
This is a repository copy of A Data-augmented 3D Morphable Model of the Ear.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/131807/

Version: Published Version

Proceedings Paper:
Dai, Hang, Pears, Nicholas Edwin orcid.org/0000-0001-9513-5634 and Smith, William 
Alfred Peter orcid.org/0000-0002-6047-0413 (2018) A Data-augmented 3D Morphable 
Model of the Ear. In: The 13th IEEE International Conference on AUTOMATIC FACE AND 
GESTURE RECOGNITION (FG 2018). IEEE . 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



A Data-augmented 3D Morphable Model of the Ear

Hang Dai, Nick Pears and William Smith
Department of Computer Science, University of York, UK

Abstract— Morphable models are useful shape priors for bio-
metric recognition tasks. Here we present an iterative process of
refinement for a 3D Morphable Model (3DMM) of the human
ear that employs data augmentation. The process employs
the following stages 1) landmark-based 3DMM fitting; 2) 3D
template deformation to overcome noisy over-fitting; 3) 3D mesh
editing, to improve the fit to manual 2D landmarks. These
processes are wrapped in an iterative procedure that is able to
bootstrap a weak, approximate model into a significantly better
model. Evaluations using several performance metrics verify the
improvement of our model using the proposed algorithm. We
use this new 3DMM model-booting algorithm to generate a
refined 3D morphable model of the human ear, and we make
this new model and our augmented training dataset public.

I. INTRODUCTION

The shape of the ear has long been recognised as a means

of biometric identification [1], [2], [3], [4]. There are many

existing ear recognition systems in the literature [5], [6], [7],

[8], [9], [10], with a recent survey by Emers̆ic̆ et al. [11]

and ear biometrics continues to be an active research area

[12]. Morphable models provide powerful statistical priors

on shape and so can be used in biometric ear analysis. We

present a pipeline capable of building a 3D Morphable Model

(3DMM) of the human ear from a very limited training

sample of 3D ears, using data augmentation.

We have 20 high quality 3D meshes of the ear [13], taken

from 10 subjects, with the left ear reflected to be compatible

with the right ear shape. This is insufficient to construct a

3D morphable model that is a good representation of the

mean ear shape and the variance and covariances of size-

and-shape (form), over a large population. However, with

such a limited dataset, we construct an initial approximate

model of the form:

X(α) = X̄+Pα (1)

where the 3DMM parameters are the mean shape X̄, the

shape variation components P, and shape parameters α. The

model has over 7K vertices (7111) and we employ a modified

version of the the morphing technique in Dai et al [14] to

build the model, which is an extension of Coherent Point

Drift (CPD) [15]. Subsequently, 3D data augmentation is

able to generate new samples for the 3DMM construction,

thereby boosting the initial morphable model in terms of its

accuracy in representing larger populations. Recently, Zhou

et al. made a 2D ear image dataset available with 55 ground-

truth landmarks [16] over 600 images, partitioned into 500

training images and 100 test images. Fig.1 (left) shows the

55 landmarks and their semantic annotations.
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Fig. 1. 55 landmarks on ear and their semantic annotations [16].
Deformation: (1) template, (2) over-fitting, (3) deformed template.

Fig. 2. 3D morphable model of ear. The mean and the first five principal
components are shown at +3SD (top row) and -3SD (bottom row).

Our process includes the following stages: 1) landmark-

based 3DMMs fitting; 2) use of 3D deformation to overcome

the over-fitting (caused by an insufficient number of training

subjects); 3) 3D mesh editing, regularized by 2D image

information. Our contributions are (i) the data-augmented

model building pipeline and (ii) the first publicly-available

3DMM of the ear. This model is shown in Fig. 2. In addition

to the model, the augmented training data will be made

publicly available. After reviewing related work, we detail

our proposed data augmentation method in Sec. III. Section

IV then describes our iterative model construction process,

whilst Sec. V presents our evaluations.

II. RELATED WORK

To our knowledge, Zolfaghari et al. [13] published the only

work on a 3D morphable model of ear, but the morphable

model is not publicly available. Zhou et al. built a 2D

morphable model of the ear and made a 2D ear image

dataset publicly available with 55 manually-labelled ground-

truth landmarks [16]. Our work is based on this dataset

and requires a non-rigid shape template deformation method.

Several extensions of Iterative Closest Points (ICP) for the

nonrigid case were proposed [17], [18], [19], [20]. The

extensions of ICP have good performance in shape difference

elimination but have problems in over-fitting and point

sliding. Amberg et al. [17] defined the optimal-step Nonrigid978-1-5386-2335-0/18/$31.00 c©2018 IEEE



Fig. 3. Iterative model construction process.

Iterative Closest Points (NICP) framework, which extended

ICP methods to nonrigid deformations while retaining its

convergence properties. Li et al. [21] show that using prox-

imity heuristics to determine correspondences is less reliable

when large deformations are present. Global correspondence

optimization solves simultaneously for both the deformation

parameters as well as the correspondence positions [21].

Myronenko et al. consider the alignment of two point sets as

a probability density estimation [15] and they call the method

Coherent Point Drift (CPD). The CPD approach is extended

in [22], [23], [24], [25]. Dai et al. proposed a hierarchical

parts-based CPD-LB morphing framework to avoid under-

fitting and over-fitting [14]. In this paper, we employ this

method to overcome the over-fitting.

III. 3D EAR DATA AUGMENTATION

The process of data-augmented 3DMM construction is

shown in Fig. III. Here, data augmentation has three stages:

A) 3DMM fitting with 2D ear landmarks; B) 3D deforma-

tion to overcome the over-fitting of the initial approximate

3DMM; C) 3D mesh editing to manipulate the projection

of the landmarks in the augmented 3D mesh towards the

manually-labelled 2D landmark positions. These three stages

are described in the following subsections, with the iterative

loop for model construction described in Sec. IV.

A. Landmark-based 3DMM Fitting

The scaled orthographic projection (SOP) [26] model

assumes that variation in depth over the object is small

relative to the mean distance from camera to object. Under

this assumption, the projected 2D position of a 3D point

Xi = [xi, yi, zi]
T ∈ R

3, given by SOP (Xi;R, t, s) ∈ R
2

does not depend on the distance of the point from the camera,

but only on a uniform scale s given by the ratio of the focal

length of the camera and the mean distance from camera to

object:

SOP (Xi;R,T, s) = sPo (RXi +T) (2)

where the 3D pose parameters are given by a rotation matrix

R s.t. R ∈ R
3×3, R

T
R = I3 and 3D translation T ∈ R

3.

Po is the orthogonal projection from 3D to 3D defined by

Po =

[

1 0 0
0 1 0

]

.

and so, defining the 2D translation, t in the image plane we

have

SOP (Xi;R, t, s) = sPoRXi + t, t = sPoT (3)

We begin by showing how to fit a morphable model to

M observed 2D positions xi = [ui, vi]
T (i = 1...M) arising

from the SOP projection of corresponding vertices in the

morphable model. Without loss of generality, we assume

that the i-th 2D position corresponds to the i-th vertex in

the morphable model. The objective of fitting a morphable

model to these observations is to obtain the shape and

pose parameters that minimise the reprojection error, Elmk,

between observed and predicted 2D landmark positions:

Elmk(α,R, t, s) =
1

M

M
∑

i=1

||xi−SOP (X̄i+Piα;R, t, s)||2

(4)

The problem is non-linear least squares that can be solved by

various means. Here we use the trust region approach [27]

encapsulated in Matlab’s lsqnonlin function.

B. 3D Mesh Deformation

The number of training subjects for the initial 3DMM

is insufficient, so the 3DMM fitting to a 2D image with

landmarks, described in Sec. III-A is over-fitted, appearing as

surface noise, see Fig.1 (2). To overcome this, we employ the

mean of the initial 3DMM, see Fig.1 (1) as a template, and

we deform it using the Coherent Point Drift (CPD) algorithm

[15] applied with a non-rigid deformation model, followed by

a projection to corresponding points that is regularised by the

template shape-preserving Laplace-Beltrami (LB) operator.

Such a deformation regulation process was proposed by Dai

et al. [14]. The motivation for the deformation process is that

the deformed template is able to preserve the same shape,

the same number of vertices and also the same triangulation

relationship as the over-fitted data, while it can overcome the

noise due to over-fitting. The deformation algorithm works

well because there is a known one-to-one correspondence



Fig. 4. Augmentation results: 1st row - original images, 2nd row - 3D landmarks projection to 2D images, 3rd row - augmented data with texture

between the 7111 vertices on the template and the 7111

vertices on the target. The outcome is shown in Fig.1 (3).

C. Mesh Editing Regularised by 2D Landmarks

The location of the fitted landmarks after the initial 3DMM

fitting and the template deformation are not accurate, relative

to the manually-labelled 2D landmarks. We overcome this by

treating the template mesh manipulation as a mesh editing

problem with two ingredients. First, position constraints

are provided by those 2D landmarks, the correspondences

of which are known in 3D mesh. Second, regularisation

constraints are (again) provided by the LB operator, which

acts to retain the local structure of the mesh.

The LB mesh editing problem can be written as a linear

system of equations. Given the vertices of a 3D mesh

stored in the matrix X = [x1, y1, z1, ..., xN , yN , zN ]T ∈
R

3N and the 2D landmarks stored in the matrix x =
[u1, v1, ..., uM , vM ]T ∈ R

2M , we define the selection ma-

trices S ∈ [0, 1]3M×3N that select the M vertices which are

the correspondences of the 2D landmarks. This linear system

can be written as:
(

λL3

G(M)S

)

Xedit =

(

λL3X

x

)

(5)

G(M) = IM ⊗

[

1 0 0
0 1 0

]

where IM is the M × M indentity matrix and G(M) ∈
R

2M×3M project the 3D landmarks to 2D, L3 ∈ R
3N×3N

is the cotangent Laplacian approximation to the LB operator

and Xedit ∈ R
3N are the edited vertex positions that we wish

to solve for. The parameter λ weights the relative influence of

the position and shape regularisation constraints, effectively

determining the template shape ‘stiffness’ of the mesh editing

process. As λ → 0 (reducing shape stiffness) the projected

3D landmarks in Xedit tend towards the same positions as

the 2D manual landmarks.

Fig. 5. Average landmarks distance error for four system variants: (1)
Landmark error, (2) Fitting consistency.

IV. MORPHABLE MODEL CONSTRUCTION

A. Similarity Alignment & Statistical Modelling

The collection of the augmented meshes are subjected

to Generalised Procrustes Analysis (GPA) [28] to remove

similarity effects (rotation, translation, scale), leaving only

shape information. (Scale cannot be included as we have no

notion of scale within the 2D image dataset.) The aligned

meshes are then subject to Principal Component Analysis

(PCA), generating a 3DMM as a linear basis of shapes. This

allows for the generation of novel shape instances.

B. 3DMM Bootstrapping

We propose a 3DMM bootstrapping procedure where, at

each bootstrap iteration, we rebuild the 3DMM and reapply

it to the augmented dataset for an improved fitting to that

dataset, and hence we can generate a better 3DMM in the

next iteration. This approximate-to-accurate iterative system

encapsulates each of the three key stages in Sec. III-A to Sec.

III-C within each iteration. We push each procedure harder

relative to the previous iteration, as follows: 1) we increase

the number of the shape components in Sec. III-A to give

the algorithm more variance to do the fitting; 2) we decrease

λ in Sec. III-C to manipulate the projection of the landmarks

in Xedit towards the 2D landmarks position. 3DMM fitting

and mesh editing are potentially fragile processes when the



Fig. 6. Model evaluation: (1) Compactness, (2) Generalisation, (3) Specificity.

3DMM is approximate, thus we push the algorithm step-by-

step in this iterative fashion.

V. EVALUATION

We used the proposed method to build a 3DMM of the

ear over 500 training images and used the remaining 100

images for testing the performance in the given dataset

[16]. There is no public 3DMM of the ear available for

direct comparison. However, we evaluate the performance of

model construction, both qualitatively and quantitatively, for

several variants of our method. These include: i) the proposed

method, using several bootstrapping iterations, and 500 data

augmentation images, ii) the proposed method without any

bootstrapping iterations (i.e. one pass of the three steps in

Sec. III) and 500 data augmentation images, iii) the initial 20-

image 3DMM passed through the three steps in Sec. III, with

no data augmentation (Initial-v1 method) and iv) the initial

20-image 3DMM with just 3DMM fitting, i.e. no template

morphing or mesh editing stages, and no data augmentation

(Initial-v2 method).

A. Qualitative Evaluation

As can be seen in Fig. 4, the proposed method can

handle different head poses. After mesh editing, the projected

positions of the model’s 3D landmarks are almost the same

as the ground-truth 2D landmarks.

B. Quantitative Evaluation

We use two metrics: landmark error and fitting consistency

to evaluate the performance quantitatively.

1) Landmark Error: This measure is calculated by the

average landmark distance error between the projected 3D

landmarks and the 2D landmarks, over the test set (100

images). As shown is Fig. 5(1), the proposed method has

the lowest landmark error.

2) Fitting Consistency: The dataset contains multiple im-

ages of the same person, as shown in the first two columns of

Fig. 4. This allows us to do some consistency checking in the

following way. First we fit the 3D model to the first image

of a pair, thus fixing the 3D model shape. Then, without

changing the model shape, we project it into the second

image and measure the mean landmark error relative to the

manual 2D landmarks. We compensate for differences in

scale between the two images in the fitting process. As shown

is Fig. 5(2), the proposed method has the lowest distance

error, which implies that the fitting from the proposed method

is more consistent with the other images of the same person.

C. Model Evaluation

Since model evaluation requires that the models should

have the same number of principal components, we compare

the proposed method and the proposed method without

bootstrapping. For quantitative model evaluation, Styner et al

[29] give detailed descriptions of three metrics: compactness,

generalisation and specificity. The compactness of the model

describes the number of parameters required to express some

fraction of the variance in the training set, fewer is better.

As can be from Fig.6, the proposed method without boot-

strapping has better compactness than the proposed method

when < 25 principal components are used. When > 25 prin-

cipal components are used, the compactness is similar. The

proposed method has the lower generalisation error, which

implies that proposed method has the better performance

in describing unseen examples. Specificity measures how

well a model is able to generate instances that are similar

to real data. The proposed method has the lower distance

error, which implies that the proposed method is better at

generating instances close to real data.

VI. CONCLUSIONS

We proposed iterative 3DMM construction using 3D data

augmentation to bootstrap a strong 3DMM of the human ear

from a weak one. The method overcomes noisy over-fitting

and manipulates the projection of 3D landmarks towards

the desired 2D landmark positions. Evaluation demonstrates

that the method lowers landmark error and the fitted data

is more consistent within images of the same person. The

bootstrapping strategy improves the model performance in

both generalisation and specificity. The limitation is a re-

quirement for manual 2D landmarks. The next step is to do

augmentation with either fewer landmarks or even none at

all, requiring modelling of lighting and surface reflectance.

Acknowledgements: We thank Google Faculty Awards for
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