35,271 research outputs found

    An update of the on-sky performance of the Layer-Oriented wave-front sensor for MAD

    Full text link
    The Multi-conjugate Adaptive optics Demonstrator, MAD, successfully demonstrated on sky the MCAO technique both in Layer Oriented and Star Oriented modes. As results of the Guaranteed Time Observations in Layer Oriented mode quality astronomy papers have been published. In this paper we concentrate on the instrumentation issues and technical aspects which stay behind this success.Comment: 12 pages, 10 figures, Proceedings of the SPIE conference "Adaptive Optics Systems II", 27 June 2010, San Diego, California, US

    Feature-Based Diversity Optimization for Problem Instance Classification

    Full text link
    Understanding the behaviour of heuristic search methods is a challenge. This even holds for simple local search methods such as 2-OPT for the Traveling Salesperson problem. In this paper, we present a general framework that is able to construct a diverse set of instances that are hard or easy for a given search heuristic. Such a diverse set is obtained by using an evolutionary algorithm for constructing hard or easy instances that are diverse with respect to different features of the underlying problem. Examining the constructed instance sets, we show that many combinations of two or three features give a good classification of the TSP instances in terms of whether they are hard to be solved by 2-OPT.Comment: 20 pages, 18 figure

    Micro-to-macro: astrodynamics at extremes of lengths-scale

    Get PDF
    This paper investigates astrodynamics at extremes of length-scale, ranging from swarms of future `smart dust' devices to the capture and utilisation of small near Earth asteroids. At the smallest length-scales families of orbits are found which balance the energy gain from solar radiation pressure with energy dissipation due to air drag. This results in long orbit lifetimes for high area-to-mass ratio `smart dust' devices. High area-to-mass hybrid spacecraft, using both solar sail and electric propulsion, are then considered to enable `pole-sitter' orbits providing a polar-stationary vantage point for Earth observation. These spacecraft are also considered to enable displaced geostationary orbits. Finally, the potential material resource available from captured near Earth asteroids is considered which can underpin future large-scale space engineering ventures. The use of such material for geo-engineering is investigated using a cloud of unprocessed dust in the vicinity of the Earth-Sun L1L_1 point to fractionally reduce solar insolation

    Improving elevation perception with a tool for image-guided head-related transfer function selection

    Get PDF
    This paper proposes an image-guided HRTF selection procedure that exploits the relation between features of the pinna shape and HRTF notches. Using a 2D image of a subject's pinna, the procedure selects from a database the HRTF set that best fits the anthropometry of that subject. The proposed procedure is designed to be quickly applied and easy to use for a user without previous knowledge on binaural audio technologies. The entire process is evaluated by means of an auditory model for sound localization in the mid-sagittal plane available from previous literature. Using virtual subjects from a HRTF database, a virtual experiment is implemented to assess the vertical localization performance of the database subjects when they are provided with HRTF sets selected by the proposed procedure. Results report a statistically significant improvement in predictions of localization performance for selected HRTFs compared to KEMAR HRTF which is a commercial standard in many binaural audio solutions; moreover, the proposed analysis provides useful indications to refine the perceptually-motivated metrics that guides the selection

    Nonperturbative Ambiguities and the Reality of Resurgent Transseries

    Full text link
    In a wide range of quantum theoretical settings -- from quantum mechanics to quantum field theory, from gauge theory to string theory -- singularities in the complex Borel plane, usually associated to instantons or renormalons, render perturbation theory ill-defined as they give rise to nonperturbative ambiguities. These ambiguities are associated to choices of an integration contour in the resummation of perturbation theory, along (singular) Stokes directions in the complex Borel plane (rendering perturbative expansions non-Borel summable along any Stokes line). More recently, it has been shown that the proper framework to address these issues is that of resurgent analysis and transseries. In this context, the cancelation of all nonperturbative ambiguities is shown to be a consequence of choosing the transseries median resummation as the appropriate family of unambiguous real solutions along the coupling-constant real axis. While the median resummation is easily implemented for one-parameter transseries, once one considers more general multi-parameter transseries the procedure becomes highly dependent upon properly understanding Stokes transitions in the complex Borel plane. In particular, all Stokes coefficients must now be known in order to explicitly implement multi-parameter median resummations. In the cases where quantum-theoretical physical observables are described by resurgent functions and transseries, the methods described herein show how one may cancel nonperturbative ambiguities, and define these observables nonperturbatively starting out from perturbation theory. Along the way, structural results concerning resurgent transseries are also obtained.Comment: 62 pages, 4 figures; v2: corrected typos, added small discussion on topological sectors, two new figure

    Data-Collection for the Sloan Digital Sky Survey: a Network-Flow Heuristic

    Full text link
    The goal of the Sloan Digital Sky Survey is ``to map in detail one-quarter of the entire sky, determining the positions and absolute brightnesses of more than 100 million celestial objects''. The survey will be performed by taking ``snapshots'' through a large telescope. Each snapshot can capture up to 600 objects from a small circle of the sky. This paper describes the design and implementation of the algorithm that is being used to determine the snapshots so as to minimize their number. The problem is NP-hard in general; the algorithm described is a heuristic, based on Lagriangian-relaxation and min-cost network flow. It gets within 5-15% of a naive lower bound, whereas using a ``uniform'' cover only gets within 25-35%.Comment: proceedings version appeared in ACM-SIAM Symposium on Discrete Algorithms (1998

    Consistency of compact and extended models of glucose-insulin homeostasis: The role of variable pancreatic reserve

    Get PDF
    Published compact and extended models of the glucose-insulin physiologic control system are compared, in order to understand why a specific functional form of the compact model proved to be necessary for a satisfactory representation of acute perturbation experiments such as the Intra Venous Glucose Tolerance Test (IVGTT). A spectrum of IVGTT’s of virtual subjects ranging from normal to IFG to IGT to frank T2DM were simulated using an extended model incorporating the population-of-controllers paradigm originally hypothesized by Grodsky, and proven to be able to capture a wide array of experimental results from heterogeneous perturbation procedures. The simulated IVGTT’s were then fitted with the Single-Delay Model (SDM), a compact model with only six free parameters, previously shown to be very effective in delivering precise estimates of insulin sensitivity and secretion during an IVGTT. Comparison of the generating, extended-model parameter values with the obtained compact model estimates shows that the functional form of the nonlinear insulin-secretion term, empirically found to be necessary for the compact model to satisfactorily fit clinical observations, captures the pancreatic reserve level of the simulated virtual patients. This result supports the validity of the compact model as a meaningful analysis tool for the clinical assessment of insulin sensitivity

    Solving the planar p-median problem by variable neighborhood and concentric searches

    Get PDF
    Two new approaches for the solution of the p-median problem in the plane are proposed. One is a Variable Neighborhood Search (VNS) and the other one is a concentric search. Both approaches are enhanced by a front-end procedure for finding good starting solutions and a decomposition heuristic acting as a post optimization procedure. Computational results confirm the effectiveness of the proposed algorithms

    Sensor Networks TDOA Self-Calibration: 2D Complexity Analysis and Solutions

    Full text link
    Given a network of receivers and transmitters, the process of determining their positions from measured pseudo-ranges is known as network self-calibration. In this paper we consider 2D networks with synchronized receivers but unsynchronized transmitters and the corresponding calibration techniques,known as TDOA techniques. Despite previous work, TDOA self-calibration is computationally challenging. Iterative algorithms are very sensitive to the initialization, causing convergence issues.In this paper, we present a novel approach, which gives an algebraic solution to three previously unsolved scenarios. Our solvers can lead to a position error <1.2% and are robust to noise
    • 

    corecore