411 research outputs found

    Grinding and fine finishing of future automotive powertrain components

    Get PDF
    The automotive industry is undergoing a major transformation driven by regulations and a fast-paced electrification. A critical analysis of technological trends and associated requirements for major automotive powertrain components is carried out in close collaboration with industry – covering the perspectives of OEMs, suppliers, and machine builders. The main focus is to review the state of the art with regard to grinding, dressing, texturing and fine-finishing technologies. A survey of research papers and patents is accompanied by case studies that provide further insights into the production value chain. Finally, key industrial and research challenges are summarized

    Reliability Analysis of On-Demand High-Speed Machining

    Get PDF
    Current trends in high-speed machining aim to increase manufacturing efficiency by maximizing material removal rates and minimizing part cycle times. This project explores three related technologies and presents a system design for rapid production of custom machined parts. First a reliability analysis in high-speed machining of thin wall features is put forth with experimental results. Second an implementation of on-demand manufacturing is presented with emphasis on flexibility and automation. Finally innovative manufacturing cell design is used to drive costs down by optimizing material and information flow. The resulting high-speed on-demand machining cell design employs effective techniques to reduce production time, meet changing customer needs, and drive down costs

    Green Technologies for Production Processes

    Get PDF
    This book focuses on original research works about Green Technologies for Production Processes, including discrete production processes and process production processes, from various aspects that tackle product, process, and system issues in production. The aim is to report the state-of-the-art on relevant research topics and highlight the barriers, challenges, and opportunities we are facing. This book includes 22 research papers and involves energy-saving and waste reduction in production processes, design and manufacturing of green products, low carbon manufacturing and remanufacturing, management and policy for sustainable production, technologies of mitigating CO2 emissions, and other green technologies

    Proceedings of the 4th International Conference on Innovations in Automation and Mechatronics Engineering (ICIAME2018)

    Get PDF
    The Mechatronics Department (Accredited by National Board of Accreditation, New Delhi, India) of the G H Patel College of Engineering and Technology, Gujarat, India arranged the 4th International Conference on Innovations in Automation and Mechatronics Engineering 2018, (ICIAME 2018) on 2-3 February 2018. The papers presented during the conference were based on Automation, Optimization, Computer Aided Design and Manufacturing, Nanotechnology, Solar Energy etc and are featured in this book

    Theoretical and Experimental Investigations of a Permanent Magnet Excited Transverse Flux Machine with a Segmented Stator for In-Wheel Motor Applications

    Get PDF
    A three-phase transverse flux permanent magnet (PM) motor with flux concentrating (FC-) topology that has a segmented stator is studied in this dissertation. The phases of the stator have been placed around the rotational axis of the machine instead of placing them in a classical way over each other along the axial direction. Through this phase arrangement, the electrical and mechanical shifts between the phases are considered to ensure proper operation of the transverse flux machine (TFM) without the need of extra components such as a start-up capacitor or a special designed power supply. The segmented stator construction has required that the conventional ring coils to be replaced by a type of concentric winding that take a saddle shape enabling parallel magnetic circuits to take place. This has initiated studying the effect of the distances located between the phases on all over the performances of the machine. In order to select an initial construction for the stator, a preliminary assessment study of some conventional PM-TFMs having ring coils are carried out, through which they are re-designed as outer rotor motors and compared based on the level of electromagnetic torque and the inductance profile. As the main application of the design is to achieve a compact construction for an outer rotor, low noise and speed too for possible future in-wheel applications, the most interesting issue in this study is how to bring all the phases of the machine around the shaft in one layer without losing the torque productivity as when the phases are placed under each other in the conventional way. Therefore, the designed machine is set in further theoretical evaluation studies via finite element method (FEM) with the conventional layered TFM, and it shows that the TFM with segmented windings has a better torque density as its correspondence in the conventional layered structure. This result is in favor to the segmented structure, in particular, about 31% of the PMs number in the segmented structure (i.e., total number of PMs located between the phases) will not have an active role in the torque production. A detailed mathematical theory has been analytically developed and investigated to show the validity and limitation of the design. The study has incorporated how the segmentation of each phase and placement of the two parts opposite to each other can improve the mechanical balance of the TFM and hence quite rotation. The approach has been shown for two- and three-phase PM-TFMs. Moreover, illustration for applying the same principle of segmented stator to surface PM topology of TFMs is analytical verified and shown via FEM. Possible constructions with segmented stators are developed in a periodical table format to give the machine designer a shortcut for a possible construction with the selected number of magnets, number of segments per phase and the desired space between the phases. Since the noise is a well-known problem of TFMs, due to the ripple in the electromagnetic torque waveform and the natural magnetic normal forces, the normal and axial forces in PM-TFM with segmented stator have been investigated too, where introducing more segments per phase will reduce their effects. In order to validate the theoretical investigation, a low-scaled test machine is designed, constructed and a complete test bench has been built to experimentally test the machine. The experimental investigations have included generator and motor operation modes as well as measuring the ratings, performances of the machine and the starting methods. The test machine has reached via the conducted tests an average torque of about 2.1 Nm with an efficiency of 53% and it has a great development potential to be improved via shaping of stator poles, the room available for the windings, fill factor and more optimization possibilities. Based on the theoretical and experimental investigations, the operation of the segmented winding design of PM-TFM proves itself to work and to have a future for compact motors in industrial operation, or as in-wheel outer rotor motor for mobile platforms. For higher power applications, a machine with such type of stator should be designed with big diameters that will allow the utility of more PMs as well as more segments per phase, where both are involved in the torque production, i.e., more torque density for the segmented TFM

    Modelado y solución del problema del corte irregular : aplicación en la industria del cuero Colombiana

    Get PDF
    El problema del Irregular Two Dimensional Cutting Stock Problem (ITDCSP) está presente en diversas aplicaciones industriales que incluyen la confección, fabricación del calzado y la marroquinería. Debido a su naturaleza matemática NP completa, ha sido particularmente difícil de formular y resolver. Este Trabajo de Grado propone una Formulación Lineal Mixta base que sirve como base para emplear diversos procedimientos meta heurísticos para la búsqueda de soluciones cercanas al óptimo. Al respecto, se expone el uso de dos herramientas meta heurísticas, GRASP y Algoritmos Genéticos, para su solución. En estos casos se han encontrado soluciones de calidad aceptables en tiempos de ejecución razonable.The problem of Two Dimensional Irregular Cutting Stock Problem (ITDCSP) is present in various industrial applications including clothing, shoemaking and leather. Because NP complete mathematical nature, has been particularly difficult to formulate and solve. This work proposes a linear formulation Grade Mixed base that serves as the basis for meta heuristics use various procedures for finding near-optimal solutions. In this regard, we discuss the use of two tools meta heuristics, GRASP and Genetic Algorithms for settlement. In these cases, solutions have been found acceptable quality in reasonable runtimes.Magíster en Ingeniería IndustrialMaestrí

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics

    Get PDF
    This Open Access proceedings present a good overview of the current research landscape of industrial robots. The objective of MHI Colloquium is a successful networking at academic and management level. Thereby the colloquium is focussing on a high level academic exchange to distribute the obtained research results, determine synergetic effects and trends, connect the actors personally and in conclusion strengthen the research field as well as the MHI community. Additionally there is the possibility to become acquainted with the organizing institute. Primary audience are members of the scientific association for assembly, handling and industrial robots (WG MHI)

    Environmental Impact of Aviation and Sustainable Solutions

    Get PDF
    Environmental Impact of Aviation and Sustainable Solutions is a compilation of review and research articles in the broad field of aviation and the environment. Over three sections and thirteen chapters, this book covers topics such as aircraft design and materials, combustor modeling, atomization, airport pollution, sonic boom and street noise pollution, emission mitigation strategies, and environmentally friendly contributions from a Russian aviation pioneer. This volume is a useful reference for both researchers and students interested in learning about various aspects of aviation and the environmen
    • …
    corecore