1,246 research outputs found

    House dust mite induced allergic airway disease is attenuated in CD11ccreIL-4Rα−/l°x mice

    No full text
    Abstract The precise mechanisms leading to development of T helper type (Th)2-driven allergic responses are unknown. We aimed to determine how IL-4 receptor alpha (IL-4Rα) signaling on CD11c+ cells influences allergen-induced Th2 responses in mice. CD11ccreIL-4Rα−/l°x mice, deficient in IL-4Rα on dendritic cells and alveolar macrophages, were compared to IL-4Rα−/l°x littermate controls in models of allergic airway disease induced by OVA/alum, OVA alone or house dust mite. Cytokine responses, eosinophil and neutrophil infiltration into the lungs, airway hyperreactivity and mucus hypersecretion were evaluated after allergen challenge. In the OVA/alum model, CD11ccreIL-4Rα−/lox mice had similar airway hyperreactivity, eosinophil infiltration, Th2-type cytokine production and mucus hypersecretion to littermate controls. When alum was omitted during sensitization, CD11ccreIL-4Rα−/lox mice had similar airway hyperreactivity and mucus secretion but reduced Th2-type cytokine production and eosinophils, suggesting alum overrides the requirement for IL-4Rα signaling on CD11c+ cells in enhancing Th2-type responses. In the house dust mite model, CD11ccreIL-4Rα−/lox mice showed similar mucus secretion, but reduced Th2 responses, eosinophils, neutrophils and airway hyperreactivity, unlike previously tested LysMcreIL-4Rα−/lox mice, which lack IL-4Rα on alveolar macrophages but not on dendritic cells. Therefore, our results indicate that IL-4Rα signaling on dendritic cells promotes allergen-induced Th2 responses and eosinophil infiltration into the lung

    The role of IL-33 and ST2 in allergic airways disease

    Get PDF
    Asthma is a chronic disease characterised by variable airflow obstruction, bronchial hyperresponsiveness and airways inflammation. At an immunological level Th2 inflammation and the presence of activated eosinophils and mast cells are key features of asthma. ST2, the receptor for the novel cytokine IL-33, is expressed upon Th2 lymphocytes and mast cells but its role in clinical and experimental asthma remains unclear. IL-33 has been shown to induce local and systemic eosinophilia when administered to the peritoneum of mice. In this thesis I have set out to test the hypothesis that the activation of mast cells by IL-33 acting on cell surface ST2 plays a critical role in allergic airways inflammation. I began by studying the function of ST2 on mast cells in vitro. I found that ST2 was expressed at an early stage of development, and correlated closely with the expression of the stem cell factor receptor (c-kit), a marker present on mast cells from a progenitor stage. Despite this mast cells generated form ST2 gene deleted mice proliferated and matured normally. When mast cells were activated by IL-33, acting in an ST2-dependent manner, pro-inflammatory cytokines and chemokines were released that have potential roles in asthma, specifically IL-6, IL-13, MIP-1α and MCP-1. To extend these findings I looked at the role of ST2 in allergic airways inflammation. I first optimised and validated an ovalbumin and adjuvant based ‘short’ twelve day model of murine asthma and demonstrated that ST2 gene deletion results in attenuated eosinophilic inflammation. In addition to being ST2 dependent it is possible that this adjuvant based short model is mast cell dependent, unlike longer adjuvant based models which are mast cell and ST2 independent. Therefore I went on to study an adjuvant-free model of asthma which has been demonstrated to be mast cell dependent. In this adjuvant-free model of asthma the airway inflammation was attenuated in ST2 gene deficient mice compared with wild type mice, while AHR was unaffected. There was an associated reduction in IgE production and thoracic lymph node recall Th2 cytokine responses. I then examined the effect of ST2 activation in the lungs. When IL-33 was administered directly to the airways of naïve mice it induced the features of experimental asthma. There was extensive eosinophilic inflammation within the lung tissue and airspaces. The Th2 cytokines IL-5 and IL-13, and the eosinophil chemoattractant chemokines eotaxin-1 and eotaxin-2 were detected at increased concentrations. Significant airways hyperresponsiveness was also generated. Using ST2 gene deleted mice I demonstrated that these effects were ST2 specific. Although I have shown that mast cells are activated by IL-33 in vitro, I used mast cell deficient mice to demonstrate that the eosinophilic inflammation generated by IL-33 is unaffected by the absence of mast cells. These data show that IL-33 can induce in the lungs the cardinal pathological characteristics of asthma, and that it appears to act upstream of other important mediators such as IL-13 and the eotaxins. Furthermore the IL-33 receptor ST2 is required in an adjuvant free model of asthma, which is more akin to human disease. Placing these findings in the context of recent evidence that IL-33 is released by structural cells in response to damage or injury suggests that IL-33 may play a key role in initiating the immunological features of clinical asthma. As a consequence of this position in the hierarchy of inflammation IL-33 offers a promising direct target for novel biological therapies in asthma

    Investigation of immune responses in different mouse models of allergic asthma

    Get PDF
    Allergies are a common chronic disease and considerably decrease the quality of life for affected individuals. Understanding the immune responses during allergic diseases is essential for both diagnosis and the development of effective therapies. The route of sensitisation to allergens is one factor that influences the immune response and the outcome of allergic diseases and both human and animal studies have highlighted IL-4Ra as an important component in the induction of allergy. The aim of this study was to investigate the contributions of the route of sensitisation to allergens with focus on the significance of cell specific expression of IL-4Ra in the onset of allergy. The route of sensitization to Anisakis pegreffii influences the outcome of experimental allergic asthma: Worldwide, increasing numbers of allergies to the fish parasite Anisakis pegreffii are reported. Anisakis can cause allergies after accidental infection of humans and in the occupational environment. Currently it is not clear if different exposure routes to Anisakis affect the development of allergic asthma and if they have an influence on the immune response. To address these questions, the present study investigated immune responses and disease development after Anisakis live infection and after nasal sensitisation in a mouse model of allergic airway disease. We showed that the route of sensitisation influences the outcome of Anisakis pegreffii induced allergic asthma and demonstrated important contributions of IL-4Ra to the underlying immune response. Alternatively activated macrophages are not necessary for the development of experimental allergic lung inflammation: Development of alternatively activated macrophages (AAM) is induced by signals of IL-4Ra. Alternatively activated macrophages (AAM) are a feature of allergic asthma in clinical and experimental investigations but their role in the development of allergy is not defined. To address this, a model of acute allergic asthma was used to compare mice deficient in AAM (LysMcrelL-4Ra-110x mice) with control mice. We found that the presence of AAM at early stages of allergic airway inflammation these cells was not required for the onset of the disease. Smooth muscle IL-4Ra is not required for experimental allergic asthma: In vitro studies have suggested that IL-4Ra signalling on airway smooth muscle cells (ASMC) is critical for airway irrflammation and airway hyperresponsiveness. Using mice deficient for IL-4Ra in ASMC, the in vivo effects of impaired IL-4Ra signalling in ASMC on the outcome of asthmatic disease were investigated. The impairment of IL-4Ro: on SMC had no effect on major aetiological markers of allergic asthma. These findings suggest that IL-4Ra responsiveness in airway SMC during the acute phase of allergic asthma is not critical for the outcome of the disease. Conclusions: The present study showed the importance of the route of sensitisation and IL4Ra in the development of allergy to Anisakis pegreffii. The use of in vivo models of experimental allergic asthma revealed that the route of sensitisation can influence the underlying immune response of the disease. Furthermore, by using mice with cell specific deficiencies in IL-4Ra it was demonstrated that expression of this receptor on smooth muscle cells and macrophages is not essential for the development of acute experimental allergic airway disease, as it has been previously suggested

    Investigations of immune responses in different mouse models of allergic asthma

    Get PDF

    Airway remodelling and inflammation in asthma are dependent on the extracellular matrix protein fibulin-1c

    Get PDF
    Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Asthma is a chronic inflammatory disease of the airways. It is characterized by allergic airway inflammation, airway remodelling, and airway hyperresponsiveness (AHR). Asthma patients, in particular those with chronic or severe asthma, have airway remodelling that is associated with the accumulation of extracellular matrix (ECM) proteins, such as collagens. Fibulin-1 (Fbln1) is an important ECM protein that stabilizes collagen and other ECM proteins. The level of Fbln1c, one of the four Fbln1 variants, which predominates in both humans and mice, is increased in the serum and airways fluids in asthma but its function is unclear. We show that the level of Fbln1c was increased in the lungs of mice with house dust mite (HDM)-induced chronic allergic airway disease (AAD). Genetic deletion of Fbln1c and therapeutic inhibition of Fbln1c in mice with chronic AAD reduced airway collagen deposition, and protected against AHR. Fbln1c-deficient (Fbln1c–/–) mice had reduced mucin (MUC) 5 AC levels, but not MUC5B levels, in the airways as compared with wild-type (WT) mice. Fbln1c interacted with fibronectin and periostin that was linked to collagen deposition around the small airways. Fbln1c–/– mice with AAD also had reduced numbers of α-smooth muscle actin-positive cells around the airways and reduced airway contractility as compared with WT mice. After HDM challenge, these mice also had fewer airway inflammatory cells, reduced interleukin (IL)-5, IL-13, IL-33, tumour necrosis factor (TNF) and CXCL1 levels in the lungs, and reduced IL-5, IL-33 and TNF levels in lung-draining lymph nodes. Therapeutic targeting of Fbln1c reduced the numbers of GATA3-positive Th2 cells in the lymph nodes and lungs after chronic HDM challenge. Treatment also reduced the secretion of IL-5 and IL-13 from co-cultured dendritic cells and T cells restimulated with HDM extract. Human epithelial cells cultured with Fbln1c peptide produced more CXCL1 mRNA than medium-treated controls. Our data show that Fbln1c may be a therapeutic target in chronic asthma. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd

    Airway eosinophils accumulate in the mediastinal lymph nodes but lack antigen-presenting potential for naive T cells

    Get PDF
    Asthma is characterized by infiltration of the airway wall with eosinophils. Although eosinophils are considered to be effector cells, recent studies have reported their ability to activate primed Th2 cells. In this study, we investigated whether eosinophils are capable of presenting Ag to unprimed T cells in draining lymph nodes (DLN) of the lung and compared this capacity with professional dendritic cells (DC). During development of eosinophilic airway inflammation in OVA-sensitized and challenged mice, CCR3(+) eosinophils accumulated in the DLN. To study their function, eosinophils were isolated from the bronchoalveolar lavage fluid of mice by sorting on CCR3(+)B220(-)CD3(-)CD11c(dim) low autofluorescent cells, avoiding contamination with other APCs, and were intratracheally injected into mice that previously received CFSE-labeled OVA TCR-transgenic T cells. Eosinophils did not induce divisions of T cells in the DLN, whereas DC induced on average 3.7 divisions in 45.7% of T cells. To circumvent the need for Ag processing or migration in vivo, eosinophils were pulsed with OVA peptide and were still not able to induce T cell priming in vitro, whereas DC induced vigorous proliferation. This lack of Ag-presenting ability was explained by the very weak expression of MHC class II on fresh eosinophils, despite expression of the costimulatory molecules CD80 and ICAM-1. This investigation does not support any role for airway eosinophils as APCs to naive T cells, despite their migration to the DLN at times of allergen exposure. DC are clearly superior in activating T cells in the DLN of the lung

    Immune modulatory effects of IL-22 on allergen-induced pulmonary inflammation

    Get PDF
    IL-22 is a Th17/Th22 cytokine that is increased in asthma. However, recent animal studies showed controversial findings in the effects of IL-22 in allergic asthma. To determine the role of IL-22 in ovalbumin-induced allergic inflammation we generated inducible lung-specific IL-22 transgenic mice. Transgenic IL-22 expression and signaling activity in the lung were determined. Ovalbumin (OVA)-induced pulmonary inflammation, immune responses, and airway hyperresponsiveness (AHR) were examined and compared between IL-22 transgenic mice and wild type controls. Following doxycycline (Dox) induction, IL-22 protein was readily detected in the large (CC10 promoter) and small (SPC promoter) airway epithelial cells. IL-22 signaling was evidenced by phosphorylated STAT3. After OVA sensitization and challenge, compared to wild type littermates, IL-22 transgenic mice showed decreased eosinophils in the bronchoalveolar lavage (BAL), and in lung tissue, decreased mucus metaplasia in the airways, and reduced AHR. Among the cytokines and chemokines examined, IL-13 levels were reduced in the BAL fluid as well as in lymphocytes from local draining lymph nodes of IL-22 transgenic mice. No effect was seen on the levels of serum total or OVA-specific IgE or IgG. These findings indicate that IL-22 has immune modulatory effects on pulmonary inflammatory responses in allergen-induced asthma

    Nonredundant role of CCRL2 in lung dendritic cell trafficking.

    Get PDF
    Chemokine CC motif receptor-like 2 (CCRL2) is a heptahelic transmembrane receptor that shows the highest degree of homology with CCR1, an inflammatory chemokine receptor. CCRL2 mRNA was rapidly (30 minutes) and transiently (2-4 hours) regulated during dendritic cell (DC) maturation. Protein expression paralleled RNA regulation. In vivo, CCRL2 was expressed by activated DC and macrophages, but not by eosinophils and T cells. CCRL2(-/-) mice showed normal recruitment of circulating DC into the lung, but a defective trafficking of antigen-loaded lung DC to mediastinal lymph nodes. This defect was associated to a reduction in lymph node cellularity and reduced priming of T helper cell 2 response. CCRL2(-/-) mice were protected in a model of ovalbumin-induced airway inflammation, with reduced leukocyte recruitment in the BAL (eosinophils and mononuclear cells) and reduced production of the T helper cell 2 cytokines, interleukin-4 and -5, and chemokines CCL11 and CCL17. The central role of CCRL2 deficiency in DC was supported by the fact that adoptive transfer of CCRL2(-/-) antigen-loaded DC in wild-type animals recapitulated the phenotype observed in knockout mice. These data show a nonredundant role of CCRL2 in lung DC trafficking and propose a role for this receptor in the control of excessive airway inflammatory responses. (Blood. 2010;116(16):2942-2949

    Approaches for the modulation of allergen-specific TH2 immunity

    Get PDF
    • …
    corecore