)

where the subscript i denotes the index of the N discrete observations. Since the

motion capture and encoder measurements are collected at different time instants,

we obtained time synchronised measurements W rBi
,qWBi

,W rEi
,ArEi

by evaluating

(using linear interpolation) the encoder data at the timestamps of the motion capture

data.

A side effect of estimating the TBA using the optimisation problem in (5.9) is that

it ensures that tracking accuracy of the end effector position commands is maxim-

ised. This allows small position and orientation offsets originating from imperfect
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forward kinematics to be –in average– cancelled out by appropriate estimation of

the position and orientation parts of TBA . On average the optimum value for J was

in the order of 4 mm which should be considered as the maximum position accuracy

of the end-effector.

5.7.2 Contact to world frame transformation

For the TWT calibration we start with an initial estimate TWT0
and aim to estimate

a transformation refinement TT0T given by:

TT0T :=


Cx(φ)Cy(θ)

0

0

z

01×3 1

 , (5.10)

with Cx, Cy the rotation matrices around the x and y axes respectively and θ, φ, z

the unknown rotation angles and offset we want to estimate. We do so by recording

multiple position measurements WrT of points which lie on the contact surface and

by solving the following optimisation problem:

J = argmin
θ,φ,z

( 1

N

N∑
i=1

∥∥∥((TWT0
TT0T )−1

WrTi
)

3:3

∥∥∥2 )
, (5.11)

with the subscript i denoting the index of the N discrete observations. Solution of

(5.11) yields the best estimate TWT := TWT0
TT0T which ensures that the distance

between the observations WrTi and the contact surface along its normal direction is

minimised.

The definition of TT0T in (5.10) ensures that the unobservable rotation of TWT

around the normal direction is identical to the initial estimate TWT0
. For the com-

putation of the initial estimate TWT0
, we average the pose measurements provided

by the motion capture system by tracking an object attached on the contact sur-

face. For the pose averaging we use the method described in [Markley et al., 2007]

where the average orientation quaternion is computed by minimising the squared

Frobenius norm of the difference between rotation matrices.

Compared to the calibration process of TBA which is only done once, calibration

of TWT is required after every motion capture system calibration (which includes

realignment of the F−→W ). In all the tested calibration datasets, the optimal value

for J was less than 0.5 mm.
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5.8 Reference computation

We use a trajectory generator to map arbitrary sets of characters to end effector

trajectories. We use a constant acceleration motion model to generate trajectories

with a smooth velocity profile. This is of special importance when the reference

path contains sharp edges. Through our software we can adjust the velocity and

acceleration profile by changing the maximum ‖W vrE ‖ and ‖W arE ‖. Once the tra-

jectory for the end effector has been computed, we proceed with the computation

of the reference position W rrB and velocity W vrB for the MAV as follows:

W rrB = W rrE − CWB BrE0
, (5.12a)

W vrB = W vrE − CWB Bω
r × BrE0

. (5.12b)

The reference MAV orientation qrWB is chosen such that the end effector position

is always perpendicular to the contact surface, assuming perfect position tracking.

Computation of the MAV reference position using the above equations ensures that

the end effector operates close to its nominal position BrE0
. Given a dynamically

feasible trajectory for the end effector, the desired acceleration, jerk and snap for

the MAV can be computed by further differentiating (5.12a) and using Ċ = C [ω ]×

for the rotation matrix derivative.

In our framework, each trajectory is accompanied by an appropriate flag which

disables or enables the position tracking for the end effector. This is achieved by

setting the appropriate gains to zero. In that case the NMPC may decide to move the

arm to assist the reference tracking of the MAV due to the CoM displacement. This

– depending on the application – potentially unwanted behaviour can be avoided

by further penalising (i.e. by increasing the input gains) the arm displacement from

its nominal position. However, it is an interesting capability enabled by our hybrid

modeling.

5.9 Experimental results

The experiments presented in this section were performed using the custom built

hexacopter equipped with the sideways mounted delta arm manipulator described

in Sections 2.2 and 2.3 respectively. In order to cope with the increased payload

we used the propulsion system #1 described in Section 2.2.3. The end effector of

the delta arm holds the pen which is mounted on a spring to provide additional
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compliance. We set the coefficient of the contact model in Equation (5.4) to match

the used spring. The applied force is measured by a SingleTact1 force sensor, which

provides measurements at a resolution of 9× 10−3 N, mounted at the end of the

spring. We estimate the spring coefficient ks by measuring the applied force for

known tip displacements. We measured the inertia of the MAV J by checking its

angular response to constant input torque while it is hanging to freely rotate. A

table with all the numeric values of the system parameters, used in the control

model, is given in Table 5.1 while a photo showing the platform and its different

components is shown in Figure 5.4.

Description Symbol Value Unit

MAV mass m 2.6 kg
End effector mass me 0.058 kg

MAV inertia in x axis Jx 0.042 kg/m2

MAV inertia in y axis Jy 0.054 kg/m2

MAV inertia in z axis Jz 0.110 kg/m2

Moment coefficient kM 1.5864× 10−2 Nm/N
Spring coefficient ks 42.95 N/m

Table 5.1: Numeric values of control model parameters.

Full state estimates are obtained by the EKF described in Section 2.4.1 which fuses

the onboard IMU measurements and the pose estimates provided by a Vicon motion

capture system. Each experiment consisted of the following different trajectory

stages: (i) approach, (ii) write, and (iii) return home. The end effector tracking

was enabled, using the appropriate flags as mentioned in Section 5.8, for the writing

trajectory and disabled for the rest. Our analysis mainly focuses on the trajectory

writing which includes contact whereas for the other two parts (approach/return) the

MAV performs simple position tracking. We evaluate the accuracy of our system

by comparing the reference trajectories to those estimated by the Vicon motion

capture system. In addition, we use a vision-based error as a performance metric.

This is because we observed inaccuracies in the Vicon measurements stemming from

either bad calibration, poor object visibility, or marker reflections on the whiteboard

surface. The visual error is computed by running a 2D Iterative Closest Point (ICP)

method [Besl and McKay, 1992] on a filtered and rectified photo of the final writing

and a rendering of the planned path. After registration of the two point sets, we

1
See https://www.singletact.com/.
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5. Nonlinear Model Predictive Control for aerial manipulation

Figure 5.4: The aerial manipulation platform used in the ‘aerial writing’ experiments
in Section 5.9 with labels for its individual components.

use the nearest neighbour distance to evaluate the accuracy.

In the following we show four experiments: in Section 5.9.1 we present detailed

and repeatable results for two different trajectories, namely RSS and E = mc2. We

then show consistent tracking performance across varying MAV velocities and text

sizes in Sections 5.9.2 and 5.9.3, respectively.

5.9.1 Trajectory tracking

Figure 5.6 shows the tracking of the RSS trajectory visualised in the contact frame

F−→T for the end effector and the MAV. The maximum reference velocity was set to

7.5 cm/s and the maximum acceleration to 2.5 cm/s2. The trajectory consists of four

contact segments with a combined duration of 65 s. Based on the Vicon estimates

the tracking error of the end effector remains in the [−10, 10] mm range during the

contact segments while the MAV position error is within the [−40, 40] mm range.

This highlights the efficacy of using a manipulator with faster dynamics than the

MAV’s for precision tasks such as ‘aerial-writing’.

Similarly to the above, Figure 5.8 shows the trajectory tracking for the more chal-
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lenging E = mc2 experiment which contains ten contact segments with a combined

duration of 63 s. Tracking accuracy is similar as before with the end effector and

MAV tracking error in the [−10, 10] and [−50, 50] mm range. The accuracy can be

visually verified since the overlapping segments of the ‘R’ and ‘m’ coincide almost

perfectly. Additionally, the consistent approaching and retracting from the contact

surface leads to identical starting points of individual letter segments, e.g. the three

horizontal lines of the letter ‘E’. In both cases, the maximum error based on the

visual error analysis is 10 mm mostly originating from temporary loss of contact.

Possible reasons for this are bad estimation of the orientation part of the contact

frame transformation TWT , the assumption of a perfectly flat contact surface being

wrong and most importantly the finite accuracy of the delta arm. The imperfect

tracking along the contact frame normal direction (shown in blue in Figures 5.6,

5.8) is also reflected in the reference force tracking.

In order to prove the repeatability of our approach, we conducted each experiment

thrice. We give the relevant tracking statistics for the MAV and arm separately in

Figure 5.9, in which the textured box plots correspond to MAV data and the plain

ones to that of the end effector. The median and upper values for the end effector

are significantly lower than the ones for the MAV further showing the need of an

aerial manipulator for precise tasks including contact. The MAV tracking accuracy

along the z axis was the lowest amongst all axes, as this was most affected by the

interaction forces and unmodeled torque disturbances due to the movement of the

servos.
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Figure 5.5: Reference and actual tip position (left) as estimated by Vicon. Blue corresponds to contact segments while orange
refers to free flight. Visual error (right) between reference and actual tip position. The maximum estimated error is lower than
10 mm and is located at discontinuous segments as expected.
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Figure 5.6: Reference tracking error of the tip position (top), MAV (middle), and measured contact force (bottom). The tracking
error is plotted in the contact frame F−→T . The tracking accuracy of the end effector is significantly greater than that of the MAV,
given that they remain in the [−10, 10] mm and [−40, 40] mm ranges, respectively.
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Figure 5.7: Reference and actual tip position (left) as estimated by Vicon. Blue corresponds to contact segments while orange
refers to free flight. Visual error (right) between reference and actual tip position. Similarly as in the RSS experiment shown in
Figure 5.6, maximum error does not exceed 1cm.
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Figure 5.8: Reference tracking error of the tip position (top), MAV (middle) and measured contact force (bottom). The tracking
accuracy of the end effector is significantly greater than that of the MAV, given that they remain in the [−10, 10] mm and
[−50, 50] mm ranges, respectively
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5. Nonlinear Model Predictive Control for aerial manipulation

Figure 5.9: MAV and end effector box plots of the contact segments for 3 iterations
of the RSS trajectory experiment (top) and the more challenging E = mc2 trajectory
experiment (bottom).

5.9.2 Velocity Sweep

The aim of the next experiments is to demonstrate the effects of the input velo-

city and acceleration on the writing accuracy. We performed five iterations of the

same Hello trajectory experiment with different velocity and acceleration profiles.

These correspond to maximum velocity ‖W vrE ‖ ∈ {7.5, 12.5, 17.5, 22.5, 27.5} cm/s

and maximum acceleration ‖W arE ‖ ∈ {3.75, 6.25, 8.75, 11.25, 13.75} cm/s2.

Figure 5.10 shows the box plots for the MAV and end effector tracking accuracy

based on the Vicon measurements. The plots show that consistent tracking results

are obtained in all the different velocity and acceleration settings tested. The nu-

meric values of the tracking error are similar to the ones previously presented with

the end effector achieving sub centimetre accuracy (per axis) while the MAV error is

consistently less than 50mm. However, by observing the visual error, we verify that

as the reference velocity increases, the system struggles more with the trajectory

segments containing curvature e.g. ‘e’ and ‘o’. In contrast, the performance on the
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Figure 5.10: MAV and end effector box plots(top) and visual errors(bottom) for
5 iterations of the Hello trajectory. Different iterations correspond to different
velocity and acceleration profiles.

straight line segments remains similar.

We believe that the tracking error of the MAV can be further reduced if the NMPC

was given dynamically feasible trajectories not only for position and velocity but also

acceleration, jerk, and snap. Regarding the end effector tracking error, we generally

expect this to increase for reference velocities beyond the ones tested here. This

is because our control model assumes that the position of the end effector can be

controlled infinitely fast which is not the case for a real system.

5.9.3 Trajectory size sweep

In Figure 5.11 we show the visual error of our system for the same trajectory in four

different text sizes ranging from 10 to 40 cm. The consistent accuracy observed

shows that the system can handle the fast direction changes imposed by the small

scale.
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Figure 5.11: Visual error plot showing consistent results for varying text sizes
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5.10 Discussion

Overall, our system achieves accurate and consistent results over a series of different

trajectories. The end effector tracking error consistently remains in the [−10, 10] mm

range for trajectories with maximum velocities ranging from 7.5 to 27.5 cm/s,

maximum acceleration from 3.75 to 13.75. The tracking error of the end effector is

significantly lower than the one for the MAV highlighting the accuracy boost due

to the utilisation of the arm. We would like to mention that our system was built

using relatively cheap off-the-shelf components and 3D printed parts. This leads to

errors in the manufacturing of the aerial system with respect to the reference model

e.g. errors in the true inverse kinematics of the arm due to non-identical dimensions

of its links.

Another important issue that we faced during our experiments, was the reliance

on the motion capture system for localisation. Apart from issues related to WiFi

delays which resulted in temporary loss of tracking, we faced issues with poor object

visibility resulting in unreliable estimates of both the static objects, such as the

contact frame, and moving ones such as the MAV. In fact, during our data analysis

we realised that there are segments where Vicon returned mechanically impossible

configurations for our system e.g. end effector position below the surface of the

contact frame. Despite these problems which further propagate into tracking errors,

our system was able to handle well multiple transitions to contact during the same

experiment.

We experimentally verified that for contact tasks, where the main objective is

accuracy instead of speed, using a planner respecting full state dynamic feasibility is

not an absolute necessity. Despite our simplified motion planner, our system achieves

sub-centimeter accuracy. However, we argue that for more aggressive maneuvers, a

full state dynamically feasible planer would be required.

Regarding future work, we consider that online estimation of the contact frame

transformation TWT would be beneficial as our system was very sensitive to its

wrong estimates. This would be very useful in a real life scenario (e.g. inspection

through contact) where the contact surface might not be reachable and thus its

position and orientation not directly measurable. Furthermore, it will provide a

natural way of handling contact with curved or generally non flat surfaces. Another

possible extension is that of using visual feedback to close the (currently open) loop
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of the aerial manipulation task. This requires the formulation of a visual-based

error metric based on the reference aerial manipulation task and the achieved one

(e.g. reference end effector trajectory and observed one). Closing this feedback loop

would result a major improvement for errors stemming from bad calibration (e.g.

TWT , TBA ), state estimate delays or inaccuracies of the arm. Finally, using a better

model for the combined MAV-arm system, would result better tracking performance.

As a first step, we can approximate the arm response using a first order model (the

current method further assumes an instantaneous end effector position response)

or ultimately, formulate the full multi-body dynamics model. The last would be

beneficial for agile combined maneuvers not tested in this work.
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Chapter 6

Conclusions
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6.1 Summary of results

In this section we present a summary of the contributions and results which have

been presented in detail in the previous chapters.

In Chapter 3 a linear MPC incorporating soft state constraints as well as a gen-

eric framework for vision based tracking were presented. A cascaded control ap-

proach was adopted with the position and attitude dynamics being independently

controlled. The position control problem was formulated as a canonical form QP en-

abling online computation using any generic QP solver. The experiments conducted

for the MBZIRC competition showed that the designed controller can be used for

tracking and landing on a target moving with velocities not exceeding 5.0 m/s while

the experiments related to the AABM project revealed that the system is extremely

accurate (maximum per-axis error of 1.5 cm) for slow reference trajectories. Main

benefit of this control approach is its easy deployment on any platform which is

equipped with a closed loop attitude controller. This can be further justified since

the experimental results presented in Chapter 3 were obtained using three different

platforms. These two advantages (accuracy for slow maneuvers, ease of use) made

this controller our preferred choice for the majority of our experiments and live

demos which did not require agile maneuvers.
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The linear MPC was extended to an NMPC in Chapter 4. By using a quaternion

based parameterisation and the non linear model of the system we overcame the main

limitations of the initial approach (i.e. inaccurate system model when operating away

from the linearisation point, gimbal lock due to the use of Euler angles). Through a

simple position-yaw step maneuver we showed how the controller can use the non-

linear dynamics –in an unconventional way– so as to perform the reference task as

fast as possible. In order to enable robust operation despite the loss of a single

actuator, we examined the controllability of our MAV and proposed a stabilisation

technique (based on reversing the motor direction during flight) which ensured stable

position and yaw response. To address the more realistic scenario, of a mid flight

motor failure, we developed an EKF which relies on inertial measurements and

monitors the health status of all the motors. This was used for autonomous detection

and recovery in experiments where one motor was abruptly switched off. Apart from

the advantages presented above (i.e. valid model irrespectively of the MAV state,

robustness in mechanical failures) the developed controller does not rely on the

existence of an attitude or rate controller. This property can be used for tracking of

full state dynamically feasible trajectories and natively enables the use of the same

controller as e.g. an attitude or rate controller by nullifying the cost function terms

that are not required.

A rushed comparison between the linear controller (Chapter 3) and the non linear

one (Chapter 4) would always result in favor of the latter. However, in practice

this is not always the case. The unified control of both the fast attitude and rate

as well as the slow position dynamics of the MAV from a single controller requires

state estimates to be provided at a high update rate. We experimentally identified

that the NMPC controlled system can experience unstable behavior for update rates

lower than 70 Hz while to avoid this, the controller was always run at rates equal

or greater than 100 Hz. To eliminate potential instability issues related to delays

between perception and actuation, the NMPC was only tested on relative powerful

CPUs while special effort was made to phase out potential sources of delays in the

software pipeline. In contrast, the position and attitude dynamics separation of the

linear MPC allows the position controller to run at much lower rates. Specifically,

in the presented experiments the position loop rate was 20 Hz (while the system was

still stable when the rate was reduced to 10 Hz) which shows that the same controller

can be used in conjunction with a low rate state estimation scheme e.g. a SLAM

system that runs at camera rate. As a consequence of the low rate updates and
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the simpler optimisation problem, we have successfully run the linear MPC using

less powerful onboard computers such as an Odroid XU41. When available, the

extra computational power can be devoted to increasing the length of the predic-

tion horizon of the linear MPC which given valid model predictions would result

a performance improvement compared to implementations with a shorter horizon.

Given the above, the choice between the two controllers on a real system, should

not solely depend on their theoretical principles but should be a function of the

platform hardware, the available state estimation and more importantly the desired

MAV application.

The final contribution presented in Chapter 5 was an extension of the NMPC for

tasks requiring interaction with the environment. There, the motion of an MAV-arm

system was jointly controlled while also considering the quasi static forces introduced

by the arm and its interaction with the environment. This approach compensates

for the CoM displacement due to the end effector motion as well as the interaction

forces acting on the end effector which are further integrated into forces and moments

acting on the MAV base. We consider the method generic enough to be extended for

multiple contact points as well as to be applied on similar systems since the control

model is platform and arm-type agnostic. Overall, our custom built system achieves

sub centimetre accuracy in “aerial writing” which was used as an example scenario

that requires accuracy.

All in all, the experimental verification presented in this work would not be pos-

sible without the: (i) the hardware platforms built, (ii) the state estimation software,

(iii) the parameter identification all presented in Chapter 2 and (iv) the complete

software framework that enables easy MAV operation. The latter includes the con-

trollers and estimators described in this work, provides an interface for flight tasks,

implements multiple control modes for redundancy as well as contains the state ma-

chines which monitor the health status of all vital components (e.g. IMU and state

estimation rate). So far, our framework has been used in many indoor and outdoor

experiments including more than 100 public demonstrations with some examples

shown in Figure 6.1.

1
See https://www.odroid.co.uk/hardkernel-odroid-xu4. Accessed April 2020.
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(a) Initial OKVIS enabled flights, April 2016. (b) Live demo at Imperial Festival, May 2016.

(c) Live demo at Imperial Festival, May 2017. (d) AABM integration week, December 2017.

(e) AABM integration week, July 2018. (f) Initial NMPC tests, September 2018.

(g) Initial MAV-arm tests, May 2019. (h) GPS enabled flights, June 2019.

Figure 6.1: Examples of experiments and live demos accomplished with our software
framework.

6.2 Future work

Regarding the linear MPC presented in Chapter 3, its natural extension to an NMPC

was presented in Chapter 4. Therefore, future extensions should be focused on the

engineering implementation such as including the effect of external disturbance in

the control model as in [Kamel et al., 2017a] and use the fastest QP solver [Frison

and Diehl, 2020] to date.

Our analysis regarding future work focuses on the two NMPC algorithms presen-

ted in Chapters 4 and 5 respectively.
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More accurate system modelling. In both NMPC formulations we ignored less

significant phenomena such as the gyroscopic moments, the motor dynamics as well

as aerodynamic drag. Incorporation of the first two into the control model, re-

quires the rotor angular velocity to be considered as the control input which further

eliminates the need of the control allocation algorithm as the actuator commands

will be directly computed by the NMPC optimisation. Compared to the existing

approach, this comes at the cost of increased computational complexity for MAVs

with more than four motors. However, it ensures that the motor dynamics are taken

into account (e.g. in practice the motors cannot accelerate or decelerate infinitely

fast as assumed by our approach) and most importantly yields no approximation for

the feasible control input set (e.g. feasible control input set presented in Section 4.6

approximated as a 4D hyperrectangle in the current approach). Regarding the aero-

dynamic effects, recent work [Faessler et al., 2017] showed that tracking performance

(especially when the MAV has to follow long in duration aggressive maneuvers) can

be further improved when these are taken into account by the control model. The

main challenge however is the tedious identification of the drag coefficients which

requires experiments to be done in controlled wind tunnel environments.

Online model refinement. In this work, the model parameters (e.g. MAV mass,

inertia and motor constants) were identified offline and the control model remained

unchanged while flying. We can make the controller adaptive to model changes by

online estimating these by e.g. adopting the approaches discussed in [Bähnemann

et al., 2017] and [Burri et al., 2018] and updating the model online. By doing so, we

do not only take into account for parameters which change over time (e.g. the mass

of the MAV in the AABM experiments), but also correct for model or parameter

estimation errors which affect the flight performance. An example of the latter

includes the online estimation of the position of CoM which is affected even by a

small misplacement of the MAV battery. Online model refinement will eliminate the

need of using integral terms (as done in the experiments presented in Section 3.7) in

order to compensate steady state offsets arising from mismatches between the real

and control model.

Quantitative comparison between the MPC and NMPC. The controller de-

scribed in Chapter 4 was designed in order to overcome the limitations of its linear

counterpart described in Chapter 3. While the two methods were presented in detail,

a quantitative comparison of the tracking performance achieved was not performed.
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As also shown in similar work [Kamel et al., 2017b], we anticipate the NMPC to

dominate when fast maneuvers are required while both the MPC and the NMPC

should perform similar for slow or static trajectories. However, it would be benefi-

cial to further quantify the performance improvement due to the use of a nonlinear

model approach as a function of e.g. the reference velocity, acceleration or the num-

ber of DoFs excited at the same time. Such an analysis can provide an objective

criterion as to when switching to a NMPC is beneficial.

Use the NMPC in a machine learning framework. In recent learning-based

control works such as [Zhang et al., 2016, Müller et al., 2018b, Kaufmann et al.,

2020] the MAV control policy is trained entirely in simulation in a supervised fash-

ion using training data provided by either human demonstrations or a preexisting

closed loop controller. Such approaches have the potential to outperform classic

MPC approaches in terms of computational cost while, depending on the network

structure, may not require an explicit state estimation scheme during test time. We

believe that our NMPC framework can be utilised to provide demonstrations to be

used during the training phase of the neural network while it can be easily adapted

to different MAV models used in the network design (e.g. consider the MAV rates as

the control input). The proven capability of running in real-time enables the NMPC

to run as a safety backup or, as an attempt to handle the simulation-to-reality gap,

provide online training data in the event of e.g. an MAV state or reference on which

the trained policy does not perform well.

Investigate robustness of fault detection EKF. The EKF used for motor fail-

ure detection was only tested in indoor flights in the absence of external disturbances.

Theoretically, a large in magnitude disturbance (e.g. a wind gust) can disturb the

MAV in a way to “trick” the EKF and trigger a false positive. This has to be further

investigated prior to the deployment on an MAV which operates in outdoor envir-

onments. A potential solution to this problem would require the system state to be

augmented with wind states which should also be estimated online. An alternative

solution, which does not require any software modification, includes lowering the

threshold for the health status upper bound L(hi+3σi) used for signalling a fault of

the ith motor. Lowering this threshold will decrease the probability of a false positive

in the expense of an increased detection delay. Finally, a more robust solution would

be to further augment the EKF with per-motor encoder and current measurements

and their corresponding models. However, this option requires additional hardware
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which is not available to every MAV and therefore defeats the main advantage of

the original method which is the algorithmic only implementation.

Multi-body dynamic modelling. The hybrid MAV-arm model only considers

the quasi static forces introduced by the arm. In order to utilise the full potential

of the model based approach, a multi-body dynamic model has to be formulated.

This will allow for agile combined maneuvers, as well as capture the effect of the

servo torque (required for the arm motion) on the MAV base. From a hardware

perspective this approach would require the manipulator motors to support direct

torque control which is not possible with the cheap and lightweight servos used in

this work. Most of the commercially available motors with such a capability are

designed for ground robots and are -due to weight limitations- unsuitable for use in

aerial vehicles of similar scale as ours. A potential solution includes the design of

proprietary motor-controller hardware setups as in [Kamel et al., 2016b] that take

into account the maximum required torque for controlling the arm’s motion as well

as the limited payload capacity of MAVs.

Closed loop control of the manipulation task. As mentioned in Chapter 5 the

overall performance is sensitive to wrong estimates of the contact frame. This is be-

cause the contact forces are part of the model and the NMPC anticipates them to

occur at a known position and time instant. To overcome this, one can use the force

sensor measurements and the MAV state in order to estimate the contact frame

normal direction online. This will not only account for small calibration errors but

will enable aerial interaction with e.g surfaces which are not perfectly flat. Another

possible extension which will improve the overall performance of the system is to

close the loop of the interaction with the environment task with visual feedback.

This will compensate for errors arising from either small MAV model inaccuracies

or arm kinematics mismatches and will handle the existence of drift in the MAV

position estimates which is usually the case for vision based localisation.

Tests with omnidirectional MAVs. A main advantage of the NMPC for aerial

manipulation is that a reference contact force can be provided and followed by the

system. Since the used underactuated MAV cannot produce lateral forces in the

body frame, the desired force was produced through the inertial coupling between

the arm and the MAV. Also, in our experimental setup the maximum contact force

was further constrained by the low stall torque of the delta arm servos. In order to

showcase our algorithm in scenarios requiring exertion of significant lateral forces,
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we would like to test our NMPC with hardware platforms such as the ones presented

in [Bodie et al., 2019] and [Ryll et al., 2019] which have much higher capabilities in

terms of lateral force control.

Collision free navigation. In this work we presented algorithms that can run

in realtime on commercially available hardware and form the basis for more com-

plex/realistic experimental scenarios. However, there are a few missing components

which are crucial for successful deployment in the unstructured real world. The

most important one is the generation of collision free trajectories since all presen-

ted experiments relied on the assumption of an obstacle-free space. This is usually

achieved by online mapping of the environment e.g. [Oleynikova et al., 2017, Vespa

et al., 2018] using onboard sensors such as RGBD cameras and subsequently using

the built map for generation of obstacle free paths e.g [Zucker et al., 2013, Richter

et al., 2016, Oleynikova et al., 2016].
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[Sa et al., 2018b] Sa, I., Popović, M., Khanna, R., Chen, Z., Lottes, P., Liebisch,

F., Nieto, J., Stachniss, C., Walter, A., and Siegwart, R. (2018b). Weedmap: A

large-scale semantic weed mapping framework using aerial multispectral imaging

and deep neural network for precision farming. Remote Sensing, 10(9):1423.

[Saeedi et al., 2019] Saeedi, S., Carvalho, E. D. C., Li, W., Tzoumanikas, D., Leu-

tenegger, S., Kelly, P. H. J., and Davison, A. J. (2019). Characterizing visual

localization and mapping datasets. In 2019 International Conference on Robotics

and Automation (ICRA), pages 6699–6705.

153



Bibliography

[Saied et al., 2015] Saied, M., Lussier, B., Fantoni, I., Francis, C., Shraim, H., and

Sanahuja, G. (2015). Fault diagnosis and fault-tolerant control strategy for ro-

tor failure in an octorotor. In IEEE International Conference on Robotics and

Automation, pages 5266–5271.

[Saied et al., 2017] Saied, M., Lussier, B., Fantoni, I., Shraim, H., and Francis, C.

(2017). Fault diagnosis and fault-tolerant control of an octorotor uav using motors

speeds measurements. IFAC-PapersOnLine, 50(1):5263 – 5268. 20th IFAC World

Congress.

[Schneider et al., 2012] Schneider, T., Ducard, G., Konrad, R., and Pascal, S.

(2012). Fault-tolerant Control Allocation for Multirotor Helicopters Using Para-

metric Programming. In International Micro Air Vehicle Conference and Flight

Competition, Braunschweig, Germany.

[Shuo Yang et al., 2015] Shuo Yang, Jiahang Ying, Yang Lu, and Zexiang Li (2015).

Precise quadrotor autonomous landing with srukf vision perception. In 2015 IEEE

International Conference on Robotics and Automation (ICRA), pages 2196–2201.

[Simon, 2010] Simon, D. (2010). Kalman filtering with state constraints: a survey of

linear and nonlinear algorithms. IET Control Theory & Applications, 4(8):1303–

1318.

[Smolyanskiy et al., 2017] Smolyanskiy, N., Kamenev, A., Smith, J., and Birchfield,

S. (2017). Toward low-flying autonomous mav trail navigation using deep neural

networks for environmental awareness.

[Suarez et al., 2018] Suarez, A., Jimenez-Cano, A. E., Vega, V. M., Heredia, G.,

Rodriguez-Castaño, A., and Ollero, A. (2018). Design of a lightweight dual arm

system for aerial manipulation. Mechatronics, 50:30 – 44.

[Sun et al., 2020] Sun, S., Baert, M., van Schijndel, B. S., and de Visser, C. (2020).

Upset recovery control for quadrotors subjected to a complete rotor failure from

large initial disturbances. 2020 IEEE International Conference on Robotics and

Automation (ICRA).

[Thomas et al., 2017] Thomas, J., Welde, J., Loianno, G., Daniilidis, K., and Ku-

mar, V. (2017). Autonomous flight for detection, localization, and tracking of

moving targets with a small quadrotor. IEEE Robotics and Automation Letters,

2(3):1762–1769.

154



Bibliography
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