7 research outputs found

    Deriving real-time action systems with multiple time bands using algebraic reasoning

    Get PDF
    The verify-while-develop paradigm allows one to incrementally develop programs from their specifications using a series of calculations against the remaining proof obligations. This paper presents a derivation method for real-time systems with realistic constraints on their behaviour. We develop a high-level interval-based logic that provides flexibility in an implementation, yet allows algebraic reasoning over multiple granularities and sampling multiple sensors with delay. The semantics of an action system is given in terms of interval predicates and algebraic operators to unify the logics for an action system and its properties, which in turn simplifies the calculations and derivations

    Reasoning about real-time teleo-reactive programs

    Get PDF
    The teleo-reactive programming model is a high-level approach to implementing real-time control programs that react dynamically to changes in their environment. Teleo-reactive programs are particularly useful for implementing controllers in autonomous agents. In this paper we present formal techniques for reasoning about robust teleo-reactive programs.We develop a temporal logic over continuous intervals, which we use to formalise the semantics of teleo-reactive programs. To facilitate compositional reasoning about a program and its environment, we use rely/guarantee style specications. We also present several theorems for simplifying proofs of teleo-reactive programs that control goal-directed agents

    Reasoning about teleo-reactive programs under parallel composition

    Get PDF
    The teleo-reactive programming model is a high-level approach to implementing real-time controllers that react dynamically to changes in their environment. Teleo-reactive actions can be hierarchically nested, which facilitates abstraction from lower-level details. Furthermore, teleo-reactive programs can be composed using renaming, hiding, and parallelism to form new programs. In this paper, we present a framework for reasoning about safety, progress, and real-time properties of teleo-reactive programs under program composition. We use a logic that extends the duration calculus to formalise the semantics of teleo-reactive programs and to reason about their properties. We present rely/guarantee style specifications to allow compositional proofs and we consider an application of our theory by verifying a real-time controller for an industrial press

    Formal Power Analysis of Systems-on-Chip

    Get PDF
    The design methods and languages targeted to modern System-on-Chip designs are facing tremendous pressure of the ever-increasing complexity, power, and speed requirements. To estimate any of these three metrics, there is a trade-off between accuracy and abstraction level of detail in which a system under design is analyzed. The more detailed the description, the more accurate the simulation will be, but, on the other hand, the more time consuming it will be. Moreover, a designer wants to make decisions as early as possible in the design flow to avoid costly design backtracking. To answer the challenges posed upon System-on-chip designs, this thesis introduces a formal, power aware framework, its development methods, and methods to constraint and analyze power consumption of the system under design. This thesis discusses on power analysis of synchronous and asynchronous systems not forgetting the communication aspects of these systems. The presented framework is built upon the Timed Action System formalism, which offer an environment to analyze and constraint the functional and temporal behavior of the system at high abstraction level. Furthermore, due to the complexity of System-on-Chip designs, the possibility to abstract unnecessary implementation details at higher abstraction levels is an essential part of the introduced design framework. With the encapsulation and abstraction techniques incorporated with the procedure based communication allows a designer to use the presented power aware framework in modeling these large scale systems. The introduced techniques also enable one to subdivide the development of communication and computation into own tasks. This property is taken into account in the power analysis part as well. Furthermore, the presented framework is developed in a way that it can be used throughout the design project. In other words, a designer is able to model and analyze systems from an abstract specification down to an implementable specification.Siirretty Doriast
    corecore