238 research outputs found

    DeepSketch2Face: A Deep Learning Based Sketching System for 3D Face and Caricature Modeling

    Get PDF
    Face modeling has been paid much attention in the field of visual computing. There exist many scenarios, including cartoon characters, avatars for social media, 3D face caricatures as well as face-related art and design, where low-cost interactive face modeling is a popular approach especially among amateur users. In this paper, we propose a deep learning based sketching system for 3D face and caricature modeling. This system has a labor-efficient sketching interface, that allows the user to draw freehand imprecise yet expressive 2D lines representing the contours of facial features. A novel CNN based deep regression network is designed for inferring 3D face models from 2D sketches. Our network fuses both CNN and shape based features of the input sketch, and has two independent branches of fully connected layers generating independent subsets of coefficients for a bilinear face representation. Our system also supports gesture based interactions for users to further manipulate initial face models. Both user studies and numerical results indicate that our sketching system can help users create face models quickly and effectively. A significantly expanded face database with diverse identities, expressions and levels of exaggeration is constructed to promote further research and evaluation of face modeling techniques.Comment: 12 pages, 16 figures, to appear in SIGGRAPH 201

    Towards High-Fidelity 3D Face Reconstruction from In-the-Wild Images Using Graph Convolutional Networks

    Full text link
    3D Morphable Model (3DMM) based methods have achieved great success in recovering 3D face shapes from single-view images. However, the facial textures recovered by such methods lack the fidelity as exhibited in the input images. Recent work demonstrates high-quality facial texture recovering with generative networks trained from a large-scale database of high-resolution UV maps of face textures, which is hard to prepare and not publicly available. In this paper, we introduce a method to reconstruct 3D facial shapes with high-fidelity textures from single-view images in-the-wild, without the need to capture a large-scale face texture database. The main idea is to refine the initial texture generated by a 3DMM based method with facial details from the input image. To this end, we propose to use graph convolutional networks to reconstruct the detailed colors for the mesh vertices instead of reconstructing the UV map. Experiments show that our method can generate high-quality results and outperforms state-of-the-art methods in both qualitative and quantitative comparisons.Comment: Accepted to CVPR 2020. The source code is available at https://github.com/FuxiCV/3D-Face-GCN

    A Data-augmented 3D Morphable Model of the Ear

    Get PDF
    Morphable models are useful shape priors for biometric recognition tasks. Here we present an iterative process of refinement for a 3D Morphable Model (3DMM) of the human ear that employs data augmentation. The process employs the following stages 1) landmark-based 3DMM fitting; 2) 3D template deformation to overcome noisy over-fitting; 3) 3D mesh editing, to improve the fit to manual 2D landmarks. These processes are wrapped in an iterative procedure that is able to bootstrap a weak, approximate model into a significantly better model. Evaluations using several performance metrics verify the improvement of our model using the proposed algorithm. We use this new 3DMM model-booting algorithm to generate a refined 3D morphable model of the human ear, and we make this new model and our augmented training dataset public

    Large Deformation Diffeomorphic Metric Mapping Provides New Insights into the Link Between Human Ear Morphology and the Head-Related Transfer Functions

    Get PDF
    The research findings presented in this thesis is composed of four sections. In the first section of this thesis, it is shown how LDDMM can be applied to deforming head and ear shapes in the context of morphoacoustic study. Further, tools are developed to measure differences in 3D shapes using the framework of currents and also to compare and measure the differences between the acoustic responses obtained from BEM simulations for two ear shapes. Finally this section introduces the multi-scale approach for mapping ear shapes using LDDMM. The second section of the thesis estimates a template ear, head and torso shape from the shapes available in the SYMARE database. This part of the thesis explains a new procedure for developing the template ear shape. The template ear and head shapes were are verified by comparing the features in the template shapes to corresponding features in the CIPIC and SYMARE database population. The third section of the thesis examines the quality of the deformations from the template ear shape to target ears in SYMARE from both an acoustic and morphological standpoint. As a result of this investigation, it was identified that ear shapes can be studied more accurately by the use of two physical scales and that scales at which the ear shapes were studied were dependent on the parameters chosen when mapping ears in the LDDMM framework. Finally, this section concludes by noting how shape distances vary with the acoustic distances using the developed tools. In the final part of this thesis, the variations in the morphology of ears are examined using the Kernel Principle Component Analysis (KPCA) and the changes in the corresponding acoustics are studied using the standard principle component analysis (PCA). These examinations involved identifying the number of kernel principle components that are required in order to model ear shapes with an acceptable level of accuracy, both morphologically and acoustically

    MoFaNeRF: Morphable Facial Neural Radiance Field

    Full text link
    We propose a parametric model that maps free-view images into a vector space of coded facial shape, expression and appearance with a neural radiance field, namely Morphable Facial NeRF. Specifically, MoFaNeRF takes the coded facial shape, expression and appearance along with space coordinate and view direction as input to an MLP, and outputs the radiance of the space point for photo-realistic image synthesis. Compared with conventional 3D morphable models (3DMM), MoFaNeRF shows superiority in directly synthesizing photo-realistic facial details even for eyes, mouths, and beards. Also, continuous face morphing can be easily achieved by interpolating the input shape, expression and appearance codes. By introducing identity-specific modulation and texture encoder, our model synthesizes accurate photometric details and shows strong representation ability. Our model shows strong ability on multiple applications including image-based fitting, random generation, face rigging, face editing, and novel view synthesis. Experiments show that our method achieves higher representation ability than previous parametric models, and achieves competitive performance in several applications. To the best of our knowledge, our work is the first facial parametric model built upon a neural radiance field that can be used in fitting, generation and manipulation. The code and data is available at https://github.com/zhuhao-nju/mofanerf.Comment: accepted to ECCV2022; code available at http://github.com/zhuhao-nju/mofaner
    • …
    corecore