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Abstract
Background/aim 
To develop a 3D morphable model of the normal paediatric mandible to analyse shape development 

and growth patterns for males and females.  

Methods
Computed tomography (CT) data was collected for 242 healthy children referred for CT scan between 

2011 and 2018 aged between 0 and 47 months (mean, 20.6 ± 13.4 months, 59.9% male). Thresholding 

techniques were used to segment the mandible from the CT scans. All mandible meshes were annotated 

using a defined set of 52 landmarks and processed such that all meshes followed a consistent 

triangulation. Following this, the mandible meshes were rigidly aligned to remove translation and 

rotation effects, whilst size effects were retained. Principal component analysis (PCA) was applied to 

the processed meshes to construct a generative 3D morphable model. Partial least squares (PLS) 

regression was also applied to the processed data to extract the shape modes with which to evaluate 

shape differences for age and gender. Growth curves were constructed for anthropometric 

measurements.

Results
A 3D morphable model of the paediatric mandible was constructed and validated with good 

generalisation, compactness, and specificity. Growth curves of the assessed anthropometric 

measurements were plotted without significant differences between male and female subjects. The first 

principal component was dominated by size effects and is highly correlated with age at time of scan 

(Pearson’s r = 0.92, p < 0.01). As with PCA, the first extracted PLS mode captures much of the size 

variation within the dataset and is highly correlated with age (Pearson’s r = -0.9, p <0.01). Little 

correlation was observed between extracted shape modes and gender with either PCA or PLS for this 

study population.

Conclusion
The presented 3D morphable model of the paediatric mandible enables an understanding of mandibular 

shape development and variation by age and gender. It allowed for the construction of growth curves, 

which contains valuable information that can be used to enhance our understanding of various disorders 

that affect the mandibular development. Knowledge of shape changes in the growing mandible has 

potential to improve diagnostic accuracy for craniofacial conditions that impact the mandibular 

morphology, objective evaluation, surgical planning, and patient follow-up. 
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Introduction
Three-dimensional (3D) analysis of anatomical shape has demonstrated to be of great value and allows 

for many applications within the medical field. For example, face shape information can be used for 

diagnostic purposes or surgical planning [1-5] with 3D morphable models (3DMM) being one of the 

more recent statistical shape models [6-13]. These craniofacial models have elucidated the potential 

usefulness for craniofacial surgery; however, normal models are lacking, especially for the facial 

skeleton. The mandible (lower jaw) is a complex bony structure of the face and is commonly affected 

in congenital craniofacial conditions. Examples include micrognathia (small mandible) in Robin 

sequence and (asymmetrical) mandibular hypoplasia in craniofacial microsomia. When a child is born 

with a mandibular malformation this can lead to numerous functional impairments, including airway 

obstruction, feeding impairment, and facial asymmetry [14]. 

Mandibular deformities and associated functional impairments have a highly variable phenotypic 

presentation, thus adequate evaluation of the deformity is essential for both diagnostic and therapeutic 

purposes. Classification and characterisation of mandibular anomalies are mainly based on qualitative 

criteria and 2D measurements [15]. However, a robust reference based on normative data is required in 

order to adequately assess deformity. Normative data has typically been studied using traditional 

(cephalometric) measurements and angles calculated by means of anatomical landmarks [16]. Based on 

these studies, we know that a healthy growing mandible undergoes the greatest change in shape and 

size during the first year of life, including an increase in intercondylar width, ramus height, and corpus 

length [16, 17].

Recent studies on early mandibular development using 3D reconstructions of computed tomography 

(CT) scans are based on relatively small datasets [16, 18-20], primarily consider older age samples [21] 

or lack analysis of the complete mandibular shape [22]. In addition, most do not comprehensively 

capture 3D variation in shape and size due to usage of  Euclidean distances and angles between 

anatomical landmarks [23].  For accurate understanding of 3D mandibular growth, a holistic shape 

analysis has been shown to be imperative [4, 24]. Using modern geometric morphometrics this study 

aims to construct a 3D morphable model (3DMM) of the mandible for children under 4 years of age, 

asses its ability to capture early morphological variation of the mandible related to age and gender, and 

present growth curves for 3D anthropometric mandibular measurements. 
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Dataset and Methods
The Paediatric Dataset
CT-scans of children aged 0-48 at time of scan were collected at the Necker Children’s Hospital, 

(Necker-Enfants Malades Hospital, NEMH), Paris, France. Scans were acquired for the years between 

2011 and 2018. Only high-quality CT scans (>100 slices per scan and ≤ 1 mm per slice) of patients in 

the desired age range without anomalies  visible on CT were included. Scans were acquired for patients 

indicated for headache, trauma, or epilepsy and were assessed by two independent reviewers, a 

paediatric radiologist, and a clinical research fellow in craniofacial surgery (L.S.v.d.L.). Any scan 

presenting with abnormalities, craniofacial anomalies, or mandible fractures were excluded. Baseline 

characteristics were collected from corresponding medical charts. The final dataset consisted of  CT 

scans from 242 children (59.9% male). The included patients had a mean age of 20.6 ± 13.4 months 

(median, 19.5 months). Mean ages for male and female samples were comparable (male: 21.3 ± 13.6 

months, female: 19.5 ± 12.9 months, p = 0.3).

All DICOM-files were converted to 3D objects (mesh) by applying semi-automated thresholding 

techniques using a default bone setting, the mandible was then isolated from the skull with a 

foreground/background tool and saved as Object (.obj) file (software Mimics Imprint 3.0, Materialise, 

Leuven, Belgium). The meshes were put in dense correspondence with a mandible template mesh using 

the non-rigid iterative closest point algorithm (NICP) [25]. Dentition was omitted from the mesh 

template. A set of 52 validated and non-validated landmarks were used to guide the NICP registration 

process (Figure 2, description in Supplementary Materials, software R3DS WRAP3D). The processed 

mandible meshes were rigidly aligned to remove translation and rotation effects using the validated 

landmark subset, though size effects were retained during processing.

Figure 1: Age and gender breakdown of the study population.
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Figure 2: Mandibular landmarks from a) lateral view, b) anterior view, and c) superior view. Validated landmarks are shown 
in dark blue and only these landmarks were used for rigid alignment. All landmarks were used to seed the NICP algorithm to 
achieve dense correspondence.

Anthropometric Measurements
Nine anthropometric lengths and angles were assessed (Figure 3) [18, 23]. Measurement lengths were 

calculated using the standard distance formula:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = (𝑥𝐴 ‒ 𝑥𝐵)2 + (𝑦𝐴 ‒ 𝑦𝐵)2 + (𝑧𝐴 ‒ 𝑧𝐵)2

where A and B are two distinct landmarks and x, y, and z are their coordinates in Cartesian space. To 

calculate the mental and gonial angle, the cosine rule was applied upon calculation of the measurements 

between the landmarks defining the angles. Then measurements were calculated for each of the samples 

in the dataset and compiled by 6-month age groups. Growth curves were plotted for male, female, and 

all individuals.

Figure 3: Anthropometric measurements from right, inferior, and left perspectives.

3D Morphable Model
When all meshes had been put in dense correspondence, PCA was applied to the processed meshes to 

construct the 3DMM. The compactness, generalisation, and specificity of the 3DMM were evaluated. 

Compactness is defined as the percentage of the shape variance explained when a certain number of 

principal components are retained. Generalisation is a measure of the ability of the model to accurately 

represent novel shape samples not encountered during model training, while specificity evaluates the 
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ability of the model to generate valid novel samples. The generalisation error was calculated as the 

average Euclidean distance (AED) between the unseen shape instance and the corresponding model 

representation. To calculate the AED, let A and B be two meshes with i vertices, where x, y, and z 

represent the cartesian coordinates of each vertex. The AED can then be calculated on a per-vertex basis 

as follows:

𝐴𝐸𝐷 =  
∑𝑛

𝑖 = 1
(𝑥𝑖,𝐴 ‒ 𝑥𝑖,𝐵)2 +  (𝑦𝑖,𝐴 ‒ 𝑦𝑖,𝐵)2 +  (𝑧𝑖,𝐴 ‒ 𝑧𝑖,𝐵)2     

𝑛

The generalisation error across the range of retained principal components is then given as the mean 

per-vertex error over all meshes. Model specificity was calculated by randomly synthesising 1,000 

random mandible samples at each of the model principal components following a multivariate normal 

distribution. For each synthesised mesh, the specificity error was calculated as the AED over all mesh 

vertices between the synthesised mesh and its nearest neighbour in the test dataset. As a relatively small 

number of samples were used for the construction of the mandible model, both generalisation and 

specificity were evaluated using a leave-one-out strategy.

The mean 3DMM mandible shape was extracted and validated using the mean of the anthropometric 

measurements acquired from the population. The template validation process can be found in the 

supplemental materials. 

Partial Least Squares Regression Analysis
Partial least squares (PLS) regression analysis was performed on the processed mandible meshes to 

assess how mandibular shape related to age and gender within the dataset. 

The shape changes most associated with the age and gender were visualised by deforming the mean 

PLS shape template along the extracted shape modes. Ten shape modes were used in the construction 

of both age- and gender-based PLS models.

The relationship between the extracted PLS modes and subject age was assessed using a standard bi-

variate correlation analysis. Pearson’s R was used in all cases. The regressive nature of PLS was further 

employed to predict the age of a test set of subjects after the PLS model had been fitted to a training 

set. A 10-fold cross-validation schema was used, and a random stratified sampling strategy performed 

to define the folds. The R2 score and root mean square error (RMSE) were calculated to evaluate the 

prediction accuracy.

A similar strategy was employed to assess the association between extracted PLS shape modes and 

subject gender. A point-biserial correlation was used to assess the relationship between gender and 
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extracted shape modes. Partial least square discriminant analysis (PLS-DA), the binary equivalent of 

PLS, was employed to facilitate model training and gender prediction. A 10-fold cross-validation 

schema with random stratified sampling was employed. Gender prediction accuracy and F1 scores were 

calculated.

The mean PLS mandible shape was extracted and validated using the population average of all assessed 

anthropometric measurements.

Results
Anthropometric Measurements
The mean mental angle and gonial angle were noted to decrease with age, while all measured lengths 

were shown to increase with patient age. No significant differences were observed between male and 

female participants (Figure 4). Mean and standard deviation for all assessed anthropometric 

measurements are reported in the supplemental materials Table 2.

Figure 4: Paediatric mandibular growth curves showing the mean and standard deviation for assessed lengths and 
measurements when patients were compiled by 6-month age groups.
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3D Morphable Model Validation
The mean shape and the first five principal modes of shape variation are shown in Figure 5. The first 

principal component is dominated by size effects and is highly correlated with age (Pearson’s r = 0.92, 

p < 0.01). No distinct sexual dimorphism was noted with age along the principal mode of variation 

(Figure 6). Variation in mandibular morphology along successive principal components, where scale is 

no longer a dominant factor, is shown in Figure 5. 

Figure 5: Visualisation of the mandible 3DMM. The mean shape, µ, and the first five principal components are shown. The 
principal components are visualised as either an addition or a subtraction from the mean shape with a weight or ±3σ, where 
σi is the standard deviation of the ith principal component. Each model instance is shown at a 45° angle, from a front 
perspective, and from a lateral perspective. 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4017329

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Figure 6: Scatter plot of the first principal component by age labelled by sex. No clear sexual dimorphism is noted.

Figure 7a demonstrates that the model is sufficiently compact. Almost 90% of the shape variance is 

captured within the first principal component alone, and over 99% of the total shape variance within 

the dataset is captured within the first 22 model components. The model is also seen to generalise well 

to unseen instances, with a mean generalisation error of less than 0.5 mm when 15 more principal 

components are used (Figure 7b). This decreases to 0.17 mm when 160 components are used. The mean 

specificity error is 5.1 mm when 160 principal components are used. While the specificity error reported 

here is relatively high, the size of this value can be attributed to the inclusion of size in the model and 

the relatively small number of samples used in the model construction (Figure 7c).

Figure 7: a) Compactness, b) Generalisation, and c) Specificity of the paediatric mandible model.
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Partial Least Squares Analysis – covariance with Age and Gender
PLS analysis demonstrates significant correlations between the extracted PLS shape modes and age at 

time of scan. The shape variations along the three most highly correlated shape modes are shown in 

Figure 8. As with PCA, the first extracted PLS mode captures much of the size variation within the 

dataset and is highly correlated with age (Figure 9a, r = -0.9, p <0.01). The correlation between all PLS 

shape modes and age is given in Table 3. The application of the age based PLS regression model for 

age prediction yielded an R2 score of 0.94 and an RMSE of 3.3 months when 10 PLS shape modes 

were used. The correlation between predicted age and true age in months is shown in Figure 9b.

Extracted PLS shape modes associated with gender, as shown in Figure 8, are visually similar to those 

of the age-based model. The correlation between extracted shape modes and gender is low in all cases, 

even though many of the p-value indicates that statistical significance is achieved (Table 4). The 

accuracy of the PLS-DA model for gender prediction achieved an F1-Score of 71.7% and an accuracy 

of 65.7% when 10 PLS shape modes were included (Figure 8c). While this is higher than the maximum 

chance accuracy of 59.9% (the percentage of patients that are male), the dataset is unbalanced in both 

age and gender. Combining this with the uninformative visualisation of the extracted gender-based 

components, it is unlikely that any true gender-based shape changes have been extracted.

 SM 1 SM 2 SM 3 SM 4 SM 5 SM 6 SM 7 SM 8 SM 9 SM 10

R -0.903 0.219 0.205 0.151 -0.091 0.094 -0.099 -0.061 0.053 -0.059

P <0.001 <0.001 0.001 0.018 0.159 0.144 0.125 0.346 0.414 0.358

Table 1: Pearson's correlation coefficient for the successive PLS shape modes (SM) and subject age.

 SM 1 SM 2 SM 3 SM 4 SM 5 SM 6 SM 7 SM 8 SM 9 SM 10

R -0.15 0.23 -0.24 -0.24 -0.29 -0.23 -0.24 0.214 -0.16 -0.21

P 0.019 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 0.014 0.001

Table 2: Point biserial correlation coefficient for the successive PLS shape modes (SM) and subject gender.
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Figure 8: Visualisation of the first three extracted PLS shape modes for the age-based (top) and gender-based (bottom) PLS 
models. The mean shape, µ, and the first three shape modes are shown. Each model instance is shown at a 45° angle, from a 
front perspective, and from a lateral perspective.

Figure 9: a) Correlation between the first component of the age-based PLS model and true age. The green line indicates the 
line of best fit. b) Correlation between predicted age and true age regressed from the age-based PLS model using a 10-fold 
cross validation. The green line indicates the line of best fit, and the red line is the line of equality (perfect prediction). c) 
Confusion matrix for gender classification using the gender-based PLS model with 10-fold cross validation. 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4017329

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Discussion
The use of geometric morphometrics allowed for construction of a comprehensive 3DMM of the 

mandible for a normative population between 0 – 4 years of age. The high correlation between the first 

principal component and age indicates a significant allometric component for mandibular shape 

variation in this population (Pearson’s r = 0.92, p < 0.01) with 89.5% of the shape variance captured 

along this component. The majority of this variance can be attributed to mandible size. In line with this 

finding, the model showed a high correlation between the predicted age and true age based on the shape 

modes extracted using PLS regression analysis (Pearson’s r = 0.97, p < 0.01). This is further reflected 

in the change of anthropometric measurements with age. For gender, variation in mandibular shape was 

less evident, with lower correlation coefficients between gender and shape modes in the PLS regression 

analysis. In addition, an accuracy of 65.7% for gender classification was noted, only marginally better 

than the chance classification accuracy of 60%. As the dataset is unbalanced in terms of both age and 

gender, however, it is unlikely that any accuracy gains are due to gender-based shape changes. This is 

in line with the lack of a significant difference in the anthropometric measurements between male and 

female patients, a finding that is supported in the literature for a paediatric population [20, 26-28].  

However, all PLS shape modes did show a statistically significant difference between males and 

females, an observation in line with the sexual dimorphism described by Coquerelle et al. [29] and 

indicative of dissimilar development of mandibular morphology between sexes. However, the latter was 

not observed in this study. 

Previous geometric morphometric studies of early mandibular development have primarily used 

anatomical landmark coordinates only [16, 18, 20]. In contrast, the methods used in this study provide 

a particularly comprehensive description of mandibular shape variation in the growing child, which 

provides much more information. Using a statistical approach, the morphological changes in early 

mandibular shape development were highlighted and are mainly associated with an allometric scaling 

of the mandible, i.e. non-proportional size changes. From negative to positive extremes along the first 

principal component, an increasing prominence is noted for the anterior mandibular body with an 

increasing mandibular body length and narrowing of the mental angle. In addition, the lower 

symphyseal border shows an increasingly anterior inclination, in concurrence with the labial unrolling 

described by Coquerelle et al. [29]. Similarly, the gonial angle grows more acute and the condyle grows 

more prominent than the coronoid process. While spanning a larger age range with fewer samples, the 

geometric morphometric shape deformations of landmark coordinates along the first principal 

component shown by Franklink et al. are similar to those found here [19].

The mandibular shape variations along the principal component axes are reflected in the cross-sectional 

anthropometric measurements. Growth curves for clinically pertinent anthropometric measurements 

were obtained using 3D linear measurements between landmarks and angulations. Schipper et al. 
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reported an increase in mandibular body length and ramus height for children between 0-2 years of age 

with a decline in rate of growth after the first year of life [23]. While also true for our study, persistent 

growth was observed up to 4 years of age. In contrast, no decline and subsequent increase in the rate of 

growth for the mandibular body was noted in our study, but rather consistent growth. The bigonial and 

bicondylar width showed similar growing trends with a relatively larger increase in the latter compared 

to the former noted here. Franklin et al. reported similar findings for the gonial angle and mental angle 

with a more obtuse gonial and mental angle for younger dry mandible specimens[19]. Klop et al. also 

created a 3D morphable model of the growing mandible from anonymous dry mandible specimens 

estimated to be between 1-12 years old with similar results.[30] 

The measures presented in our results, including shape deformations and anthropometric measures, are 

implicated in various clinical contexts. Mandibular morphology represents an accurate predictor of age, 

in line with previous reports[19]. This is largely related to concurrent dental development, which was 

excluded from our model, and functional anatomical changes with age[31]. Furthermore, some degree 

of sexual dimorphism was noted for the mandible for the included age range. The anthropometric 

growth curves presented here can be used as reference values for clinical purposes, e.g. follow-up of 

growth or operative planning purposes. The detailed description of early mandibular shape variation 

allows for comparison of mandibular morphology with developmental conditions in which the mandible 

is affected, e.g. Robin sequence and Treacher Collins syndrome. Applications could include automated 

shape analyses and assisting in more accurate characterisation of mandibular deformities when 

compared to an unaffected population.

The presented model has demonstrated strong intrinsic characteristics, however, there are several 

limitations. First, the use of cross-sectional data only allows for a population average to be derived for 

anthropometric measurements over time. Similarly, while an association of early mandibular shape 

variation with age is described, the use of cross-sectional data does not allow for an exact description 

of how this may develop for individual patients. The lack of longitudinal CT-imaging data for a normal 

population is primarily due to evident ethical reasons related to radiation exposure. That said, the 

presented dataset, which was constructed from 242 distinct samples, represents the largest set of three-

dimensional mandibular shape reconstructions for the studied age group. The resulting 3DMM was 

shown to be capable of reliably synthesising novel mandible instance, which may prove beneficial in 

future applications as an alternative to limited data. As such, a comprehensive range of normal values 

for both anthropometric mandibular measurements and mandibular shape representations for various 

ages can be obtained.

Future studies could also evaluate the mandibular shape and functional problems, such as airway 

difficulties. This could be of use in disorders where multiple organs might be in play and understanding 

of associations between shape abnormalities and severity of symptoms could guide the treatment plan. 
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In addition, further expanding the data population to adulthood would allow for construction of an 

increasingly comprehensive normative mandibular model.

In conclusion, a 3DMM was constructed to describe early mandibular shape variation for a normative 

population between the ages of 0 – 4 years. We applied an existing pipeline to evaluate the mandibular 

shape comprehensively. The model has applications for assessment of mandibular deformities and 

might improve diagnostic accuracy for craniofacial conditions that impact mandibular morphology. 

Further applications include surgical planning and objective surgical outcomes evaluation, and patient 

follow-up, which might benefit from the early growth curves provided in this study. 
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