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Abstract

Published compact and extended models of the glucose-insulin physiologic control system

are compared, in order to understand why a specific functional form of the compact model

proved to be necessary for a satisfactory representation of acute perturbation experiments

such as the Intra Venous Glucose Tolerance Test (IVGTT). A spectrum of IVGTT’s of

virtual subjects ranging from normal to IFG to IGT to frank T2DM were simulated using an

extended model incorporating the population-of-controllers paradigm originally hypothe-

sized by Grodsky, and proven to be able to capture a wide array of experimental results

from heterogeneous perturbation procedures. The simulated IVGTT’s were then fitted with

the Single-Delay Model (SDM), a compact model with only six free parameters, previously

shown to be very effective in delivering precise estimates of insulin sensitivity and secretion

during an IVGTT. Comparison of the generating, extended-model parameter values with the

obtained compact model estimates shows that the functional form of the nonlinear insulin-

secretion term, empirically found to be necessary for the compact model to satisfactorily fit

clinical observations, captures the pancreatic reserve level of the simulated virtual patients.

This result supports the validity of the compact model as a meaningful analysis tool for the

clinical assessment of insulin sensitivity.

Introduction

Mathematical models for representing and simulating insulin/glucose metabolism, both in

normal conditions and under perturbation tests, have been developed and used since the

1960’s [1]. Their importance resides in the possibility to better understand the pathophysiology

and development of Type 2 Diabetes Mellitus (T2DM) and of its pre-conditions, such as

Impaired Glucose Tolerance (IGT) or Impaired Fasting Glucose (IFG). More extended models

are also used to simulate virtual patients in order to test control algorithms, (i.e. [2–6] and ref-

erences within) in situations where experimental procedures are very expensive or cannot be
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performed for ethical or practical reasons. Models can be more or less complex according to

how many sub-components of the entire metabolic system are simulated (glucagon, adrenalin,

Free Fatty Acids, etc.) and according to the level at which the relevant physiology is modelled

(e.g. whole-body or cellular). Comprehensive models of the glucose-insulin system [7, 8] allow

to simulate healthy subjects and T2DM patients for clinical research purposes, e.g. for testing

control algorithms in silico.

Two test procedures in general use for the estimation of insulin sensitivity are the Intra-

Venous Glucose Tolerance Test (IVGTT), which needs to be analyzed by means of a suitable

mathematical model [9–11]; and the Euglycemic Hyperinsulinemic Clamp (EHC) [12], con-

sidered the ‘gold standard’ for the assessment of insulin resistance, which yields a measure of

insulin sensitivity by direct averaging of the final glucose infusion rate. The standard IVGTT is

simpler to perform than the EHC, has no significant associated risks and, if appropriately

modelled, provides important information about the negative feedback regulation of glucose

and insulin in a specific subject. Efforts have been made therefore to develop better models for

the interpretation of the IVGTT experimental data set, exhibiting behaviour compatible with

physiology (for example bounded and positive solutions of the model, as for example glucose

predictions that never go to infinity or assume negative values) [13] and providing stable

(assuming similar magnitude among different subjects), precise estimates of the structural

model parameters [10]. Minimal models (minimal in the number of equations and in the

number of parameters to be estimated) have therefore been developed to estimate the insulin

sensitivity of a specific subject from a relatively non-invasive test procedure such the IVGTT.

The so-called “Minimal Model” (MM) [9], which is still the most widely used compact model

in the clinical setting, was demonstrated [11, 13] to suffer from a number of drawbacks,

among which poor parameter estimation, with very large parameter coefficients of variation,

translating into overall non-identifiability of the model parameters, including in particular the

SI index of insulin sensitivity. Moreover, the estimation procedure typically used, decoupling

the feedback and estimating separately the two glucose-insulin control arms, provides mislead-

ing results as is discussed in greater detail elsewhere [10]. An alternative model of the compact

model class, previously published by the present authors [10] and referred to as the Single

Delay Model (SDM), was demonstrated to have mathematically consistent solutions, admit-

ting the fasting state as its single equilibrium point and converging back to it from the per-

turbed state. This model was simultaneously fitted to glucose and insulin IVGTT observations

on a heterogeneous population composed of lean, overweight, obese and morbidily obese sub-

jects and was proven to outperform the MM over the whole range of conditions considered

[11]. An extension of the SDM was subsequently proposed [14], where in order to model the

fate of per os glucose, a gastrointestinal tract model was added to the plasma insulin and glu-

cose dynamic equations and the glucose rate of appearance was derived by describing the

absorption of glucose along a sequence of three gut compartments.

With the aim of interpreting a wide range of heterogeneous experimental results related to

pancreatic insulin secretion, an islet population model was proposed in 2010 [15], incorporat-

ing the original idea of Grodsky of a population of independent controllers, coupled only by

circulating glucose levels [16]. This model explains the effect of the islet response to varying

glucose concentrations by means of a simple second-order nonlinear model, of the same func-

tional form for all islets, with a random distribution of parameter values over the large number

of islets considered. The population of pancreatic β-cells, collected into Langerhans islets, can

be viewed therefore as a set of independent, similar, but not identical controllers (firing units)

with distributed functional parameters. The islet equations are coupled to a metabolism sub-

model to complete the description of the feed-back control of the glucose/insulin system

dynamics. This islet population model was shown to reproduce very closely a wide array of
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actually observed, diverse in vivo and in vitro experiments, including the pioneering work of

Grodsky, with the same set of working parameters [17]. While the model does not include any

dependency on the rate of change of glycemia, it is able to reproduce accurately the double

phase of insulin release during a prolonged glucose stimulus: a first phase of impulsive insulin

release, immediately upon glucose administration, and a second phase of more gradual release,

also linked with the potentiation effect of persistent hyperglycemia on the secretory units.

During the course of the development of the SDM in 2007 it was appreciated that, while the

inclusion of some model components was irrelevant to the quality of data fitting (e.g. the inclu-

sion of “glucose effectiveness” or an esplicit representation of the delay of insulin action on

glucose), other elements, such as the delay τ and the exponent γ, were indispensable, and

neglecting them led to the inability of the model to adequately fit the observations. Parameter

τ represents the delay with which the pancreas changes secondary insulin release in response

to varying glycemia, while the exponent γ represents the rapidity with which the insulin secre-

tion rate reaches its maximum value with increasing glycemia. It was proven in [10] that both

the delay τ and the exponent γ included into a nonlinear sigmoidal function were indeed nec-

essary to interpret data.

Now, a few years after the publication of the SDM model, a comprehensive model for insu-

lin secretion exists [15, 17], which is in fact able to explain mechanistically why a host of mor-

phologically diverse insulin secretion responses to glycemic perturbations occur. We can

therefore go back and attempt to understand why the nonlinearity γ was so essential in the

representation of insulin secretion within the compact SDM model: this is the aim of the pres-

ent work.

The reason why the islet population model is used as a comparison model is that it mirrors

the actual anatomic structure of the endocrine pancreas and, at the same time, is able to con-

vincingly reproduce observed insulin secretion patterns after many different types of glycemic

perturbations.

Starting from the extended and validated model [17], the following procedure is imple-

mented: a) a sample of IVGTT data sets is generated from the extended model portraying a

group of virtual patients with a range of insulin sensitivities; b) the generated IVGTTs are fitted

with the SDM compact model; c) a comparison is made between the set of generating extended

model parameter values and the set of estimated compact-model parameter values to clarify

their relationships.

Methods

Compact Model

The delay model used in the present work, henceforth Compact Model (see Fig 1), has been

shown to be able to represent well the glucose and insulin concentrations observed during an

Intra-Venous Glucose Tolerance Test (IVGTT) [10]. Using this model it is possible to estimate

the insulin sensitivity of a patient by fitting the patient’s IVGTT data, and this estimation is

precise, reproducible and robust [11]. This model has been shown to admit mathematically

consistent solutions with physiologically plausible parameter values [18].

Let G(t) and I(t) be, respectively, the plasma glucose concentration [mM] and the serum

insulin concentration [pM], while their distribution volumes are indicated, respectively, as VG

[L/kgBW] and VI [L/kgBW]. The differential equation representing variation of plasma glu-

cose concentration is:

dGðtÞ
dt
¼ � kXGIIðtÞGðtÞ þ

Tgh

VG
; ð1Þ
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with initial conditions:

GðtÞ ¼ Gb 8t 2 ð� 1; 0Þ; Gð0Þ ¼ Gb þ GD;

where GD ¼
Dg
VG
:

ð2Þ

The glucose basal concentration Gb [mM] is the glycemia level before the bolus injection,

while GΔ [mM] represents glycemia increase following the bolus. Dg [mmol/kgBW] is the

intravenous dose of glucose administered at time 0 during an IVGTT experiment. The equa-

tion representing the dynamics of plasma insulin concentration I [pM] is the following:

dIðtÞ
dt
¼ � kXIIðtÞ þ

Tmax
ig

VI

Gðt� tg Þ
G�

� �g

1þ
Gðt� tg Þ

G�

� �g ; ð3Þ

with initial condition:

Ið0Þ ¼ Ib þ IDGGD; ð4Þ

The novelty this model introduced is in the second term of (3), representing second-phase

insulin delivery from the β-cells. Its functional form is consistent with the hypothesis that insu-

lin production is limited, reaching a maximal rate of release Tmax
ig =VI by way of a Michaelis-

Menten or a sigmoidal Hill dynamics according to whether the γ value is 1 or greater than 1

respectively. The constant values Tgh and Tmax
ig can be directly computed from the steady state

conditions of Eqs (1) and (3) respectively. See the original references for more details [10, 11].

Fig 1. Schematic representation of the Compact Model. Glucose Plasma concentrations arise following an IntraVenous Glucose Dose. Input to

plasma Glucose compartment comes also from the liver which produces glucose by means of gluconeogenesis and glycogenolysis processes, while

elimination occurs by an independent (first order elimination rate) and dependent-insulin mechanism (second order tissue uptake). High plasma

glucose concentrations enhance insulin release in plasma, while insulin is cleared with a first order elimination rate.

https://doi.org/10.1371/journal.pone.0211331.g001
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Extended Model

The mathematical model of the glucose-insulin system presented in [17], henceforth Extended
Model, has been the first model of whole-body insulin secretion to provide a unified explana-

tion of an array of diverse clinical experimental procedures. In fact, the model is able to repro-

duce, with the same set of (meta)parameters: the low-frequency ultradian oscillations

appreciable in the insulinemic signal when a constant enteral feeding is administered to a

patient [19]; the entrainment of insulinemia to glycemia when a patient undergoes different

Intra-Venous (I.V.) glucose administration patterns with different frequencies [20]; high-fre-

quency insulinemia oscillations triggered by I.V. administration of very small amounts of glu-

cose [21]; reproduction of the glycemia and two-stage-insulinemia (first and second phase)

curves, upon simulated I.V. glucose administration during an IVGTT experiment. In this latter

case, moreover, the model is able to mimic the clinically observable glycemia and insulinemia

curves both for Normal Glucose Regulation (NGR) and for different pre-morbid and morbid

conditions, such as Impaired Fasting Glycemia (IFG), Impaired Glucose Tolerance (IGT),

IFG+IGT and Type 2 Diabetes Mellitus (T2DM).

While this model is extensively discussed elsewhere [17], we briefly summarize its features

in the following.

The basic paradigm of this model (see Fig 2) is that in the pancreas a multitude of similar,

but not identical, independent controllers react to the sensed plasma glucose, which acts as the

single “coupling” signal. While the qualitative behavior of the firing units is the same, each unit

reacts differently to glycemia, and these heterogeneous performances yield the characteristic

insulin responses to different stimuli. Note that the physiological identification of the firing

unit could be the β-cells scattered in the pancreatic Langerhans islet, or, by choosing a different

level of model granularity, subcellular granules, or, conversely, collections of synchronized β-

cells within the islets of Langerhans (for more details, see [17]).

Fig 2. Schematic representation of the Extended Model. The pancreas secretory units (circles) release at different times their packet of insulin Jn(t)
(depending, for the n-th controller, on the threshold Bn(t) and on the potentiation level Dn(t)) in such a way that at any given time a total quantity J(t)
(sum of the amounts Jn(t)) of insulin flows into the portal vein (Q1 compartment), then to the liver (Qi+1. . .QL compartments) and finally reaching the

plasma (compartment I), stimulating the uptake of glucose by tissues. Glycemia (G compartment), which is raised by glucose hepatic production k3,

stimulates the production of insulin, closing the loop.

https://doi.org/10.1371/journal.pone.0211331.g002
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A firing unit (unit n) releases at time t� its stored packet of insulin Jn(t�) [pmol/kgBW]

whenever circulating glycemia exceeds the current threshold value Bn(t�) [mM], thereupon

entering a (relative) refractory state, where further stimulation fails to elicit the release of new

hormone (the time-course of the threshold function Bn(t) is in general different for each unit

n); the refractory state of unit n is represented in the model by instantaneously increasing the

glycemia threshold of that unit to a high level Rn [mM] whence, over time, it exponentially

decreases towards its resting threshold value Gn [mM], Gn< Rn. As soon as the controller

fires, its threshold abruptly increases its value and the controller enters a refractory state. From

this moment onwards, the threshold value decreases exponentially. When the threshold Bn
reaches again values comparable with the current glycemia, the unit n is ready to release a new

packet again. The size of the packet of insulin itself depends on prevailing glycemias: in fact,

the well-known phenomenon of potentiation occurs, that is the ability of the pancreas to

respond with progressively increasing insulin amounts to identical glucose stimuli, when these

are repeated in close proximity over time [16, 22, 23]. The variation in size of the packet of

insulin (subject to potentiation) for each firing unit is described by the equation for Dn(t)
[pmol/kgBW] [17].

Each different firing unit n is then characterized by the same triple of equations (Bn(t),
Dn(t), Jn(t)), with different parameter values. As described in depth elsewhere [17], their values

are randomly sampled from given (usually lognormal) distributions.

The differential equation associated to Bn is:

dBnðtÞ
dt
¼ � anBnðtÞ þ anGn þ ðRn � BnðtÞÞd w fGðtÞ < BnðtÞgð Þð Þ; ð5Þ

where αn [min−1] is the rate of recovery of sensitivity of the secretory unit, G(t) [mM] is the

external glycemia sensed by all the secretory units (that is the glucose plasma concentration),

and δ(�) is a Dirac delta term specifying instantaneous increase of the threshold to the refrac-

tory level Rn, associated with discharge of insulin, at any time the glucose stimulus G(t) exceeds

the controller threshold Bn; χ is the characteristic function of its argument set.

The parameter Gn is the only one that is not extracted from a lognormal distribution, but

instead from a distribution with the following density (see for more details [17]):

f ðgÞ ¼ ngn
1=2

gn� 1

gn þ gn1=2

� �2
; ð6Þ

depending on the two parameters g1/2 [mM] and ν [#].

The Insulin Secretion Rate (ISR) is defined as:

ISRðtÞ ¼
XN

n¼1

JnðtÞdðwðfGðtÞ < BnðtÞgÞÞ; ð7Þ

where N is the total number of firing units. Basically, Eq (7) states that the ISR at time t is given

by the sum of the insulin packets fired by the units whose threshold Bn(t) is smaller than or

equal to the current glycemia G(t). Insulin then flows to the portal vein and the liver according

to:

dQðtÞ
dt
¼ � hxQðtÞ þ ISRðtÞ ð8Þ

where Q [pmol/kgBW] refers to the insulin amount in the portal vein/liver compartment.

Then, insulin mass Q enters the plasma insulin distribution space according to the following
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equation:

dIðtÞ
dt
¼ � k4IðtÞ þ

hdQðtÞ
VI

; ð9Þ

where I(t) [pM] is the serum insulin concentration. Finally, glucose plasma concentration is

described by:

dGðtÞ
dt
¼ � k1~uðGðtÞÞ � k2IðtÞGðtÞ þ

k3ðtÞ
VG

: ð10Þ

where:

1. the first term in (10) describes approximately the (supra-threshold) driving glycemia for

urinary glucose elimination:

~uðGÞ ¼
0; G < Gu;

G � Gu; G � Gu:

(

ð11Þ

with k1 [/min] the apparent insulin-independent renal elimination rate for glucose, occur-

ring at glycemias greater than the threshold Gu [mM];

2. the second term is the insulin-dependent glucose uptake, with k2 [/min/pM] being the rate

of glucose uptake by tissues per pM of serum insulin concentration;

3. the third term k3(t) [mmol/kgBW/min] refers to the net balance between hepatic glucose

output and insulin-independent zero-order glucose tissue uptake (essentially by the brain),

with VG [L/kgBW] the apparent distribution volume for glucose.

In order to account for the noisy time-course of the last term k3, a stochastic model has

been employed:

k3ðtÞ ¼ �k3 þ ~sðxðtÞÞ; ð12Þ

where �k3 [mmol/kgBW/min] is a central value for k3(t) and ξ(t) [mmol/kgBW/min] is a sto-

chastic process. For further details, see [17].

Modifications of the two models

In the present work, we use the fact that the Compact Model [10] is able to fit IVGTT data of a

virtual patient generated by the extended model [17]. In a previous work [24] we obtained very

good fits of the Compact Model on the Extended Model using directly parameters reported in

[17] for generating virtual patients with profiles ranging from NGR to T2DM; nevertheless,

we introduce here some modifications of the Extended Model in order to better reproduce

observed IVGTTs from a larger sample of clinical tests.

In particular, since both the Extended and the Compact Model do not present any term of

insulin-independent glucose elimination, we modified the glycemia Eqs (1) and (10) respec-

tively as:

dGðtÞ
dt
¼ � kXGIIðtÞGðtÞ þ

Tgh

Vg
� kXGGðtÞ ð13Þ
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and

dGðtÞ
dt
¼ � k1~uðGðtÞÞ � k2IðtÞGðtÞ þ

k3ðtÞ
VG
� kXGGðtÞ; ð14Þ

Consequently from (13), the new value for Tgh is computed at the equilibrium as:

Tgh ¼ ðkXGIIbGb þ kXGGbÞVG: ð15Þ

It is to be noted that the Compact Model does not include the glycosuria term, which is instead

present in the Extended Model—see Eq (10).

Virtual patient fitting

Before producing virtual patients with the Extended Model, some fine tuning of the model

parameters was thought to be advisable in order to better match glycemia and insulinemia

trends of Normal Glucose Regulation (NGR) patients undergoing an Intra-Venous Glucose

Tolerance Test (IVGTT), as reported in the literature (original data which served to set the

best parameters values derived from Panunzi et al. [10], from which only the subsample of

lean subjects was considered). A few modifications in the parameter/metaparameter values of

the Extended Model have therefore been carried out, as reported in Table 1: as it may be

noticed, the glucose net balance mean value (�k3) has been halved, while the mean value of the

rate of recovery of sensitivity of the secretory unit (αn) has been decreased, obtaining a slower

insulin dynamics. Moreover, the renal glucose elimination threshold Gu has been increased

according to the literature. In Fig 3 are reported as thin black lines the 5th and 95th percentile

of the data analyzed in [10], while the median of 100 virtual NGR patients generated by the

Extended Model with the new parameter values reported in Table 1 is shown as a thick red

line. This trend is coherent with NGR glycemia and insulinemia curves observed during

IVGTTs as reported in the literature [25–27].

With this new set of (meta-)parameters, virtual patients exhibiting different degrees of dis-

ease (ranging from a Normal Glucose Regulation (NGR) patient to a Type-2 Diabetes Mellitus

(T2DM) patient) were generated by modifying parameters as reported in Table 2. In the same

way as previously done [17], we obtained virtual T2DM patients by lowering peripheral insu-

lin-sensitivity (parameter k2), increasing liver glucose production �k3 (reflecting lower hepatic

insulin sensitivity), by lowering the size of the insulin packets (parameters μ(ρn) and mð�DnÞ),

and by lowering firing thresholds (whose distribution depends on the parameter g1/2). The

resulting pancreatic behavior still shows a higher insulin production given by the higher num-

ber of recruited firing units (due to lower firing thresholds), in the effort to compensate the

lower insulin sensitivity and under the hypothesis that these T2DM patients are still able to

compensate. However, the ability of these subjects to further increase their pancreatic insulin

secretion responding to higher glycemias is severely limited.

Table 1. Changed parameter values of the Extended Model with respect to [17].

Symbol Units Mean Std. deviation Value

αn min−1 7.5 × 10−2 0.12 –

�k3
mmol/kgBW/min – – 5 × 10−3

Gu mM – – 11

kXG min−1 – – 3 × 10−3

https://doi.org/10.1371/journal.pone.0211331.t001
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We generated IVGTT glycemia and insulinemia curves for a total of 500 virtual patients,

divided into 25 degrees of morbidity, ranging from “pure” NGR to “pure” T2DM condition in

25 uniform steps (see Table 3); this choice is a good tradeoff between the computational time

required to generate all the cohort and the value necessary to have an “average” patient for

Fig 3. Median of 100 virtual NGR patients generated by the Extended Model (red curves). The black curves

represent the 5th and 95th percentile of the data analyzed in [10].

https://doi.org/10.1371/journal.pone.0211331.g003

Table 2. Compact Model parameter estimates for a NGR, pre-diabetic and T2DM virtual patient (see Figs 4, 5 and

6).

Par. NGR Pre-diabetic T2DM

IΔ 49.8 38.592 31.03

τg 19.65 18.85 20.275

kXGI 1.19 × 10−4 7.04 × 10−5 3.66 × 10−5

kXI 7 × 10−2 7.4 × 10−2 5.5 × 10−2

γ 3.6473 5.2394 6.687

https://doi.org/10.1371/journal.pone.0211331.t002

Table 3. Parameters varying values for T2DM patient undergone an IVGTT.

Par. NGR T2DM

k2 1.4 × 10−4 0.1 × 10−4

�k3
0.005 0.005 × 1.6

μ(ρn) 6.5 × 10−3 6.5 × 10−3 � 0.05

mð�DnÞ 3 × 10−3 3 × 10−3 � 0.3

g1/2 9.7697 4

https://doi.org/10.1371/journal.pone.0211331.t003
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each class. For each degree of morbidity, 20 virtual patients were generated exhibiting some-

what different behavior due to the stochasticity intrinsic in the Extended Model (given by the

randomly generated structural parameters). Glycemia and insulinemia curves of T2DM

patients undergoing IVGTTs as reported in the literature [27–29] are comparable to the ones

generated by the Extended Model.

Observation data were then extracted for each virtual patient from the glycemia and insuli-

nemia curves at times −10, −5, −0.5, 2, 4, 6, 8, 10, 15, 20, 25, 30, 40, 50, 60, 90, 120 min. The

“observations” were finally fitted with the Compact Model, estimating the following vector of

parameters θ:

θ ¼ ID tg kXGI kXI g
� �T

: ð16Þ

Since the simulated glucose bolus has been set in such a way to produce a sudden glycemia

increment of 10 mM for every patient, GΔ in Eq (2) was fixed to 10 mM as well. The glucose

distribution volume VG was set to 0.2 L/kgBW and kept fixed during the generation of all vir-

tual patients.

The fit for each virtual patient was performed by solving a constrained optimization prob-

lem (lower and upper bounds were considered) using a Nelder-Mead algorithm minimizing

the following loss function λ:

l ¼
Gi � Ĝi

Ĝi

 !2

þ
Ii � Î i
Î i

 !2

; ð17Þ

where Gi and Ii are observed glycemia and insulinemia at time t = i, whereas Ĝi and Î i are the

corresponding estimated glycemia and insulinemia. This function was adopted in order to

consider at the same time both glycemia and insulinemia data, using a normalization factor.

Results

Virtual NGR patients were generated by using the same model parameter values employed for

producing curves reported in Fig 3. Fig 4 reports the result of the fitting procedure on data

extracted from a virtual NGR patient, while Figs 5 and 6 report the fitting performance for a

virtual pre-diabetic patient and for a virtual T2DM patient respectively; Table 2 reports the

Compact Model estimated parameters compared with the generating Extended Model param-

eter values.

Since the insulin-sensitivity parameter is present in both models (kXGI for the Compact

Model and k2 for the Extended Model), we reported in the same plot (Fig 7) the relation

between the generating k2 parameter values and the corresponding estimated kXGI values: as it

is clear from the figure, the cloud of points lies mostly along the line kXGI = k2, showing that

the Compact Model [10] and the Extended Model are very consistent in particular for what

concerns insulin sensitivity.

Fig 8 reports the same relationship when renal glucose output was added to the Compact

Model. In this case the points lie wholly on the identity line.

Fig 9 shows the relationship between generating average HGO from the Extended Model

(�k3) and the corresponding Tgh parameter from the Compact Model. As can be seen there is a

systematic underestimation of net HGO by the Compact Model.

In Fig 10 we report in the same plot (estimated net HGO Tgh against the generating net

HGO �k3) when the Compact Model includes the glycosuria term. In Fig 10 we notice that the

cloud of points lies around the line Tgh ¼
�k3: it is clear that the underestimation by the original

version of the Compact Model depends on having neglected glycosuria.

Consistency of compact and extended models of glucose-insulin homeostasis
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We recall that the relationship between circulating glycemia and insulin secretion for each

virtual patient depends on the threshold distribution of the parameters Gn (see Eq (5)), ran-

domly extracted from the distribution f(g) in Eq (6). The shape of this function depends on the

pathophysiological condition of the virtual patient and therefore on the value of its g1/2 param-

eter (see Table 3).

We now define z 2 [0, 1] [#] to be a coefficient of pancreatic reserve, representing, for each

given subject, the fraction of total firing units able to react to an abrupt raising in glycemia

above the baseline. It can be computed as:

z ¼ 1 �

Z Gb

0

f ðgÞdg ¼ 1 �
Gn

b

Gn
b þ gn1=2

¼
gn

1=2

Gn
b þ gn1=2

; ð18Þ

where Gb [mM] is the basal glycemia of the patient (before the injection of the glucose bolus),

ν = 2.5137 [#] (see [17]) is constant for all patients and g1/2 [mM] varies, passing from NGR to

T2DM, according to Table 3.

Fig 11 shows the relationship between pancreatic reserve z and estimated parameter γ from

Eq (3), for each simulated subject. The virtual patients portrayed in the figure are identified with

Fig 4. Observations extracted from a virtual NGR patient undergone an IVGTT (red dots). The black line represents the

Compact Model fitting.

https://doi.org/10.1371/journal.pone.0211331.g004

Consistency of compact and extended models of glucose-insulin homeostasis

PLOS ONE | https://doi.org/10.1371/journal.pone.0211331 February 15, 2019 11 / 22

https://doi.org/10.1371/journal.pone.0211331.g004
https://doi.org/10.1371/journal.pone.0211331


a different colored marker depending on their estimated insulin sensitivity k̂XGI [min−1pM−1]:

healthy (k̂XGI � 1� 10� 4, blue square), pre-diabetic (0:5� 10� 4 � k̂XGI < 1� 10� 4, red trian-

gle) and diabetic (k̂XGI < 0:5� 10� 4, black dot). In this figure, healthy and pre-diabetic patients

cluster into two tight distinct sets; diabetic patients are scattered over a different, widely diffused

set. The three sets present a clear differentiation based on the value of the pancreatic reserve z:
healthy subjects exhibit a high pancreatic reserve ranging from 0.7 to 0.9, pre-diabetic patients

are characterized by a lower reserve value ranging from 0.4 to 0.8 and diabetic subjects present

with a very low index of pancreatic reserve, below 0.4. NGR and pre-diabetic patients exhibit

estimated values of γ which lie in the neighborhood of a falling parabola on the plane z-γ,
reported in Fig 11 as a blue curve, their γ increasing as the pancreatic reserve z decreases. The

diabetic patients, instead, although having low values of z, exhibit widely different estimated val-

ues for γ. The behavior of the z-γ relationship for normal and prediabetic subjects is clear. In the

case of diabetic patients, the actual pancreatic reserve is so low, and the maximal possible

increase in insulin secretion is so small, that the γ parameter from the Compact Model is diffi-

cult to identify precisely, with the corresponding worsening of the scatter of the estimates as z
goes to lower and lower values.

Fig 12 shows, for the 500 virtual patients, the relationship between the estimated γ and the

value of Tmax
ig for the Compact Model, representing the maximum reachable Insulin Secretion

Fig 5. Observations extracted from a virtual prediabetic patient undergone an IVGTT (red dots). The black line

represents the Compact Model fitting.

https://doi.org/10.1371/journal.pone.0211331.g005
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Rate. The value Tmax
ig has been computed as follows:

Tmax
ig ¼ K̂ xiIbVi

1þ
Gb
G�

� �g

Gb
G�

� �g ; ð19Þ

where K̂ xi [min−1] is the estimated constant disappearance rate for insulin, Ib is the basal insuli-

nemia of the patient, VI = 0.25 [L�kgBW−1] is the constant distribution volume for the virtual

patient (from the Extended Model) and G� = 9 [mM] is the glycemia at which the insulin secre-

tion rate is half of its maximum and is fixed for all patients. Both VI and G� values are the same

as in [10].

Also for Fig 11, when plotting Tmax
ig against γ, the subjects cluster again in three well defined

groups: NGR patients (blue squares) exhibiting low values of γ, present a Tmax
ig which is typi-

cally below 4 pmol/min/kgBW; pre-diabetic patients (red triangles) exhibit higher values of γ
and higher Tmax

ig ; diabetic patients (black dots), showing values of γ in a wide range (due to the

above-mentioned difficulty of precisely estimating γ when increments of insulin secretion are

limited), present a Tmax
ig above 3 [pmol/min/kgBW]. This pattern is consistent with the modest

needs for increased insulin secretion in healthy, insulin-sensitive subjects, in whom, on the

other hand, no ceiling for insulin secretion is readily apparent, hence the low nonlinearity

coefficient γ, and vice versa for insulin-resistant subjects.

Fig 13 reports the dependency of Tmax
ig on z for each patient. We may observe the same clear

separation among the three different classes of patients apparent in the other plots.

Fig 6. Observations extracted from a virtual T2DM patient undergone an IVGTT (red dots). The black line

represents the Compact Model fitting.

https://doi.org/10.1371/journal.pone.0211331.g006
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It can be seen that NGR patients exhibit a high value of pancreatic reserve z and low values

of Tmax
ig , since they do not need high insulin production due to their good insulin sensitivity;

conversely, pre-diabetic and diabetic patients, with a lower pancreatic reserve, have a higher

Tmax
ig , since they need to compensate their lower insulin-sensitivity.

Discussion

In the past 50-60 years many attempts at mathematical modelling of different aspects of the

glucose-insulin system have been made. Some contributions concentrated more on the insulin

secretion mechanisms [15, 16, 30], others more with short-term modelling of perturbation

experiments [9, 10, 13, 14, 31], and some publications describe more complex models, from

multi-organ models [8, 32] to maximal models for in-silico Type 1 diabetes virtual patient sim-

ulation [33–37].

Our group has been active in this area for many years. We have addressed in particular total

body or organ-level integrated mechanisms, modelling both short-term experiments [10, 11,

13, 14, 18], pancreatic insulin release mechanisms based on firing units [15, 17, 24], long term

compensation and disease development [38], incretin effect [39].

Fig 7. Dependence of estimated insulin sensitivity kXGI (Compact Model) from generating insulin sensitivity k2

(Extended Model). Each dot represents a single virtual patient, while the line is the bisector kXGI = k2. Coefficient of

correlation and its associated P-value: r = 0.97 (P< 0.001).

https://doi.org/10.1371/journal.pone.0211331.g007
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Our overall goal is to eventually obtain a coherent suite of models addressing different rele-

vant clinical issues (e.g. IVGTT and OGTT for insulin sensitivity determination, or dynamics

of insulin secretion), suitable for integration into an overall scheme. These models should be

individually effective in dealing with the specific dynamics they approximate, should exhibit

appropriate qualitative behavior from a mathematical viewpoint, should have desirable statisti-

cal properties leading to a-posteriori parameter identifiability and should also be consistent

with one another, shedding light on the actual mechanisms involved in glucose homeostasis.

In particular, the clinical use of a compact, identifiable model should be justified by our

confidence that it does capture the basic relevant physiology, if not all possible features of

interest. In the present work we are trying to establish the relationship between an extended,

validated model (which by its very size cannot be fruitfully employed for the analysis of limited

experimental data e.g. from an IVGTT) and a Compact Model of proven effectiveness in esti-

mating insulin sensitivity from small datasets. By generating virtual patients from the

Extended Model and fitting them with the Compact Model we are able to link variations in the

(simulated) physiology with diagnostic parameter value changes.

Some modifications of the Extended Model parameter values (with respect to previously

published values [17]) were found to be necessary in order for simulated IVGTT curves to lie

Fig 8. Dependence of estimated insulin sensitivity kXGI (Compact Model, with glycosuria term) from generating

insulin sensitivity k2 (Extended Model). Each dot represents a single virtual patient, while the line is the bisector

kXGI = k2. Coefficient of correlation and its associated P-value: r = 0.98 (P< 0.001).

https://doi.org/10.1371/journal.pone.0211331.g008
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squarely within 90% confidence bounds obtained from sets of clinically recorded IVGTT’s

from NGR subjects. These minor changes in the parameter values, however, did not affect the

reproducibility of the diverse patterns generated from the whole array of experimental proce-

dures, such as the slow (ultradian) [19] and fast oscillations [21], and the entrainment phe-

nomenon due to sinusoidal glucose infusions [40], which were all re-checked with the

modified parameter set.

Moreover, in order to align the two models, an insulin-independent glucose elimination

term was introduced in the glycemia equation of the Extended Model. The insulin secretion

formalization remains, of course, radically different between the complex Extended and the

simple Compact Models.

Data of 19 patients from previous clinical studies [11] were used to build 90% confidence

envelopes of the observed glycemia and insulinemia time courses.

Fig 3 shows that for the set of chosen parameters the median of 100 virtual NGR patients

undergoing an IVGTT experiment lies within the 90% envelopes from real observations

highlighting the ability of the Extended Model to reproduce well real IVGTT data.

Starting from the NGR parameter values, progressive degrees of clinical worsening (up to

T2DM) were simulated by changing some model parameters, such as insulin sensitivity (k2),

average net hepatic glucose production (�k3), and other parameters related to the mechanisms

of insulin production (average ρn, average �Dn, and g1/2).

The Compact Model was then fitted onto the IVGTT data generated with the Extended

Model, and some of the Compact Model estimated parameters were compared with the corre-

sponding values of the generating parameters.

Fig 9. Dependence of estimated glucose net balance Tgh from the generating �k3 parameter. The red line represents

the bisector Tgh ¼
�k3. Coefficient of correlation and its associated P-value: r = 0.62 (P< 0.001).

https://doi.org/10.1371/journal.pone.0211331.g009
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Figs 4 to 6 clearly show the good performance of the Compact Model to fit the Extended

Model curves, highlighting its ability to reproduce both first and second phases of insulin

release. It is evident that as healthy conditions are altered to pre-diabetic and then to diabetic

status, the second phase of insulin release appears to be more and more prominent, probably

in order to compensate a higher insulin resistance translating into a lesser degree of glucose

uptake and persistently high plasma glucose concentrations.

The consistence and robustness of the Compact Model is evident from Fig 7 where the rela-

tionship between the two model parameters k2 (for the Extended Model) and kXGI (for the

Compact Model), both quantifying insulin sensitivity, approximates very well the identity line

in the k2-kXGI plane.

The overestimation of the insulin sensitivity index (k2) for very high insulin resistance

patients is due to the absence, in the Compact Model, of the term representing glucose renal

elimination, which is instead present in the Extended Model. While, in principle, this struc-

tural difference could be absorbed by a lower net HGO (Tgh), this compensation mechanism is

insufficient (Fig 9) as it is glucose-independent: this causes a higher glucose uptake, which in

the model is represented by a second order term (in glycemia and in insulinemia). Figs 8 and

10, compared with the corresponding Figs 7 and 9, show how the introduction of the glycos-

uria term in the Compact Model restores the linear relationship between kXGI and k2 even at

low insulin sensitivities, as well as solving the underestimation problem of Tgh with respect to

�k3 (the net HGO in the Extended Model).

Fig 10. Dependence of estimated glucose net balance Tgh (from the Compact Model comprehensive of the

glycosuria term) from the generating �k3 parameter. The red line represents the bisector T 0gh ¼ �k3. Coefficient of

correlation and its associated P-value: r = 0.68 (P< 0.001).

https://doi.org/10.1371/journal.pone.0211331.g010
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Fig 11. Dependence of estimated Compact Model parameter γ from proportion of pancreatic reserve z (extracted

from generating Extended Model data) for NGR (blue squares), pre-diabetic (red triangles) and T2DM (black

dots) patients.

https://doi.org/10.1371/journal.pone.0211331.g011

Fig 12. Dependence of Compact Model parameter Tmax
ig (determined from estimated parameters) from estimated

Compact Model parameter γ for NGR (blue squares), pre-diabetic (red triangles) and T2DM (black dots) patients.

https://doi.org/10.1371/journal.pone.0211331.g012
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It is reassuring, while not surprising, that variations in insulin sensitivity (from 0.1 × 10−4

to 1.4 × 10−4) in the generating Extended Model are reliably captured by the Compact diagnos-

tic model. This supports the use of the Compact SDM model in clinical practice, lending credi-

bility to the measures obtained from it.

Of greater interest is however the observation portrayed in Fig 11. When pancreatic reserve

is maintained (z> 0.4, see Eq (18)), there is a clear (inverse) relationship between said pancre-

atic reserve and the nonlinear behavior of the pancreatic insulin release represented by param-

eter γ. When pancreatic reserve is exhausted, the increase in insulin secretion is too small with

respect to the increase in glycemia with resulting very variable values of the nonlinearity expo-

nent γ. Fig 13 shows that the maximum insulin production Tmax
ig is small in athletes or very

healthy subjects (the pancreas in these subjects is not typically stimulated very much since

insulin sensitivity is excellent), increases with BMI and prediabetes (consistently with clinical

observations of high insulinemias in these subjects) and then decreases as the clinical picture

worsens and (relative) pancreatic insufficiency develops; again consistently with clinical

observations.

Conclusion

A refinement of our understanding of the population-of-controllers interpretation of the insu-

lin secretion behavior of the pancreas (in the several degrees of impairment between NGR and

T2DM) explains why the Compact Model for the IVGTT needs to explicitly incorporate the

Fig 13. Dependence of Compact Model parameter Tmax
ig (determined from estimated parameters) from proportion

of pancreatic reserve z (extracted from generating Extended Model data) for NGR (blue squares), pre-diabetic

(red triangles) and T2DM (black dots) patients.

https://doi.org/10.1371/journal.pone.0211331.g013
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saturating nonlinearity of insulin secretion with increasing glycemia, and the fact that this

nonlinearity worsens with progressive worsening of the clinical picture.

This consistency in the behavior of the two models, developed for and fitted on very differ-

ent sets of data, increases our confidence that both models, each in its own domain, are reliable

representations of the actual physiology.

It is remarkable that the Compact Model, with only two parameters relative to the insulin

secretion mechanism, and estimable on the small datasets from IVGTT experiments, is able

to capture a series of detailed physiological mechanisms explicated and represented in the

Extended Model: the end-result of a very complex set of events, such as the potentiation and

synchronization of the whole β-cell population, along with the introduction of a heterogeneous

behaviour of the secretory units (from the distribution of thresholds to the distribution of the

rate of recovery of sensitivity) appears to be well captured by the very simple but specific non-

linear function of the Compact Model.
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