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Abstract

The design methods and languages targeted to modern System-on-Chip
designs are facing tremendous pressure of the ever-increasing complexity,
power, and speed requirements. To estimate any of these three metrics,
there is a trade-off between accuracy and abstraction level of detail in which
a system under design is analyzed. The more detailed the description, the
more accurate the simulation will be, but, on the other hand, the more time
consuming it will be. Moreover, a designer wants to make decisions as early
as possible in the design flow to avoid costly design backtracking.

To answer the challenges posed upon System-on-chip designs, this the-
sis introduces a formal, power aware framework, its development methods,
and methods to constraint and analyze power consumption of the system
under design. This thesis discusses on power analysis of synchronous and
asynchronous systems not forgetting the communication aspects of these
systems. The presented framework is built upon the Timed Action Sys-
tem formalism, which offer an environment to analyze and constraint the
functional and temporal behavior of the system at high abstraction level.
Furthermore, due to the complexity of System-on-Chip designs, the possi-
bility to abstract unnecessary implementation details at higher abstraction
levels is an essential part of the introduced design framework. With the
encapsulation and abstraction techniques incorporated with the procedure
based communication allows a designer to use the presented power aware
framework in modeling these large scale systems. The introduced techniques
also enable one to subdivide the development of communication and com-
putation into own tasks. This property is taken into account in the power
analysis part as well. Furthermore, the presented framework is developed in
a way that it can be used throughout the design project. In other words, a
designer is able to model and analyze systems from an abstract specification
down to an implementable specification.
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Chapter 1

Introduction

The design of complex chips has undergone a series of revolutions during the
last two decades. In the 1980’s a language based design approach and syn-
thesis was introduced. In the 1990’s there was the adoption of design reuse
and Intellectual Property (IP) as a mainstream design practice. These tech-
nological advances made possible to integrate entire system into a single
chip, hence the term System-on-Chip. After the millennium, the concept
of deep submicron technology, from 130 nm down, made possible to inte-
grate more and more gates into a single chip. This development lead to
the situation where several systems were integrated into a single chip. This
Systems-on-Chip (SoC) approach, however, poses a new set of design prob-
lems. That is, it is possible to implement tens of millions of gates on a
reasonably small die leading to a power density and total power dissipation
that is at the limits of what packaging, cooling, and other infrastructure can
support.

The total power consumption of SoC consist of dynamic power consump-
tion and static power consumption. The former is the power consumed when
the device is active, that is, when signals are changing values. The latter
is the power consumed when the device is powered up but no signals are
changing values. In Complementary Metal Oxide Semiconductor (CMOS)
devices, the primary source of the dynamic power consumption is the switch-
ing power, that is, the power required to charge and discharge the output
capacitance of the gate. The static power consumption, however, is caused
by the leakage current [49], which is the combination of the subthreshold
leakage (a weak inversion current across the device), and the gate leakage
(a tunneling current through the gate oxide insulation). As technology has
shrunk to 90 nm and below, the leakage current is increasing dramatically
to the point where, in 65 nm designs, the leakage current is nearly as large
as the dynamic current [47]. The above described design challenges have
a significant effect on how chips are designed. The power density of the
highest performance chips has grown to the point where it is no longer pos-
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Table 1.1: Power consumption growth vs. technology decrease

Node 90 nm | 65 nm | 45 nm
Dynamic Power 1x 1.4x 2z
per em?

Static Power 1z 2.5x 6.5x
per em?

Total Power 1z 2x 4x
per cm?

sible to increase the clock speed as the technology shrinks. As a result,
multi-processor chips are designed instead of single-chip ultra high speed
processor cores. The relationship between the growth in power density and
the decrease in feature size is shown in Table 1.1 according to the Inter-
national Technology Roadmap for Semiconductors (ITRS) [6]. In addition,
for battery-powered devices, which comprise one of the fastest growing elec-
tronic market, the leakage is a major problem. According to ITRS the
battery life for these devices peaked in 2004. After that, the battery life
has been decreased as features have been added faster than the power (per
feature) has been reduced.

Until recently, power has been the second order concern in chip design,
following the first order issues such as timing, area, and cost. Today, for
most SoC designs, a power budget is one of the most important design
goals of the project [47]. That is, exceeding the power budget can be fatal
to a project, whether it means changing a cheap plastic package with an
expensive ceramic one, causing an unacceptable poor reliability due to an
excessive power density, or failing to meet the required battery life.

Performance analysis of various system properties can be carried out at
different abstraction levels during the design process. In general, there is
a trade-off between accuracy on one hand and design time and cost on the
other hand. Typically, lower level estimation tools offer greater estimation
accuracy, but their use to explore architectural trade-offs tends to be time
consuming. Higher level tools allow faster and less costly iteration cycles
at the price of lower accuracy. High abstraction level functionality speci-
fication for both Hardware (HW) and Software (SW) is one of the design
challenges to increase the design productivity in technologies above 32 nm
according to the predictions made by ITRS [6]. However, technologies be-
low 32 nm lists the complete formal verification of designs as their design
challenge. Furthermore, the accuracy requirements set for high-level perfor-
mance estimates (area, power, time) are assumed to be at least 70 % from
the measured value by the end of 2010.



In general, the development of a SoC design starts from a high-level spec-
ification. A functional specification defines how the system should operate
according to its inputs and a temporal behavior defines the timing require-
ments that must be satisfied by the system components. Physical properties
(such as area and power) can be estimated based on both the functional be-
havior and the temporal behavior. The development phases must ensure
that the end product reflects the abstract specification. The correctness of
an implementation is traditionally verified using simulation based methods
where unintended mismatches between the models cause new design cycles.
This approach is error prone as well as time consuming. To overcome these
tedious design cycles a promising alternative is to use formal methods with
a stepwise refinement method. They provide means with which a high-
level system specification can be transformed to an implementable model.
To answer the design challenges presented above, formal methods provide
an environment to specify, design, and verify systems with the benefits of
rigorous mathematical basis.

1.1 Objectives

As the power consumption becomes one of the fundamental features of recent
SoC designs, it is imperative to have reliable power analysis frameworks.
The objective of this thesis is to define a power analysis framework based
on the existing the Timed Action Systems formalism [86], that includes
techniques to constrain and analyze the system. The developed framework
the challenges described in the previous section, namely to provide:

e A framework to estimate a system’s physical characteristics (area,
power) at a high abstraction level with different system construct such
as synchronous and asynchronous systems.

e Correctness preserving development of functional and physical prop-
erties.

e A framework to analyze power consumption within different commu-
nication constructs.

The Timed Action Systems formalism is an extension of the Action Sys-
tems formalism [20],that has been already successfully applied to the de-
velopment of both synchronous [76] and asynchronous [67] SoC designs.
Action Systems is a state-based formalism initially proposed by Back and
Kurki-Suonio [17] and based on an extended version of a guarded command
language introduced by Dijkstra [40]. It was first tailored to specification
and correctness preserving development of reactive systems, but it has been
thereafter successfully applied to SoC designs.
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A Env

constraints

interface variables

Figure 1.1: Interaction between a system A and its environment Env

Timed Action Systems provides an environment to reason about both
functional and timing properties of the abstract system model. At high
abstraction level, one is able to estimate the area and power dissipation of
the system model by exploiting the properties of the formalism. The key
components in the power estimation framework are area and time, because
at this abstraction level there is no information of the technology or tech-
nology platform on which the design will be physically implemented. As
mentioned above, the timing model is adopted from Timed Action Systems
whereas the rules to estimate area are given in this thesis. Combining the
area information and the timing information one is able to reason whether
the requirements set for power dissipation holds or not. The requirements
against which the results are verified are expressed in terms of constraints.
Naturally, timing and area properties can be verified as well. In other words,
constraints are used to steer the development of the system towards an im-
plementation whose functional, timing, and physical characteristics fulfil the
requirements given by the specification.

The correctness of both logical and temporal characteristics of the sys-
tem under design are verified within the refinement calculus framework [22]
and its time aware extension [86]. In this thesis, the time aware refinement
calculus is further extended to ensure the physical properties of the system.
That is, this thesis presents a refinement methodology with which the func-
tional properties of the abstract system specification can be transformed
using the standard refinement calculus framework towards a more concrete
system preserving its timing and power characteristics.
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In terms of power analysis, different system constructs have properties
that demand specific discussion on how their power estimate is evaluated,
for example, clocking in synchronous circuits. Regardless of which specific
properties a system has the modeling environment is the same. The model-
ing environment describes the way the system and its environment interact.
This is illustrated in Fig. 1.1, where a system A interacts with its envi-
ronment Env. Furthermore, the actions A; of the system A and E; of the
system F, operate in a mon-final manner meaning that there is always at
least one enabled action either in the system A or in its environment Enwv.
The environment reads from the output variables of the system and writes
onto the input variables of the system. Furthermore, the environment sets
constraints for the system.

Communication in modern digital systems often forms a bottleneck in
terms of time, area, and power. Therefore, separate models and analyze
need to be applied for different communication structures. Communication
inside an action system is assumed to be part of the area of the action
system whereas communication between Action Systems requires longer in-
terconnects. That is, separate timing and power analysis frameworks are
required.

1.2 List of Publications

The work discussed in this thesis is based on and extended from the publi-
cations listed below:

1. Johanna Tuominen, Tomi Westerlund and Juha Plosila. Feasibility
Report on Formal Area Complexity Estimation. In TUCS Techni-
cal Report 907, Turku Centre for Computer Science, Finland, August
2008.

2. Johanna Tuominen, Tomi Westerlund and Juha Plosila. Power Aware
System Refinement. In Electronic Notes in Theoretical Computer Sci-
ence (ENTCS), volume 201C, pages 223-253, 2008.

3. Johanna Tuominen, Tomi Westerlund and Juha Plosila. Formal Power
Analysis of On-Chip Communication. In Brasilian Symposium on For-
mal Methods (SBMF), pages 87-102, 2007.

4. Johanna Tuominen, Tero Séantti and Juha Plosila. Towards a Formal
Power Estimation Framework for Hardware Systems. In International
Symposium on System-On-Chip, pages 96-99, 2005.

5. Johanna Tuominen and Juha Plosila. Formal Specification of an Asyn-
chronous Viterbi Decoder. In 28rd IEEE Norchip Conference, pages
214-217, 2005.



1.3 Overview of the Thesis

The rest of the thesis is organized as follows. Chapter 2 describes the Action
Systems formalism, which is the formal basis of the time and power aware
modeling framework. In Chapter 3 the time aware extension of Action
Systems, Timed Action Systems is defined upon which the power modeling
framework is constructed. The power modeling framework for Timed Action
Systems is presented in Chapter 4. The constraints are presented in Chapter
5 and the refinement methodology for Timed Action Systems is described
and extended to cover the power modeling aspects in Chapter 6. Chapter 7
applies the power modeling framework for different system models such as
synchronous and asynchronous systems, and, furthermore, communication
networks are introduced. The case study, described in Chapter 8, illustrates
the usage of the formal power estimation with its modeling and develop-
ment methods. Finally, Chapter 9 concludes the thesis and presents future
directions for the formal power estimation framework.

1.4 Related Work

Recent years have shown, based on the active research carried out in the field,
that there is a need for a rigorous development framework that operates at
higher abstraction levels than the traditional approaches. That is, there is a
need to evaluate the performance (time, area and power) of the system above
Register Transfer Level (RTL) allowing us to detect performance related
bugs earlier. The target application fields among the presented formalism
varies from software systems to hardware systems and to embedded systems.

Time-aware Action Systems

Modeling passage of time in Action Systems is not a novel idea. That is,
in addition to Timed Action Systems, there exists at least the following
time-embedding extensions of Action Systems [86]: Hybrid Action Systems
[73, 74] and Continuous Action Systems [18]. In [86], Timed Action Sys-
tems was compared with the above two time-embedding formalisms. The
target environment of Timed Action Systems is digital SoC, whereas the tar-
get environment of Hybrid Action Systems and Continuous Action System
is a hybrid system. The hybrid system is (typically) composed of digital
programs that interact with an analog environment. From this it follows
that the major problem to adopt Hybrid Action Systems (1) or Continuous
Action Systems (2) was the definition of time: (1) The lapse of time in Hy-
brid Systems is captured with differential equations: equations whose first
derivative is continuous. These equations do not directly refer to time, that
is, the progress of time is implicit. (2) The value of time is updated by an
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action in Continuous Action Systems. However discrete changes are per-
formed in jumps, which are instantaneous and can be observed in a point of
time. In other words, a state change does not consume time. For instance,
the operations performed in these jumps are executed by computers whose
operation time with respect to the physical object or phenomenon is negli-
gible. That is, in hybrid system, the time consumed by control mechanism,
a computer (SoC design) is negligible with respect to the time consumed
by physical objects. Thus, owing to the importance of the time consumed
in the operations within the SoC designs, these formalisms are not in their
best in modeling these systems.

Timed formalisms and SoC designs

To model Very Large Scale Integration (VLSI) systems several synchronous
formalism exist such as Signal [24], Lustre [32] and FEsterel [26]. All of these
approaches rely on the synchronous hypothesis in which computations and
behaviors are divided into a discrete sequence of steps with deterministic
concurrency. Signal is applied to modeling and validating globally asyn-
chronous design in synchronous networks [60] and Esterel is extended to mul-
tiple clock domains in [27] and [72] allowing one to model both multiclocked
and asynchronous systems, and furthermore, to capture asynchronous be-
havior within a synchronous framework. These extensions enable one to
use the formalisms for the same application area as the Action Systems.
However, the research presented in this study is targeted to formal power
modeling framework where time is a significant measure. Therefore, one
should consider the timing analysis capabilities as well. The timing analysis
in these synchronous languages is more restrictive than the timing analysis
in the timed spiced extension of Action Systems, Timed Action Systems,
because they rely on the perfect synchrony hypothesis that defines that the
outputs are produced synchronously with the inputs. Furthermore, the rig-
orous system development is supported only in Signal. It supports system
refinement via semantics-preserving transformations [81], but its mathemat-
ical basis seems to be less rigorous than the Refinement Calculus Paradigm
[22] defined for Action Systems.

Esterel Studio [4] is a tool set targeted to design SoC systems. It uses a
formal description language and a verification environment to produce RTL
system descriptions. These RTL descriptions can be exported at least in
Verilog, VHSIC Hardware Description Language (VHDL), and SystemC.
Furthermore, the generated system descriptions have shown to be equally
good or in many cases better than hard coded ones [4]. The tool does not
directly offer any area evaluation methods but its verification methods can
be used to make the design as efficient as possible. For instance, a power
manager design [41] framework relates to Esterel Studio. The system specifi-
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cations are written in terms of hierarchical concurrent state machines where
the formal verification makes it possible to check critical properties and
preserve behavior when beautifying the specification. That is, the Esterel
verification environment is used to define a more efficient power management
system for a SoC. The power management device optimizes dynamic and
static power reduction by dynamically distributing and controlling clock, re-
set, and power distribution for various SoC parts. This approach, however,
is targeted to control power consumption by designing a specific component
using the most effective approach available. In this thesis, the presented
approach in terms of area and power consumption is more general. That
is, one can estimate performance related metrics to all components that are
valid for the formalism. Furthermore, the presented model is more flexible
since it is not restricted to synchronous systems.

Area

In an early work [79] of Shannon the area complexity of Boolean function
was studied (switch count). In this paper Shannon proved that the asymp-
totic complexity of Boolean functions is exponential in the number of inputs
(m), and that for large m, almost every Boolean function is exponentially
complex. Muller demonstrated the same result for Boolean functions im-
plemented using logic gates (gate-count measure) in [61]. As one tries to
apply that model to realistic VLSI circuits, it quickly breaks down due to
the exponential dependence on the number of inputs. Over the years sev-
eral other researchers have reported results related to the area complexity
of Boolean functions, for instance, the relationship between area complex-
ity and entropy (H) is reported, for instance, in [48], [66], [37] and [35].
Cheng and Agrawal [35] used the entropy measure for the complexity of
multi-output Boolean functions. Nemani et. al. [65] proposed a method for
predicting the area of a single output Boolean function given only its func-
tional specification and no structural information. This area complexity
model is based on the area cube complexity and the results were compared
with the SIS high-level synthesis tool nowadays known as Multivalued Logic
Synthesis (MVSIS) [7]. The model was reasonably accurate compared with
the results given by the SIS tool.

Another approach to model the area complexity of a Boolean function
is to use a graphical model. A Boolean function can be represented as a
directed acyclic graph, where the size of a function can be evaluated by cal-
culating the number of nodes needed to present the function. These graphs
are often referred to as Binary Decision Diagrams (BDDs), and described,
for instance, in [12, 29, 30]. BDD represent a Boolean function as a di-
rected acyclic graph with each vertex labeled by a Boolean variable. In an
Ordered Binary Decision Diagram (OBDD), the vertex label occurs in the
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same order along all directed paths. This presentation has many desirable
algorithmic properties. For instance, it has proved to work well as a data
structure for symbolically representing and manipulating Boolean functions
[29]. Furthermore, for a given variable ordering, the smallest OBBD for a
particular Boolean function is unique.

Several tools and packages exist to automate the BDD manipulation.
For instance, packages such as CUDD [3] and BuDDy [2] offer functions
to manipulate BDDs via a C++ interface. However, benchmark circuits
such as the ISCAS and ACM/SIGDA benchmark sets do not support these
tools. University of Berkeley has research groups [7, 10] on high level syn-
thesis and verification, offering their own tool sets for BDD manipulation.
Furthermore, decision diagrams are often related to verification tools. For
instance, Esterel verification environment (Xeve) [5] uses BDDs to symbol-
ically describe input events to analyze state machines.

The above mentioned approaches are targeted to RTL analysis, i.e., a
RTL description that includes complete information on the memory elements
but only functional (Boolean) information on combinatorial logic. In this
thesis, the presented area evaluation methods are only partly applicable be-
cause the area modeling approach targeted to Action Systems operates at a
higher abstraction level. The higher abstraction level, in this context, states
that the system descriptions are written using Boolean type of expressions
but the exact functionality (Boolean function) is unknown or inaccurate.
Thus, new evaluation methods are required.

Power consumption

A number of power estimation techniques have been proposed for gate-level
power estimation in VLSI designs (see [63] for survey). However, by the
time the design has been specified down to the gate level, it may be too late
or too expensive to go back and fix high-power problems. Therefore, power
estimation techniques that can estimate the power at high abstraction levels
are required to reduce costly redesign steps. In response to this need several
high-level power estimation techniques have been proposed (see [51] for a
survey). Two style of techniques have been proposed, which are referred to as
top-down and bottom-up. In top-down techniques [55, 64] a combinatorial
circuit is specified as a Boolean function with no information on circuit
structure such as the number of gates. Top-down methods are useful when
one is designing a logic block that has not been previously designed, that is,
its internal structure is unknown. In contrast, the bottom up methods, for
instance [25, 44, 71], are useful when one is reusing a previously designed
logic block. In this case, a power macro model is developed for this block.
This model can be used in power estimation for the block without performing
a more expensive gate-level simulation on it. Most of the power estimation
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methods mentioned are targeted to estimate average power consumption
over a long time period. However, in many applications the average power
may not be enough. Indeed, it is often important to know the instantaneous
power dissipation as a time waveform, which one may refer to as a transient
power waveform. For instance, transient power is needed in the analysis of
the power and ground bus networks for finding the IR-drop problems. Gupta
et. al presented a RTL macro modeling technique for estimating the energy
dissipated and peak current drawn in a logic circuit for every input vector
pair [45]. This model concentrated particularly on modeling instantaneous
power dissipation.

At the RTL, the primitives are functional blocks such as adders, multipli-
ers, controllers, register files and memory units. The difficulty in estimating
power at this level stems from the fact that the gate, circuit, and layout
level details of the design may not have been specified [51]. Furthermore,
a floorplan may not be available, making analysis of interconnect and clock
distribution networks difficult. One way to estimate the power consumption
of a particular RTL description is use the fundamental that describes the
physical capacitance and activity of a design. Complexity based models re-
lies on the fact that the complexity of a chip architecture can be described
roughly in terms of “gate equivalents”. Basically, the gate equivalent count
of a design specifies an approximate number of reference gates that would
be required to implement a particular function. The power consumption
for each functional block can be estimated by multiplying the approximate
number of gate equivalents by the average power consumed by each gate.
An example of this technique is given by the Chip Estimation Technique
[62]. One disadvantage of this technique is that the energy estimate is based
on an energy consumption of a single reference gate and therefore does not
take into account different circuit styles or layout techniques. In [54], Liu
and Svensson improved the above model by applying customized estimation
techniques to the different design entities such as logic, memory, intercon-
nect and clock. The advantage of these complexity based solutions is that
they require very little information. On the other hand, they do not provide
a model for circuit activity or they provide a fixed, user determined activity
factor. Another approach is to use activity based methods where the basic
idea is to relate the power that a functional block consumes to the amount
of computational work it performs. In [64], the power estimation method-
ology consists of running a RTL simulation of the design to measure the
input and output entropies of the functional blocks then to translate these
measurements into prediction on average power.

The power analysis techniques mentioned above are divided into two
categories: top-down and bottom-up techniques where the latter is based on
generating a macro model of the circuit under analysis. The macro model
generation requires some knowledge of the circuit under analysis to generate
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the model, and therefore it cannot be used to describe the power modeling
framework presented in this thesis. This is due to the fact that the presented
modeling framework falls into top down category because the purpose is
to model power consumption from abstract design steps to implementable
system description. The difference to the presented top-down methodologies
is that in this study an abstract level refers to descriptions above RTL.
Furthermore, all of the models presented above discussed on dynamic power
consumption whereas the model presented in this study covers both static
and dynamic power consumption.
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Chapter 2

Action Systems

This chapter describes the Action Systems formalism [17, 20], that is the
formal basis for the work presented in this thesis. Action Systems is used for
modeling concurrent systems and developing them towards implementation
in a correctness preserving manner. It is based on an extended version of
Dijkstra’s guarded command languages [40] and defined using weakest pre-
condition predicate transformers. The basic building block of the formalism
is an action, a guarded command in Dijkstra’s notation. A collection of ac-
tions operating iteratively on various variables is called an action systems.
The development of action systems is done in a stepwise manner within the
refinement calculus framework [15, 22| using correctness preserving trans-
formations.

2.1 Actions

An action A is defined (for example) by:

A = abort (abortion, non-termination)
| skip (empty statement)
| {p} (assert statement)
| [p] (assumption statement)
|z :=2".Q (non-deterministic assignment)
| x:=e (assignment)
|lp— A (guarded action)
| A1 ]| Ao (non-deterministic choice)
| Ay; Ag (sequential composition)
| [[var = := z0; A]| (block with local variables)
| do A od (iterative composition)
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where A and A;, i = 1,2, are actions; x is a variable; e is an expression; and
p and @ are predicates (Boolean expression). Notice that any action A can
be written in the form true — A, and thus each of the above actions can be
considered a guarded command. If an action does not establish any post-
condition it behaves as an abort statement (a never terminating statement),
and if it does not change the state at all, it behaves as a skip statement (an
empty statement).

The variables which are assigned within the action A are called the write
variables of A, denoted by wA. The other variables present in the action
A are called the read variables of A, denoted by rA. The write and read
variables form together the access set vA of A:

vA=wAUrA (access set)

Observe that the read and write sets of A are not necessary exclusive, that
is, a variable can belong to both sets (rANwA # 0). If rANwA # () holds,
then a read-write conflict may occur when the variable is read and written
at the same time. This can be solved with careful system design.

The scope of a composition operator is indicated with parenthesis, for
example: A4; ((B;C) [ D).
Example 2.1. As an example of an action, consider two variables z and y,
which are added together and the result is written to the variable res. The
action definition is of the form: Add = res := x + y, where Add is a label
for given action
End of example.

Notations A substitution operation within an action A, denoted by:

Ale /e] (substitution)

where e refers to an element such as variables and predicates of the original
action A and e’ denotes the new element, which replaces e in A.
A multiple (simultaneous) assignment is defined by:

Llyeeeyp = €1y...,€En . .
(multiple assignment)
TlyeooyTp =€y, € =T],...,Tpn =€

where the former simultaneously assigns the expression e; to variables x;,
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respectively, and the latter assigns the same expression e to all the variables
ZTy.
A quantified composition of actions is defined by:

01 <i<mn:A]=Ae...0A4, (quantified composition)

where the bullet e denotes any of the composition operators [ (non-
deterministic choice) or ; (sequential composition), and n is the number
of actions.

2.2 Semantics of Actions

Actions and action compositions are considered to be atomic, which means
that only the initial and final states are observable by the system. There-
fore, when an action is selected for execution, it is completed without any
interference from other actions.

The total correctness of an action A with respect to a precondition p and
a post condition ¢ is denoted by pAg and defined by:

pAqg=p=wp(4q) (total correctness)

where wp(A, q) is the weakest precondition for the action A to establish the
postcondition q.

e,
p— A4, ) p= wp(4,9)
P((A1 [ A2),q) = wp(Ai1,q) AN wp(As, q) (non-deterministic choice)
P((A1; A2),q) = wp(A1, wp(A2,q))
p(|[var z := z0; A]|,q) = Vz.wp(4, q)

g

sequential composition)

g

block with variables)

g

wp(abort,q) = false (abortion, non-termination)
wp(skip,q) = q (empty statement)
wp({p},q¢) =pAgq (assert statement)
wp([p], ) p=q (assumption statement)
wp(z :=2'.r,q) = Va'.r = q[2' /2] (non-deterministic assignment)
wp(z = = qle/z] ((multiple) assignment)
wp( (guarded action)

( (

( (

( (

(do (

wp A od,q) =3k > 0.Hy, iterative composition)
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where the conditions Hy, are defined by:

H. = )4 —gd(A) k=0 (condition of
7\ gd(A) Awp(A, Hy_))VHy k>0 iterative composition)

The weakest precondition of the iteration loop requires that after k repeti-
tions of A the loop terminates. That is, A becomes disabled in a state where
the postcondition ¢ holds. If kK = 0, A is disabled and the iteration behaves
as a skip action. The Boolean condition gd(A) is the guard of the action A,
defined by:

gd(A) = —wp(A, false) (guard of an action)

Hence, gd(A) is true in the states, where A does not behave miraculously. In
the case of a guarded action A = p — B, the guard of A is gd(A) = pAgd(B).
The guarded action can also be defined as the statement [pl; B.

An action is said to be enabled in states where its guard is true. Other-
wise A is disabled. If the guard gd(A) is invariantly true, the action is said
to be always enabled: wp(A, false) = false. Furthermore, if

wp(A, true) = true

holds, the action A is said to be always terminating. The body bd(A) of the
action A is defined by:

bd(A) = {gd(A)}; A (body of an action)

Prioritized composition A prioritized composition [77] of actions, de-
noted by A; // As is a new composed action in which the execution order of
enabled actions is prioritized. The highest priority belongs to the leftmost
action in the composition; thus if both of the actions are enabled at the
same time, the leftmost enabled action is always selected for execution. The
prioritized composition is defined by:

Ay ) Ay = Ay || —gd(Ar) — Ag (prioritized composition) (2.1)

where gd(A;) is the guard of the action A;. The definition shows that if
Aj is enabled, then it is executed independently of the enabledness status
of A2.
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Synchronous composition A synchronous composition, denoted by A,V
As, is used to model synchronous behavior of system components where all
the enabled actions perform their operation at the same time within one
atomic action. The synchronous composition is defined by:

A1V Ay = [var uAp, uAs (synchronous composition) (2.2)
;gd(A1) V gd(Ag) — uA1,uAy := wA1, wAy;
(1 <i<2:Aj[udi/wA;] | skip]
swA, wAg 1= uAy, uAs]

where only enabled actions are executed. The enabledness of an action A;
is evaluated based on its guard gd(A4;). Those actions that are disabled at
the time of execution perform the skip operation. The variable substitution
resolves the possible read-write conflicts by storing the write variables (wA;N
wAs = () onto local, internal variables uA; and uAy. The actions write on
the local variables and after all the actions have been executed the write
variables are updated. Thus, there is no possibility for read-write conflicts
during the operation.

2.3 Non-Atomic Operation of Actions

The actions, and their compositions presented in the previous sections are all
atomic. The atomic compositions are merely larger atomic entities composed
of simpler ones. However, when dealing with the iterative composition, the
do - od loop, whose execution may consist of several executions of its
component actions, it is also useful to define the concept of a non-atomic
composition of actions within the scope of the loop in question. In a such
construct, the component actions are atomic entities of their own, but their
composition is not. Non-atomicity means that also the intermediate states of
the composite action can be observed unlike in the case of atomic construct.
A non-atomic sequence of atomic actions A; and As is denoted by:

do A; ; Ay od (non-atomic sequence) (2.3)

where the execution order is from left to right. It can be defined in terms of
non-deterministic choice and an auxiliary local program counter p (initial-
ized to 1) as follows:

A A2 A ] A
where Ai and A; are of the form:
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Aiép:1—>(A1;p::2)
A33P22—>(A2;p1:1)

A parallel composition of atomic actions A; and As is denoted by:

do A; || Az od (parallel compostion) (2.4)

where the execution order in the composition is of no importance. It can
be defined in terms of non-deterministic choice and an auxiliary Boolean
variable p; (initialized to T) and a new auxiliary action 7} as follows:

A A=Al ] A4 ]
where A!, Ag, and T) are of the form:
Al 2 pp— (Aispr = F)
A} 2 py — (A py = F)

Ty = —p1 A —p2 — (p1,p2 :=T)

where it is required that wA; NwAs # (0. Moreover, the above definitions
extend to more than two actions as well, see for instance [67].

2.4 Properties of Actions

A predicate I is an invariant over an action A if the following condition
holds:

I = wp(A,I) (invariant)

which is the same as the total correctness assertion {I}A{I}. If wp(A,I) =
true, then the action A is said to establish the invariant I. It is also said
that the action preserves the invariant I.

A predicate p excludes an action A if the following condition holds:

p = —gd(A) (excludes)

and a predicate p includes an action A if the following condition holds:
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p = gd(A)

(includes)

The way in which two actions A and B interact is captured by the

following definitions:

A cannot enable B = —gd(B) = wp(A, ~gd(B))
A can enable B = —(—gd(B) = wp(A4, —gd(B)))
A enables B = —gd(B) = wp(A4, gd(B))

A cannot disable B = gd(B) = wp(A4, gd(B))
A can disable B = —(gd(B) = wp(A4, gd(B)))

A disables B = gd(B) = wp(A4, ~gd(B))

A excludes B = gd(A) = —gd(B)

A includes B = ¢gd(A) = ¢d(B)

N NN~~~ —~
N A
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2.5 Action Systems

An action system has the form:
sys A ( imp pr; exp pg; )( ga; )
It
type
type: Def;
constraint
constraint: (B);
variable
la;
private procedure
pr(in z : out y): (Pr);
public procedure
pe(in z :out y): (Pg);
action
Aﬁ(aAﬁ;
initialization
94,14 = ga0,140;
execution
forever do composition of actions A; od

I

where it is possible to identify three main sections: interface, declaration and
iteration. The interface part declares those variables, g4, that are visible
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outside the action system boundaries and therefore accessible by other action
systems. Global variables maybe of type input, output or bi-directional
input-output, and the types are denoted by the following identifiers: in, out
and inout, respectively. It also introduces interface procedures p;y and pg
that are imported in or introduced in and exported by the system. These are
denoted by the imp and exp identifiers, respectively. If an action system has
no interface variables or procedures, it is a closed action system, otherwise
it is an open action system.

The declaration part introduces all new, local type definitions (type);
constraints (constraint) that define restrictions on the functional behavior
of the system including invariants; and the local variables [4 (variable).
Furthermore, the declaration part introduces private p; and public pg pro-
cedures (private procedure / public procedure) and action definitions
aA; (action) that perform operations on local and global variables. Fur-
thermore, a label A; is given for every action definition.

The operation of an action system is started by the initialization in which
the variables are set to predefined values. In the iteration part, the execu-
tion section, actions are selected for execution based on their composition
and enabledness. In general, actions are selected for execution one at a time.
Parallel execution of actions is considered when two or more actions, which
are not in conflict, are executed simultaneously. The synchronous compo-
sition forms an exception, that is, it executes all the enabled actions in a
composition as a one atomic action. This is continued until there are no
enabled actions, whereupon the computation terminates. Hence, an action
system is essentially an initialized block with a body that contains an iter-
ation, that is, a statement which is repeatedly executed. In this thesis the
iteration loop is of the form forever do - od instead of the conventional
do - od loop. This is only notational difference, that is, the behavior is the
same between these two loops. The former one is adopted to illustrate the
reactive nature of Action Systems.

In general, the sets of the global and local variables of an action system
A are denoted by g4 and [ 4, respectively. The access set of A is defined by:

vA = gaUly (access set of A)

A predicate is an invariant of an action system A, if the following con-
ditions hold:

true = wp((g,! := ¢0,10), 1) (established by the initialization) (2.13)
I = wp(A,I) (preserved by the action A) (2.14)

That is, an invariant is a Boolean condition that must hold in all possible
execution states of action system A.
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2.5.1 Parallel action systems

Consider two actions systems A and B of the form:

sys A ( ga; ) sys B ( gp; )
I Ii
variable variable
la; IB;
action action
A: (aA); B: (aB);
initialization initialization
ga,la = ga0,140; 9B, 1B = gB0,150;
execution execution
forever do A od forever do B od

] ]

where [4 Nlp = 0 (distinct local variables).

The parallel composition [67]of A and B, denoted by A || B, is an action
system that combines the state spaces of the constituent action systems such
that the local variables are kept distinct and the global variables are a set
ga U gp. Furthermore, it is required that the initializations of the global
variables (g4 Ngp) in the system A and B are consistent with each other so
that their initial values are equivalent in the systems: Yv € (gaNgp).(va0 =
vp0). Here v40 € g40 and vp0 € gg0.

The parallel composition of the above systems is of the form:

sys A||B ( gaUgp; )

It

variable

laUlp;
action

A: (aA);

B: (aB);
initialization

(9aUgn),(laUlB) := (ga0U gB0), (140 U 50);
execution

forever do A | B od
I

The reactive components A and B interact with each other via the global
variables that are referenced in both components. The reactivity means that
the action systems A and B do not terminate independently of each other,
but termination is a global property of Al B.

2.5.2 Hierarchical action systems

A hierarchical action system [67] is an action system that encapsulates other
action system inside its boundaries. These action systems are called sub-
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systems, and they are introduced in the declarative part of the hierarchical
action system and their functionalities are defined elsewhere. A hierarchical
action system H is of the form:

sys H (  gm; )= sys A ( ga; )=
I I
variable variable
ln U (ga\gn); La;
subsystem action
I: A(ga); A: (ad);
action initialization
H: (aH); ga,la = ga0,140;
initialization execution
lg U(g9a\gnr), 9 forever do A od
= (g0 U (9a0\gn0)), gu0; ]|
execution

forever do H od | I
]

where A is the subsystem within the action system H and I its local instance
name. The local variables of the hierarchical system H are the union of its
own local variables {7 and the difference of the global variables g4 of the
subsystem A and the global variables gy of the hierarchical system H. The
subsystems local variables [ 4 are encapsulated inside the system A.

The interpretation H fi4¢teneq of the hierarchical composition of the action
systems H and A is of the form:

S[yS Hflattened ( 9H; ) “
|
variable
lr ULl U (ga\gn);
action
H: (aH);
I.A: (aA);
initialization
lg UIlaU (94\9m) U gH
= (lg0UI1.140 U (940 U g50) U gx0;
execution
forever do H || I.A od
Il

where the local variables are the union of the local variables of the hierar-
chical system H and the local variables of the subsystem A. Furthermore,
the action clause consist of the actions of both systems.
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2.6 Procedures

A procedure is either local, exported, or imported, and, furthermore, they
must be distinct. The local and exported procedures are defined in the pri-
vate procedure and public procedure clauses of action system, respec-
tively. The private procedures are used by the system whereas the public
procedures are called by other action systems. The imported procedures
are introduced in and exported by other action systems and called by the
system that imports them. Together the imported and exported procedures
are called interface procedures.

Each procedure may have a set of input values in, a set of output values
(result) out, and a set of bidirectional values inout as parameters. The
parameters are accessible in the body of the procedure but not the outside,
and they are replaced with the actual ones at each procedure call. The
operation performed by the procedure (a procedure body) is considered a
part of the calling atomic action, that is, a procedure is a parametrized
subaction. A procedure is defined by:

p( in z; out y; inout z): P (procedure p)

where the body P of the procedure p is any atomic action A, possibly with
some auxiliary local variables u initialized to ug every time the procedure is
called. These variables are accessible only within the procedure. The action
A may access the global and local variables g and [ of the host/enclosing
system and the formal parameters x, y, and z Hence, the body P can be
generally defined by:

P = |[var u;init u := u0; A(g,l,u,x,y, z)]|

If there are no local variables u, the begin-end brackets |[ ]| can be ignored
and the body P is of the form:

p = A(gvl)xvyuz)

If there are neither local variables nor parameters, the action A only accesses
the global and local variables of the host system. Then the definition of the
procedure p can be written as: proc p: (A(g,1)).

A call to a private procedure p(in z; out y; inout z) : P with actual
parameters is denoted by p(a, b, ¢) and it is defined by:

p(a,b,c) = Pla/z,b/y,c/z] (private procedure call p )
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Snd Rec

call p

Figure 2.1: Action systems Snd and Rec communicates directly using public
procedure p

where the formal parameters are replaced by the actual ones during proce-
dure call. Thus, an action A calling a procedure p is semantically equivalent

to A(Pla/x,b/y,c/z]/p(a,b,c)).

2.6.1 Procedure based communication

The procedure based communication, presented in [19, 68, 78], uses remote
procedures to model communication channels between action systems. Con-
sider action systems Snd and Rec (See Fig. 2.1) whose operation is defined
by actions:

S = call p(a,b,c)

R = await p(a,b,c)
where S is a caller action in the system Snd, which imports the public
procedure p, and R is a callee action in the system Rec, which exports p.
The execution-clause of the composed system Snd|| Rec has the form: do
S [ R od. The construct S [ R, where S calls p (call command) and R
awaits such a call (await command), is regarded as a single atomic action
SR, defined by:

SR = S|R[P[a/x,b/y,c/z]/ await p|/ call p(a,b,c)] (public procedure)

where the action R is substituted for the call command in S, and the proce-
dure body P with actual parameters is substituted for the await command
in R. Hence, communication is based on sharing an action in which data
is atomically passed from Snd to Rec by executing the body P of the pro-
cedure p hiding the details of the communication into the procedure call.
Consider the following example:

Example 2.2. Consider the caller action S and the callee action R, defined
by:

S=z:=12',2 >0; call Trf(z)

R = await Trf(z)
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where the public procedure T'r f(x) is defined by:

Trf( in z :integer) : (buf := x)

where the caller action S transfers data by calling the public procedure
Trf(x), which stores the data into a local buffer buf. The callee action R
awaits the procedure, and it can read the transferred integer value from the
local buffer. According to the substitution principle the combined action
SR is equivalent to:

SR = (x:=2',2" > 0; (buf := x))
End of example.

The type of the communication channel is identified in the definition of
the procedure. A push channel between components is defined using the in

specifier:
p(inz): P

where data is transferred from caller action to callee action. The communi-
cation channel in Fig. 2.1 is a push channel. A pull channel is defined using

the out specifier:
p( out z): P

where data is transferred from callee action to caller action, and finally,
a biput channel has both of the above mentioned specifiers or an inout
specifier in the interface definition of a public procedure:

p( inout z) : P
p(in z, out y) : P

where data is transferred in either direction between the caller and the callee
actions.

2.7 Refinement

Action systems are intended to be designed in a step wise manner within the
refinement calculus framework [22]. The refinement calculus preserves the
correctness of the actions during the process of refinement. The (atomic)
action A is said to be (correctly) refined by action C, denoted A < C| if

vVQ. (wp (A4,Q) = wp (C,Q))

holds. This is equivalent to the condition

VP,Q.((PAQ) = (PCQ))
which means that the concrete action C' preserves every total correctness
property of the abstract action A.
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2.7.1 Data refinement

In a data refinement an abstract action A on the variables a and g is refined
by a concrete action C on the variables ¢ and g using an abstraction invariant
R(a, ¢, g) which is a Boolean relation between the abstract variables a and
the concrete variables ¢. The action A is data refined by the action C,
denoted A <p C, if

VQ.(RAwp (A,Q) = wp (C,Ja.RANQ))

holds. Note that the predicate (CJa.R A Q) is a Boolean condition on the
variables a and c¢. The above definition can be written in terms of guards
gd(A), gd(C) and bodies bd(A), bd(C') of the actions A and C as follows:

R A ¢gd(C) = gd(A) (guard) (i)
VQ. (R A gd(C)Awp (bd(A),Q) = wp (bd(C),Ja.RNQ)) (body) (ii)

The data refinement A <, C replaces a with ¢ preserving the variables g.
That is, the local variables a are made concrete in ¢, for instance, a local set
a can become an array ¢, and the relation R(a,c,g) captures the essentials
of this transformation.

2.7.2 Refinement of action systems

Rather than going into the details of refinement of parallel and reactive
programs [16], a commonly used method to prove the refinement step is
reviewed. The presented data refinement method has been use to prove
the correctness of the superposition refinement of action systems [21], as
well as the trace refinement of action systems [14]. The trace refinement of
action system preserves the trace, the sequence of global states (observable
behavior) of the system in question, and the superposition refinement [46]
enhances the behavior of a system model by adding new functionality into
the model while preserving the old one. The method is extended in [78§]
to prove the correctness of data refinement of action systems with remote
procedures. Next, the refinement of Action Systems is described formally
after which informal descriptions are given for the required conditions.

Refinement rule

Consider a action systems:
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iysA( g; ) ﬁys(?( g; )

variable variable

a; c;
action action

A: (aA); C: (aC);
initialization initialization

g,a := g0, a0; g, c:= g0, c0;
execution execution

forever do A od forever do C || X od

J J

whose operating environment Env is of the form:
sys Env ( g; )
Il
variable
e;
action
E: (aE);
initialization
g,e,= g0, e0;
execution
forever do £ od
Il

Let R(a,c,g) be an abstraction relation on the state variables a, ¢ and g.
The abstract system A is said to be correctly refined by the concrete system
C denoted A C C if there exists a data relation R(a,c,g) on the state variables
and the following conditions are satisfied:

R(ap, co, go) = holds (initialization) (i)
A<pC (main action) (ii)
skip <p X (auziliary action) (iii)
R A gd(A) = ¢gd(C) V gd(X) (continuation condition) (iv)
R = wp (do X od,true) (internal convergence) (V)
R = wp (E,R) (non-interference) (vi)

(i) The first condition says that the initialization of the systems A and C
establish the abstraction relation R.

(ii) The second condition requires the abstract action A to be data-refined
by the concrete action C using R.
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(iii) The third condition, in turn, indicates that the auxiliary action X is
obtained by data-refining a skip action. This basically means that X
behaves like skip action with respect to the global variables.

(iv) The fourth condition requires that whenever the action A of the ab-
stract system is enabled, assuming the abstract relation R holds, there
must be enabled action in the concrete system C as well.

(v) The fifth condition states that if R holds, the execution of the auxiliary
action X, taken separately, must terminate at some point.

(vi) The sixth condition guarantees that the interleaved execution of E
actions preserves the abstract relation R.

The conditions (7)-(v) guarantee, in terms of global and local variables
that the behavior of an abstract system is preserved in the concrete one,
when the action system is executed in isolation. When the system is oper-
ating in a parallel composition with other action systems the last condition
must also be validated.

2.7.3 Development of action systems

Stepwise development of action systems is based on the following properties
of the refinement operator ' C’ [16, 22]:

o Reflexivity: A system is refined by itself:
AC A
e Fquivalence: If
ACBABLC A
then one can write A = B

e Monotonicity [20]: A refinement of component system implies a re-
finement of the whole composition

(AL EC) = (A [ Az [l [ A) E(Co [ A2 |- - [] An))

provided that the applied invariant R is satisfied by the systems As, ..., A,
as well. If R refer only to the local variables of C1, monotonicity holds
trivially.

e Transitivity: A system obtained by successive refinement steps is the
refinement of initial system.

(ACCGC...CCy) = (ALCCy)

where the monotonicity and transitivity are especially important properties
as they enable stepwise development of systems.
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2.8 Chapter Summary

An overview of the Action System formalism was given in this chapter.
It is a design language targeted to both SW and HW system design as
demonstrated by several researchers [67, 76]. The Action Systems formal-
ism provides tools such as abstraction and encapsulation as well as cor-
rectness preserving refinements, all of which are important instruments in
system development. Furthermore, the formalism provides a stepwise de-
velopment framework within which one is able to derive an initial, abstract
system specification step by step towards a more concrete model in a correct-
ness preserving manner. All of these properties offers a powerful modeling
base for any type of concurrent system development, including SoC designs.
However, time modeling is also instrumental in SoC design, and therefore
the following chapter presents one Action System implementation towards
time-awareness in concurrent system development.
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Chapter 3

Timed Action Systems

To model the performance of SoCs, the lapse of time has an important role
in terms of speed and power consumption. In Action Systems computation
does not take time, a reaction is instantaneous, and therefore atomic in
any possible sense. Atomicity means that only pre- and post-states of the
actions are observable, and when they are chosen for execution they cannot
be interrupted by external counterparts. However, in Action Systems, the
verification is focused on logical properties. That is, timing behavior of
the system is not reflected at any abstraction levels. Therefore, in this
chapter the Timed Action Systems formalism is presented, which allows one
to model the lapse of time. Observe that Timed Action System formalism is
an extension from the Action Systems formalism. The detailed definition of
the formalism can be found in [86]. This chapter describes the foundation
of the formalism as well as those properties, which are utilized in the power
modeling.

3.1 Timed Actions

To be able to describe the basic properties of timed actions, a time domain
T = R>¢ is defined to be dense, continuous, and transitive. Formally:

th,t3.3t2.(t1 > to > tg) (density)
Vi1, Jta.(t1 < t2) (continuity)
th, to, t3.(t1 <t <ts3=>1 < tg) (tmnsitivity)

where density defines that there exists always a time point between two time
points; continuity defines that for every time point there is a time point that
follows it; transitivity, as time is linear, says that there is a natural ordering
between two adjacent time instants.
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3.1.1 Interpretation of system behavior

A behavior of an action system can be given as a sequence (S€Q) of states
with two components:

$€Q 2 (11, 1), (I2 g2), - )
where [; and g; stands for local and global variables, respectively.

To define the behavior of a timed action system, a new global time vari-
able gt is associated into the state of type T. The state containing such a
variable is called a timed state where the global time variable carries infor-
mation about the time elapsed from the start of the system. The sequence
TSEQ of timed states is a timed behavior:

TSEQ = ((gt1,l1,q1), (gta,l2,g2),...) (timed behavior of an action system)

where gt;, l;, and g; denote the time of the state change and the states
of the local and global variables, respectively. A timed trace is formed by
removing the local variables from a timed state as in conventional Action
Systems. The timed trace is defined by:

TTR = ((gt1,91), (9t2, g2), - - .)

3.1.2 Components of timed action

Time-aware actions are defined using a conventional action A, whose guard
is denoted by gd(A) and body by bd(A): A = gd(A) — bd(A). The operation
in time domain is divided into three segments: commence, time, and end,
which are introduced by the order of execution.

The commence segment of a timed action performs the operation of an
action and it consists of a start action Ag that is of the form:

Ag = —bA A gd(A) — delayA := delay A’ .dpA
; state A := (wA, gt, gt + delayA) (timed action(start))
;bd(A)[state A.wA/wA];bA := T;

where the Boolean variable bA sequences the operation of a timed action;
gd(A) is the guard of the conventional action A, which signals the enabled-
ness of the timed action A; the non-deterministic assignment assigns the
delay variable delayA a value that satisfies the delay predicate dpA (dis-
cussed more detail in Sect. 3.5); stateA is a record: record(wA; st; ft: T,
where wA denotes the write variables of A, st a start time, and ft a finish
time of the current computation event. The start time is set to the global
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time gt and the finish time is obtained by adding together the global time
with the delay delayA.

Next in the execution sequence is the time segment in which the time is
propagated by executing a time propagation action tpa:

tpa = gt := stateA.ft (time propagation action)

where the global time is set to the finish time stateA. ft of the timed action
A.

Finally, the operation is terminated in the end segment in which the
result of the operation is written onto the write variables wA of the conven-
tional action A. Notice that a timed action whose operation is performed,
but its write variables are not yet updated, is called a scheduled timed action.
It consist of a finish action Ay, which is of the form:

Ar = bAN gd(A) A (gt = stateA. ft) —

timed acti sh
bA = F;wA := state A.wA; (timed action (finish))

By combining these three segments, a timed action A is defined by:

AldA] = (timed action)
A (finish)

/| As (commence)

/| tpa (time)

where [ ]| are called delay brackets, dA a label of a delay predicate dpA
introduced in Sect 3.5. Observe that the execution of a timed action starts
from the commence segment as its name suggest, although the end section
has the highest priority. This prioritization order is required to ensure that
all write variables are updated before any start action may commence its
execution.

Non-deterministic composition of timed actions. The composition
of timed actions is defined by:

[[1<i<n: AldA]] =

[[1<i<n:Ag]
JI11<i<n: Ay
J Pt

(timed action composition)
(finish)

(commence)

(

time)
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where n is the number of timed actions. Observe that the time propagation
action Pt is shared amongst the timed actions A;. The sharing preserves the
linearity of time ensuring that the global time is not able to jump back and
forth depending on the delays of the scheduled timed actions. The redefined
propagation action is of the form:

Pt=[]1<j<n:minli] — gt := stateA;.ft] (time propagation action)

where the global time is updated to the nearest scheduled finish time deter-
mined by the guard minl[i]:

min(i] = (stateA;.ft > gt) (guard min)
/\(Vj:1§j§n:j7éi:stateAj.ft>gt
= stateA;. ft < stateAj.ft)

which evaluates to true (T) if a finish time stateA;.ft of a timed action A;
is greater than gt (a requirement for a timed action being scheduled one).
Thus, the guard chooses the smallest scheduled finish time greater than the
global time, which then becomes a new global time in the time propagation
action.

A special case occurs when the scheduled timed action becomes disabled
before the write variables are updated. In other words, this situation may
produce a deadlocked timed action. To avoid deadlocks, a kill action is
defined, which is of the form:

Api = bA; N —gd(A;) — bA; == F; (timed action(kill))

which simply releases the scheduled and disabled timed action by setting
the Boolean variable bA; to false (F).

By examining the guards of the finish and kill actions Af; and Ay,
respectively, it is clearly seen that the conventional guard gd(A;) defines
which action will be executed. Therefore these actions can be merged with
the non-deterministic choice. The composition of timed actions A; with the
deadlock avoidance action, the kill action, is defined by:

[[1<i<n: AldA]] =
[[1<i<n:Ap; | Api

JI11<i<n: Ay

J Pt

timed action composition) (3.1)
finish)

commence)

~—~ ~ —~

time)
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where the end segment consist of two actions: the finish action Af; that
reveals the result of computation and the kill action Aj; that enables a
disabled, scheduled timed action, and thus prevents a scheduled timed action
being deadlocked forever.

3.1.3 Timed action state predicates

State predicates embody those system states in which timed actions are
enabled, starting their operation, in operation, and ending their operation.
These predicates are useful in the verification of the system as they explicitly
indicate the state in which timed actions are. The state of the timed actions
are observed on the grounds of their guards: The enabledness is determined
by the guard gd(A) of the conventional action A, the start time by the guard
gd(Ay) of the start action, the finish time by the guard gd(Ay) of the finish
action Ay, and, finally, a time point within the limits of operation time
captured by the guard gd(Ay) of the kill action Ag. The state predicates
are defined by:

En(A) = gd(A) (enabled)
St(A) = gd(As) (start)
Op(A) = —gd(Ag) A gd(A) N —gd(Ay) (operation)
Fi(A) = gd(Ay) (finish)
K(A) = gd(4y) (kilh)

3.1.4 Weakest precondition of a timed action

The weakest precondition of timed action is divided into two parts depending
on its enabledness during execution: (a) a timed action is enabled through-
out its execution time allowing the finish action to update the write variables,
that is, in terms of the state predicates the kill predicate is false (K() = F))
during the whole computation period of the timed action and (b) a timed
action becomes disabled during execution preventing the update of the write
variables. In this case the kill predicate evaluates to true (K () = T') at some
time point during the operation time. This means that the execution of the
kill action corresponds to the skip action. Thus, the weakest precondition
of a timed action is:

wp((A[dA]), Q) = (weakest precondition of timed action)
wp(4, Q[(gt + delay)/gt]) A (~gd(A) = Q))

where the latter part is the weakest precondition of the skip action.
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3.2 Non-atomic Operation of Timed Actions

The non-atomic sequence, defined in (2.3), whose operation is controlled
by an auxiliary variable set by the actions themselves operates in the time
domain as intended. However, the operation of the parallel composition, see
(2.4), is not that apparent due to the use of the terminal action Ty The
terminal action enables a new execution round by resetting all the Boolean
control variables in one atomic step after all the actions in the composition
have performed their operation in turn. Thus, the parallel composition is
considered in more detail.

The parallel composition of timed actions A and B whose delays are dA
and dB is of the following form (based on (2.4)).

A[dA] || B[dB] = ((A'} 1 A0 B 1 B Tn)

J (4l 1 B
J Pt

where the terminal action is placed into the end segment where it will be
executed after its guard gd(7}|) = ~pa/A—pp evaluates to true. The execution
of the terminal action 7} does not consume time, as it is part of the control
structure. The definition of the parallel composition is:

Ai[dAq] || A2dA2] =
(Agi | Agi) | (Ap2 [ Ak2))
// ((As,l I] As,?))
J Pt

(parallel composition) (3.2)

where it is required that the composed timed actions are independent (vAN
wB = () and wA NvB = (). Actually the above definition is the same as
the composition of timed actions defined in the previous section. However,
to reflect the untimed operation, a timed action is allowed to kill another
one, allthough they are operating in parallel and they are required to be
independent of each other. This is further illustrated in Chapter 4, when the
performance modeling of parallel execution is discussed. For more detailed
discussion, see, for example, [86].

3.3 Synchronous Operation

The synchronous composition for conventional actions, defined by (2.2) on
page 17, does not include a situation in which, for instance, external asyn-
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chronous control signal is willing to disable the composition or parts of it.
However, in Timed Action Systems [86], the synchronous composition is de-
fined in a way that this kind of behavior is possible, and thus the atomic
timed synchronous composition is defined by:

A1[dAq] vV AadAs] = (A Vv A2)¥&k (timed synchronous composition)
J Pt

where the clock signal is modeled by the fact that there is only one start
action and the merged finish and kill actions. They are of the form:

(A1 V Az)) = =bS —

delayS := delayS’.dpS
;stateS == (wA; UwAs, gt, gt + delayS)
i1 <i<2:gd(A;) — bd(A;)[stateS.wA;/eA;] )| skip]
;08 =T,

(A1V Ag)¥gp = bS A (gt == stateS. ft) —
i[1<i<2:9d(4;) = wA; := statewA; || skip]
;05 = F;

where the synchronous composition A; V As is denoted (for simplicity) by S.
The stateS is the union of the states of the composed timed actions A; and
Ag (stateS = stateA; U stateAz). The write variables of the timed actions
Ay and A, are referred by statewA; and statewAs, respectively. Observe
that the above mentioned external interruption possibility is modeled by
using merged finish and kill actions.

A non-atomic synchronous composition is a composition where the oper-
ation of the composed timed actions commence their operation at the same
time, but these operations are finished individually by storing the result
onto new variables until the slowest timed action has performed its opera-
tion after which the write variables are updated. The composition is of the
form:

A1[dA;] m Ag[dAs] = (timed non-atomic synchronous composition)
((A}q,l VAL [ (AF5 VAR, | TM) (3.4)
/(a2 1 42
J Pt
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where the terminal action Ty is executed after all the synchronously com-
posed actions have performed their operations. The actions in the composi-
tion are defined using the non-deterministic choice; auxiliary, local Boolean
variables pA; (initialized to false (F)) whose responsibility is to guaran-
tee that the write variables are updated simultaneously; an auxiliary local
Boolean variable 0A;, which indicates that the timed action is a skip action;
and, furthermore, auxiliary variables mA; that store the results of the com-
putation until the actual write variables are updated. The actions are of the
form:

A:’]i = —pA; A —bA; N —0A; —

delayA; := delayAl.dpA;

s stateA; == (wA;, gt, gt + delayA;)

(gd(A;) — bd(A;)[stateA;. wA/wA;];bA; :=T)

gt = stateA;. ft —

((bA; A gd(A;) — mA;,bA; := stateA; wA, F) || 0A; — skip)

s pA; =T

Al?,i = (bA; A —gd(A;) — bA; := F;pAi kA :=1T)

Ty = /\?zlpAi — [1<j<2: (kA AN—0A; — wA;j :=mA,
| kA; — kA; :=F
| 0A; — 0A; :=F)
spAj = Fl

A?i

1

where the synchronous timed action A disables itself after it has performed
its operation. The execution of its operation depends on the enabledness of
a timed action at the time when a new clock cycle starts. That is, if a timed
action is disabled at that time it acts as a wait action, it does not consume
the amount of time specified by its delay. The terminal action T reveals
the result of the computations after which the synchronous timed actions
A are enabled to next computation round.

Gated clock

Gated clocks are used to reduce power consumption in hardware systems
by selectively halting the clock in portions of system wherein active opera-
tion is not being performed. In Timed Action Systems, the clock gating is
implemented by expanding the non-atomic synchronous composition with
a Boolean variable. A Boolean variable g when activated stops the update
of the guarding variables pA;, which, on the other hand, prevents the new
execution round of the synchronously composed timed actions. The execu-
tion is prevented as long as the gating signal is active. Depending on the
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model the activation signal may set the guarding signal either to true(T)
or false(F'). In the following definition the guarding signal is activated by
setting it false. The gated non-atomic synchronous composition, denoted by

Ay % Ay, is defined by:

Aq[dAq] M As[dAs] = (gated non-atomic synchronous composition)
(A%, 0 A7) 1 (A% 1 A7) [ 9—Tw) (35
J(Ax ] A%)

J Pt

where the start, finish, and kill actions are presented as earlier, but the
terminal action updates the write variables only when the guard ¢ is ac-
tive. That is, it blocks the update of the write variables corresponding the
guarding of the clock signal in the real circuits.

3.4 Timed Action System

A timed action system has the form:
sys A ( imp p; exp ¢; )( ga; )
It

type
type: Def;
delay
dp: dp0,dC': [dCin, dCmaz], dA; : dA;0;
constraint
constraint: (B);
variable
La;
private procedure
pldp](in z : out y): (Fp);
public procedure
clde](in z : out y): (P.);
action
Ai [[dAZ]] (CLAZ‘);
initialization
9a,la = ga0,140;
execution
forever do composition of timed actions A; od

I
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where three main parts can be observed as in the conventional action system:
interface, declaration, and iteration.

The interface part declares those variables g4 that are visible outside
the timed action system boundaries, and thus accessible by other systems.
Furthermore, it introduces interface procedures that are imported (p) by or
introduced in and exported by (c) the system. If a timed action system does
not have any interface variables or procedures, it is a closed timed action
system, otherwise it is an open timed action system.

The declaration part introduces all the new type definition, local vari-
ables {4 action definitions aA; with their labels A;. A new element is the
delay clause that describes the delays of the procedures and timed actions
and their labels. A delay is an amount of time (not necessary very long),
and it is used in delay predicates described in Sect. 3.5. Furthermore, in this
thesis, delays are described using symbols, which can be later on replaced
using actual values. The delays are joined within the timed actions using
delay brackets [ ]. In addition, the declaration part introduce constraints
that define conditions, which can be either functional or temporal, whose
strict adherence is mandatory. Finally the initialization sets the system into
a well defined state from where the system may safely start its operation.

The last item, the iteration part defines the reactive behavior of the sys-
tem. It describes the composition of timed actions defined in the declaration
part. The time when the computation is commenced is set in the initializa-
tion, but it is of no importance as only the relative ordering of timed action is
important, The iteration part does not address delays for the timed actions,
it only defines the behavior of the system.

Modeling aspect. Consider two timed action systems A and Env whose
local variables are distinct and the latter is the environment of the former.
The parallel composition of these two systems is denoted by A || Env. The
definition of the parallel composition follows from the conventional Action
Systems notation defined in Sect. 2.5.1 where it is defined to be a another
action system whose distinct global and local identifiers (variables and ac-
tions) consist of the identifiers of component systems. In addition to the
conventional parallel composition, the time propagation is shared among
the (sub)systems as it is shared among the timed actions in (3.1). By open-
ing the timed action notation the execution clause of the parallel execution
becomes:

foreverdo [[[ 1<i<n:As; [| Ari] [ [11<5i<m:Ef; || Eggl
JI01<i<n:Ag)]l [ [11<i<m:E,]
J Pt od
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where only one time propagation action exists. Furthermore, modeling the
behavior of the system A and its environment Enw, it is assumed that there
is always at least one enabled timed action.

Hierarchical composition. The hierarchical composition of timed action
systems follows the introduced composition in action systems. The hierar-
chical composition of timed action systems H and its subsystem A is defined
to be another system whose execution clause has the the form:

forever do [ [ 1 <i<n:Hp; || Hys] | [11<j<m:Ap; [| Akl
JI11<i<n:Hg] [ [[1<i<m:As
/ Pt od

3.4.1 Computation model

The execution order of timed actions progress is presented in Sect. 3.1.2.
Observe that before the system may start its operation it has to be initial-
ized after which the operation proceeds into the iteration part, the forever
do-od loop of a timed action system. In the iteration part timed actions are
sequentially selected for execution based on their composition and enabled-
ness. The computation model is depicted in Fig. 3.1, where the variables
(both global and local ones) are initialized into predefined values setting the
system in a state from which the computation may safely begin. After ini-
tialization enabled actions are erecuted, and the operation proceeds to the
time segment, where the time propagation action examines the finish times
of the scheduled actions, and sets the global time to the nearest finish time.
Then the operation proceeds towards the end segment, where several finish
or kill actions are executed. The execution of the finish action reveals the
result of computation, that is, the write variables of the timed action are
updated, and the execution kill action releases a timed action for further ex-
ecutions. After all enabled finish and kill actions are executed one execution
round is successfully completed, and the computation proceeds towards a
new one. The operation continues as long as there is enabled finish or kill
actions by propagating time again. In a timed action point of view there
might occur a situation in which there are no such timed actions within the
system whose computation may be commenced or finalized. In this case
the system is said to be temporarily delayed, and its computation resumes
execution when the environment invokes the system.

3.4.2 Timed action semantics

As stated above, the system behavior is a set of sequences. In Timed Action
Systems, the behavior of a system is defined in terms of timed actions whose
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Figure 3.1: The computation model of Timed Action Systems

execution cause state changes by updating the values of the system variables.
Therefore, the behavior of a timed action system A is defined in terms of
timed actions by:

TAS(A) = {EX1(A), EX(A),...} (behavior of a timed action system)

where £X;(A) is an execution sequence of timed actions:

EXi(A) = (A1, Ag, .. .)

(A;) where i € N, A; € A (execution sequence of system)
= (A;) where i Ay

Parallel. Actions Systems as well as Timed Action Systems are sequential
by nature. Therefore, the parallel behavior of timed actions is modeled
because parallelism is not built into the semantics. Actions are said to
operate in parallel if they are enabled at the same state, and, furthermore,
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they are independent of each other. Independency of timed actions can be
described as follows:

JA,BeA) = (vAUuvB =10) (independency of timed actions)
V(rAUwB=0ArBUwA =wAUwB = 0)

where the first condition defines trivially independent actions as they do not
share any variables. The second condition, on the other hand, says the other
action does not read the variables that are written by the other action, and,
furthermore, they do not write on the same variables. Thus, the definition
of parallel actions becomes:

P(A, B € A) = J(A, B) A (parallel timed actions)
<3R,K € BEH(A): Ir,k € RNK :
s = (9d(A) A gd(B) Awp (A, wp (B,k))
Awp (B, wp (4,5))))

where R and K are sequences of the system A and their intersection RN K
is performed in a set theory fashion, that is, the set of states that exists
in both of the execution sequences is obtained. The condition states that
when two actions are independent and there are two common states in two
different sequences of the system A, which are connected by the sequential
execution of the independent actions in either order. That is, the execution
order does not affect the result of computation.

Successor. Consider an execution sequence EX(A), A is a predecessor of
B and B is a successor of A if B reads variables written by A (wAUrB # (),
and thus, it is defined by:

SUCC(A,B e A) = -P(A,B) ANds € 8EQ(A) (successor)
= gd(A) Awp (A, gd(B))

which defines that the timed actions A and B are not parallel and there
exists a state in the sequence SEQ(A) in which A is enabled and executed
leading into the next state in which B is enabled.

3.4.3 Computation path

Computation path, denoted by CP(A, B) is a finite sequence of immediate
successors, which leads from A to B. An immediate successor is an action
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whose execution is instantly followed by an execution of its predecessor in
the path where finite loops are allowed. This extraction is very convenient in
defining and verifying system behaviour. Furthermore, computation paths
are a natural way to think SoC, which is modular by its nature. One impor-
tant point of modularity is that it allows us to concentrate smaller design
tasks one at a time and then interconnect smaller components together in
a divide-and-conquer manner. Formally the computation path between two
actions is of the form:

CP(A,B) = <A1,A2, e ,An> (computation path)
(3.6)
where A; € EXi(A || Env)
AVi:1<i<n: (SUCC(Ai_1,A;))
NAL=ANA,=B

where the amount of the actions is limited to n. It is also important to
observe that actions in a computation path are successors of each other,
that is, executed in sequentially.

Observe that the above definition does not uniquely define one compu-
tation path as in embedded computing systems actions occur periodically,
and therefore it is required to delimit a computation path further. Consider
the following execution sequence:

(A,B,C,D,F,G,C,D,F,G,A,B,C,D,---)

where by defining a computation path cp(A, G) the first two paths are:

<A, B,C,D,F, G> and <A, B,C,D,F,G,C,D,F, G>. Therefore, it is impor-
tant that one have means to specify, which action is our target to be able to
precisely specify a computation path in question. This can be done by using
a superscript as follows: CP(A, B¥), where k defines which one of the actions
B is the last action in the path. In the above example computation path
the former path could be obtained by defining CP(A4, G1), shortly CP(A4, G),
and the latter one by CP(A, G2). Two problems arises when consideting the
definition given so far: How to pinpoint the first action in the path and how
to gather all the paths between two points created by parallel behavior. The
latter one can be solved by defining a set of computation paths, as follows:

cp(A, B) = {z|z = CP(A, B)} (3.7)

The former problem regarding the beginning of a computation path is not
that trivial because of the reactive system model: actions are triggered for
execution in a non-deterministic or deterministic (e.g., periodic) manner.
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Path 1

Path 2

Figure 3.2: The computation paths of the composition A;((B;C) || (D3E))

This is solved by utilizing the modular structure of SoCs in a way that a
beacon is set on the boundary of a system. This bounds the problem do-
main quite nicely and extracts the required information out of the execution
sequence.

Based on the above reasoning, computation paths through a system, say
A, is a set of computation paths whose first action reads from the input
variables of the system and whose last action writes on the output variables
of the system. Actions that read from the input variables are called by
mput actions I and those actions that write on the output variables are
called by output actions O. In conclusion, one gather all the paths between
the system’s input-output variables:

cp(A) = {z|]z =CP(I,0) ArI € rANwO € wA} (3.8)

Example 3.1. Consider the following composition:
A3((B50) || (D3E))

For such a composition there exists two possible computation paths
which are illustrated in Fig 3.2.
End of example.

3.5 Delay

Delays define the time that timed actions consume in their operation, and
they are defined in the declaration part of a timed action system and asso-
ciated with a timed action using the labels and delay brackets. Delays can
be described as long or short depending on the operations performed in the
actions.
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3.5.1 Delay predicates

A deterministic delay defines a precise delay for a timed action A, and a
non-deterministic delay predicate defines a delay whose value is chosen non-
deterministically: The delay predicates are defined by

dpA = delayA’ = dAO (deterministic delay)
dpA = dA,, e delayA’ @ dA,,qz (non-deterministic delay)

where dpA is a delay predicate that determines the delay of the timed action,
which will be assigned to the delay variable delayA in the start action As.
The delay statement thus becomes: delayA := delayA’.(delayA’ = dAO0).
The bullet e in the non-deterministic assignment is one of the following
inequalities: <, >, < and >.

In Timed Action System context, the delays are written as:

delay dA : dAO (deterministic delay)
delay dA : [dAmin, dAmaz) (non-deterministic delay)

3.5.2 Delay calculation rules

The delay calculation rules needed for the timing analysis and performance
estimation is presented . These delay calculation rules and their composi-
tions are defined by:

A(A) = dA
A{p} = A([p]) = dp
A(Ar; Az) = A(Ar) + A(Az)
A(g — A) = A([gl; A) = A([g]) + A(A)
A(A(proc)) = A(A) + A(proc)
A(Ar | A2) = {A(A1), A(A2)}
(
(

action) )
predicate) (3.10)
sequential) (3.11)
guarded action) (3.12)
procedure) (3.13)
alternative) (3.14)
A(A; V Ag) = Max(Max(A(A4;)), Max(A(Asz))) (3.15)
A(A1xAs) = Max(Max(A(A1)), Max(A(Asz))) (3.16)

synchronous)

e e e e e e

synchronous)

where

(3.9) The action delay rule calculates the delay of a timed action by eval-

'For detailed study, the reader is urged to get familiarized with [86]
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uating the delay statement. The delay equals the subtraction of the
start and finish times of a timed action.

(3.10) The predicate delay rule calculates the time it takes to evaluate the
predicate, either assert {g} or assumption [g].

(3.11) The sequential delay rule sums the delay of sequentially executed timed
actions whose delays are calculated with (3.9).

(3.12) The guarded action delay rule calculates a delay for a guarded timed
action. It consist of two components based on the definition of a
guarded action: the evaluation of the guard gd(A) and the time to
perform functionality bd(A).

(3.13) The procedure delay rule sums the delay of the calling action with the
delay of the called procedure: A(proc) denotes a timed action that
calls the procedure proc in its body.

(3.14) The alternative delay rule gives a set of delays each of which reflects
an alternative delay (computation) path.

(3.15) The atomic synchronous delay defines the clock cycle time in a syn-
chronous systems according the slowest action in the system.

(3.16) The non-atomic synchronous delay defines the clock cycle time in a
similar manner as the atomic delay presented above. There is nota-
tional difference.

3.5.3 Procedure delay

Although procedures, both private and public, are introduced separately in
the declaration part of a system, the operation performed by a procedure is
considered to be a part of the calling action. In other words, a procedure is a
parametrized subaction (see Sect. 2.6). The justification for having separate
functionality and timing definitions for procedures and actions is modularity,
which enables one to develop the procedures apart from the calling action.
Nevertheless, the procedure delay, defined by (3.13), and the action delay
adds up the total delay of the action.

3.5.4 Procedure based communication delay

The procedure based communication [68], defined in Sect, 2.6.1, uses remote
procedures to model communication channels between action systems. In
this section, the timing information is included into that model. Consider
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Snd Rec

S[ds] dTr] R[dR]

call tr Yawait tr

Figure 3.3: Timed action systems Snd and Rec communication directly with
each other using a public procedure ¢

the timed action systems Snd and Rec whose internal activities are denoted
with timed actions:

S[dS] = call tr(a,b,c)
R[dR] = await tr(a,b,c)

where the procedure is of the form:

tT’[[dT?"]] = Ptr
The delays of the actions are deterministic whereas the delay of the public
procedure is non-deterministic, because its value depends on great deal of
variables such as the state of the communication network and the commu-
nication protocol. Thus, the delays are defined by:

dS = dS0
dR = dR0
dTr = [dT7rmin, dTTmaz)

where the non-deterministic communication delay consist of two compo-
nents: a static delay d7'r0 and the synchronization delay dSync in way
that:

dTr = [dTrmin, AT T maz)
= [dTr0 + dSyncmin, dTr0 + dSyncmaz]
= dT'r0 + dSync

where the synchronization delay defines an amount of time required to get
two communication parties to synchronize their operations. In this model
the synchronization delay is included into the communication procedure, and
therefore it can be considered to be caused by either of the communication
parties.
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To calculate the duration of the communication activities, the commu-
nication is regarded as a single atomic action SR based on the definition of
the procedure based communication:

SR = S[R[Pyla,b,c/z,y, 2]/ await Tr]|/ call Tr(a,b,c))
whose delay can be calculated by using the sequential delay rule (3.11):
Acomm = A(SR)

A(S(tr)) + A(R)
A(S) + A(tr) + A(R)
=dS+dIr +dR

3.5.5 Computation path delay
A computation path delay between actions A and B is defined by:

ACP(A,B) = A(A;0 <i<nASUCC(A;, Ait1); B) (CP delay) (3.17)

where the delay includes all the actions in the computation path, that is,
A and sequence of successors leading from A to B, including A and B
themselves.

The symbol * is used to indicate, by its position, whether the delay of a
timed action is included into the computation path or not. The actions A;
are immediate successors in the path leading eventually to B. In the above
definition, both delays are included into the computation path delay. Next
both or either delay is excluded from the computation path delay, and thus,
the definitions are of the form:

ACP(*A,* B) = ACP(A, B) — A(B)
=A (A, 0<i<nA SUGG(AZ,AH_l))

ACP(A*, B¥) = ACP(A, B) — A(A)
=A (0 <t <nA SUGG(AZ,AHl), B)

ACP(A* ) B) = ACP(A, B) — A(A) — A(B)
=A(0<i<nASUCC(A;, Ait1))
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3.6 Chapter Summary

In this chapter, the time spiced Action Systems, Timed Action Systems
was described. After describing the time domain, a basic component of
the formalism, a timed action was introduced. Timed action is an action
whose computation result is postponed by the duration specified by a delay
associated with it. After introducing the basics of timed action, it was
time to proceed to system level modeling issues, and therefore, timed action
systems was defined. The form of the timed action system is similar to the
action system, which makes the adoption of Timed Action System as easy as
possible for a designer familiar with the Action Systems. Having introduced
the timed action system, the delay predicates was described and a way
to calculate static delays for timed action compositions and timed action
systems was presented. The described constructs and properties of Timed
Action Systems are adopted for the power modeling framework defined in
the next chapter.
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Chapter 4

Power Estimation

Methods to evaluate various performance metrics such as area, delay, and
power consumption at all levels of the design hierarchy are an important
part of the design process. While it is typically the case that lower level
estimation tools offer higher estimation accuracy, their use to explore ar-
chitectural trade-offs during higher-level design tends to be prohibitively
time consuming. Therefore, to avoid costly redesign steps, power estima-
tion techniques are required which can estimate the power consumption at
a high level of abstraction, such as when a circuit is modeled with Boolean
functions, as in [44, 45, 71, 88]. These modeling frameworks are targeted to
operate in RTL. However, the initial system specifications in the timed ac-
tion systems formalism have an even higher abstraction level, and therefore
the model introduced here is not directly comparable with the RTL models.
Furthermore, the study presented in this chapter includes a static power
consumption model as well.

In the Action Systems formalism, modeling, verification, and analy-
sis have been confined only to logical properties. However, to analyze
power consumption, timing information is required. Therefore, the pre-
sented power modeling framework is targeted to Timed Action Systems,
presented in Chapter 3, which can be used to analyze system’s timing prop-
erties. The timing information is then exploited in power consumption mod-
eling.

The average power consumption of an arbitrary action A is defined by:

P(A) = Payn(A) + Psar(A)

where the latter is static power consumption of the action A and the former
is dynamic power consumption of the action A. Dynamic power consump-
tion is related to system operation, and therefore it can be decreased, for
instance by using low-power clocking techniques [47] such as clock gating,
described in Section 3.3, or by using design methods such as asynchronous
design [53]. In turn the static power consumption, is caused by the leakage
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current Ijeqk, which is the combination of the subthreshold leakage (a weak
inversion current across the device) and the gate-oxide leakage (a tunnel-
ing current through the gate oxide insulation) [49]. Detailed analysis of the
leakage current can be found, for instance, in, [33, 49]. In general, both the
subthreshold and the oxide leakage depends on the total gate width or more
approximately the gate count, temperature (subthreshold leakage), supply
voltage, and oxide thickness (oxide leakage). The static power consump-
tion can no longer be ignored, since the power consumption due to chip
leakage is approaching the dynamic power consumption, and the projected
increases in off-state subthreshold leakage show it exceeding total dynamic
power consumption as the technology drops below the 65 nm feature size
[49]. Emerging techniques to moderate the gate-oxide tunneling effect could
bring gate leakage under control by 2010.

This chapter concentrates on building a power modeling framework for
Timed Action Systems. An area complexity model for timed actions is first
presented and then extended to cover an action system. Furthermore, the
chapter includes a model to evaluate instantaneous power dissipation in the
Timed Action System context.

4.1 Area Complexity of an Action

The area complexity measure is adopted to estimate the complexity of a chip
architecture, and thus the area of the chip. This measure has an impact on
both dynamic and static power consumption. For dynamic power consump-
tion, the area complexity can be used to model physical capacitance [51].
For static power consumption, the area complexity can be used to approxi-
mate the gate count of a system, and thus to estimate the amount of leakage
[49]. To model the area complexity of an action, the following information
is utilized:

e The sets of read and written variables of an action

e The non-deterministic assignment x := z/.Q.

where the read and write sets of an action describe the input and out-
put variables of the action, respectively. The non-deterministic assignment
is the generalization of the assignment operation, and therefore it can be
used to describe any operations on variables in the action context. The
preliminary constraint of the area complexity model follows from this prop-
erty. That is, to simplify the presentation and the area complexity model,
the non-deterministic assignment is selected as a base action. In other
words, the functionality of an arbitrary action must be described using a
non-deterministic assignment. Consider an action A, defined by:
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A=z :=2.0Q

where 2’ is the value that satisfies the predicate ), which is assigned into the
variable x. The hardware illustration of the action A is shown in Fig. 4.1,
where the assignment x := 2’ is shown as a register block. The predicate,
on the other hand, is viewed as combinatorial logic, which in turn performs
the actual computation. The term ”combinatorial cloud” is often referred
to the combinatorial logic part of the circuit at the RTL, because the exact
logic structure is not yet determined. The presented area complexity model
is even more challenging regarding the interpretation of () because the tar-
geted abstraction level is above the RTL. Therefore, prior defining any area
complexity model, one should discuss what kind of hardware operations are
usually modeled by the predicate (). In general, the predicate ) is often
used to model arithmetic operations such as addition and multiplication,
logical operations like AND and OR, and store operations. Consider the
following examples:

Q=@ =y+2)
Q=(a'=yvz)
Q= (' =y)

where the first one is the addition operation between the two variables x
and y, the second one is the OR operation between these two variables, and
the last one stores the value of the variable y. That is, in general the pred-
icate @) is thought as a combinatorial logic and it is a Boolean expression,
not necessary containing any Boolean variables.For example, the variables
x and y can be integer type of variables or Boolean type of variables. From
the fact that the targeted abstraction level is above the RTL, and due to the
different type of variables follows that size evaluation methods targeted to
Boolean functions are not applicable. A combinatorial logic forms usually
a layered structure, which, in turn, is described using a tree structure. Bi-
nary Decision Diagrams (BDD), discussed in Sect. 1.4, forms the basis for
the area complexity model. Naturally, generating a BDD from an abstract
Boolean expression is not directly possible. In addition to the tree model,
the Shannon’s size equation, presented in Sect. 1.4, is adopted with certain
restrictions, which are discussed later on in this chapter. Both of these
techniques relate to size estimation of Boolean functions, which was an im-
portant criterion when selecting the method to evaluate the area complexity
of abstract logic models. It is assumed that as the abstraction level of the
system description decreases during system development, and therefore the
methods targeted to Boolean functions are more and more accurate. Thus,
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Figure 4.1: Illustration of a non-deterministic assignment x := z’.Q

in the end there should be enough information to generate BDD description
for the system and use it as an area complexity model.

4.1.1 Area complexity of variables

In the abstract specification, the type of the variables (both local and global
variables) can vary from Boolean variables to abstract type definitions, for
instance, the type of the variable can be Data. Therefore, for the variables
of an action, a variable width is defined, which is the minimum number of
bits needed to represent a given variable. The width information is the basic
necessity to model area complexity [85] due to the different variable types,
typical to the high abstraction level. The area complexity of a variable x is
defined by:
C(z) = wy

where w, is the variable width. For a set of variables, say S, the area
complexity is obtained by adding together the widths of the variables x, x €
S. Formally the area complexity of the set S is defined by:

c(s) = Z Wz (area complezity of a set of variables) (4.1)
z€S

4.1.2 Area complexity of non-deterministic assignment

Consider an action A = z := z’.QQ whose access set is vA = rAUwA, where
rA is the set of read variables of A, and wA is the set of write variables of A.
According to these sets, one can separate two parts in the area complexity
model: the assignment part and the predicate evaluation part, where the
former includes the analysis of the write set wA and the latter the analysis
of the read set rA. At first, consider the assignment part or the write set of
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Root node _— (0, ---wn), (Y1, -+, 2n))

Children E— (xo,y07.4.) (I17y174..) (-T'mynw“)

Leafs - (1,0) (1,0) (1,0) (1,0)

Figure 4.2: Tree model construction

the action A, illustrated as a register block in Fig. 4.1. Its area complexity
is defined by:

ClwA) = Z Wa (area complexity of an assignment) (4.2)

where the wA is the write set of A. This definition is a direct application of
(4.1).

To model the area complexity of a predicate () one can consider the set
v(@, which consist all the variables that appear in the predicate ). In the
case of the action A above, the set v() equals the read set rA: vQ = rA.
To construct the tree model for the area complexity, the set v() is set as a
root node, as shown in Fig. 4.2, where it is shown that the set v(Q consists
of two variables « and y, whose widths are equal: w, = w, =n (n > 0). To
define the number of children in the tree, the area complexity C(vQ) of the
set v@ is defined using (4.1), after which it is divided by the cardinality of
the set v@Q:

T

where |v@)| is the cardinality of the set vQ. That is, the number of children
is the average variable width in the set v(Q), as shown in Fig. 4.2. This
approach is selected because the computation of a predicate is carried out in
a “bitwise” manner. For example, consider an addition operation between
two four-bit variables, say z and y. The addition is carried out first by
adding bits x¢ and yg together and then x1, y; and possibly carry bit and
so on. The tree model, presented so far, is an abstraction from a BDD tree,
where the variables are replaced by the variable sets and subsets (children).
Naturally, this tree model does not represent Boolean function as a directed
acyclic graph, which is the case with BDDs. Therefore, the Shannon’s size
equation is used to analyze the area complexity of each child node. The
Shannon’s size equation is of form (for the ease of reference):

size = 2™
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where the m is the number of inputs in the Boolean function. In the tree
model, shown in Fig. 4.2 each child node is considered as a Boolean function
with [v@Q| input arguments (m = |vQ|) with two possible output values
1" and "0/, which are denoted as leafs in the area complexity model. In
this approach the generation of the tree model is done in a way that the
exponential dependence of the Shannon’s equation does not have significant
negative effect to the model. In other words the model restricts the growth

of the input arguments. The area complexity of the predicate evaluation is
defined by:

cQ = | S| ame

ool (area complexity of a predicate) (4.3)
v

where the first term calculates the average width of the input variables of
the predicate. The average width describes the number of children in the
tree model. The second term calculates the area complexity of the child
node with two leaf nodes. The rounding becomes effective when the widths
of the input variables are not equal. To summarize, the area complexity of
the action A = z := 2./Q) is defined by:

C(A) = C(wA) +C(Q) (area complexity of an action A) (4.4)

where the first term is the area complexity of the assignment (4.2) and
the second term is the area complexity of the predicate evaluation (4.3).
A special case in the area complexity modeling of the non-deterministic
assignment occurs when the predicate @ is of form Q = (z/ = y), where y
is a variable. For instance, consider an action A = z := 2/.(2' = k), where 2
and k are variables of the same type. The area complexity of such A is

C(A) = C(wA)

where the area complexity of the predicate @) (4.4) is zero as there is no
computation but just the assignment. In other words, the action can be
thought as a register block without any combinatorial logic.

Example 4.1. Assume that the predicate ) defines an integer addition:
Q = (2 = a+b), where the variables a and b have the same width wq =
wp = 4. The read set w@ is of form w@ = {a, b}, which is set as a root in
the tree model, shown in Fig. 4.3. Then the number of children is calculated
by dividing the area complexity of the set v with the cardinality of the set
vQ. The area complexity C'(vQ) is:

56



((ap, a1, az,as), (bo, b1, b2, b3))

— N T

(ao, bo) (a1,b1) (agz, ba) (a3, bs)

(1,0) (1,0) (1,0) (1,0)

Figure 4.3: Example area complexity modeling

C(rA)
// \\
(Xo, Y0, Zo) (X1,Y1, Z1) (X2, Yo, Z2) (X3, Y3, Z3)

(1,0) (1,0) (1,0) (1,0)

Figure 4.4: Example area complexity modeling

(UQ wa—wA—i-wB

zEVQ

where the area complexity of the set is calculated by adding together the
widths of the variables in the read set. The number of children is then

defined by: [%1’5‘2)1 = [%] = 4. Each of these four children has two possible

output values, and the area complexity of the child node is (according to
Shannon’s equation) 22 = 4. The area complexity C(Q) of the predicate Q
is calculated by:

0 [562] 2= [].7-

In this example, both of the variables involved in the area complexity eval-
uation had the same width. Therefore, the area complexity modeling is
further illustrated using a more general example.

End of example.

Example 4.2. The read set of a predicate Q = (' = z+y+2) isvQ = {z,vy, z}.
The variables z,y, and z are of the same type and their widths are w, = 3,
wy = 3, and w, = 5, respectively. The area complexity of the set v is

(4.1
CQ) = Zwm—wm+wy—|—wz—3+3+5—ll
TETA

Adopting C(vQ) one can determine the area complexity of the predicate Q:
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c@) ' {%w olVel = [%W 23 =32

where the first term is the number of children in the tree model whereas
the second term calculates the area complexity of a child node. The tree
structure of the model is shown in Fig. 4.4, where the number of child nodes
is rounded because the widths of the variables in the set w( are not equal.
Therefore, based on the rounding, an approximation is generated where the
width of each variables in the set v(@ is four.

End of example.

4.1.3 Area complexity of a guarded action

Consider a guarded action of the form: gd — B, where the action B is of
form B = z := 2'.QQ, and the guard gd is a condition that decides whether
the action B is enabled or not. The definition of B follows directly from
the assumption that the non-deterministic assignment is selected as a base
action. The hardware illustration of the guarded action is shown in Fig. 4.5,
where both the predicate ) and the guard gd are assumed to be combina-
torial logic, and the write set forms the storage elements. That means that,
the area complexity of the write set is defined by (4.2). To evaluate the
area complexity of the predicate ) and the guard gd, consider an action
A= gd — v := 2'.QQ. The read set of A consist of two type of variables: the
variable(s) that appear in the guard and the variables that appear in the
predicate, or in both. Because the guard is a condition that has to be true
before the computation starts, it is fair to assume that gd and ) require
separate logic components. Therefore, the read set rA of the action A is
divided in two: v and vgd, where the former contains those variables that
appear in the predicate @), and the latter those variables that appear in the
guard gd, rA = vQ Uwvgd. The area complexity of these sets are evaluated
separately for each set using (4.3). Thus, for guarded action A, the area
complexity is formally defined by:

C(A) = C(wA)+C(Q) + C(gd) (area complexity of a guarded action A)
(4.5)

4.1.4 Calculation rules for area complexity

Based on the definitions from the previous sections, the action level area
complexity calculation rules are defined for various actions. These rules are
also directly applicable for Timed Action Systems as well, and are needed
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Figure 4.5: Illustration of a guarded non-deterministic assignment gd —

z:=2.0Q

to analyze the area complexity of the system in the forthcoming sections.
Consider the base action, the non-deterministic assignment, denoted by:
A =z :=2'.Q). The area calculation rules for action A, and its compositions

are defined by:

C(4) 2 Clwd)+C(Q)
4) = Clvg) + C(4)

(
(9 —
C(A(Proc)) = C(A) + C(Proc)
(
(
(

Q

C(A1 [ A2) = C(A1) + C(A2)
A1 Ag) = C(Ar) + C(Ag)
A1 | A2) = C(Ar) + C(Az)

Q

C

action)

guarded action)

non-deterministic choice)

(
(
(procedure)
(
(sequential)
(

~~ N /N /N A/~
B s
© o N S Ot
— — ~— — — ~—

prioritized)

where

(4.4) The area complexity of a non-deterministic assignment based action
is defined by calculating the area complexity of the read set and the
area complexity of the predicate evaluation as defined in (4.4)

(4.5)

The area complexity rule of theguarded action calculates the area com-

plexity of the guard (4.5) and the action.

(4.6)

The procedure rule defines the area complexity of the calling action

and the called procedure: The notation A(Proc) denotes an action
that calls a procedure in its body. The procedure can be an action,

a guarded action or composition of actions.
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calculated, respectively, using the rules (4.4) and (4.5) or one of the
rules (4.7), (4.8), or (4.9).

(4.7) The area complexity rule for a non-deterministic choice sums the area
complexities of those actions that are part of the composition. The
composition enables non-deterministically one of the two actions Ay or
Ao. However, when considering the area complexity of the system, one
needs to note that both of these actions form a separate component
in hardware, and therefore, their area complexities must be included.

(4.8) The sequential area complexity rule gives also a sum of the area com-
plexities of those actions that are part of the composition. A sequential
composition executes the actions in the composition consecutively, and
therefore, each action in the composition models a hardware module,
all included into the area complexity of the sequential composition.

(4.9) The prioritized area complexity rule sums the area complexities of
those actions that are in the composition. This is identical with the
sequential and the non-deterministic choice rules.

Example 4.3. Consider an action composition of the form:

((Bi;B2) | D) J E

where the actions By, Bg, D, and E have area complexities C(B1), C(B2),
C (D), and C(FE), respectively. Assume that these complexities are calcu-
lated using one of the rules (4.4), (4.5) or (4.6) depending on the definition
of the action. The area complexity of the composition becomes:

C((Bi;By) | D) / E)
2 o((Bi:By) | D) +C(E)

W o ((By; By)) + C(D) + C(E)

W oBy) + 0By + C(D) + C(B)

End of example.

4.1.5 Tuning the area complexity model

Consider (4.4), which defines the area complexity of a non-deterministic
assignment. the formula consist of two parts, the area complexity of the
write set and the area complexity of the predicate (). One may question
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what kind of components does the predicate describe. In this section, the
purpose is to clarify on that aspect.

In general, the predicate @ is assumed to model combinatorial logic as
shown in Fig. 4.1. That is, it could model logical operations such as AN D
or OR or arithmetic operations such as addition or multiplication. By look-
ing at the area complexity of the predicate (4.3) one observes that the area
complexity would be identical, for instance, for addition and multiplication
because the read set of the multiplication action and the read set of the ad-
dition action contain the same variables. To illustrate this, consider actions

Al, AQ, and A3:

Ay =7l :=r1".(r1' =dl + d2)
Ay =72 =72 .(r2' = d1 A d2)
Az =r3:=7r3.(r3 =dl xd2)

1h

where the actions A7, Ao, and Ag describe addition operation, AND opera-
tion, and multiplication operation, respectively. The area complexity of the
predicate @ is of the form:

3) [C(Q)] wq
@ [95P] 2
where vQ = {d1,d2}. Assume that in all three actions defined above, the
set v(Q is identical, and that the variables d1 and d2 have equal widths:
wg1 = wgqe = 4. Then, the area complexity of the predicate becomes:

c(Q) = [3 22 =16

One can see that the area complexity of the AN D operation is same as the
area complexity of addition and multiplication. In other words the logic
needed to perform bitwise AN D operation is the same (following the above
calculations) with the logic needed to perform for instance multiplication.
This is obviously wrong because multiplication is more complex than the
logic AN D operation [38]. To overcome this, a complexity factor ¢ € RT
for the predicate is defined:

cQ) = [%—‘ - (2lv@lye (4.10)

where the value of the complexity factor can be any positive real number,
and, furthermore, adjustable by a designer. In this thesis, the complexity
factor is adjusted so that it takes the high abstraction level into account,
and thus there is no need to assume exact complexity factors. For instance,
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the complexity factor for addition is assumed to be one (¢ = 1) and for
multiplication it is assumed to be two (¢ = 2). This follows from the
complexity relation between binary addition and multiplication as described
in [38], where the complexity of binary addition is n and the complexity of
a schoolbook multiplication is n2. At the high abstraction level it is fair to
assume the above values for the area complexity evaluation.

Example 4.4. Adopting the actions A; and Az defined above, where the
first one defines an addition and the last one defines a multiplication. The
predicate @ of action A;, denoted Q1, is of the form: Q1 = 2/.(d1+d2), and
the predicate @ of action As is of the form: Q3 = z’.(d1*d2). The variables
dl and d2 are of same type and have same widths: wg; = wgo = 4. Based
on (4.10) and on the above defined complexity factor:

C(Q1) (4;0) [4%4-‘ ) (22)1 — 16
ooy |15 e =

which seems to be more realistic.
End of example.

The complexity factor can be so that more efficient multiplier is selected
that allow a designer to decrease the complexity factor. Next the logic oper-
ations such as bitwise AN D defined by action As, are discussed. Assuming
that the complexity factor is one (¢ = 1), and that the variables are of
same type, and, furthermore, they have similar widths, for instance, those
widths defined in Example 4.4. Then the area complexity of the predicate
()2 is the same as the area complexity of the predicate ;. To check how
accurate this assumption is, BDDs are adopted. The BDD environment
used, and more detailed analysis on the area complexity model are defined
in Sect. 4.6. In this section, a complexity factors for logic AN D and logic
XOR are explored. The AND operation is defined by action As, and the
XOR is defined by action Ay:

Ay =rd =14 . (rd = dl @ d2)

where the bitwise XOR is calculated between the variables d1 and d2. As-
suming that the variables are of same type, and that their widths are the
same for both actions Ay and Ay (wg1 = wge = 4), the area complexities
for the predicates in actions are calculated using two values for complexity
factor. The result are shown in Table4.1. The result show that to get bet-
ter accuracy, it is worthwhile to decrease the complexity factor for action
A2, but for action A4, there is no need to change the factor. This kind of
analysis can be done at different phases of the design process. Table (4.2)
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Table 4.1: Tuning the complexity factor.

Action | C(Q) (¢ =1) C(Q)(¢ =0.5) Area (BDD)
A2 16 8 10
A4 16 8 21

Table 4.2: Example operations and their complexity factor.

Operation definition Complexity factor
Integer Addition A+ B o=1
Integer Subtraction A-B p=1
Integer Multiplication AxB ¢o=2
Integer Division A+B o=2
AND (bitwise) ANB =3
OR (bitwise) AV B =3
XOR (bitwise) A®B p=1

summarizes the complexity factors discussed in this section. Furthermore,
these factors are adopted in the forthcoming sections. Moreover, the accu-
racy of the area complexity model is further alleviated in the end of this
Chapter in Sect.4.6

4.2 Average Power of Timed Actions

The power modeling starts by defining an energy model for a timed action
after which the static and the dynamic power consumption are explored.
The area complexity model presented in Sect.4.1, is instrumental in both
of these models. In this section assume that the timed actions are atomic.
Non-atomicity in power modeling is presented Sect. 4.4.

4.2.1 Energy

Every time a timed action is executed it dissipates energy in its operation.
For an arbitrary timed action A, the energy dissipation is modeled by:

E(A) = a-C(A)-E? (energy dissipation of timed action A) (4.11)
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where C'(A) is the area complexity of the timed action A, « is the switching
probability parameter, and E' is the energy of an unit action A'. The unit
action defines a basic logic gate, an inverter:

Al 2 =g (2 = —y) (an unit action A') (4.12)

where z and y are Boolean variables. The energy of the unit action (inverter)
in CMOS can be calculated by:

1
Elzi.CL.ng

where Vpp is a supply voltage and C, is the output capacitance of the unit
size inverter driving another unit size inverter in a given CMOS technology
[69]. Therefore, an arbitrary action A has a load capacitance: C(A) - Cf.
Observe that the supply voltage Vpp and the load capacitance of the unit
size inverter C', are technology dependent parameters, and thus, their values
are not defined.

The switching probability parameter « is defined for every action in
the composition, and its value is specified by a designer. In general, the
switching probability parameter defines the probability that subactions in
the atomic composition are enabled. Therefore, it is required that 0 < o < 1,
and, furthermore, in this study, the value of the parameter is one (o = 1)
unless otherwise stated. Consider the following example:

Example 4.5. An atomic action A defined by:

A= (Ar; (A2 [ A3); Ag)

whose one is able to monitor pre and post conditions of A. Due to the atom-
icity, one is not able to observe the intermediate states of the composition,
for example, which one of the subactions A2 or A3 is executed. In terms of
area complexity, the estimation is carried out for the whole composition as
described by the area calculations rules (4.4) and (4.8), and thus the area
complexity of the composition A becomes:

o(4) “L 0(4)) + 0(A2) + O(43) + C(Ag)

where the C'(A) is the area complexity of the action A. Adopting this area
complexity and the energy dissipation of timed action (4.11) would give the
worst-case energy consumption of the timed action A:

EA) "2 o o). B
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where the switching probability parameter is defined to be one for all actions
in the composition a = 1. Often it is useful to evaluate the average case or
even the best case energy consumption. To do this, a designer can adjust the
switching probability parameter, for instance, by assuming that the actions
Ay and As have equal likelihood to be selected for execution, and therefore
the energy consumption F(A) is:

E(A) = (a1 . C(Al) + ay - C(AQ) + ag - C(Ag) + oy - C(A4)) . E]1

where the switching probability parameters a; = a4 = 1 and as = a3 =
0.5. These parameters indicate that subactions A; and A4 are selected for
execution every time the action A is enabled, whereas the actions Ay and
Az are selected with 50 % likelihood. Adopting the latter area complexity
clause to evaluate energy consumption one is able to estimate the average
case or even best the best case energy consumption of the timed action A
End of example.

4.2.2 Dynamic Power Consumption

Consider an arbitrary timed action A. Its dynamic power is defined by:

Pyyn(A) = ——=  (dynamic power consumption of timed action A) (4.13)

where E(A) is the energy consumption of the action, and A(A) is the dura-
tion of a single execution of A (AA = A.ft— A.st). The energy consumption
is illustrated in Fig. 4.6, where the dotted curved line demonstrates the ac-
tual energy consumption of the action A, whereas the straight line is the
energy estimate used in this study. That is, the energy consumption of timed
action A is related to the duration of execution reaching its final value when
the timed action finishes its execution. Moreover, from the linear energy
model it follows that at time ¢ (t € [A.st, A.ft]), shown in Fig. 4.6, the
energy of A is

E(A) 2 E*(A) + E(A)

where

E*(A) = (t — A.st) - Pyyn(A) (4.14)
E"™(A) = (A.ft —1) - Payn(A) (4.15)

where E*!(A) describes the energy consumption of the timed action A from
initialization to time ¢, and E**(A) is the energy dissipation from the time
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Figure 4.6: Dynamic power of a timed action

t to the finish time of the action A. Observe that in the above calculations
the dynamic power Py, is constant due to the selected linear energy model.

In cases when the power is not constant, that is, it is a function of time,
the energy consumption of the timed action A is:

A.ft
B(A) = /A Pyt

where A.st and A.ft are the start and the finish times of the timed action
A, respectively.

4.2.3 Static power consumption

To model the static power consumption of a timed action A, the unit action
Al defined by (4.12), is adopted. The static power dissipation of the unit
action is:

PL.. = Vop-ILa (static power of an unit action A') (4.16)
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where [ lle ok 18 the leakage current of the unit action, and Vpp is the supply
voltage. Observe that both the supply voltage Vpp and the leakage current
Tjeqr. are technology dependent parameters, and therefore, their values are
not defined in this abstraction level. Adopting the static power consumption

PL.; of an unit action A! the timed action A causes a static power loss
Pstat(A):

Psat(A) = C(A) - P, (static power consumption of timed action A)
(4.17)

where C'(A) is the area complexity of the timed action A. That is, the static
power loss of the timed action A is directly proportional to its area. Kim et.
al. in [49] stated that both the sub threshold and the oxide leakage depends
on the total gate width or more approximately the gate count, temperature,
and oxide thickness. The last two are not considered in this model but the
first one, the gate count, can be modeled using the area complexity model
for timed actions.

4.2.4 Power consumption of timed action

The total power consumption of a timed action A is obtained by adding
the dynamic power consumption (4.13) and the static power consumption
(4.17)of the timed action A together, and thus the power consumption of
the timed action A is defined by:

Pyoi(A) = Payn(A) + Pstar(A) (power consumption of timed action A)
(4.18)

4.3 Power Modeling at System Level

In this Section, the area complexity and the power consumption are dis-
cussed at the system level. The area complexity and power models for
timed actions are applied in a timed action system context. Furthermore,
the area model can be adopted for conventional Action Systems as well be-
cause no timing information is required. The modeling environment, shown
in Fig. 1.1 on page 4, is defined to be a parallel composition A||Env, that
is another action system whose distinct global and local identifiers (proce-
dures, variables, actions) consist of the identifiers of the component systems
AllEnv. The execution clause is of the form:

foreverdo [[[1<i<k:A] | [[1<j<I:E;]lod
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where A; and E; are actions (with distinct labels) operating on the state
variables of A and Env, respectively. Constituent systems communicate via
their shared interface variables and public procedures. Furthermore, the
actions operate in a mon-final manner meaning that there is always at least
one enabled action in the established system composition.

4.3.1 Area complexity of Action Systems

Consider the above introduced system A || Env where the latter models the
environment of the former. Furthermore, let A denote all the actions of the
system A, and Env denote all the actions in the system Enwv. It is easy to
see that A || Env = A U Env, where A||Env consist of all the actions in the
parallel composition.

The area complexity of the system A is defined by

C(A) = Y C(A)

AeA

where the area complexity is calculated for all the actions A in the system
A. From this follows that the area complexity of the environment Env is of
the form:

C(Emv) = Y C(EB)

Eeénv

By adopting the above area complexities for the systems A and Env one is
able to define the area complexity of the systems A || Env :

C(A | Env) = C(A) + C(Env) (area complexity of systems) (4.19)

where the area complexity of the parallel composition A || Env is the sum of
the area complexity C(.A) of the system A and the area complexity C(Env)
of the system Enwv.

4.3.2 Average power of Timed Action Systems

To model the average power of a timed action system A, one needs to define
an observation period: T = [T.st,T.ft] (T € T), where T.st and T. ft denote
the start and finish times of the interval, respectively. The duration of the
period is obtained as follows: A(T') = T.ft — T.st. During the observation
period, a timed action system executes a set Ar of timed actions.

Ap = {A|(A€ A)A(Bt:T.st <t <T.ft:gd(A)(t))}) (set of Ap) (4.20)
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Figure 4.7: Example set of timed actions Ap

where gd(A)(t) refers to the guard of a timed action A at the given time ¢.
Hence, the set Ap contains all the actions from the execution loop of the
system A that are enabled during the observation period 7. This includes
actions that are started, finished, or started and finished within the obser-
vation period T'. Consider an example system A || Env. In Fig. 4.7, actions
that are executed by the system A are illustrated as black lines whereas the
gray lines describes those actions that are executed by the environment sys-
tem Env. The environment system Env is excluded from the average power
evaluation to capture the average power dissipation of the system A. The
observation period T, illustrated in Fig. 4.7, determines the set of actions
Ar = {A, B,C, D}, where according to Figure, the action E is excluded
due to the definition of the set Ap. In general, however, the observation
period is defined in a way that it contains, for example, a single execution
of a computation path with in a system. That is, the observation period
is determined in a way that it contains the desired functionality for power
estimation, for instance, a single computation cycle.

The energy dissipation of a timed action system A must be defined before
the average power can be evaluated. The energy dissipation of the system
A over the observation period T', denoted by Er(Ar), is defined by:

Er(A) = Z Er(A) (energy of timed action system A) (4.21)
AcAr

where Ep(A) denotes the energy consumption of action A during the ob-
servation period T'. The way action A is executed during the observation
period T has an effect on the energy calculations. That is, there are five
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Figure 4.8: Execution of timed action A during observation period T

different cases, shown in Fig. 4.8, which are listed and explained below (the
numbers in the figure correspond with the numbers in the lists below):

(1) Er(A) = E(A) - EXT*(A) — ETT™(4),
(Ast <T.st NA.ft > T.ft)

(2) Er(A)=n-E(A),

(Aj.st >T.st NAp. ft <T.ft An>1)
(3) Er(A)=(n—1)-E(A) - E*"(4y),

(Aj.st <T.st NAp.ft <T.ft An>1)
(4) Er(A) = (n—1)- E(A) — E"/"(4,),

(Ap.st >T.st NAp.ft >T.ft An>1)
(5) Er(4) = (n—2)- B(A) - E*T*"(4;) — ET/™(A,),

(Ap.st >T.st NAp.ft >T.ft An>2)

where

(1) The start and finish times of the timed action A are outside the ob-
servation period T

(2) The timed action is executed n (n > 1) times inside the observation
period T.
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(3) The first execution of timed action, denoted Aj, starts its operation
outside the observation period 7', but finishes it inside the observation
period T', after which the action is executed (n — 1) times (n > 1).

(4) The timed action A is executed (n — 1) times (n > 1) inside the
observation period T'. The last execution, denoted by A, falls partly
outside the observation period 7.

(5) The first (A;), and the last (A,,) execution of the timed action A are
partly outside the observation period 7. In between these execution
the timed action is executed (n — 2) times (n > 2).

The above expressions for energy consumption requires that the E(A) is
constant. For atomic compositions, like the one presented in Sect. 4.2.1,
the constant energy value is guaranteed by using the switching probability
parameter «. This property is illustrated by the following example:

Example 4.6. Consider a timed action A = Mult || Add, where the action
Mult describes a multiplication operation, and the action Add describes
an addition operation. The area complexity of the action A is defined by
adding the area complexities of the subactions together: C'(A) = C(Mult)+
C(Add), where the C(Mult) and the C(Add) denote the area complexities of
the actions Mult and Add, respectively. However, to illustrate its dynamic
behavior, the area complexity C'(A) of the action A gives the worst-case
result. Assuming that the switching probabilities for these subactions are
known and defined by apz; = 0.6 and av4qq = 0.4. Adopting these switching
probabilities for energy consumption evaluation results a constant energy for
the action A, and the presented energy calculation rules can be adopted. The
energy consumption is of the form:

EA) "2V (0.6 - C(Mult) + 0.4- C(Add)) - E!
Naturally the action A can be implemented using two separate actions Mult
and Add. which will lead directly to constant energies E(Mult) and E(Add).
Of course the drawback is that one requires two action definitions instead
of one, which may complicate the definition in large systems.
End of example.

Adopting (4.21), the dynamic power consumption Pr gy, (A) during ob-
servation period T is defined by:

~ Er(A)

Pr ayn(A) = A(T) (dynamic power of system A) (4.22)
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Figure 4.9: Illustration of the selected observation period

where A(T) is the duration of the observation period. The static power
consumption is related to the area complexity of the system. Adopting
(4.19) the static power consumption of the system A becomes:

Pya(A) = C(A) - PL,, (static power of system A) (4.23)

where the area complexity of the above system is calculated in a way that all
actions in the system are included. That is the leakage is dependent of the
area complexity of the whole system whereas the dynamic power includes
only those actions that are enabled during the selected observation period.
Adopting (4.22) and (4.23), the average power consumption Pr gy (A)
during the observation period T of a timed action system A is defined by:

Pravg(A) = Prayn(A) + Pstar(A) (average power of system A) (4.24)

Naturally, the average power consumption of a parallel composition of timed
action systems is obtained by adding together the average power of the indi-
vidual systems: for instance, the average power consumption of the system
A Env is:

PT,GUQ(A H 5’/L’U) = PT,avg(A) + PT,avg(gnU)

where the Pr q,4(.A) is the average power consumption of the system .4 and
Pravg(Env) is the average power consumption of the system Env both of
which are calculated using (4.24).

Example 4.7. Consider a timed action system A whose execution loop is
of the form:
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forever do (A;B) | D od

The average power consumption of the system is calculated by evaluating the
dynamic power consumption and the static power consumption of the system
separately defined in (4.24). To evaluate dynamic power consumption, one
have to set an observation period T' = [T.st, T.ft], where the start time T.st
and the finish time T.ft are defined in a way that the system executes all
the timed actions in the execution loop at least once. The set of actions Ap
can be, for instance, of the form: Ay = {A, B, D}, as shown in Fig. 4.9.
The dynamic power consumption:

PT,dyn(A) (4£2) Egéz;)

(421) E(A) +2- E(B) + E(D)
B A(T)

and the static power consumption for the system A is:
(4.23)
Pstat (A) = C(A) : Psltat

U c(a) + C(B) + C(D)) - PL,,

Thus, the average power dissipation of the system A is:

Praug(A) "2 Pragn(A) + Paar(A)

End of Example.

4.3.3 Power dissipation in computation paths

During the development of a digital system, a designer make choices be-
tween different implementation methods and styles. For instance, it can be
useful to introduce additional pipeline stages or to operate in a fully parallel
manner within given requirements. Based on a computation path one is able
to gain information on different computational ”suboperations” inside a sys-
tem. Therefore, to obtain more detailed information on timing and power
consumption in the system, one reconsider the computation path, defined
in (3.8).

Consider a computation path CP(A, B), which is defined by (3.6) on
page 44 (denoted below for the ease of reference):

CP(A, B) = (A1, Ay, ... Ay)
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where A = A; and A,, = B. The area complexity of the computation path
CP(A, B) is defined by:

C(CP(A,B)) = (area complexity of a computation path)

Z C(4;) (4.25)

where the area complexity includes all the actions in the computation path,
that is, A and sequence of successors leading from A to B, including A and
B themselves.

As discussed above, the computation paths are used to explore different
computational operations within a system. To compare power consumption
between computation paths, it is enough to compare the dynamic power
consumption of different paths. This is due to the fact that the static power
consumption of the system does not alter because one is not increasing
or decreasing the amount of actions in the system, only analyzing different
subsets of actions in the system. The power consumption of the computation
path is:

P(CP(A,B)) = (power consumption of a computation path)
E(CP(A, B))
ACP(A, B) (4:26)

where E(CP(A, B)) is the energy consumption of the computation path and
ACP(A, B) is the computation path delay, defined by (3.17) on page 49.

The symbol * is used to indicate if A or B or both A and B are excluded
from the computation path. Compare the notations with the computation
path delay on page 49. The energy consumption of the computation path is
of form (both A and B included):

E(CP(A, B)) ZE E(A1) + E(Ay) + ... E(Ay)

where the energy consumptlon is first calculated for each action A; in the
computation path separately and then added together.

b

E(CP(*A* B))
E(CP(A*, BY))
E(CP(A** B))

E(CP(A, B)) — E(B)
E(CP(A,B)) — E(A)
E(CP(A, B)) — E(A) — E(B)

b

IR

adopting the energy clauses, and the computation path delays, presented on
page 49, and adopting (4.26), one is able to calculate the power consumption
for all the four cases presented above.
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Example 4.8. The execution loop of a timed action system S is of the
form:

forever do A;((B | C) || E);D od.

Three possible computation paths are illustrated using a tree structure
shown below:

pA—C—D

e

§2-A—B—D S8
NA—E—D

where the computation path 1 and 2 are alternative paths from action A
to action D whereas the computation path 3 is partially parallel (action
E) with the paths 1 and 2. For power analysis purposes it is necessary to
compare the execution time and the area of each path. The computation
path delays are:

AeP (4, D) "2 A(4; 0, D)
BV A(4) + A(C) + A(D)

(3.17)

ACPy(A, D) A(A; B; D)

GV A(4) + A(B) + A(D)

(3.17)

ACP3(A, D) A(A; E; D)

G2 A(4) + A(E) + A(D)

where one can see that the difference in delays between the three computa-
tion paths depends on the delays of the actions C', B, and E. This is due to
the fact that three paths have actions A and D whose delays are not altered
between computation paths. Thus, if A(FE) is the smallest delay then the
computation path CP3 is the fastest.

In a similar manner, the area complexity is calculated for all three com-
putation paths:

(4.25)

ceP. (A, D)) "2 ca) + cc) + o)

c(€Ps(A, D)) "2 c(4) + C(B) + C(D)

(4.25)

c(ePs(A, D)) "2 c(a) + ¢(B) + o(D)

75



A 1 A 1

time time
(a) Parallel behavior of two timed ac- (b) Timed action kills another one to
tions whom it operates in parallel

Figure 4.10: Parallel behavior of timed actions.

where one can see that the area complexity of the actions C, B, and E
determines which one of the three computation paths is smallest.

The power dissipation for each computation path is evaluated by adopt-
ing the delay and the area complexity information and (4.26):

E(EP1(A, D)) _ B(4) + B(C) + E(D)
P(€91(4, D)) = Rep- D ACP(A, D)

E(€Py(A, D)) _ E(4) + E(C) + E(D)
P(€92(4, D)) = Ropt ACP,(A, D)

E(€P3(A, D)) _ E(A) + E(C) + E(D)
P(CP3(A, D)) = A@Ti(A, D) ACP3(A, D)

By looking the above power equations, the difference in power dissipation
depends on the timed actions C',B,and E. For instance, if (C(B),C(C))
> C(E) and (A(B),A(C)) < A(F) then the power consumption of the
computation path 3 is smaller than the power dissipation of the computation
paths 1 and 2.

End of example.

4.4 Power Consumption of Killed Timed Actions

The parallel behavior of timed actions, defined in Sect.3.4.2 on page 41,
requires that the actions are enabled at the same state, and, furthermore,
they are independent of each other (no write-write and read-write conflicts
between the actions executed in parallel). However, in conventional Actions
Systems, non-independent actions cannot be executed in parallel. In the
Timed Action Systems formalism, the non-independent actions can operate
partially parallel if timed actions are killed. Consider two timed actions,
say A and B, are operating in parallel such that A has started its execution
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Figure 4.11: Timed action state predicates

before B and A ends its operation before B, shown in Fig 4.10(a). This
reflects the operation of two independent parallel actions A and B. Next,
consider a case when A and B are not independent. Timed action A, at the
end of its operation updates its write variables some of which belongs to the
read set of B (wANrB # (). Assume that the update of these variables
disables the timed action B. This, in turn, kills the operation of the timed
action B as shown in Fig. 4.10(b). The killing of a timed action results in
the execution of the skip action creating the same outcome in the timed and
untimed domains. In other words, the execution of the conventional action
A would disable the conventional action B, and therefore B would not be
executed in the first place. Adopting the skip operation is not appropriate
for power modeling purposes, because at the same moment when a timed
action commences its operation it consumes energy. To further illustrate
the difference, consider Fig. 4.11, where the operation of the action B is
shown using timed action state predicates (discussed in Sect. 3.1.3 on page
35). In the beginning of the execution, the read variables of a timed action
are read, then the timed action continues its operation, after which the
results are written onto the write variables by the finish action. If the timed
action B is killed the operation is interrupted and the write variables are
not updated as shown in Fig. 4.12. In power estimation point of view, power
is dissipated in the beginning of the execution (St(B)) and during the time
that a timed action has been in operation (Op(B)). In other words the
timed action performs computation but the results of the computation are
not stored into the write variables.

The area complexity of timed actions operating in parallel is calculated
using (4.4) (for each action separately). Hence, whether a timed action is

7



St(B) K(B)

C En )
\ 7

B M

time stateB.st

L 2

fa

\ Op

A "4

Figure 4.12: Timed action state predicates kill operation

killed or not does not affect on its area complexity. Furthermore, the area
complexity is the only variable in the presented static power consumption
model, and therefore, the static power consumption is evaluated as discussed
in Sect. 4.3.2. However, the dynamic power consumption is dependent of
a computation time, and therefore if a timed action is killed, the dynamic
power has to be re-calculated. The dynamic power evaluation is started by
calculating the energy consumption of an independent timed action B:

EX(B) (4.14) E*(B) = (t — B.st) - Pyu(B) (Energy(killed action)) (4.27)

where E*'(B) is the partial energy discussed on page 65 and Py, is the
dynamic power consumption of the action B whose operation is not killed.
The dynamic power consumption of the killed timed action B is defined by:

Pd[;n(B) = (dynamic power(killed action))

where AX(B) is the operation time of the timed action B, and it is defined
by:

A®(B) = B.kt — B.st (delay(killed action))
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The average power consumption of the killed action B is defined by:

PE(B) = Pj;n(B) + Pstor(B) (average power(killed action)) (4.28)

where the first term evaluates the dynamic power consumption and the
second term calculates the static power consumption using (4.17). This is
due to the fact that the static power estimate depends on the area of the
action, which is not altered in the killing process, and therefore it can be
calculated using the static power equation for timed actions. Consider the
following two examples where the first one describes a timed action system,
whose behavior is evaluated using computation paths, and, furthermore,
the timed actions in the system are assumed to be independent. The second
one describe a timed action system whose operation is modeled using non-
independent actions, and therefore the power analysis must take the possible
kill action into account.

Example 4.9. Consider a timed action system A whose execution sequence
is of the form:

forever do A;(B [ D) od

where the execution of the timed action A is followed by the non-deterministic
choice between actions A and B. The system has two possible execution se-
quences, which are illustrated using computation paths shown below:

1-A—D —_

AZ
2~4—B~

where the action A is executed first after which either the action B or the
action D is selected (non-deterministically) for execution. Assuming that
kill operation does not take place during the execution of the computation
paths. The computation path delays are of the form:

AeP (4, B) "L A(4; B)
BLY A(4) + A(B)

(3.17)

ACPy(A, D) "2” A(4; D)

GLV A(4) + A(D)

In a similar manner the area complexities are calculated for the computation
paths:
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(4.25)

C(CP1(A,B)) C(A)+C(B)

(4.25)

C(ePy(A, D)) "2 c(A) + (D)

Adopting the above timing and area information the power equations for
the computation paths CP; and CPs are:

P(ePy (A, B)) 12V %

_ (A +C(B)-E
T AA) +A(B)

_ (C(A)+C(D))- E!
~ T A(A) + A(D)

where one can see that both computation paths include the action A, and
therefore its time and area dissipation are the same in both paths. The
difference in power consumption depends on the size and speed difference
between the actions B and D.

End of example.

Example 4.10. Consider the timed actions system A4 described in Exam-
ple 4.9, whose execution sequence is of the form:

forever do A;(B || D) od

where the execution of the timed action A is followed by the non-deterministic
choice between actions B and D. In the Timed Action System context, it
is possible, however, that the actions B and D are simultaneously enabled.
This is illustrated in Fig. 4.13, where one can see that both the action B and
D are enabled at the same time. The sequential composition with the action
A, however, force the faster action to kill the slower one. The faster action
is the action whose operation is finished earlier. In this case, the action B
kills the action D. Therefore, the operation of the system, in this particu-
lar case, can be defined using the computation path CP; (A, D), described in
the previous example. To model power consumption for the above described
behavior, the presence of the kill operation has to be taken care of. Only
dynamic power is discussed since, one analyze a subset of the model, and
therefore the total area of the system remains the same.
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To evaluate the dynamic power consumption for the behavior, shown
in Fig 4.13, an observation period T is defined by: T = [T.st,T.ft], where
the start time T.st and the finish time 7. ft are defined in a way that both
the actions A and B are executed sequentially once. The dynamic power
consumption becomes:

Pran(4) 2 500
(421) E(A) + E(B) + E(D)
- A(T)
(421) E(A)+ E(B) + ((t — D.st) - E(D))
B A(T)

s

where the energy consumption is calculated for the killed action D as well.
The delay of the observation period corresponds with the delay of the com-
putation path CP;(A, B) discussed in preceding example. Thus, the above
power equation becomes:

E(A) + E(B) + ((t — D.st) - E(D))

Prayn(A) = A(A) + A(B)

Comparing the above equation with the power dissipation of computation
path P(CP;(A, B)), described in the previous example, one can see that
the difference in power dissipation consist of the energy consumption of the
action D. The example showed that, in the presence of kill operation, the
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fact that the killed action behaves as the skip action does not justify to
exclude it from power estimation.
End of example.

4.5 Instantaneous Power Dissipation

As stated in Sect. 1.4, in many applications, the average power estimate may
not be enough. Often it is important to be able to estimate instantaneous
power as well. In general, this type of analysis is needed to analyze the power
and ground bus networks for finding DC-voltage drop problems [36] *, which
lead to a reduced circuit speed due to the lowered supply voltage. Another
obvious application is in noise analysis because glitches on the power supply
are coupled into the circuit leading to noisy and possibly erroneous signals.
The presented model, as it is targeted to above RTL, cannot give a detailed
waveform; but the model can be used to find relative information between
system models.

Consider a set Ap (4.20) where the observation period is divided into
time segments 7T; (1 <1i < m) that satisfy the following condition.

(T, CT) A (i > 1) (»1)
A(VE:Tist <t <T.ft:(VA:Ae€ Ap:t ¢ {A.st, A.ft})) (p2)
A (Elm m >
(i =1= T;.st = T.st)
A(1<i<m=T;.ft=T.st)
A(3A: A€ Ap: (T;.ft € {A.st, A.ft})) (p3)

Ai=m=T,.ft=T.ft))

Hence, the start time of a time segment T; is either the start time T.st of
the observation period T or the start or finish time of an action A € Ap
(p1,p3). Analogously, the finish time of a time segment 7; is either the finish
time T.ft of the whole observation period 1" or the start or finish time of
an action A € Ap. Furthermore, the finish time of a segment 7T; is the start
time of the next segment T; 41 for 1 <4 <m and m > 1. No action A € Ar
is started or finished inside a time segment T;, i.e. when T;.st < t < T;.ft
(p2).

The definition of time segments is illustrated in Fig. 4.14, where three timed
actions A, B, and D are executed once during the observation period T

LIR” drop according to Ohm’s law: (V = R - I), where R is the equivalent path DC
resistance between the source location and the device location and I is the average current
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Figure 4.14: Illustration of time segments

The observation period is divided into four time segments according to the
definition above.

The instantaneous power consumption is defined for each timed segment
T; by adding together the power consumptions of all the enabled actions
in that particular segment. This follows from the linear energy model, de-
picted in Fig. 4.6, where all the timed actions have a “constant power”. For
instance, the power consumption of an arbitrary action A is P(A) = %
(4.13). Therefore, the instant power consumption is:

Pinst(Ti) = Azf; Payn(A) (instant power consumption) (4.29)
EAT;

where Py, is the dynamic power consumption of the enabled actions in
time segment T;. The set Ar; defines those actions that are enabled during
the time segment T; (A7, C Ag). Observe that only the dynamic power
is estimated because the instant power dissipation analysis evaluates the
simultaneous switching activity inside system(s).

Example 4.11. Consider the situation presented in Fig. 4.14 where three
actions A, B, and D are executed during the observation period T. The
instant power for time segments 1, 2, and 4 is:

4.29
Pinst(Tl) ( = ) den(A)

the chip draws from the supply
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Figure 4.15: Instantaneous power estimation per time segments

Pinst(T) “2” Pyy(B)
(13 E(B) _ E(B)
 A(Ty)  A(B)

Pinst(T3) “2” Payu(D)
(413) E(D)  E(D)
= ATy~ AD)

The time segment 3 contains two enabled actions, and therefore the instant
power consumption is calculated by:

]Dinst (T3) (4:29) ( ) + den(D)
)

Fayn
(4+13) E(B)  E(D)
A(B  A(D)
The energy dissipation during the observation period 7', and the way it is

distributed among time segments 77 — T} is shown in Fig. 4.15.
End of example.

4.6 Discussion on Models

The accuracy of the proposed area complexity model was compared with
the model provided by BDDs. A detailed study on the feasibility analysis
can be found in [84]. As stated in Sect. 1.4, several tools exists to use and
manipulate BDDs. The introduced area complexity model was evaluated
using Verification Interacting with Synthesis (VIS) tool [10] together with
selected benchmark circuits from ACM/SIGDA benchmark set [1]. These
benchmark circuits are written in Berkeley Logic Interchange Format (BLIF)
format. The generous number of available benchmark circuits and especially
their documentation were the main reasons to select this tool.
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Table 4.3: Results (area complexity).

Design VIS-2.1 | Action model | %
16-bit multiplier 198 272 72
32-bit multiplier 374 544 69
16-bit adder 48 72 67
32-bit adder 96 160 60
8-bit ALU (+ control) | 447 250 178
Arbiter with 3 clients | 323 327 99
GCD 768 967 79

The functionality of the benchmark circuits were described using the
Action Systems formalism according to their documentation after which
their area complexities were evaluated. In the area complexity calculations,
the complexity factors shown in Table 4.2 were adopted. The results were
compared with the results gained from the VIS tool, shown in Table 4.3,
where the first column specifies the name of the benchmark circuit, the
second column the size of BDD, the third one area complexity of the actions
model, and the fourth one the percentual difference between BDD and the
area complexity model presented in this chapter. If the percent is less than
hundred, the BDD model was smaller than the corresponding action systems
model. The comparison was made in a way that root and child nodes of the
presented model are thought as BDD nodes, and the leaf nodes in both cases
are the same, that is logic zero or logic one. Thus, the node count and the
area complexity were compared directly.

The direct comparison is possible because the basis of the area complex-
ity model is on BDDs, and, furthermore, as the abstraction level decreases,
the BDD generation from the action system description becomes possible.
That is, at higher abstraction levels, the generation of Boolean functions
from the action system description is difficult. In general the accuracy of
the model varied most commonly between 60% and 70% from the BDD
model. Furthermore, in most cases the area of the formal system descrip-
tion was larger than the Boolean ones. This supports the idea that as the
level of abstraction decreases, the area complexity analysis will be more
and more accurate as the formal system descriptions become closer to the
Boolean level.

The presented accuracy is for the area complexity model, and there-
fore direct comparisons cannot be made with the existing high level power
models. The macromodel based approach, presented in [45], the range of
maximum errors varied from 12 % to 33 %. The presented model has an av-
erage error rate in between 30% to 40%, which is a satisfactory result. This
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is due to the fact that the presented model is only for the area complexity,
and therefore direct comparison between existing high level power models
is out of focus. Furthermore, the abstraction level of the presented model is
above RTL, and thus the accuracy of the model is likely to suffer because
of that. In other words, as the abstraction level increases, the accuracy
of the model decreases, and the relative estimates becomes more and more
important.

In power estimation the area complexity is used to estimate the physical
capacitance in dynamic power modeling and as a gate count estimate, which
is needed in static power consumption. The timing information is gained
from the base formalism, Timed Action Systems [86]. Adopting the area
complexity and the time-aware formalism one is able to built a power mod-
eling framework. Observe that the other variables affecting to the power
consumption are assumed to be parameters, which are updated as the level
of abstraction decreases. Furthermore, the power estimation framework pre-
sented in this chapter do not cover communication structures, which is dis-
cussed in Chapter 7.

4.7 Chapter Summary

This chapter presented a power estimation framework for Timed Action Sys-
tems. At first, the sources of power consumption were discussed after which
the area complexity model for a timed action was defined. Adopting the area
complexity model, one is able to reason on the relative sizes between timed
actions. In addition, the area complexity model is used to estimate both
dynamic power (load capacitance estimate) consumption and static power
consumption (gate count). After the power estimation is defined for timed
action, the chapter proceeds into more complex analysis environment, the
system level environment, where the area complexity and power consump-
tion are defined for timed action systems. Once the basic power modeling
framework is set for systems, the chapter defines different methods to reason
on power consumption inside a system. That is, it defines ways to compare
the power consumption of different computation paths within the system.
Furthermore, the parallel behavior between two or more independent timed
actions is discussed, and its effect to the power estimation. Finally the in-
stant power modeling is presented, which analyzes the power consumption in
a more detailed manner, detecting possible hot spots in the system. Finally,
the presented area complexity model was compared with a BDD tool. The
next chapter introduces system constraints, which are essential for system
verification. These constraints can be both functional and non-functional
properties.
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Chapter 5

Specification of System
Constraints

The previous chapter introduced a power aware design framework for Timed
Action Systems. The presented framework consists of techniques to estimate
both area and power characteristics of the system under design by utilizing
the properties of the underlying formalism. The power characteristics are
verified against the power requirements, which are defined in the system’s
specification. These requirements are in fact constraints, i.e., restrictions
posed either by the systems environment or by a designer. In this chapter,
various constraint types and their specification are explored. A constraint
can be defined as a Boolean condition that indicates how an involved timed
action must operate; i.e., a violation of such conditions causes an unpre-
dictable computation. If the condition defined by a constraint evaluates
to true, then constraint holds, otherwise it evaluates to false, which means
that the constraint is not satisfied. In general, the verification of a constraint
takes place either before or after the execution of the action.

5.1 Deadline

A deadline [86] defines the maximum time that a sequence of timed ac-
tions may consume with their operation. The deadline is defined using the
computation path concept CP(A, B), and it is of the form:

D(CP(A, B),d) = (A(CP(A,B) < d)) (deadline) (5.1)

where it is required that the computation path delay A(CP(A, B)) is less
than or equal with d. That is, a deadline D is regarded as a logical condition
in proofs. The deadline is evaluated to true (D = T') when A(CP(A, B)) <d
and to false (D = F) when A(CP(A, B)) > d.
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5.2 Area Complexity

An area constraint defines the maximum area complexity that a timed action
or a timed action system may consume. For a single timed action, the area
constraint is of the form:

C(A,c) = (C(A) <¢) (area) (5.2)

where it is required that the area complexity of the action A is less than or
equal with the area constraint c. The area constraint c is set by a designer.
The area constraint is defined for timed action systems as follows:

C(A,c) = (C(A) <¢) (area (system)) (5.3)

where the area complexity of the system is compared with the area constraint
c. Similarly to the deadline constraint, the area constraints of the system .4
evaluates to true if C'(A) < ¢ hold and to false, if C'(A) > ¢ fail. The area
constraint of an action behaves similarly.

The C(.A) denotes the conjunction all the area complexity constraints of
the system A. Therefore, it is required that all the area constraints in the
system hold before one is able to state that €(.A) holds:

G(A) ZCACIA...AGC,
where n is the number of constraints in the system (1 <i < n) and C; is a
constraint defined for a single action or for a subsystem of A.

5.3 Power Consumption

A power constraint defines the maximum allowable power dissipation that
a sequence of timed actions may consume in its operation. The definition
of the power constraint is divided into two: First, the power constraint
of single timed action is discussed, and second the constraint is defined at
system level.

5.3.1 Timed action

The power constraint of a single timed action is of the form

P(A,p) = (Prot(A) < p) (power) (5.4)
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where it is required that the average power P, of the action A is less than
or equal with the maximum allowed power dissipation p. In general this
value is defined by a designer. In this thesis, the reasoning on whether the
power constraint hold or not is done using the deadline and area constraints
set for the action. Consider a timed action A, the average power, defined
by (4.18), depends on both time and area complexity (defined below for the
ease of reference):

Piot(A) = Payn + Pstat

(4.13)(4.17) E(A) 1
A(A) + C(A) Pstat

_C(4)-E
= w+C(A)'P;tat

where A(A) is the delay of the action, and C(A) is the area complexity
of the action. Therefore, if the maximum allowed power consumption p is
defined using the maximum allowed delay and area complexity values, the
power constraint is validated as follows:

e The delay of the action is less than or equal with the defined deadline
constraint (5.1).

e The area complexity of the action is less than or equal with the max-
imum allowed area complexity of the action (5.2).

5.3.2 Timed action system

A power constraint of a timed action system A is of the form:

Pr(A,p) = (Pravg(4) < p) (power(system)) (5.5)

where it is required that the average power of the timed action system A
during observation period T is less than or equal to the maximum allow-
able power dissipation p. The limit value p is defined by a designer. In
this thesis, the reasoning on whether the constraint holds or not is based
on the area and timing constraint set for the system. Therefore, the first
requirement is that the area constraint (C(A)) (5.3) of the system holds.
The average power of timed action system is calculated for a particular ob-
servation period, defined in (4.20), which is a monitoring window set by
a designer. The observation period is usually determined in a way that it
includes one or more computation cycles of the system. Therefore, if one
wants to compare the average power consumption between, for instance,
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two system descriptions, the observation period should consists of similar
amount of computation cycles, otherwise the results are not comparable in
terms of average power consumption. Consider a timed action system A,
whose execution loop is of the form:

forever do A;B od

where the actions A and B are executed sequentially so that A enables B.
To constrain the execution time of these actions, the deadline is defined for
both actions D(A,d;), and D(B,dy). Furthermore, it is assumed that both
of these deadline constraints are satisfied during the refinement of timing
constraints. To estimate the average power of a single computation cycle,
that is, both actions are executed once, the observation period T is defined:
T = [A.st, B.ft]. The delay information can be used to validate that the
observation period is set correctly. That is, the delay of the observation
period A(T) have to be the sum of the delays of the actions: A(T) =
A(A) + A(B). The properties and refinement of the observation period is
further discussed in the next Chapter.

The system level power constraint P(A,p) denotes all the power con-
straints in the system A (the similar condition was set for the system level
area constraint as well):

PA) =PI AP2A .. AP,

where 7 is the number of constraints in the system A (1 <1< n), and P; is
a constraint defined for an action or a subsystem of A.

5.4 Chapter Summary

This chapter introduced the typical constraints for the power aware model-
ing environment. A constraint defines a restriction whose strict adherence
is mandatory and violating such conditions causes an unpredictable com-
putation. From Timed Action Systems, a deadline constraint is introduced
because it is utilized in the definition and analysis of power constraints.
Addition to the deadline constraint, an area and power constraints are de-
fined. The former one can be used to constraint the area complexity of a
single action or an action system. The latter one is used to constraint the
average power of a timed action or timed action system. The introduced
constraints are essential in the verification of the SoC designs, not only log-
ically but also with respect to given area and power constraints. Therefore,
in the next chapter these constraints are used to ensure the correctness of
the system in terms of area and power dissipation.
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Chapter 6

Development of Systems

Conventional Action Systems, and their time-aware extension Timed Ac-
tion Systems, are meant to be designed in a stepwise manner within the
refinement calculus framework [22] as discussed in Chapter 2. The refine-
ment calculus preserves the correctness of actions during the refinement
procedure. Both functional and non-functional (time) characteristics of an
abstract system specification can be transformed towards more concrete sys-
tem description by adopting the time aware refinement calculus [86]. The
scope of this study is to further extend the time-aware refinement calculus
to preserve the correctness of area and power characteristics analyzed in the
timed action context. The presented refinement methodology describe per-
formance related conditions that must be satisfied during the transformation
into a more concrete design. In other words, the purpose is to give tools to
start the design process from a high level specification and to develop it in
a stepwise manner towards an implementable specification. The correctness
preserving transformations ensure that the implementable specification re-
flects the abstract specification, and, furthermore, the time, area, and power
related conditions are satisfied.

6.1 System Requirements

System development in Timed Action Systems requires monitoring both
functional and non-functional behavior. In this study, the time-aware re-
finement calculus is further extended to analyze the power consumption
of a system. The objective of this extension is to include requirements
into the refinement framework that are sufficient to prove the correctness
of the transformation. The selected approach validates the power related
constraint by showing that requirements given for an abstract system are
satisfied by the concrete system as well. This approach follows directly from
the time aware refinement approach. Timing information plays an impor-
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Figure 6.1: System / environment interaction

tant role in the power analysis. In this chapter, the scope is to discuss those
requirements that are set for the system under development for power anal-
ysis. In Fig. 6.1, the most commonly posed requirements for system under
design are as follows:

(1)

6.2

Interaction between system and its environment. Environment com-
municates with the system at some frequency and provides input data
for the system. The amount of input data determines the computa-
tional activity of the system. Furthermore, the system’s output data
is read by the environment. Moreover, environment might disable the
system if there is no data to process, for example, for power saving
purposes.

Computation time, for example, a time interval between the update of
input and output variables. In power analysis purposes, this affects
especially dynamic power consumption.

The area of the system, the amount of logic needed to perform the
computation. The area of the system is adopted to evaluate both
dynamic and static power consumption of the system.

Refinement

Action systems are meant to be developed in a stepwise manner within the
refinement calculus framework as discussed in Sect. 2.7.2 on page 26. In this
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section, the refinement calculus is extended by first describing refinement of
Timed Action Systems [86] and further extending it to cover the power
analysis. As stated in Chapter 4, the high level power estimation model is
based on timing and area estimates. Therefore, these properties dominate
in power aware refinement.

6.2.1 Refinement of Timed Action Systems

Timed Action Systems applies and extends the commonly used refinement
method presented in Sect. 2.7.2, which used data refinement on establishing
the foundation for refinement of an action system.

Consider timed action systems A and C:

B sys C ;)
sys A( g ) |[y Lo
Il
delay
dfgf-ydAo- dC: dC0;dX : dX0;
- aAal; constraint
constraint T(C);
rIgA)? variable
variable c:
azi;:ion action
CdC]: (aC);
A[dA]: (aA); X[dX]: (aX);
initialization initialization
9,0 := g0, a0; g,c1= g0, c0;
execution e><7ec.11tior’1 7

forever do 4 od forever do C' | X od

Il I
where aA, aC, and aX are any of the atomic actions defined earlier, and
T defines the time constraints posed on the abstract and concrete systems
A and C, respectively. The above systems operate in an environment Enwv,

which is of the form:
sys Env ( g; ) i
I
delay
dE: dEO;
constraint
T(Env);
variable
e;
action
E: (aE);
initialization
g,e,= g0, e0;
execution
forever do £ od

93



Let R(a, c) be an abstraction relation between the local variables a and c.
The abstract timed action system A is refined by the concrete timed action
system C, denoted by A C C, if there exists such an abstraction relation
R(a,c) that the conditions, defined below, (i) -(vi) hold. Furthermore, let
Rp be an abstraction relation of the timing behavior between the concrete
system C and the abstract system 4. The abstract timed action system A is
refined by the concrete system C, if there exists such an abstraction relation
Ry that the condition (vii) hold.

R(agp, co) = true (initialization) (i)
A<pC (main action) (ii)
skip <p X (auziliary action) (iii)
R A gd(A) = ¢d(C) V gd(X) (continuation condition) (iv)
R = wp (do Xod,true) (internal convergence) (V)
RAwp (E,true) = wp (E,R) (non-interference) (vi)
Rr ANT(A) = T(C) (timing behavior) (vii)

(i) The first condition says that the initialization of the systems A and C
establish the abstraction relation R.

(ii) The second condition requires the abstract action A to be data-refined
by the concrete action C using R.

(iii) The third condition, in turn, indicates that the auxiliary action X is
obtained by data-refining a skip action. This basically means that X
behaves like a skip action with respect to the global variables.

(iv) The fourth condition requires that whenever the action A of the ab-
stract system is enabled, assuming the abstract relation R holds, there
must be enabled action in the concrete system C as well.

(v) The fifth condition states that if R holds, the execution of the auxiliary
action X, taken separately, must terminate at some point.

(vi) The sixth condition guarantees that the interleaved execution of the
environment actions E preserves the abstract relation R.

(vii) The seventh condition requires that all the time constraints are met
in the concrete timed action system C, preserving the constraints set
for the abstract timed action system A.

The conditions (7)-(vi) are adopted as such from the refinement of Action
Systems. This is justified by the fact that Timed Action Systems defines a
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delay that determines the duration after which the result of computation is
written onto write variables. Therefore, the operation part, the functionality
of an action is not altered. The seventh condition (vii) guarantees that the
timing constraints are met in the concrete timed action C. The functionality
of a timed action is refined using the data refinement of conventional actions
keeping the delay unaltered. The timed action A is data-refined by the timed
action C' if the condition A <r C holds:

A<p C = A[dP] <g C[dP]

where it is required that the timing constraint set for the abstract system
are satisfied in the concrete system as well. The proof of this condition can
be found in [86].

6.2.2 Power aware refinement

To refine the power characteristics in the timed action system context, it
is required that the above presented conditions (i) - (vii) hold. The six
first conditions are related to the refinement of the conventional actions and
their tenability must be ensured only if the functionality of the system is
changed during refinement. The seventh condition relates to timing aspects,
ensuring that the timing behavior of the system is validated. The presented
power aware refinement framework introduced below is build upon Timed
Action Systems, and therefore it is required that the conditions () - (vii) are
validated before the area condition (viii) and power refinement condition
(iz). Observe that the area constraint can be validated for conventional
Action Systems as well. In that case it is required that the conditions (7)
- (vi) and (viit) are satisfied, but then one is not able to constraint timing
and power characteristics of the system.

The area complexity of the abstract action system A is refined by the
concrete action system C if there exists such an abstraction relation R¢ that
the following condition (viii) holds.

Rc NC(A) = C(C) (area complexity) (viii)

where it is required that the area complexity constraints set for the abstract
system A hold for the concrete system C. That is, the reasoning about
the correctness of the area complexity is mainly to ensure that the size of
the system does not exceed the given limit due to the performed refinement
step. Therefore, for simplicity, the delays are excluded. Consider an abstract
system A whose execution loop is of the form:

forever do A;;A4> od
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The area complexity of the system is:

C(A) =C(A1 [ As)

W o)) + o)

Furthermore, the system has an area constraint, which is:

C(A,c) = C(A) < ¢

where it is required that the area complexity of the abstract system A is
less than or equal with the maximum allowable area complexity c.

After the refinement step, the constraint set for the abstract system A
must hold in the concrete system C too. The concrete system C is of the
form:

forever do C'1;C> od

and the system has an area constraint:

C(C,e)=C(C)<c

where it is required that the area complexity constraint set to the concrete
system C hold. Observe that both of these conditions hold as long as the area
complexity of the abstract system and the area complexity of the concrete
system are smaller than the maximum allowable area (c¢) for the system.
Moreover, it is assumed that C(A) and C(C) are non-zero because if a system
exist, its size has to be non-zero.

Assume an abstraction relation Re = (C(C1) < C(A1)AC(Cy) < C(A2z))
hold. Then

(C(A,¢))

< {definition of area constraint (5.3)}

(C(A) <))

< {definition of area complexity (4.8)}
((C(A1) + C(Az)) <¢)

= {abstraction relation R¢}

((C(C1) +C(Cy)) < ¢)

< {definition of area complexity (4.8)}
(C(C) <))

< {definition of area constraint (5.3)}

(C(C,c))
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To refine the average power characteristics of the timed action system,
let R, be an abstraction relation. The power constraints of the timed action
system A are refined by the concrete timed action system C if there exists
such an abstraction relation R, that the following condition hold:

R, NPr(A) = Pr(C) (power) (ix)

where it is required that the power constraints set for the abstract system
A hold for the concrete system C as well. Assume that the abstract system
is of the form:

forever A od

and the concrete system is of the form:

forever C od

The abstract system .4 has a power constraint:
TT(Aa p) = PT,avg(-A) < D

where it is required that the average power of the abstract system A does
not exceed the maximum allowable average power consumption p. After
a system development, the concrete system C must also satisfy the power
constraint:

iPT(Cyp) = PT,avg(C) < p

To validate the above constraints, assume an abstraction relation

,Rp = (Pit(C) < Pit(A)). The abstraction relation is true if the total
power consumption of the action C' in the concrete system C is less than or
equal with the total power consumption of action A in the abstract system
A. The total power for both actions can be evaluated using (4.18). To
reason whether the relation hold or not, both area and timing characteristics
must be taken into account. That is, area complexity has an effect on both
dynamic and static power consumption of an action, whereas the time has
an effect to the dynamic power consumption. The area constraint (condition
(viii)) holds if the following abstraction relation holds: Ro = C(C) < C(A).
By assuming that the area constraint hold, one is able to state that the static
power dissipation of the abstract system A is greater than or equal to the
static power dissipation of the concrete system C. In the beginning of this
section, it was required that the timing behavior is validated before the
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power aware refinement is performed, and therefore the deadline constraint
is satisfied, for instance, the deadline can be of the form A(C) < A(A).
Assuming that both the area and the deadline constraints hold, one is able to
reason on the validity of the power constraint. Naturally, at this abstraction
level this is not an exact operation, but assuming that the static power
consumption is at least half of the total power consumption, one can state
that the power constraint holds as well.

At system level, however, the power evaluation is carried out during
a particular observation period, which usually consists of several executed
actions. The observation period is usually defined, by a designer, in a way
that it contains, for instance, a single computation cycle. That is, during
refinement, one must make sure that the observation period defined for the
abstract system and the observation period in the concrete system contains
the same functionality. In general, the observation period is either fixed or
relative:

e Fixed observation period: Ty = [T.st,T.ft| NTe = Ta.
e Relative observation period: T4 = [A;.st, A;.ft] A Te = [C;.st, Cj. ft]

where in the first case, the fixed observation period, requires that the ob-
servation period is same in both the abstract and concrete systems, and the
second case, the relative observation period requires that the functionality
of the abstract and the concrete systems must be the same inside the ob-
servation period, but the start and finish times do not necessary have to be
same between the observation period set for the abstract system 74 and the
observation period T¢ set for the concrete system.

Consider the abstract system, presented in the definition of the refine-
ment of area complexity:

forever do A;;A2 od
and the concrete system is of the form
forever do C'1;C> od
The abstract system has a power constraint:
Pr(A,p) = Pravg(A) <p
where it is required that the average power of the abstract system A cannot
exceed the maximum allowable power dissipation p set for the system. After

the system development, the concrete system C must also satisfy the power
constraint:
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{J)T(Cap) = PT,avg(C) < b

to validate that the power constraint hold between the abstract and the
concrete system, one have to show that the following abstraction relation
hold:

Rp = (PT,avg(C) < PT,avg(-A))

As stated above, to validate the power constraint, one have to reason on
both area and timing behavior of these systems. It was shown, that the
area constraints posed for these systems hold, when the following abstraction
relation hold: R¢ = (C(C1) < C(A1) AC(Cy) < C(Asz)). Therefore the area
requirement of the power constraint refinement is satisfied. Assume that the
observation periods defined for both the abstract and the concrete systems
are fixed, and they are of the form:

Ty = [Aj.st, Ay ft]
TC = [Cl.st,CQ.ft]

where is required to show that T4 = T. This can be done using the deadline
constraints. That is, one must show that A(A;) 4+ A(A2) = A(Ch) +A(Cy).
The deadlines set for the timed actions A; and Ao in the abstract system
are of the form: D(A;,d;) and D(Ag,dy), where the delay constraints d;
and ds are set in a way that they equal the delays of the actions A; and
Ao, respectively. Therefore, to show that the new timed actions satisfy the
deadline constraints D(C1,d;) and D(C2,d3) one is able to validate that
the fixed observation period hold for the concrete system. Due to the fixed
observation periods, the validation of the power constraint depends on the
validation of the area complexity constraint, and thus in this case the power
constraint is satisfied.

In general, the above described use of the fixed observation period re-
stricts the development of the systems at high abstraction levels, because,
as shown above, tight timing constraints are required. Therefore, it is often
more convenient to adopt the relative observation period, where the equal
start and finish timed are not required. The benefit of this approach is
that more variability is allowed in the execution times of the timed actions.
In other words, the delay of the action can be significantly lower than the
given deadline. This on the other hand makes the reasoning of the power
constraint more difficult due the high abstraction level, where exact delay
values are unknown. Thus, in this case, the power evaluation relies more on
the area complexity evaluation.
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6.2.3 Refinement of constraints

After a refinement step the restrictions of the original constraints must be
satisfied by the new system as well. The refinement of constraint is carried
out using abstraction relations Ry (time), R (area), and R, (power), where
in general, a constraint can be either decomposed and reallocated, or updated
to meet the new timed action definitions. The former approach introduces
two or more constraints and the latter approach retains the number of con-
straints unchanged. Naturally, the specification of the above mentioned
abstraction relations must be done carefully to avoid relations that cannot
hold between the abstract and concrete system descriptions.

Example 6.1. Consider a timed action system S whose execution loop is
of the form:

forever do A od

where the action A is defined by:
A[dA] = Ay; Ay
and, furthermore, whose operation is constrained by !:
(1) deadline (D(A,d))
(2) area complexity C(S,c)
(3) power Pr(S,p)

During the development of timed action system the action A is decomposed
into several atomic actions whose operation is sequenced by the non-atomic
sequence operation (3) such that A; enables As. After refinement, a new
timed action system S’ is defined whose functionality is given by the execu-

tion loop:
forever do A;;A42 od

On showing the correctness of the refinement, the nine ((i) — (iz)) refine-
ment conditions needs to be satisfied. The functionality of the actions is not
determined, and therefore the functional refinement, (conditions i-vi), is not
presented in a detailed manner. In this context, it is enough to show that
the fifth condition (v), the internal convergence hold. In the refinement, the
action A is decomposed into two new timed actions A; and Ao, which are
sequentially composed in a way that A; enables As. This is the abstraction
relation R, and it is assumed to be valid, as stated earlier in this example.
The fifth condition requires that the auxiliary action, taken separately, must

Lthe numbers in front of the constraints denote the order of discussion

100



terminate at some point. Therefore, assume that A; is the auxiliary action
X, and Aj is the concrete action C' in the new system. According to the ab-
straction relation the auxiliary action enables (always) the concrete action,
and therefore the fifth condition holds. In other words, taken separately, the
auxiliary action will terminate after single execution.

In the refinement of timing behavior (1), the original delay dA is reallo-
cated among the new timed actions A; and As using the abstraction relation
Rp: Ry = dAy + dAy = dA. Therefore, the refinement of timing behavior
becomes:

A[[dA]] SRT Aq [[dAl]] ;A2 [[dAQ]]

where one have to show that the delay of the two new actions is less than or
equal to the maximum operation time d. To accomplish this, the decompo-
sition and reallocation procedure is selected. The deadline is generated for
each new action:

D(Ay, f - d)
D(Az, (1= f)-d)

where the fraction f defines the portion in which the maximum operating
time is shared amongst the new actions. Observe that f-d+ (1 —f)-d =d.

In the decomposition, one has to show that both of these new deadlines
hold:

D(Ay, f-d) =true
D(A2,1 — f-d) =true

which means that the delay of the actions A; and A must be less than or
equal to the maximum operation time of the original action. The computa-
tion path of the new composition becomes:

CP(Ay, Ao) = (Ay, As) (6.1)

One way to show the correctness of the new constraint(s) [86] is to adopt
the above computation path.

A(CP(A, A)) < f-d+(1—f)-d
S A(A1; 40) < d

—~

w

(3.11)

&7 (dA; +dAy) <d

B (44 < q)
— D(A, d)

101



Next the refinement of the area complexity constraint (2) is described.
The area complexity constraint set for the system S is C(S,¢), where the
area complexity of the system S is:

C(S) = C(A)

D o(eP(Ar, A2)) = C(Ar; As)

o)+ oay)

In the refinement, the area complexity of the timed action A is divided
between the two new timed actions according to the abstraction relation:

Rc =C(A))+C(A2) <c

where the maximum allowed area complexity is ¢ = C(A). The area con-
straints for the two new actions are

C(A,c-z),(0<z<])
C(Az,c-(1—2)),(0<x <)
where x defines the portion in which the maximum area complexity is shared

amongst the new timed actions. Naturally ¢ =z -c+ (1 —x) - ¢. To validate
the new constraints, the computation path (6.1) is adopted:

—

D O(Ar340) < ¢

5)

C(CP(A1,A2))<z-c+(1—2x)-c
&) 0(A) +0(Ay) < ¢

The power constraint (3) is set for the system to reason on average
power dissipation between development phases. To validate the constraint,
one must show that the following abstraction relation hold:

Rp = PT,avg(’S/) < PT,avg(S)

where it is required that the average power of the new timed action system
&’ less than or equal with the average power dissipation of the system S. As
stated in Sect. 6.2.2, both area and timing behavior have to be refined before
the validation of the power constraint. The refinement of the area complexity
is shown above (2), and therefore, it is enough to validate the observation
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Figure 6.2: Observation period for the system S’
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Figure 6.3: Closed timed action system A

period used in power calculations. In this case, the fixed observation period
is adopted because the delay dA of the action A is reallocated between the
new actions A; and Ao according to the abstract relation Rp. Therefore the
observation period is: T = [A.st, A.ft], and for the new actions it is defined
in a way that both actions in the system are executed once, and thus the
new fixed observation period is T’ = [Aj.st, As.ft]. The new observation
period is shown in Fig. 6.2. To prove the observation period of the power
constraint, one have to show that: T' = T". As stated above, the observation
period is fixed, due to the re-allocation of delays, and therefore it is enough
to show that the deadline constraint hold (1). That is, to show that A(T") =
A(A1) + A(Ag) is true. Thus, the power constraint is satisfied.

End of Example.

Example 6.2. Consider the following timed action system .A:
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sys A ()
It
type
Buf fer: set of Data;
delay
dOp: dOp0;
dAdd: dAddo;
constraint
D(Op(Add)), D);
C(A, c);
fPT(Av p);
variable
buf,obuf: Buf fer;
dy,do,r: Data;
private procedure
Add[dAdd](in z1,z2 : out y): (y =y .(y = z1 + 22));
action
OpldOp]: (di, do := dy, db.(d}, d} € ibuf)); Add(dy, do, 7);
obuf = obuf U{r};
initialization
ibuf, obuf := ibu f0, obu fO0;
dl, dg, ri= d10, ng, TO;
execution
forever do Op od

]

where the timed action Op reads data from the input buffer ibuf after
which it calls the local procedure Add. The procedure perform an addition
operation on the passed values, and finally, the result is written into the
output buffer obuf. The system A is illustrated in Fig. 6.3. Observe that
the action Op is executed by the system A forever because its guard is
invariantly true. Furthermore, the system is closed action system which can
be seen from the Fig. 6.3, because there is no communication between the
system and its environment.

The deadline D defines the maximum allowable operation time for the
action Op. The duration of the computation is obtained by adding together
the delay of the action Op and the delay of the procedure Add. That is, the
sum of these two delays must be less than the given limit D:

D(Op(Add)), D)

The area constraint € defines the maximum allowed area complexity for
the system. The area complexity of the system A is obtained by adding
the area complexity of the timed action Op and the area complexity of the
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procedure Add together (rule (4.6)). Furthermore, the sum of these must
be less than the given limit c:

C(A,c)=C(A) <c
To evaluate the area complexity of the timed action Op and the procedure
Add, assume that variables of type Data have an equal width w = wpgta,
and the variables of type Buf fer have an equal width w = wpyffer. First,
the area complexity of the procedure is defined by (4.4):

(4.4)

C(Add) C(wA) +C(rQ)

WData + WData

= WpData t+ f ' 22 = 5wdata

and the area complexity of the action Op:

c(op) "= c(wa) + c(Q)

= C(WA) = WpData + WData + WBuffer

= 2Wdata + WPRByffer

Assuming that the output buffer can store only one result r at a time then
one can assume that because the width of the variable r is wpgi, then
WRyffer = WpDate- Lhus, the area complexity of the system becomes:

C(A) = C(Add) + C(Op)
= (Swdat(z) + (2wdata + wbuffer)

Wpata=WBuf fer Sw
= data

The maximum area complexity value allowed for the system is defined by
a designer and in this case, it is assumed to be twice the value of the area
complexity of the system A:

c=2-C(A) (6.2)

The power constraint Pr (A, p) states that the average power of the sys-
tem cannot exceed the limit value p. The fixed observation period for the
power evaluation is defined to contain one computation cycle of the system.
In other words, a single execution of the action Op. Thus, the power con-
straint is satisfied if the deadline constraint and area constraint are satisfied.
End of example.

Example 6.3. Consider the timed action system A introduced in Example
6.2. The Op reads data from the input buffer and performs the addition
operation after which it writes the results to the output buffer. To separate
the read and write operations, the action Op (defined below for ease of
reference):
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Op[dOp] = (di,dz := dy,dy.(d), dy € ibuf));
Add(dy,da,T);
obuf = obuf U{r};

is broken into two new timed actions ROp and Wr as follows:

ROP[AROp] E —b — dy, ds = d, db.(d}, d} € ibuf));
Add(dy, o, 7):
s,b:=nr1T;
WrldWr] = b— obuf := obuf U{s};b:=F}

where the new data variable s stores the result of the computation tem-
porarily, and the Boolean variable b (b € {T, F'}) is used to sequence the
operation between the new timed actions.

The delays of the two new actions ROp and Wr are defined in a way
that:

Ry = dOp = dROp +dWR

where the delay of the timed action Op is reallocated between the two new
actions. Observe that the delay of the procedure Add is not altered because
its functionality is not changed in this refinement. In the new, refined timed
action system, the delay of the procedure is included into the delay of the
action ROp.

The area complexities of these new actions must satisfy the constraint:

Rc = C(ROp)+C(Wr)<c

where ¢ is the area constraint defined by (6.2). The area of the procedure

Add is included into the area of the action ROp, and, furthermore, the area

of the procedure is not altered because its functionality is not changed.
The power constraint of these new actions is defined in a way that:

Ry = Piot(ROp) + Pt (Wr) < p

where it is required that the observation period of the new system contains

a single execution of the actions ROp and Wr in a way that ROp enables

Wr. Furthermore, the new (fixed) observation period 7" have to be equal

with the one defined for the system A ("= T"). In addition it is required

that the area constraint is validated the power constraint presented above.
The behavior of the concrete system A’ is of the form:
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forever do ROp || Wr od

On showing the correctness of the refinement, the nine refinement conditions
((7) — (ix)) need to be satisfied:

(i) Initialization. The initialization of the timed action system A and the
new timed action system A’, do not contradict.

(ii) Main action. The goal is to prove that Op <r Wr where R is an
abstraction relation of the form R =b=r =s.

Guard: R\ gd(Wr) = gd(Op)
S RAO=T
<R

Body: R A gd(Wr) Awp (bd(Op), Q) = wp (bd(Wr),Q A R)
< {weakest precondition of bd(Op) and bd(Wr)}
RADAQobuf U{r}/obuf]
= (b=1r=3s)[F/b] AN Qobuf U{s}/obuf]
& {the relation R = b = r = s}
(b=r=s)ANbAQ[obuf U{r}/obuf]
= (b= 1r=s)[F/b] A Q[obuf U{s}/obuf]
< {logic}
(b=r=s5)ANbAQ[obuf U{r}/obuf]
= T A Q[obuf U {s}/obuf]

< {logic}

bA(r=s)AQlobuf U{r}/obuf]

= Q[obuf U {s}/obuf]

< {s=r}

bA (r=s)AQlobuf U{s}/obuf] = Qobuf U {s}/obuf]
< {logic}

T

Thus, the reasoning showed that Op <r Wr holds.
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(iii) Auziliary action. Because the auxiliary action ROp writes onto the
variables s and b and it preserves the relation R, it behaves like a skip
with respect to this kind of variables.

(iv) Continuation condition. There is always either of the new timed ac-
tions ROp or Wr enabled when the original timed action Op is enabled.

(v) Internal convergence. Holds trivially as the new auxiliary action dis-
ables itself.

(vi) Non-interference. Holds trivially as the new timed action system is
closed.

(vii) Timing behavior. The deadline constraint D must be satisfied to show
the correctness of the (vii) condition: Rp A D(A) = D(C), where:

D(C) = (CP(ROp, Wr), D)
D(A) = (Op(Add), D)

and the abstraction relation is Ry = dOp = DROp + dWR.

To prove the above condition, a computation path is defined:
CP(ROp, Wr) = (ROp, Wr) (6.3)

where the computation path definition follows from the functional be-
havior of the system. That is, the action ROp contains the first part
of the action Op whereas the latter part is located in the action Wr.
The correctness of the timing requirement is shown by calculating the
computation path delay and comparing it with the delay of the original
action Op. The computation path delay is:

AROp, Wr) 2 A(ROp(Add), Wr)

BLY A(ROp(Add)) + A(WT))
BL) A(ROP) + A(Add) + A(Wr)
9 IROp + dAdd + dWr

5 qop + dAdd
— A(Op(Add))

according the original requirement dOp+dAdd < D and the reasoning
above, one may conclude that dROp + dWr < dOp + dAdd, and thus
the timing requirement is satisfied.
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(viii) Area complexity. The area complexity constraint is satisfied if the
relation Rc = C(ROp)+ C(Wr) < ¢ hold. This is validated by calcu-
lating the area complexities of the new actions ROp and Wr, and then
compare the result with area complexity constraint c. Notice that the
functionality of the procedure Add is not changed during this proce-
dure step, and therefore its area complexity is not altered. However,
recalculation of the area complexity is required for the actions ROp
and Wr, where the width of the Boolean variable b is assumed to be
one wy, = 1 and the width of the auxiliary variable s is ws = Wpata:

c(rROp) " C(ROp) + C(Add)
= % - 2"" + Wpata + Wpata + Wpata + wp + C(Add)
b

=Y 3 4 4w para + C(Add)

C(Wr) (45,(4.7) C(rgd) + C(wWr) 4+ C(rQ)

w
= 12U 4 wpyp e + W
wy,

(wp=1)
= 3+ WBuffer

(ass-wBuffe'r:wData)
= 3 + Wpata

where the width of the output buffer wp,f e, is assumed to be equal
with Wpata (WBuffer = WData), that is, this assumption is similar with
the one that was made in the previous example.

In the previous example, it was shown that the abstract system A
satisfies the area condition: C(Op)+ C(Add) < ¢, where ¢ = 2-C(A).
Therefore, to prove that the area condition is satisfied by the concrete
system A’, the abstract relation must hold:

This condition holds if:

C

C(ROp) + C(Add) + C(wr) =

Adopting the area complexities calculated for the new system and for
the original one:
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5wdata +3+ Wdata + 3+ 4wdata o

where it is assumed that the width wpga, (and multiples of it) are
assumed to be of same type, which allow one to calculate the similar
widths together. Furthermore, the integer widths are all from Boolean
variables, and therefore, these widths are also added together. The
inequality becomes:

16wdam >1
10wgqta +6 —

where one can see that even if the value of the wg,, is one (wpgtq = 1)
the inequality holds. However, the wpg, describes a data transfers,
which usually implies that the numerical value of the width wgq,, is, for
instance, 32 or 64. Thus, the area complexity requirement is satisfied.

Power. To satisfy the power requirement, one must show that the
abstract relation R,:

Rp = Ptot(ROp) + Ptot(Wr) < p

holds. The area and timing constraints set for the system holds, and
therefore it is enough to reason whether the new observation period
includes the same functionality than the old one. The fixed observation
period set for the average power calculation of the abstract system A
is T' = [Op.st, Op. ft]. To show that the new fixed observation period
T’ is valid for the concrete system A’, one need to show that

A(T") = A(ROp) + A(Proc) + A(Wr) = A(T)

where the duration of the observation period T is defined to consist
the computation path CP(ROp, Wr) = (ROp, Wr), and therefore one
need to show that the following condition holds.

A(ROp, Wr) = A(Op(Add))

The above condition hold because of the re-allocation of the delay
between new actions satisfied the condition (vii). From this it follows
that the new fixed observation period for the new actions hold as
well due the definition of the observation period. Thus, the power
constraint is satisfied.
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That is, all the refinement conditions ((i) - (ixz)) are satisfied, and
one has performed a refinement A C A’, where the A’ is of the form:
sys A" ()
Il
type
Buf fer: set of Data;
delay
dROp: dROpO;
dWr: dWr0;
dAdd: dAddD;
constraint
D((CP)(ROp, Wr)), D)
C((CP)(ROp, WT)), c);
Pr((CP)(ROp, Wr)), p);
variable
buf,obuf: Buf fer;
dy,ds,r: Data;
b: Boolean;
private procedure
Add[dAdd](in z1,z2 : out y): (y =y .(y = x1 + 22));
action
ROp[dROp]: =b — dy,ds := d},ds.(d}, dy € ibuf));
Add(dy,da,r);8,b:=1,T;
Wrl[dWr]: b — obuf := obuf U{s};b:= F};

initialization
ibuf,obuf := ibu f0, obu fO0;
b:=F;
dl, dg, r,s = d10, d20, TO, SO;
execution

forever do ROp || Wr od
I

where the constraints are defined using the computation path, which form
is congruent with the new action definitions.
End of example.

6.2.4 Decomposition

Decomposition allows one to form smaller systems from a large, complex
system. During the decomposition a communication medium is generated
between these new, smaller systems. This can be implemented by using
either the variable or procedure based communication. The latter one ab-
stracts away the detailed communication events, and therefore it is preferred
at high abstraction levels. This idea has already been used in [68] where pro-
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cedure based communication is used between decomposed systems.

The decomposition process is based on transforming local actions into
procedures and in the end eventually turn these newly created local proce-
dures into communication procedures. This is straightforward refinement as
the atomicity is preserved and other actions are left intact. These actions are
then grouped to reflect the forthcoming division of the action system. The
decomposition of timed action systems is presented in [86] where it is stated
that the timing requirements of these new and decomposed (sub) systems,
naturally, must fulfil the requirements of the original one. The requirements
are either reallocated or distributed among the new (sub) systems. The
chosen approach depends on how the functionality of the original system
is decomposed between the new (sub) systems, because, a constraint fol-
lows the timed action whose operation it bounds. Thus, the decomposition
process of timed action systems consist of the following phases:

(a) Assort timed actions.

(b) Transform those timed actions into procedures which will act as com-
munication procedures in the new system.

(c) Use the definition of parallel composition inversely to form timed ac-
tion systems operating in parallel and communicating using the newly
created communication procedures.

(d) Rename variables to indicate in which system they are located.

(e) Ensure the temporal correctness.

The above properties cover the functional and temporal behavior of the
system. It does not, however cover the aspects related to the power analysis.
Naturally, the power aware refinement framework requires that the these
new decomposed (sub) systems fulfil the requirements set for the original
system. The requirements are distributed between the new (sub) systems
according to their functionality. The constraint is targeted to timed action
system, and it has a maximum value, which it cannot exceed. Therefore,
requirements are set for the new (sub) systems in a way that the maximum
allowed value for the constraint in the original system holds. Thus, the final
step of the decomposition procedure is:

(f) Ensure the correctness of the area and power constraints.
where the condition (f) requires that the area complexity, selected observa-
tion period, and the selected parameters are validated as a part of the power

analysis process.
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6.3 Chapter Summary

This chapter introduced a method to develop, in a stepwise manner, an ab-
stract system module towards a more concrete one. The presented method
lays its foundation into the refinement calculus framework defined for the
Action Systems formalism. This framework concentrates on validating func-
tional properties of systems, and therefore physical properties such as time,
area, and power are not validated. Timed Action Systems extends this re-
finement by including methods to constrain and validate timing behavior of
the system. The direct extension is possible because the functional behav-
ior of the system is not altered. In a similar manner the presented power
aware refinement extends, in turn, the Timed Action Systems refinement
framework. The benefits of this approach is that it extends the well known
Action Systems refinement framework, and, furthermore, the Timed Action
Systems can be adopted directly without any modifications. The presented
refinement rules for power, and time allow one to start development of SoC
designs from abstract specification and refine them towards more concrete
synchronous or asynchronous systems while ensuring their temporal and
power characteristics. After introducing the power aware refinement frame-
work for timed action systems, the decomposition of timed action systems
is discussed. The decomposition bases its foundation on defining procedures
out of actions. These will be used as communication procedures between
the newly decomposed action systems The possibility to decompose a system
into two or more subsystems or parallel systems is an important property
in large scale SoC designs. Observe that refinement and decomposition
are methods classically used together for developing systems, and the pre-
sented approach fits well with the findings presented in [11]. The following
Chapter focus on evaluating the average power from synchronous as well as
asynchronous systems.
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Chapter 7

Analyzing System Models

So far the thesis has concentrated on introducing a framework to analyze
area complexity and power consumption in Timed Action Systems. More-
over a framework to transform an abstract model into more concrete one in
a correctness preserving manner is introduced. This chapter presents vari-
ous system models, and, furthermore, extends the analysis of these models
towards area complexity and power consumption. The chapter proceeds as
follows: First, a synchronous system model is introduced whose operation is
sequenced by a clock signal. Second, an asynchronous system model is intro-
duced where the order of events is sequenced using specific control signals,
often called as handshakes. Finally, the power estimation of large on-chip
communication channels is discussed.

7.1 Synchronous Systems

Systems that use a periodic synchronization signal as a time reference for
data transfers are called synchronous systems. Commonly this periodic sig-
nal is known as a clock signal. The maximum clock frequency of such a
system, the clock cycle time, is determined by the slowest component. In
an ideal synchronous system, the clock signal is at the same phase at all the
points in the circuit. However, in real circuits the clock is never ideal. Nev-
ertheless, in the synchronous models presented below the real clock behavior
is abstracted away, and therefore it behaves as an ideal clock.

Clock distribution is challenging design issue nowadays due to the per-
formance requirements. In general, a synchronous system consist of several
clock domains rather than one global clock domain. The disadvantage of
one global clock is that, for example, timing requirements increases the size
of the clock distribution network as it needs more and more clock buffers
to deliver the clock signal all around the circuit as close to ideal clock as
possible. These timing uncertainties are commonly known as skew and jit-
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Table 7.1: Clock distribution performance metrics

Power [W/GH z] Area [% of total area ]
Pre-Global Final Driver + || M1-M4 M5 M6 M7
Stages Grid (Devices)

0.75 1.75 0.25 2 3 5

ter 1. To overcome these timing requirements set for the clock distribution
network often leads to an increase in power dissipation. For example, the
power dissipation of a clock distribution network can be 30 - 50 % of the
overall power consumption of a system [13, 31]. Another significant design
metric is area [42, 43, 52]. It affects on power consumption because larger
clock tree requires bigger drivers to fulfill the timing requirements. This, in
turn, increases the total power dissipation of the system. Therefore, it is of-
ten more convenient to divide the system into several specific clock domains,
where each domain have its own local clock instead of a single global one. To
highlight the performance metrics in a modern microprocessor, consider a
scalable (scalability up to 5 GH z) microprocessor manufactured using 90 nm
technology [28]. The microprocessor’s power consumption and area usage
are summarized in Table 7.1, where the power consumption of the clock
distribution network is described in the first two columns and the last four
columns describe the percentual amount of area consumed by the distribu-
tion in different metal layers (M1 — MT7). Therefore, when creating formal
power model for synchronous systems it is not reasonable to abstract all the
physical properties away because the clock signal is a major contributor to
the overall power consumption of a synchronous system.

7.1.1 Power analysis of synchronous timed actions

The timed synchronous composition in (3.3) on page 37 do not explicitly
define a specific clock signal to sequence the operation. The synchronous
behavior is ensured by controlling the operation of the synchronous compo-
sition by means of new operators. To explicitly create a clock signal one is
required to have clock generator(s) and to alter the presented synchronous
model. This kind of approach would evoke design challenges such as latches
and flip-flops, which are not in the scope of this thesis.
Consider a timed synchronous composition (3.3):

S = A[dA] Vv [dB]

!Clock skew describes the spatial variations in the clock signal, whereas the jitter
describes the temporal variations. See for instance [69].
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L 4

time A(S) A(S) A(S)
Figure 7.1: An execution sequence of atomic synchronous composition AV B

The synchronous delay is defined by (3.15), and for the composition S it is
of the form:

A(S) = Max(Max(A(A)), Max(A(B)))

where the synchronous delay A(S) is the delay of the slowest action in the
composition. In other words the synchronous delay is the clock frequency,
which is selected according to the slowest action in the composition. That
is, the actions in the composition forms a clock domain. The illustration of
the synchronous composition S in time domain is shown in Fig. 7.1. The
figure illustrates the fact that the atomic synchronous composition unifies
the execution time of the subactions.

The area complexity model of the synchronous composition S is defined
in a similar manner as the compositions presented by (4.7) - (4.9) on page
59. That is, the area complexity of the synchronous composition S is defined
by adding the area complexities of actions in the composition together, and
it is of the form:

O(S) = C(AV B) = C(A) + C(B)

where C(A) and C(B) are the area complexities of timed actions A and
B, respectively. However, as stated earlier in this section, a synchronous
system requires clock distribution network, and even though this network
is not modeled at this abstraction level, it should be taken into account
when modeling power consumption. Several RTL power models exists where
the power dissipation caused by the clock distribution network is included
into the logic model of the component. For instance, in [56], the power
dissipation caused by the clock was divided between two power models of
the power estimation framework: a data path model and a wire model. In
the datapath model, the input capacitances caused by the incoming clock
signal are included into the component’s model whereas the wires required
by the clock distribution network are modeled as any other bus, except that
it is accessed every clock cycle. On the other hand, Gupta et. al. [44]
included the clock power dissipation into the macro model of a particular
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component. In this study, however, the selected approach is kept as simple
as possible, due to the high abstraction level. That is, the area required for
clock distribution is a percentual portion of the total area of the synchronous
composition defined by:

C(AV B) = C(A)+C(B) + C(clk) (area(synchronous)) (7.1)

where the area of the actions A and B are denoted by C(A) and C(B),
respectively. C(clk) denotes the area estimate reserved for the clock tree
later on during system development, and it is defined by:

C(clk) = p-(C(95)) (area(clock)) (7.2)

where (3 is coefficient (0 < § < 1) which defines the percentual portion
of the area required for the clock distribution network. With this model
the area of the clock distribution network grows linearly with respect to
the area of the synchronous composition. This approach is suitable for
this abstraction level, and moreover the model dedicated to asynchronous
systems is extended in a minimalistic manner. Thus, problems related to
large clock distribution networks are left for future studies.

In traditional synchronous systems, components switch their state at ev-
ery rising clock edge regardless whether they have data to process or not.
Therefore, the dynamic power consumption for the synchronous composi-
tion cannot directly adopt (4.22), where the dynamic power of the action
composition is calculated for those actions that are enabled and executed
during the observation period. That is, actions that are not executed dur-
ing an observation period are excluded from the dynamic power validation.
In synchronous composition, the observation period is replaced by the syn-
chronous delay A(S), and all timed actions in the synchronous composition
are executed. Therefore, the average power of the synchronous composition
is of the form:

Pavg(s) = P(wg(s) + PStat(S)
_ E(S)
= m +C(5) - P
_E'-C(9)
NG

(power(synchronous)) (7.3)

+C(S) - Psltat
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where A(S) is the synchronous delay (clock cycle) of the composition, C(S)
is the area complexity of the composition, and E(S) its energy consump-
tion. Observe that in synchronous composition the energy consumption is
calculated for all the actions in the composition.

The non-atomic timed synchronous composition, defined in (3.4) on page
37, is of the form (for the ease of reference):

S = A[dA] x B[dB]

In the above composition the results are written into an auxiliary variables
until the slowest action in the composition has finished its operation after
which the actual write variables are updated. This approach allows a de-
signer to gather information on individual action delays. With this informa-
tion the designer is able to find the critical path, which determines the clock
frequency, and possibly make design changes, which, in turn, make the delay
of the critical path smaller. This kind of information is not available when
using atomic composition. The synchronous delay for non-atomic composi-
tion is defined by (3.16), where the value of the delay is determined by the
slowest action of the composition. Hence, the actual synchronous delay, the
clock frequency, is the delay of the slowest action in atomic- and non-atomic
composition. Furthermore, the amount of actions in the composition does
not depend on the type of synchronous composition, and therefore one can
adopt the area complexity rule (7.1) for the non-atomic composition as well.
These time and area estimates are adopted to model average power con-
sumption, and thus the average power of atomic actions, defined by (7.3),
is adopted. While there is no difference between the atomic synchronous
composition and the non-atomic synchronous composition with respect to
the non-atomic composition is used because it can describe low-power design
techniques such as clock gating described below.

Gated clocks

The non-atomic timed synchronous composition is extended to model the
operation of gated clocks as defined by (3.5) on page 39. The gated non-
atomic synchronous composition enables to selectively shut down the clock
signal in those portions of the system where active operation is not per-
formed, and thus decrease the power consumption of the system. Consider
a gated non-atomic synchronous composition S, defined by (3.5):

S = A[dA] x B[dB]

where the operation of the actions A and B is disabled if there is no data
to process. If the clock signal is not disabled, the composition operates
exactly in a similar manner than the non-atomic synchronous composition,
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presented earlier in this chapter, and therefore its area complexity, syn-
chronous delay, and power consumption are evaluated using (7.1), (3.16),
and (7.3), respectively. However, if the gating option is enabled, the power
consumption of the composition must be re-evaluated. Consider the equa-
tion (7.3):

E(S5) 1
Pav = Ao - P,
Q(S) A(S) + C(S) stat
where the synchronous delay A(S) describes the clock cycle time. If the

clock signal is disabled, the dynamic power component % becomes zero,

and thus the average power is the static power loss in the composition S:
1
Pavg(s) = C(S) : Pstat

Power gating

The gated synchronous composition (3.5) can be used to describe a power
reduction technique called power gating [47]. Power gating is used to de-
crease both the static and the dynamic power consumption of a circuit by
shutting down a power supply from inactive parts of the circuit. Naturally,
careful design process is required to decide, which entities are valid as power
domains. Good candidates are, for example, processors and accelerators.
Furthermore, in the presence of memory and register components, a de-
signer must determine how much data to retain or to lose when power is
shutdown. Moreover, power domains inside the system should be isolated
to prevent unstable data propagation.

In Timed Action Systems context, power gating can be modeled using
the gated synchronous composition. To separate the gated clock composition
from the power gating, the Boolean variable g is replaced by another Boolean
variable gp whose operation is not altered. Adopting this new notation for
the Boolean variable, the power gated non-atomic synchronous composition
becomes:

A1[dAq] 1 As[dAs]] = ((power gated non-atomic synchronous composition))
(A%, 1 42D 1 (A% 1 A%) [ gp—T) (7.4
Jo(Ax ] A%)

/| Pt

where the Boolean variable gp prevents the update of the write variables
if it is set to false. Otherwise the composition behaves as a non-atomic
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synchronous composition. The new notation for the Boolean variable is
required to indicate that the power gating is adopted. Naturally, if the power
supply is shut down, the clocks are shut down as well, but often they do not
form the same entities in the system. For example, a system with a single
gated clock may have a subsystem, which is also power gated. Furthermore,
at lower abstraction levels the power gating often requires software support,
which is not in the scope of this thesis. However, this property motivates
to define separate compositions for power and clock gating because software
part will be inserted to the power gated composition in the future.

Similarly as with the gated clock, the power gated non-atomic syn-
chronous composition has its own power characteristics. In this case, how-
ever, the gating affects on both dynamic and static power consumption of
the composition. Consider a power gated synchronous composition S:

S = A[dA] % B[dB]

where the operation of the actions A and B can be disabled if there is no
data to process. The average power of the composition .S during operation
is defined by:
Pun(8) 2 F ) + C(5) Ph
E'.C(9)
A(S)

where the unit energy E' and the unit static power consumption PL,, both
include the supply voltage parameter (Vpp) as defined by (4.12) and (4.16),
respectively. Therefore, if the power supply is shut down (Vpp becomes
zero), no power is consumed into that particular power domain. Observe
that in a bigger system description, parts of the system would be shut down,
which, in turn, would reduce the overall power dissipation of the system. In
Timed Action System context, for instance, in a hierarchical system con-
struct, one would be able to shut down the power supply from subsystems
that are not active during particular time period by adopting this composi-
tion.

+ C(S) : Psltat

7.1.2 Synchronous timed action systems

The synchronous system level behavior is modeled using the non-atomic
synchronous composition, because power modeling between non-atomic and
atomic timed synchronous compositions did not differ. Furthermore, the
non-atomic synchronous composition has the gated clock and power gating
expansions, which can be used to reduce power consumption at system level,
too. Consider a synchronous timed action system .A:
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|[sysA( ga; )i

delay
dAq: dA10;dAs: dAs0;
variable
La;
action
A1 ﬂdAl]]: (CLAQ);
Ag[dAs]: (aAs);
initialization
ga,la = ga0,140;
execution
forever do A;xA4; od
Il

where the timed actions A; and Ay define the functionality of the system.
The clock cycle time of the synchronous system A is

Toia = A(A; X As)

G219 Max (Max(A(A1)), Max(A(4s)))

U Max (A, dAs)

The area complexity model of the system A is:

C(A) = C(Ar m Ay)
D o(Ay) + C(A) + O(Cl)

The power dissipation per clock cycle is:

(424) E(A1) + E(A2)
Toika

PTczkA@vg(A) + Psltat ) C(-A)

where the energy consumptions of timed actions in the composition are
added together and then divided by the clock cycle.

To highlight the behavior of the power gating, a hierarchical synchronous
systems B is defined:
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sys B ( gB:

exp ¢ )i
Il
delay
dBl . dBl(]; dBQ : dBQO;
dc: dc0;
variable
IB;

public procedure
c[dc] : inout trf := data;
subsystem
G(imp ¢); g;
action
Bl [[dBl]] (aBl);
BQ[[dBQ]]Z (CLBQ);
initialization
98,15 = gB0,150;
execution
forever do B; x B2 || G od

I

where the operation of the system is defined by the actions By and By, and
its subsystem G. The communication between the system and its subsystem
is carried out using the communication procedure ¢, which is awaited by
B and called by G. The detailed action descriptions are left out to keep
the system descriptions simple and to concentrate on highlighting the power
gating approach. The subsystem G is defined by:

sys G ( ga;
imp ¢; )
Il

delay

dG1 . dGlo; dGQ . dGQO;
variable

lg;
action

Gl [[dGl]] . (GGQ);

G2[dG2]: (aGa);
initialization

96, la == 960, 1c0;
execution

forever do (G4 5;5 G, od

]

where the power gated non-atomic synchronous composition is adopted to
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shut down the subsystem. The operation of G is defined by the actions G;
and Ga. The clock cycle for the system B is:

TClkB = ((A(Bl X BQ)),A(Gl X Gg))

O19 Max (Max(A(Br)), Max(A(By)), Max(A(G1)), Max(A(G2)))

= Max ((dB1), (dBs2), (dG1), (dG2))
where the slowest action determines the system delay (clock cycle).

By adopting the area complexity of systems, defined by (4.19) on page
68, the area complexity of the system B, and its subsystem G becomes:

C(B)=>_C(B)

BeB
=Y C(B)+ > CG) (7.5)
BeB Geg

where the area complexity of the system B is the sum of the area complexities
of the actions in the system B. That is the first line in the above definition
contains also the actions in the subsystem G. To adopt the above equation,
the area complexity of the system B is:

cB) "™ C(B1) + C(By) + C(¢) + C(G1) + C(Ga) + C(clks) + C(clkg)

where the area complexities of the clocks C(clk) and C(clkg) are:

Cleiks) = 8- C(B)

7.2
C(elkg) "2 B C(9)
Adopting the area complexity and the synchronous delay, the average
power consumption per clock cycle without power gating is defined by:
(424) E(B)

PTcsz,avg(B) = Toms + Psltat ’ C(B)

where the energy consumption of the system F(B) is calculated using (4.21)
on page 69, where the observation period is the synchronous delay, the clock
cycle, and therefore the energy consumption becomes:

E(B)=C(B)-E!

where the energy consumption per clock cycle is the energy consumption of
all actions in the system, including the subsystem G.

Consider a case when the subsystem G is shut down. The area complexity
for the power evaluation is:
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C(Bgp) = C(B1) + C(Ba2) + C(c) + C(clkgp)

where the area of the subsystem G is excluded because its power is shutdown,
and therefore it does not consume power. Therefore, the area complexity of
the clock distribution is of the form:

Clclkgp) = 8- C(B)
=p-(C(B1)+ C(B2) + C(c))

where one can see that the area complexity of the clock C'(clk) is the area
complexity of the clock for system B defined above (C(clky,) = C(clkp)).
Observe that the total area complexity C'(B) of the system still includes
the subsystem G as defined above. However, to evaluate the average power
during the time the power gating is active, the subsystem G is excluded
because its power is shut down, and therefore it does not consume any
power. The power consumption per clock cycle T g when the power gating
is active is:
PTClkaaUQ(BQP) (424) f(B) + Psltat : C(BQID)
CIkB
E'- (C(B1) + C(Bs) + C(c) + C(clkgp))
Tewn
+ Py - (C(B1) + C(Ba) + C(c) + C(clkgp))

The power reduction gained using this approach is:

P(reduced) = Pryp.avg(B) — Pregs.av9(Bgp)

where the reduction in dynamic power consumption:

P(reduced) o, iy = (El (C(B1) + C(By) + C(e) +C(9) + C(clk)))

Tews

B <E1 -(C(B1) + C(B2) + C(c) + C’(clkgp)))
Tews

B (C(G) - C(clh) — Clelkyy))

B Teiwks

In a similar manner the reduction in static power consumption can be eval-
uated by:

P(reduced)sir = Py - (C(G) — C(clk) — C(clkgyp))
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where the static power reduction is the relative change in the area complexity
of the whole system C'(B) and the area complexity of the power gated system
C(B)gp. Furthermore, the change in area complexity due to the power gating
causes the reduction in energy consumption of the system, and therefore the
decrease of dynamic power consumption is dependent on the change in area
complexity values as well.

7.2 Asynchronous Systems

Most digital circuits designed and fabricated today are synchronous. In
essence, they are based on two fundamental assumptions that greatly sim-
plify their design: (1) all signals are binary and (2) all components share a
common notion of time, as defined by the clock signal distributed throughout
the circuit. Asynchronous systems on the other hand also assumes binary
signals but there is mo common discrete time. Instead these circuits use
handshaking between their components in order to perform the necessary
synchronization, communication, and sequencing of operations. This differ-
ence gives asynchronous circuits inherent characteristics to design circuits
with very interesting performance parameters in terms of power, timing, and
noise [53, 80].

Asynchronous modules communicate with each other via asynchronous
communication channels or by procedure based communication described
in Sect. 2.6.1. The asynchronous communication channel consists of two
control variables req and ack, and data variable data, where the former
ones set and close down the communication channel and the latter one is
used to transfer data. The setup and closing of communication channels are
controlled using certain communication protocols such as four-phase and
two-phase signaling protocols. In the four phase signaling protocol, shown
in Fig. 7.2(a), the term 4-phase refers to the number of communication
actions: (1) The sender issues data and sets the request high, (2) the receiver
absorbs the data and sets acknowledge high, (3) the sender responds by
setting the request low (at which point data is no longer valid), and (4) the
sender acknowledges this by setting the acknowledgement low. At this point
a new communication cycle may begin. The drawback of this protocol is
superfluous return-to-zero transitions that cost unnecessary time and energy
[80]. This can be avoided by using two-phase signaling protocol, shown in
Fig. 7.2(b), where the information on the request and acknowledge lines is
encoded as signal transitions and there is no difference between 0 — 1 and
1 — 0 transitions. Hence, they both present a signal event. Ideally the
2-phase protocol leads into faster circuits than the 4-phase one, but often
the implementation of circuits responding to event is complex, and there is
no general answer to the question of which protocol is best [80].
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Req

Data >< >< Data >< ><
(a) Asynchronous 4-phase communica- (b) Asynchronous 2-phase protocol

tion protocol

Figure 7.2: Asynchronous signaling protocols

The procedure based communication, introduced in Sect. 2.6.1 and whose
timing characteristic was discussed in Sect. 3.5.4, uses remote procedures to
model communication between systems. This approach allows a designer to
hide the communication details (a communication event is considered to be
a single atomic action) that are visible onto asynchronous communication
channels, and to concentrate on other important modeling issues. Therefore,
the communication related design issues, for example, the protocol selection,
can be left for lower abstraction levels. Next, consider an example that
illustrates the procedure based asynchronous communication.

Example 7.1. An arbiter Arb grants bus accesses to two master systems,
say A and B. The arbiter is of the form:

sys Arb ( in reqa,reqp: Boolean;
out gra,grp: Boolean; ) ::
Il

delay
dAq: dA10;dAs: dA50;
action
Ar[dAi]: (rega A —grp — gra = T;
| —reqga Agra — gra :=F);
As[[dAs]: (reqp N —gra — grp :=T;
| —reqg A grg — grp :=F);
execution
forever do 4; | A2 od
Il

where req4 and reqp are Boolean variables that request an access, and gra
and grp inform a gained access to the shared resource (the grant signals
are comparable with the acknowledgement signals used above). The shared
resource, the bus, is of the form:
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sys Bus ( exp Comm; ) ::
Il
delay
dComm: [dCommuyin, dCommumay);
public procedure
Comm[dComm](...): (Trf);
action
gC[dgC]: (await Comm);
execution
forever do Comm od

I

where the communication between the masters and the bus is modeled using
the public procedure Comm. The master systems .4 and B are of form:

sys A ( out reqa: Boolean; sys B ( out regp: Boolean;
in gra: Boolean; in grp: Boolean;
imp Comm; ) :: imp Comm; ) i
Il Il
delay delay
dReq: dReq0; dReq: dReq0;
dComm 4 : dComm 40; dCommp: dCommp0;
dAck: dAckO; dAck: dAckO;
action action
Req[dReq]: (—gra — Req[dReq]: (—grp —
reqga :=1T); reqp :=T);
CaldCommy]: (gra — CgldCommg]: (9rp —
call Comm()); call Comm());
Ack[dAck]: (reqa,gra := F); Ack[dAck]: (reqp,grp := F);
execution execution
forever do Req;Ca5Ack od forever do Req;CpjAck od

Il Il

where the bus access is first requested from the arbiter using the asyn-
chronous communication channel (the action Req). When the access is
granted a master calls the communication procedure Comm (call takes place
inside the timed action Cy). After the data transfer the master releases the
request variable (by the timed action Ack).

The non-deterministic choice (in Arb) is used to grant the bus access to
either of the masters (A or B). If the master A is requesting bus access and
the master B is not or the other way around, the granting decision is trivial.
It is trivial also when the access is not requested by either of masters. The
non-trivial case takes place when both masters requests bus access at the
same time, because the arbiter can grant only one bus access at a time.
This situation is illustrated in Fig 7.3, where both of the masters requests
the bus access at the same time (reqqa = T and reqg = T'). Because of
this both of the actions A and B are enabled. After the delay dArb, the
bus access is granted to the master 5 based on the non-deterministic choice.
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Figure 7.3: Asynchronous operation of systems Arb and Bus

At the same time the action A that is trying to get bus access is killed.
The winner of the arbitration, the master B, starts the communication with
the bus by executing action C'p which calls the communication procedure
Comm. After all communication activities are completed, B releases the
request signal, and thus releases the shared resource. A new arbitration
cycle may begin as no module has control over the shared resource. This
time the module A is granted.

In terms of power modeling the asynchronous design approach does not
pose any new conditions, that is, the area complexity and power modeling
framework presented in Chapter. 4 is adopted. Furthermore, the power gat-
ing, described in the previous section, can be implemented for asynchronous
systems as well. Consider a closed timed action system S, which consist
of an arbiter, a bus, and two master components (components are defined
above), and, furthermore, the execution clause of S is of the form

execution

Arb || Bus || A || B

The area complexity of the system is:
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C(S) =" C(A)+C(B) + C(Bus) + C(Arb)
The average power of the system is:

(4.24) Ep(9)
AT

PT,aUg(S) + C(S) ’ Psltat
where Ep(S) is the energy consumption of the system S during observation
period T. The static power consumption of the system is defined by mul-
tiplying the unit static power dissipation PJ,, with the area complexity of
the system C(S).

Assume that the master B is idle for long time periods, and therefore a
designer wants to know how much static power is saved if the master B is
shutdown. In asynchronous context, no specific composition is required to

model power gating. The area complexity of the power gated the system is
denoted by C(S) is:

c(8) " C(Arb) + C(Bus) + C(A)

where the area complexity of the master B is excluded from the area com-
plexity of the system, and thus the relative static power reduction gained
from shutting down the master B is the area complexity C(B) of the master
B multiplied by the unit static power dissipation PL;.

To model the average power of such system, the observation period T is
selected in a way that the master B is disabled. Recall the definition (4.20),
which states that only those actions which are enabled during observation
period is included into the energy estimation. Therefore, adopting the above
definition for the observation period, the set of actions S excludes those
actions, which are defined by the system B. The average power of gated
system S becomes:

(4.24) Ep(9)
A(T)

PT,avg(S) + C(S) : Psltat

where Ep(S) is the energy dissipation during the observation period 7. Ob-
serve that the actions in master system B are excluded from the energy
consumption evaluation of the system due to the definition of T'. Further-
more, they are also excluded from the area complexity calculations, and
therefore from the static power estimation, as described above. Thus, shut-
ting down a power domain in the system reduces both the static and the
dynamic power dissipation

End of example.
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Comparing the area complexity modeling between the asynchronous and
synchronous systems, one can see that the area complexity model of the syn-
chronous systems includes the model for clock tree which is not included into
the asynchronous one. This is due to the fact that in asynchronous circuits,
the control logic is local whereas at synchronous systems it is global. That
is, there is no need to build network that is able to drive the timing refer-
ence for each component in the circuit. However, this does not imply that
the asynchronous systems would be by default smaller. Instead, the local
handshaking logic usually causes some amount of area overhead comparing
with its synchronous counterpart [80]. On the other hand the lack of a clock
distribution network offers potential for low-power and low-noise solutions
because the components in the system switch only when they have data
to process, and, furthermore, the overall simultaneous switching activity is
reduced, which, in turn affects the amount of on-chip noise [53].

7.3 Communication Networks

Interconnects are used in a digital system for communication and for dis-
tribute power and clock. Furthermore, interconnects dominate a modern
digital system in terms of speed, power, and cost [39, 69]. That is, the time
required to drive signals over wires is often the largest factor in determin-
ing the cycle time, and a bulk of power in many systems is dissipated to
drive these wires. Moreover, an economically achievable wire density is a
major influence on the architecture of a system. Therefore, assuming ideal
wire models is not suitable approach for power analysis in a communication
networks.

In this section, general communication models are discussed. The com-
munication within action systems is assumed to be local communication,
and therefore their power dissipation is assumed to be part of the power
consumption of the action system. However, the communication between
action systems is considered to use longer interconnects and drivers, and
therefore a more detailed discussion on modeling power issues is required.
The presented model estimates the parasitic properties (capacitance, resis-
tance, inductance) of an interconnect using an area complexity estimate.
Timing related aspects are described using the properties of the Timed Ac-
tion System formalism, and the routing aspects are left intact because of
the high abstraction level. That is, the estimation of floorplanning and
placement is difficult (or even impossible) above RTL.

Consider the procedure based communication, presented in Sect. 2.6.1
on page 24. It uses procedures to transfer data between systems. The area
complexity of the procedure based composition is obtained by calculating
the area complexity of those actions and procedures that participate the
communication activities [83]. The area complexity of the procedure based
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communication, is denoted by C(Comm) and defined by:

C(Comm) = C(SR) =C(S)+C(p) + C(R) (area complezity) (7.6)

where C(S) is the area complexity of the sender action S, C(p) the area
complexity of the communication procedure p, and C(R) the area complex-
ity of the receiver action. The area complexities of the actions and the
communication procedure are calculated using (4.4) - (4.9) on page 56. The
area complexity of the sender C(S) consists the logic needed to send data,
and, in a similar manner, the area complexity of the receiver C'(R) consists
the logic that is required to receive the data that is transferred over the com-
munication channel. The area complexity of the communication procedure
p presents the cost of the actual communication channel between the sender
and receiver. The delay of the procedure based communication is discussed
in 3.5.4 on page 47, and denoted by Acomm. The above presented area com-
plexity describes the size of a short communication link between two system
blocks. However, in modern large scale systems the communication struc-
tures are usually more complex, and therefore the power evaluation of such
structures is discussed next.

7.3.1 Modeling communication networks

Consider a simple communication channel, henceforward called point-to-
point network, whose only responsibility is to call a receiver after a commu-
nication call from a sender has arrived. The communication is initiated by
calling the communication procedure, which is introduced in and exported
by the point-to-point network system. The network system is illustrated in
Fig. 7.4, where the communicating parties Snd and Rec are similar to those
systems described in the definition of the procedure based communication
in Sect. 2.6.1 on page 24. The point-to-point network N is of the form:

sys N ( imp p;

exp n; ) ::
Il

delay
dn;
public procedure
nfdn](in d : data) : call p(d);
action
Trf . await n;
execution
forever do Trf od
Il
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Snd N Rec

S[ds] Trf  can pt 1191 R[dR]
[4N] > —T await p

call n ‘ > await n

Figure 7.4: Communication through point-to-point network N

The communication activities proceeds as follows: The sender Snd calls
the imported procedure n whose call is awaited by the action 7rf in the
point-to-point network N. Then the procedure n calls the communication
procedure p introduced in and exported by the receiver system Rec and
imported by the network NV. After all the participating actions and commu-
nication procedures are free for execution, the communication takes place.
The communication activities are performed within a single atomic action,
as was done in the procedure based communication presented in Sect. 2.6.1.
Thus, call / await construct of the point-to-point network model N is:

STrfR = S[R[P|d/x]/ await p|/ call n(d)]

where P denotes the body of the communication procedure p, n is the com-
munication procedure, and S and R are part of the calling and awaiting
actions in the sender and receiver systems Snd and Rec, respectively.

The presented point-to-point network model did not store any data dur-
ing communication, which makes it unsuitable for larger networks due to
congestion and fairness issues. Therefore, a network that stores the sent
data onto its own memory element is introduced. In such network the entire
communication cycle takes several atomic steps caused by the decomposi-
tion of the communication procedure. In general, when using a single atomic
communication action, the whole communication medium is reserved before
the communication may start. Therefore, the sender cannot continue its op-
eration before the whole communication cycle is completed. In the buffering
network, the sender can start a new operation after the network has accepted
the sent data item. Furthermore, this approach allows two communication
activities at the same time. Naturally, the integrity of the data must be
taken care of. The buffering point-to-point network Nz model is illustrated
in Fig. 7.5 and defined by the action system N g, system description is in-
troduced on next page, where the communication call is initiated by the
sender Snd, and awaited by the timed action Rec. After N receives the
communication call, it stores data onto its own local buffer variable ibuf
whose content is then copied to the output buffer obuf by the action Mowv.
This, in turn, activates the sending action Snd, which calls the communica-
tion procedure p exported by the receiver Rec. When the receiver is ready,
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Figure 7.5: Communication through point-to-point network Np that stores
data item onto its local buffer

the sent data is transferred to its destination.
sys N ( imp p( in z : Data); exp n( in y: Data); ) ::
Il
delay
dN : dNO;dRec : dRec0;
dMov : dMov0;dSnd : dSnd0;
variable
ibuf,obuf : data; g,s : Boolean;
public procedure
n[dN] : (in y : data) : ibuf :=y;
action
Rec[dRec] : =g — await n; g := T}
Mov[dMov] : g A —s — obuf,g,s:=ibuf, F,T;
Snd[dSnd] : s — call p(obuf);s := F;
initialization
ibuf,obuf,g,s = ibuf0, obuf0, F,T;
execution

forever do Rec || Mov || Snd od
I

The communication between the sender and the receiver consist of two
atomic communication components: (1) the call / await construct SRec
and (2) the call / await construct SndR:

SRec = S[Rec|Py[y/ibuf]/ await n| call n(y)]
SndR = Snd[R[Plobuf/d]/ await p| call p(obuf)]

where the first one transfers data between the sender and the network, and
the second between the network and the receiver.

A communication delay for the point-to-point network and for the buffered
network is:
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AWN) = ASTrfR (delay(network)) (7.7)
= A(S) + A(n) + A(p) + A(R)

A(NB) = A(SndR) + A(Mov) + A(RecS) (delay(network, buffer))
= A(S) + A(Snd) + A(Mov) (7.8)
+ A(Rec)A(p) + A(n) + A(R)

and the area complexities are calculated in a similar manner as the area
complexity of the direct communication defined earlier in this section. Thus,
the area complexities for the above presented network models are:

C(N)=C(STrfR) (area(network))
= C(5) +C(n) + C(p) + C(R) (7.9)
C(NB) = C(SndR) + C(Mov) + C(SRec) (area(network, buffer))
=C(S) + C(Snd) + C(n) (7.10)

+

C(Mov)+ C(p) + C(R) + C(Rec)

Consider the buffered network N g, where a single communication cy-
cle can be described using the computation path CPx(SndR, RecS). The
area complexity of the computation path equals the area complexity of the
buffered network presented above:

C(CPy) = C(NB))

To evaluate the power consumption of a single data transfer from sender
to receiver one adopts both the delay and area information of the system.
The communication delay is the delay A(N)p, and therefore the observation
period T is T' = [SRec.st, SndR. ft], where the start time is the time when
the data transfer is initialized by the sender Snd, and the finish time is the
time when the receiver system Rec has received the transferred data. The
power consumption during the observation period is calculated using (4.24)
on page 72:

Pr.avg(NB) = Pr,ayn(NB) + Pstat(NB) (power(network, buffer)
_ Er(NB)

A(T) +Pmt C(NB)
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Adopting the buffered point-to-point network model NV g, a general com-
munication network model for systems with k sender(s) and [ receiver(s)
(k,1 > 0), shown in Fig. 7.6, is given below.

sys Ni ( imp w(1..)(in z : Data);exp n(1..k)(in y : Data; Dst);
in Addr : [k,1]; ) ::
I

delay
dN : [dNmin, ANpmaz], dRec : dRec0;
dMov : dMov0,dSnd : dSnd0;
variable
ibuf[k], obufl[l] : Data;
dstbuflk] : Addr,
ifulllk],ofull[l] : Boolean;
public procedure
n(i)[dN] : (in dst : Addr,z : data) : (ibuf[i], dstbuf[i] := d, dst);
action
Rec(i)[dRec] : —ifullli] — await n(i)(x, dst);ifull]i] == T
Mov(i)[dMov] : —ofull[dstbuf[i]] Aifull[i] —
obufdstbufli]], i fullli], ofull[dstbuf[i]] := ibuf[i], F, T}
Snd(j)[dSnd] : ofull(j) — call w(j)(obuflj]);ofulllj] := F;
initialization
ibuf[k], obufl], dstbuf[k] := ibu fO[k], obu fO[l], dstbu fO[l];
ifulllk], ofull[l] := F, F,
execution
forever do [ [ 1 <i < k: Rec(i) | Mov(i)]
[ [[1<j<l:5nd(j)] od
I

where the dstbuf[k/ is the buffer onto which the destination address is stored,
ifull and ofull indicate whether the input and output buffers, ibu f and obu f,
respectively, are booked up or not.

As might be expected, the communication delay and the area complex-
ity in the above model equals with the buffered network communication
delay and area complexity presented in (7.8) and (7.10), respectively. This
is due to the fact that their communication schemes are equivalent. The
only difference is the amount of senders and receivers in the network. The
area complexity and delay models are further elaborated by considering the
distance between the communicating parties to obtain more accurate delay
and area complexity estimates.

Communication delay. Large cover a vast area of silicon, hence their
communication delay depends greatly on the distance of the communication
parties. This, on the other hand, means that to connect the communica-
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Ni

S(1) call n(1)(dst, dout) yawait n(1) call w(1)(dout) » await w(l)  R(1)
Snd(1) Rec(1)
Snd(k) Rec(k)

S(k) call n(l)(dst, dout) yawait n(l) call w(l)(dout) y await w(l)  R(k)

Figure 7.6: General communication network

tion parties apart from each other it is required to have long wires, which,
naturally cause long communication delays. In [86], a unit wire delay Al
is defined whose multiple defines the distance of the parties [87]. Its value
can be adjusted at lower abstraction levels when more detailed information
of the system is available. To find a factor for the unit wire delay, one need
a tool to estimate the distance of the communication parties. As depicted
in Fig.7.6 and modeled in the network model N} each of the communi-
cating parties have an index, also referred as its address. Assuming that
the address of the modules, in some respect, correlates with the location of
the modules in the system, the addresses can be used to calculate relative
distance, denoted by rd, between two modules §; and R;:

rd = |i — j| (relative distance(general network)) (7.11)

The above definition cannot be considered as a general approximation of the
distance between two communicating parties, as there exists a wide variety
of network topologies. Best approximates can be obtained from regular net-
works such as a 2-D mesh or a ring based communication networks. By
multiplying the relative distance by the unit wire delay, one obtain an ap-
proximation of the communication delay for the high-level network model:

ANE) = rd- AL, .+ ANB) (delay(general network)) (7.12)
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Area complexity. In a large communication network, the area required
by the wires has significant impact on system’s performance. In the gen-
eral network model, shown in Fig. 7.6, the length of the wires between the
communication parties is estimated using the relative distance in (7.11):

l(wire)i’j =rd- llluirev i 7é J
L . .

wire’ =17

IR

I(wire)™
where l}lme is a unit wire length, which is a measure of the shortest wire
in the network. The length of the wires, other than unit lengths (i = j),
is calculated by multiplying the unit wire length with the relative distance.
The area complexity of a wire in the general network model for is defined
by:

C(wire)™ = I(wire)™ - w(wire) (wire area(general network)) (7.13)

where [(wire)® and w(wire) denotes the length and width of the wire,
respectively. In general both of theses parameters are hard to evaluate
without any information from the target technology. Therefore, for the
abstract network model, the length of the wire is defined with the aid of
relative distance as stated above, and the width of the wire is introduced
as a technology related parameter. Adopting (7.13), the area complexity of
the general network model is defined by:

C(NE) = k- (C(SRec) + C(Mov)) +1- C(SndR) + C(wire)™ (7.14)

(area(general network))

where k and [ are the number of receivers and senders in the network,
respectively (k,l > 0).

Power consumption. To model the average power consumption of the
general communication network N'%, an observation period T is defined us-
ing (4.20) on page 68. During the observation period T, the system executes
a set N'% of timed actions. The set N} consists of n (n > 1) communication
cycles where it is assumed that a communication cycle is defined using the
following computation path by:

CP(SndR, SRec) = (SRec(i), Mov(i), SndR(j))
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where the communication procedure n(7) is included into the action SRec(i).
The average power during the observation period 7' is calculated using (4.24)
on page 72:

Pr.avg(NB) = Prayn(NB) + Pstat(NB) (average power(general network)

where Py, (NF) is the dynamic power consumption of the network and
Pt (NF) is the static power consumption. The dynamic power consump-
tion is defined by (4.22) on page 71:

Er(Ng)

Prayn(Ng) = AT

(dynamic power(general network)

where the energy consumption of the network is defined by:

Er(NE) = Ep(NE) 4+ E(wire™) (energy(general network)
(7.15)

where the energy consumption of the system N is calculated using (4.21)
and the energy consumed by the wire is defined by:

E(wire)i’j = Ei;ire

- C(wire)™ (energy(wire)) (7.16)

where the energy consumption of an unit wire Ei]”e is multiplied by the area
complexity of the wire (7.14). Observe that the difference between (4.21)
and (7.15) is that the former does not include any model for communication
channels whereas the latter one does. The static power consumption of the
general network system is defined by:

Pstat(-/\/g) = C(Ng) : Psltat + C(w”e)(i’j) : Psltat (7.17)

(static power(general network))

where the first term calculates the static power consumption caused by the
actions in the system N7, and the second one evaluates the static power
consumption of the interconnects.
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Ring
S(1) call n(1) | Yawait n(1) calljw(ul) | yawait w(4)R(4)
await n(1 all n(1)
Snd(1) N ) call n(2) awai‘t':n(ﬁx) NW) Rec(4)
Snd(2) N(@)  await n(2) calln(®)  N(3) Rec(3)
call‘.'n(3) awa:it n(3)
S(2) call n(2) —yawait n(2) call w(3) ‘ yawait w(3)R(3)

Figure 7.7: Ring based communication and an example communication se-
quence between S1 and R4

7.3.2 Ring based communication network

A ring based communication network, shown in Fig 7.7, is based on parallel
operating transceivers, called network nodes A/ (1), each of which connected
to one host system and two network nodes. All data items not directed to a
network node host system are forwarded by calling the adjacent node. The
network itself is defined by a system Ring:
sys Ring ( imp w(1..l)( in x : Data);
exp n(l..l)( in : Dst : Addr);
in [l : Addr]; )
Il
public procedure
n(1)[dN](inDst : Addr;z : Data) : ibuf,dstbuf := d, dst;
subsystem
Node(i) :
N (i) (imp w(i)( in z : Data)
n((i+1) mod I)( in Dst : Addr;d : Data)
n(i)(in Dst : Addr;x : Data));
execution
[ 11<i<l: Node(i)}
|

where the communication procedures w(1...l) and n(1...l) map the net-
work nodes together. Observe that in the above model the communication
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between network nodes is performed within the system, and only the com-
munication between network node and its host system is visible outside the
system. The network node is defined by:
sys N (i) ( imp w(i)( in = : Data);
n((i+1) mod I)( in dst : Addr;z : Data);
imp n(i)(in x : Data; Dst : Addr); ) ::
I
delay
dN : [dNmin, ANpmaz], dRec : dRec0;
dMov : dMov0,dSnd : dSnd0;
variable
ibuf, obuf, sysbuf : Data;
dstbuf : Addr;
ifull, ofull, sysfull : Bool;
public procedure
n(1)[dN] : (in dst : Addr;y : Data) : (ibuf][i], dstbufli] := x, dst);
action
Rec[dRec] : (—ifull[i] — await n(i);ifullli] :==T);
Mov[dMov] : ifull[i] —
ofull Ndstbuf =i —
(obuf, ofull :=ibuf,T)
[ —sysfull Adstbuf # i — (onbuf, sysfull :=ibuf,T)
sifullli] :== F,
Snd[dSnd] : ofull — (call w(i)(obuf);ofull :==F) [ sysfull —
(call n((i + 1) mod [)(dstbuf, sysbuf); sysfull := F);
initialization
ibuf,obuf,dstbuf, sysbuf := ibu f0, obu f0, dstbu f0, sys fullO;
ifull,ofull, sysfull .= F, F, F;
execution
forever do Rec || Mov || Snd od
I

where the communication proceeds as follows: The Rec action awaits the
communication call and copies the sent data onto its local buffer ibuf and
the destination address to the buffer dstbuf. The data is transferred towards
the next network node (dst # i) and copied into the output buffer obuf or
towards the synchronous system module (dst = i). If the data is transferred
to the host system, it is copied onto output buffer sysbus.

Applying the notation introduced in the preceding section, the delay
caused by the described ring based communication network is:

rd(i) - A(Npring) = rd(i) - (Al + ANB))
where the relative distance rd(i) is defined by:
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rd(i) = |i — jlmod (relative distance(ring network)) (7.18)

where [ denotes the number of IP blocks. The relative distance defines
the number of network nodes (excluding the one to which the requesting
synchronous island is connected to) between the sender and receiver (a hop
count). The communication delay of the ring architecture becomes:

A(ring) = rd(i) - A(Npring) (delay(ring network)) (7.19)

Area complexity and power consumption. The area complexity of
the ring based network is evaluated according the guidelines given for the
general network model and it is defined by:

C(Ring) = C(Node(i)) = i- C(N (7)) (area(ring network))
— i - (C(Rec) + C(Mov) + C(Snd)) + C(wire)®9) (7.20)

where the area complexity of the wires C'(wire)®7) is calculated using (7.13).
Observe that the relative distance in (7.13) is replaced by (7.18).

To model average power dissipation, an observation period is defined in
a similar manner as for a general network. The observation period 1" consist
of n (n > 1) communication cycles, defined by computation path:

CP(Rec, Snd) = (Rec, Mov, Snd)

The n communication cycles form a set Ring of timed actions. Adopting
the above presented area complexity model, (7.16), and (4.24), the average
power of the ring based network is defined by:

Pr avg(Ring)) = Prayn(Ring) + Psai(Ring) (average power(ring network))
(7.21)

where the dynamic power consumption is:

Prayn(Ring) = Pr,ayn(N(i))
(1.15) Ep(N (i) = E(wire)
AT A(T)
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where the former calculates the dynamic power of ¢ network nodes (i > 0),
and the latter one calculates the dynamic power of the wires in the network.
The static power consumption is:

Pyiqt(Ring) (727) C(N(i)) - Psltat =+ C(w”e)i’j ) Psltat

Example 7.2. Consider an example call (denoted by dash arrows) depicted
in Fig. 7.7, where the sender S(1) communicates with the receiver R(4). A
computation path for such a communication activity is as follows:

CP(S(1), R(4)) = (S(1),N (), R(4))
— S(1), N (1), N(2), N'(3), N(4), R(4)

where the relative distance between the source and destination can be cal-
culated using (7.18):

rd(i) =14 —1/mod 4 = 3

and the communication delay is:

A(EP(S(1), R(4)) = 3- A(Njring)

The area complexity of the computation path is defined by calculating
the area complexity of the systems in the computation path together:

(7.20)

C(EP(S(1), R(4))) C(s(1)) + CN (1)) + C(N(2))

+C(N(3)) + C(N(4) + C(R(4)) + C(wire)™

where C(wire)™ is the area complexity of the wires in the computation
path:

- yig (T:13) 1
C(’LUZT@) I = lwire * Wwire = rd - lw’ire * Wwire

1
- 3 ° lwire : wwire

where rd is the relative distance, Z}M-Te the unit wire length, and wy;. the
width of the wire. To model average power consumption consider an obser-
vation period A(T) = 3 - An,ring, Which is the delay of one communication

cycle as stated above. Thus, the average power becomes:

Pr.avg (EP(S(1),R(4))) = ET(GT(ZAS((;“){R(ZL))) n iag;;

+ Piar - C(CP(S(1), R(4)))

End of example.
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7.4 Chapter Summary

Various system models were described in this chapter, and, furthermore,
their demands to the power analysis were emphasized. At first, synchronous
systems were discussed. Their operation is paced with a clock signal, which
is significant contributor to the total power consumption of system. There-
fore, area complexity and average power models were introduced for syn-
chronous systems, where the size of the clock distribution network is taken
into account. In addition to synchronous composition, the synchronous com-
position with gated clocks is analyzed in terms of area complexity and power
consumption. The synchronous gated clock composition was also adopted
to model power gating because it prevents the execution of actions in the
composition if gating is enabled. Thus, the power gating and its effect to
power consumption was also analyzed.

From synchronous systems the chapter proceeds to asynchronous sys-
tems, which do not have the clock signal, and therefore the power analysis
can be done as discussed in Chapter 4. On-chip communication networks
were then illustrated and analyzed in terms of area and power consumption.
The communication network modeling started with a direct point-to-point
link, after which a simple network model was presented, which included a
local buffer where data could be stored. This model was further extended
into two larger network models. The longer the communication link is the
more it poses demands on the model. In this thesis, the distance between
two links were analyzed using relative distance. All the presented commu-
nication models were analyzed in terms of time, area complexity and power.
The presented network structures illustrated the emphasis on physical pa-
rameters, such as wire length, in timing and power analysis.
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Chapter 8

Experiment

The power aware modeling techniques presented in previous sections are
used to model and analyze the area and power dissipation of a co-processor
system targeted to acceleration of Java programs. The presented model is
a simplified author adaptation of an existing co-processor system described
in [75]. First, the background of the co-processor is highlighted after which
the formal model is introduced. The analysis part is categorized into four
sections, which covers the most power hungry areas of the system. Finally,
a framework for multicore system is introduced and analyzed.

8.1 Background

Java is emerging as a standard execution environment for portable devices,
such as mobile phones and Personal Digital Assistants (PDAs), due to its
security, portability, mobility, and network support. Java execution tech-
niques, such as Just In Time compilation (JIT), have limitations in both
storage space and computation power, which makes them unsuitable in mo-
bile application domain. However, consumers demand faster systems with
more capabilities and longer battery lives. Therefore, several methodolo-
gies exists to reduce the overhead in Java execution. These overheads are
due to the fact that Java applications are not written, nor compiled, for
any given hardware device. They are written and compiled for a Java Vir-
tual Machine (JVM), where Java applications are executed by emulating
JVM on the host system. Clearly, extra emulation layers causes overheads,
but they also provide opportunities for improvements like increased security
and platform independent programming modes. More interestingly, a power
management can be included into the virtual layer, where slower and more
energy effective routines are selected when battery is running low.

Java code is first compiled into a bytecode, which is then run on JVM.
JVM acts as an interpreter from the bytecode to a native microcode or uses
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JIT to obtain the same result a bit faster at the cost of increased memory
usage. This software only approach is inefficient in terms of power con-
sumption and execution time. Mainly these problems rise from the fact that
executing one Java bytecode instruction requires several native instructions
[75].

Another approach would be to use a full standalone Java processor in
the system. The problems with this approach is that JVM has an extra
layer between hardware and software, and it often is not suitable for low
level hardware control, device drivers, and hard real time parts of a given
embedded system. In other words, this approach would be likely to require
a general purpose processor for the low level accesses, which, in turn, would
make the system integration both difficult and expensive.

One way to solve problems is to take the best parts from the full software
and the full hardware approaches. In [75], an asynchronous co-processor ar-
chitecture (REALJava) for an efficient Java execution is introduced. At the
moment, the implementation of this architecture is synchronous and running
on Field Programmable Gate Array (FPGA). The existing architecture pro-
vides an easy integration with existing systems, with the execution speed of
the hardware standalone JVM !. Furthermore, the resulting system needs
no special concerns related to accessing I/O devices and other services since
they are produced by the general purpose host processor. In forthcoming
sections, the modeling of the hardware parts of the co-processor is discussed.

8.2 The Formal Model of the Co-Processor

In this section, a high level formal model for REALJava [75] co-processor is
introduced. The presented model is based on an asynchronous architecture,
and, furthermore, it concentrates on the HW parts of Java execution because
software modeling in power and time aware context is out of the scope of
this thesis.

8.2.1 Preliminaries

The co-processor system, denoted by S, consist of two parts: the host sys-
tem and the co-processor system, shown in Fig. 8.1, where the host system
consist of Central Processing Unit (CPU) and system memory. The execu-
tion of Java methods can take place in the host system, in the co-processor
system, or in both. Before introducing the formal description of the sys-
tem, consider an execution sequence shown in Fig. 8.2, where the execution
of Java method needs both the host system and the co-processor system.
First, Hostsystem invokes the Java method and transfers it to Co — Proc

'Results of current REALJava implementation can be found in [§]
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Hostsystem
, . System
CPU % " Memory

X

Co — proc

Figure 8.1: Illustration of the initial system construct S

for execution. Co — Proc continues the execution until it detects an in-
struction that is not implemented by Co — Proc, and therefore it shifts the
method execution to Hostsystem using Interrupt Request (IRQ). Unknown
instructions are processed by Hostsystem after which the method execu-
tion is transferred back to Co — Proc. Finally, Co — Proc notifies that it has
completed the method execution to Hostsystem.

The presented model consists of co-processor with its environment (host
system), which is assumed to provide necessary stimulus for the co-processor
system, but the functionality of the environment is not described. The timed
action system & is a closed system, which encapsulates two subsystems as
shown in Fig. 8.1. § is defined by:

sys S ()

1l

type
method: Java Method;
subsystem
Co — Proc: (Co — Proc(imp invoke(in d : Method));
exp IRQ(out z : Data);
in halt: Boolean);
Hostsystem: (Hostsystem(exp invoke(in d : Method));
imp IRQ(out z : Data);
out halt: Boolean);
execution
Co — Proc || Hostsystem
Il

where an abstract interface of both the host system and the co-processor
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CPU is free for other tasks Continue i JPU resumes execution

Process the_instruction I

: Return

Co—
Proc

Figure 8.2: Example execution sequence between Hostsystem and Co— Proc

system is described. The subsystem’s interface includes the communica-
tion between the subsystems. The public procedure invoke is exported by
Hostsystem, and imported by Co — Proc because Hostsystem initiates the
communication. Allthough Hostsystem is not defined in this thesis, the
definition of invoke procedure is given:

invoke[dInvoke]: (in d : Method): localmen = localmen U {d}

where the type of the variable d is Java method, which is written on the
co-processors local memory area, localpem- More detailed definition of the
local memory area is given during the definition of the co-processor system.
The second communication procedure I R(Q) is exported by the co-processor
system and imported by the host system because the co-processor system
initiates an IRQ. Furthermore, a Boolean variable halt is defined, which
allows the host system to stop the co-processor system.

8.2.2 Co-processor system

The co-processor system Co — Proc consists of three subsystem blocks: a lo-
cal memory (Mem), a communication unit (Comm), and an execution unit
(Exec) as shown in Fig. 8.3. In Fig. 8.2 illustrated an example Java method
execution, where the communication is initiated by Hostsystem using pro-
cedure invoke, which, in turn, writes the Java method to the co-processors
local memory area. In general, local memory consists of several local ele-
ments such as stack and local variables on data side, and bytecode segments

148



Co — Proc
Comm Exec
Halt Mem
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h_

Invoke

Figure 8.3: Block diagram of the system Co — Proc

of the methods on the instruction side. The virtual machine needs to do
some preparations before the co-processor can execute bytecode segment,
for example, it has to check that the current thread’s stack frame and the
current method are loaded into the co-processors local memory area. These
preparations are done by Hostsystem, and therefore it is assumed that the
host system handle all the necessary memory updates needed for the byte-
code execution. Once this is done, the co-processor system enables the
subsystem Comm, which reads the physical memory addresses from the lo-
cal memory after which an instruction is fetched from the instruction cache.
The instruction is then transferred to the execution unit defined by the sub-
system Exec, which executes the instruction. The result of the operation is
stored onto the local memory area, for instance, onto the top of the stack.
The co-processor system is defined by Co— Proc, where the action J1 awaits
a Java method from Hostsystem after which the method is written onto the
local memory area local,,ep,, which is located in the subsystem Mem. Once
the Java method is written onto the local memory, the subsystem Comm is
activated by J2. The subsystem Comm reads the physical addresses from
the local memory area, after which it searches the requisite instruction from
the instruction cache. In case of a cache miss, the instruction is fetched from
the local memory of the co-processor system after which Comm indicates to
the Co — Proc system that there is instruction to be executed. The action
J3 enables the execution unit Exec. Once the execution of the instruction
is completed, the co-processor system returns to the idle state (action J4)
and is ready to either continue method execution or to accept new method
from Hostsystem. The action J5 returns the system into idle state if the
host system issues halt command to the co-processor system.
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sys Co— Proc ( imp invoke(in d: Method);
exp IRQ(out z: Data);
in halt: Boolean;
inout req¢mem, "€qComm, T€Gexec: Boolean; ) ::

Il
type
Status: {idle, op, addr, exec, irqrequest };
Memory: set of Data;
Instruction: Java Instruction;
Address: record(icache address, Instruction);
delay
dJ1,dJj2,DJ3,DJ4: dJ10,dJ20,dJ30,dJ40;
dJ5: dJ50,dJ6: dJ60;
dIRQ): [dIRszna dIRQmam];
variable
SYSstat : Status;
rqQdata - Data;
public procedure
IRQ[dIRQ](out z : data): x to Hostsystem;
subsystem
Exec: Swec(imp dgiu(in x : Data); exp degec(in x1, z2: Data);
in instr: Instruction);
Comm: Comm (imp get Addr(out x: Address);
imp getInstr(in z: Address;
out instr: Instruction);
inout reqeomm, reQinstr: Boolean;
Mem: Mem (imp invoke: (in d: Method);
exp getAddr: (out x: Address);
exp getinstr: (in x: Address;out y: Instruction)
exp flush: (in z: Memory);
inout reg;,s: Boolean);
action
J1[dJ1]: sySstar = idle N\ Tegmem — SYSstat = OP;
J2[dJ2]: sySstat = Op N —T€Gmem — T€comm = T'; SYSstar := addr;
J3[dJ3]: sySstar = addr N\ —reqeomm — SYSstat ‘= €TEC; Te€qegec ‘= T;
JA[dJA]: sySsiar = exec N\ —reGezec — SYSstat = idle;
J5[dJ5]: halt =T — sysstar := idle; halt := F;
J6[dJ6]: sySsiat = iTGrequest — await IRQ(irqdata); SYSstat = idle;
initialization
8YSstat := 1dle; iTdata = 1Tqdata0;
T€Gmems T€qcomms T€qexec, halt := F;
execution
forever do [ 1<i<6:J;] od | Exec | Comm || Mem

I
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P TE€qQflus :
.............. H TEQInstr %essssssssssnn:

invoke (Hostsystem)

Figure 8.4: Subsystem Mem and its interface towards other system blocks

The action J6 transfers IRQ to the host system using the communication
procedure I RQ. In this study, the IRQ is not raised because it is assumed
that all Java methods are executable by the co-processor system. The co-
processor system returns to idle state (J1), after IRQ, because after the
host system has handled the IRQ, the necessary information for the co-
processor to proceed the execution is written onto the local memory area.
In REALJava and TRQ can be a notification to the host system that the
co-processor system cannot handle certain instruction(s), and the execution
of that instruction(s) is then transferred to the host system. Although the
host system is not modeled in this study, the halt and I RQ) were modeled
to make the comparison between the presented model and the HW parts of
REALJava more accurate. Observe that the Co — Proc system has four
global variables (halt, regmem;, "€qcomm and régezec), whose values can be
altered by Hostsystem and subsystems Exec, Comm, and Mem.

Memory block. The memory block (Mem) contains the local memory
area of the co-processor system. Mem and its communication with Co— Proc
and the subsystems Exec and Comm is illustrated in Fig. 8.4, where the di-

151



rection of data in communication channels is indicated using arrows: « is
used to denote the biput (inout) communication channels, where data is
transferred in either direction. Otherwise the direction of the arrow head
defines the direction of data transfer (in or out). Furthermore, thick arrows
are used to denote those data transfers where the width of the communica-
tion channel is over one bit (data buses), and the thinner arrows denote the
control variables (one bit Boolean variables). The Mem is of the form:

sys Mem ( imp Invoke: (in d: Method);
exp getAddr: (out x: Address);
exp getInstr: (in x: Address;out y: Instruction);
exp Flush: (in x: Memory);
inout reginstr, requsn: Boolean; ) .
Il
delay
AM1,dM2,dM3, dM4: dM10, dM20, dM30, dM40;
dAddr: [dAddrpin, dAddrmas];
dInstr: [dInstryin, dInstrpmes];
dr': [dszna dFmam];
variable
localmem : Memory;
public procedure
getAddr[dAddr](out z: Address): x € localmem;
getInstr[dInstr](in z: Address;out y: Instruction):
y := localpmem (T);
Flush[dF](in x: Memory): localymem := localymem U ;
action
M1[dM1]: regmem — call Invoke(d); regmem := F;
M2[dM?2]: reqeomm — await get Addr(1uq4qr); T€qinstr := T
M3[dM3]: reqeomm N “Teqinstr — await getInstr(lyqqy, Instr);
MA[dMA]: reqyiys, — await flush(dcache); req sy = F';
initialization
T€qinstr, T€q flush ‘= F;
localmem = localmen0;
execution
forever do M1 || M2 || M3 | M4 od
Il

where the action M1 calls invoke procedure when Hostsystem sets regmem
to true. Once the Java method is written to the local memory, Mem sets
the regmem to false, which indicates to Co — Proc that the execution of
the Java method may begin. As mentioned earlier, in REALJava, the local
memory consists of several local elements such as stack and local variables
on data side, and bytecode segments of the methods on the instruction
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Figure 8.5: Comm and its interface towards other system blocks

side. In this thesis, however, the stack and cache memories are included
into those system descriptions that uses them. For example, an instruction
cache is located into the communication module (Comm), which handles the
instruction fetching. The local memory, on the other hand, is define to be an
abstract memory area, which contains the necessary information to execute
Java methods. Therefore, it is assumed that Hostsystem has performed the
following operations before the Java method is executed: The instruction
fetching buffer, located in the co-processor local memory area, generates the
physical memory addresses to the local memory. These addresses are used to
fetch requisite instructions, and the addresses are generated in the internal
registers of the co-processor. In general, these registers contain configuration
data, and, furthermore, they are used to control the execution. In this
context, the definition of these registers is not given because the registers
are controlled by Hostsystem. That is, the presented model assumes that
the required addresses for execution can be read directly from the fetching
buffer, which is located in the local memory area of the co-processor. The
action M2 searches the instruction cache address from the local memory
area using the public procedure get Addr. If the instruction is not located
in the instruction cache, define by Comm, the instruction is fetched from
the memory by the public procedure getInstr. The action A4 performs the
data flush operation, if requested by subsystem Exec.
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Communication block. The communication block (Comm), and its in-
teraction with Co — Proc and subsystems Exec and Mem is illustrated in
Fig. 8.5. The notations in the figure are similar with those in Fig. 8.4, and
Comm is defined by:

sys Comm (  imp getAddr(out z: Address);
imp getInstr(in z: Address;out y: Instruction);
inout reqeomm, r€Ginstr: Boolean;
out instr: Instruction; ) ::
Il
type
Lnem : set of Address;
delay
dC1: dC10;dC2: dC20;dC3: dC30;
variable
icache: Lyem;
L Aqqr: Address;
action
C1[dC1]: reqeomm — call get Addr(I,qqr);
C2[dC2]: reqinstr N Indar € icache —
instr = Z.CaChe(Iaddr); T€qcomm, M€qinstr = F
C3[dC3]: —reginstr N Logar ¢ icache —
call getInstr(Iaqar, instr); reqeomm = F;
initialization
Iaddr = addro;
icache := icachel;
instr := instr0;
execution

forever do C1 || C2 || C3 od
I

where the action C'1 reads the physical memory address from the local mem-
ory (instruction fetching buffer) using the public procedure get Addr, which
returns the instruction cache address (from subsystem Mem). After receiv-
ing the instruction cache address, the action C2 searches the corresponding
instruction from the instruction cache. If the address is found from the
cache, then the action indicates to Co — Proc that there is an instruction to
be executed by setting the control variable reqgeomm to false. The instruction
cache is defined to be of type set of Address, where the Address is record
containing both icache address and Instruction, as defined in Co— Proc. The
icache address field defines the instruction cache address and the Instruction
field is the Java instruction. This structure is an abstraction from the cache
model defined in [82]. If the address is not found in the instruction cache,
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Figure 8.6: Block diagram of the subsystem Exec

it is requested (C3) from the local memory located using the public pro-
cedure GetInstr, which receives the physical address as a parameter, and
returns the instruction (instr). Finally, the action C'3 notifies the Co— Proc
system that the instruction fetched from the memory is ready by setting
the variable reqcomm to false. This indicates to the Comm system that an
executable instruction is available.

Execution unit. The execution unit consists of the arithmetic logic unit,
which is modeled as a subsystem ALU, and two memory elements: stack
and data cache. Exec, and its communication with other subsystems of
Co — Proc is illustrated in Fig. 8.6, and defined by Exec (next page). The
operation of £xec proceeds as follows: Co — Proc activates its subsystem
Exec by setting the variable regege. to true, which indicates that there is
an instruction to be executed. Furthermore, as stated earlier, it is required
that the necessary operand and register data are written by Hostsystem
into the co-processors local memory area before bytecode execution.
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sys Exec ( imp dap[dalu](out = : Data);
imp dpsp[dF](in x : Memory);
exp degec[dexec](in x1, zo: Data);
in instr: Instruction;
inout regegec, r€Gaiu, r€qfIush - Boolean; )

I

constant
size: stack(mazx);
delay
dexec: [dexecCmin, dexecmag); dFlush: [dFyin, dFmaz);
dE1: dE10;dE2: dE20;dE3: dE30;dE4: dE40;dE5 : dE50;
dP1: [dP1pin, dPlyag); dP2: [dP2in, dP2mas);
variable
stack, dcache: Memory;
op1,o0p2,bufl,buf2: Data;
sz: Integer;
public procedure
degec(in x1,x9: Data): bufl,buf2 := xy, xo;
private procedure
Pop[dP1](out yi1,ys : Data): y1,y2 := yy, v4-(y}, ¥ € stack);
Push[dP2](in x : Data): x := stack U {z};
subsystem
ALU : ALU(imp degec[dexec](in x1,22: Data)
exp dy[dalu](out x: Data);
in instr: Instruction;inout req,;, : Boolean;
action
El[[dEl]] : T€Gegec N\ TT€Gqly — POp(Opla 0p2);
await degec(0p1,0p2); reqar =T
E2[dE2]: —reqqpn, — call dyy(res); wryesus := T
E3[dE3]: wryesur N sz < size — Push(res);
sz:=s2'.(s2/ = s2' +1);
EA[dEA4]: sz = size — dcache := dcache U stack;
reqfiush = T;call flush(dcache);sz :=1;
E5[dES]: wryesyir N Sz # size —
WTresults T€Galus T€Gexec = F
initialization
T€qalu, T€qexec, Wresult = F
stack := stackQ; dcache := dcachel;
op1,0pa, rbuf := op10, op20, rbu fO;
sz 1= 1;
execution

forever do E1 || E2 | E3 || E4 || E5 od || ALU
]
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The action E1 reads the operands from the stack. The read operation
from stack is modeled using the private procedure Pop, which returns data
operands Opl, Op2 from the stack. After data is read from stack, the action
FE1 calls the public procedure dgge., which transfers data from Ezec to ALU.
The operation of ALU is defined later on in this section. The system Exec
waits the result of the computation, which is transferred using the public
procedure dg, (defined in and exported by ALU and imported by Ezec).
Furthermore, the Boolean variable wr,.qgy; is set true after which the result
is written onto stack. The timed action F4 monitors the state of the stack
by increasing the counter sz every time data is written onto stack. Once the
stack is full (E'5), the stack’s data is written into the data cache (dcache),
and then flushed into local memory (action M4 in Mem), by calling the
public procedure flush.

Arithmetic logic unit. The Java bytecode instruction set in the origi-
nal co-processor structure [75] includes 201 instructions, which are executed
either in hardware or in software or in both. This abstract system descrip-
tion concentrate only on discussing a small subset of these instructions, and,
furthermore, all of the instructions are performed in hardware. Table 8.1
shows the selected instructions: the mmnemonics are directly adopted into
the system description of ALU. However, these are not listed in the sys-
tem description. In addition, operations like memory read and write are
implemented using procedure calls to maintain the high abstraction level of
the system description as well as the length of the co-processor system in
control. The subsystem ALU is defined by: where whenever ALU is in an
idle state (sel = idle) it awaits that Exec sets the Boolean variable reqg,
to true after which it calls the procedure dege.. The procedure transfers
operands from the stack to ALU. At the same time the instruction variable
instr is stored onto the select variable sel to perform the desired operation.
The arithmetic and logic operations are defined by the actions A2 — A8, and,
furthermore, they set the select sel variable into a send state, which enables
the action A9, where the communication procedure dg;, is awaited, which
transfers data back to Exec.
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sys ALU ( imp dezec(in 21, 22: Data);
exp dg(out z : Data);
in instr: Instruction;
inout reqy,, : Boolean; ) ::
Il
delay
dAl: dA10;dA2: dA20;dA3: dA30;
dA4: dA40;dA5: dA50; dA6: dAGO;
dAT7: dAT70;dA8: dA8D; dA9: dA9O;
dalu: [dAmin, dAmaz);
variable
i1,12,7,7es: Data;
sel: Instruction;
public procedure
dg[dalu](out = : Data): res :=res'.(res’ = x);
action
Al1[dA1]: sel =idle A reqqp, — call degec; i1,i2 := bufl, buf2;
sel := instr;
A2[dA2]): sel =iadd — r:=1".(r" = i1 + i2); sel := send,;
A3[dA3]: sel =isub — r :=1".(r" =i — i9); sel := send,;
AA[dA4]: sel = imult — r = r'.(r' =iy xi3); sel ;= send;
A5[dA5]: sel =idiv — r:=1".(r" = i1 /i2); sel := send,
A6[dAG6]: sel =iand — r:=1r".(r = i1 Ni2);sel := send;
AT[dAT]: sel =ior — r:=1".(r' = i1 Viy); sel := send;
A8[dAS8]: sel =izor — r:=1".(r" =iy Dig); sel := send;
A9[dA9]: sel = send — await dy,(res);requy, = F;sel :=idle;
initialization
sel :=idle;
11,192, 7,7es := 110,120, 70, res0;
execution
forever do [ 1 <i<9: 4;] od

]

8.3 Analysis

The area and power analysis presented in this section is divided into four
subsections: first, the memory blocks of the co-processor system are dis-
cussed and evaluated; second, the arithmetic logic unit is modeled and an-
alyzed in terms of area and power consumption; third, the communication
structures inside the co-processor systems are discussed. Finally, the whole
co-processor system is analyzed in terms area consumption and power dis-

sipation.
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Table 8.1: Operations performed in ALU.

Mnemonic | Description

iadd Add integer

isub Subtract integer

imult Multiply integer

idiv Divide integer

iand Compute integer bit wise AND
ior Compute integer bit wise OR
ixor Compute integer bit wise XOR
idle Wait new instruction

send Send data

8.3.1 Analyzing memory components

Power consumption in a memory chip consists of three major sources: the
memory cell array, the decoders (row, column, block), and the periphery
[69]. The power consumption can be divided into two parts: active and
inactive. The former is due to memory accesses and the latter is the power
dissipation caused by data retention in inactive parts of the memory chip.
In general, the power dissipation of the memory chip is dominated by the
cell array. As should be expected, the power dissipation of the memory
is proportional to the size of the memory (n,m). Dividing the memory
into subarrays, and keeping n and m small is essential to keep power within
bounds. This approach is effective only if the standby dissipation of inactive
memory modules is substantially lower. That is, the active power dissipation
of peripheral circuits is small compared with the other components. The
stand-by power of peripheral circuits can be high requiring that peripheral
circuits such as sense amplifiers are turned off when not in action. The
decoder charging current is also negligibly small in modern Random Access
Memorys (RAMs) especially if care is taken that only one out of n or m
nodes is charged at every cycle [69].

Power estimation models targeted to logic circuits, such as the model
presented in Chapter 4, give rather optimistic power estimates for mem-
ory blocks, especially when dealing with large memory units. Therefore,
a separate model for memory components is often included into high-level
power estimation environments. For instance, the model presented in [54]

evaluates the power dissipation of the memory cell array using:
k

2

~ —k

Pmemcell = ? (Cint : lcolumn +2" Ctr) : Vdd : Vtswing : f

where 2% is the number of cells in a row, Cj is a wire capacitance per unit
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length, leommn is @ memory column length, 2% is the number of cells in
a column, C}, is a minimum size drain capacitance, and Viying is a bit line
voltage swing.

In this thesis, the memory issues arises from the power consumption anal-
yses of the Java co-processor, which contains a local on-chip memory unit
consisting of both data and method areas. Furthermore, the co-processor
contains a stack memory and cache-memories for both data and instructions.
The power consumption profiles presented in [50] indicate that around 70%
of the energy consumed during the execution of Java applications is used
on memory accesses. This estimate includes the whole system S, presented
in Fig. 8.1, which consists of Hostsystem and Co — Proc. However, the
system modeled in this study consists only of the co-processor and, further-
more, only a small portion of the instruction set is implemented. Therefore,
comparing with REALJava the size of the presented co-processor model is
small, and one is able to use of the area complexity model introduced in
Sect. 4.1 on page 52 to modeling the memory components. Next the mem-
ory accesses area analyzed in terms of power consumption while the size of
the memory blocks will be discussed in Sect. 8.3.4.

Instruction cache. The delay of the instruction fetching is:

(3.11)

A(C1 || C2 ] C3) A(C1(getAddr)) + A(C2) + A(C3{getInstr))

CL) A(C1) + Alget Addr) + A(C2)

+ A(getInstr) + A(C3)

where the delay of the procedure calls are defined to be non-deterministic
in the system description due to the fact that the delay of the instruction
fetching can vary depending on whether the instruction is fetched from the
cache or from the main memory. In general, the invoked Java methods are
under 512 bytes in length, and research carried out in [70] showed that the
size of the methods rarely exceeds 40 bytes. From this property follows that
most of the instructions are located in the cache instead of main memory,
and, furthermore, the address space required to generate these instruction
address can be smaller. Therefore the variability in memory access times
will be smaller. Thus, in this context, the delays of memory accesses are
modeled using deterministic delays.
The area complexity of instruction fetching is:

(4.7)

gl ] c2 | €3 C(C1)(getAddr) + C(C2) + C(C3)(getInstr)

O o(C1) + Cget Addr) + C(C2)

+ C(C3) + C(getInstr)
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where C(C1), C(2), and C(C3) are the area complexities of the actions
C1, C2 and C3, respectively. To calculate the average power of a single
instructions fetch, one defines two computation paths: CP; = (C1,C3)
and CPy = (C1,C2), where the first one describes the situation where the
instruction is fetched from the local memory, and the latter one describes the
situation where the instruction is in the instruction cache. The computation
path delays are:

A(CPy) = A(C1,03) = A(C1 | €2 | C3)
A(CPy) = A(*C1,* C3)

where the latter delay does not include the delay of C'3 and the delay of the
procedure getInstr. Thus, the delay of the second computation path is:
A(CPy) = A(*C1,* C3)

A(C1 [ C2 ]| C3)— (A(C3) + A(getInstr))
= A(C1) + A(getAddr) + A(C2)

To evaluate the average power of these two computation paths, assume
a fixed observation periods 77 and T5. The observation period delays are
A(Ty) = A(CPy) and A(Ty) = A(CP2) for the observation periods 77 and
Ts, respectively. The average power consumption for the first computation
path is of the form:

4.24
PT,avg(eiPI) ( = ) PT,dyn(e:Pl) + Pstat(@ipl)

(4.22),(4.23) Ep(CPq)

= 7+Psla C G:P
A(Tl) tat ( 1)

and for the second computation path:

4.24
PT,avg(eﬂDQ) ( = ) PT,dyn(e:PQ) + Pstat(@jDQ)

: 23) F
(4 22):,(4 23) % + Psltat . C(G?Q)

where the area complexity of the computation path CP; is larger than the
area complexity of the computation path CPs. This indicates that CP; has
higher static power dissipation, and larger capacitive load when compared
with €P3. Furthermore, CP; consist of two memory accesses: one to the
instruction cache, and one to the local memory of the co-processor, whereas
CP2 consist only the instruction cache access, and thus the average power
dissipation of the computation path CP; is higher than the average power
dissipation of the computation path CPs.
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Stack and data cache. Next, the average power of memory write oper-
ation, defined by Exec is analyzed. Exec receives the result from ALU, and
stores it onto stack (actions E4 and E5). If the stack is full (E5), the data
is also written onto the data cache and then flushed into the local memory.
That is, the system adopts the write through policy to keep the data con-
sistent between memory units. However, if the stack is not full, then the
result is written only onto Stack (E4). Therefore, the delay of the memory
write operation is defined either by the delay of the action E3 or the delay
of the computation path CP(E3, E'5). In a similar manner with the analysis
of the instruction cache, the delays are assumed to be deterministic.

(3.13)

A(E3(P2)) "= A(E3) + A(P2)

ACP(E3, E5) C27 A(E3(P2)) + A(EA(F)) + A(ES)

C1Y A(B3) + A(P2) + A(B4) + A(F) + A(E5)

where the first delay describes the case when data is written only onto the
stack, and the second delay describes the situation when data is written
onto the stack, to data cache, and to local memory.

To evaluate the average power of these two write operations, one needs to
evaluate the area complexity of the timed action F3 and the area complexity
of the computation path CP(E3, E5):

C(E3(Push)) "= C(E3) + C(Push)

(4.25)

C(CP(E3, Eb)) C(E3(Push)) + C(E4(Flush)) + C(E5)

O 0(B3) + C(Push) + C(E4) + C(Flush) + C(E5)

To evaluate the average power consumption of the memory write opera-
tions, one needs to define an observation period. In this case, the observa-
tion period is defined to consists of single memory write operation. That
is, it consists either the execution of the action E3 or the execution of
the computation path CP(E3, E5). The observation periods are defined by
T, = [E3.st, E3.ft] and Ty = [E3.st, E5. ft]. Adopting the defined observa-
tion periods and the area complexity information the average power clauses
are of the form:
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4.18
PTl,M)g(Es) ( = ) PTl,dyn(EB) + Pstat(Eg)

ol
azn OE3) B +C(E3) - Py

A(TY)
_ C(E3) - E! 1
= TAED) + C(E3) - Py
Pry avg (CP(E3, B5)) "2 b (@P(E3, E5)) + Paat (CP(E3, E5))
_ C(CP(E3,E5)) - E L

(C(E3) + C(E5)) - E
A(CP(E3, E5))
+ (C(E3) 4+ C(F4) + C(E5)) - PL,

where the former calculates the average power of the stack write operation
and the latter calculates the average power in those cases when the stack
is full and data is written onto the data cache and to the local memory.
The average power dissipation is naturally larger when writing onto two
memories (CP(E3, E5)), which can be seen from the above equations. That
is, the area complexity of the computation path CP(E3, E5) is larger than
the area complexity of the action E3, which, in turn, causes larger static
power component for the average power of the computation path. The
dynamic power estimate is determined by the relation between the area
complexity and the delay. Considering the dynamic power estimates defined
above, one can see that the computation path CP(E3, E5) has larger delay
and area complexity than the action F3. Larger area complexity indicates
larger load capacitance, and the increase in delay shows, in this context,
that the computation path performs more memory accesses, and therefore
on is able to reason that the dynamic power component is larger.

8.3.2 Arithmetic logic unit

The area complexity evaluation for addition and multiplication were ana-
lyzed in Sect. 4.6. A similar approach is applied to the arithmetic and logic
operations of ALU.

The action A4 is defined by:

A4[dA4]: sel = imult — 7 :=1".(r' =iy * i); sel := send

which is a guarded action. The area complexity calculation rule for guarded
action is of the form (re-written for the ease of reference):

163



(4.5)

C(gd — A) C(gd)+ C(A)

Y C(gd) + C(wA) + C(Q)

The read set A4 is 7 A4 = {sel(8),41(32),i2(32)} and the write set is wA4 =
{sel(8),r(32)}, where the number in parenthesis after each variable is the
variable width. The width of the operand variables i1 and is is defined to be
32 because the implementation in [75] use 32-bit operands. Furthermore, it
is worth noticing that Java specifies the instructions to produce 32-bit result,
so that the lowest 32-bits are returned and the rest are ignored without any
kind of overflow or exception. Therefore, the width of the result variable
r is 32. The width of the variable sel is 8 because the width of the Java
instructions is one byte. Furthermore, the read set rA4 is divided into
two sets, namely rgd and r(@), where the former contains those variables
that appear in the guard and the latter those variables that appear in the
predicate. The sets are defined by: rgd = {sel(8)} and rQ = {i1(32),12(32)}.
Adopting the above presented information, the area complexities are:

C(wA4) '="32 + 4 = 36

where ¢ is the complexity factor and it is defined to be two (¢ = 2) for
multiplication as discussed in Sect. 4.6 on page 84.

ALU includes three 32-bit logic operations: AND, OR, and XOR. To
evaluate the area complexity of these operations, the complexity factor ¢ is
adjusted according to the information gained from BDDs. For AND and
OR operations, the complexity factor is set to zero ¢ = 0. The result of this
modification gives an area complexity value, which is the number of nodes
in the BDD. Observe that this approach is valid only for the predicate
evaluation, and therefore the assignment and comparison (guard) part have
to be estimated using the guidelines given in Chapter 4 (¢ = 1). For the
XOR operation the complexity factor is set to one ¢ = 1. This gives a
reasonable accuracy (76 %) compared to BDDs, as shown in Table 4.1 on
page 63. The area complexities of the system ALU are summarized in
Table 8.7.

The area complexity of the whole system is:
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CALD) "Eo(an) + ..+ CA9) (dun) (8.1)

(456) (A1) + ...+ C(A9) + C(da)

where the area complexity of the system ALU sums the area complexities of
the system’s actions together. The read and write sets of each timed action in
the system ALU and their area complexities are listed in Table 8.7. Observe
that the area complexity of the public procedure defined in the system is
included into the area complexity of the action A9 whereas the imported
procedure is excluded. Thus, the area complexity of the imported procedure
is included into that action systems area, which defines it.
The average power consumption of ALU is calculated by:
(4.24)
Pravg(ALU) " =" Pr gyn(ALU) + Py (ALU)
(4.23) E(Ar)
AT

(4.22)

+ C(ALU) ’ Psltat

where the static power consumption adopts the area complexity of ALU
defined by (8.1). The dynamic power consumption is estimated during the
observation period T, which is a time period defined by a designer. The
observation period should include several execution cycles of the system in
order to get good average power estimate.

8.3.3 Communication structures

The communication between systems and subsystems is carried out using the
procedure based communication, described in Sect. 2.6.1 on page 24. The
delay calculations of the procedure based communication is introduced in
Sect. 3.5.4 on page 47. Consider the communication procedure degec, which
transfers data from Exec to ALU. The procedure is of the form (defined
below for ease of reference):

degec[dexec]: (in x1,22 : Data) :

bufi,bufs := x1, x0;
where the procedure de... receives two data operands as parameters and
stores the values of the operands into buffers (bufi, bufs). These buffers are

then read by ALU.
The procedure delay is non-deterministic and defined by:

dexec: [dexecpn, dexecyqy)
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where dexecy,, is the best case communication delay whereas dexecyq, is
the worst case communication delay. In case of synchronous computation
the clock frequency of the bus would be determined according to the worst
case behavior whereas in asynchronous communication the communication
delay may vary between minimum and maximum, hence the term average
case performance [80].

In the co-processor system the action E1 in Exec awaits the communica-
tion procedure, and action Al in ALU calls it. To extract the communica-
tion model, consider the definition of direct procedure based communication,
defined in Sect. 2.6.1 on page 24:

Commy = F1A1 = FE1[Alldegec|z1, z2/buf1,bufs]/ await degec]/ call degec)

where the atomic action EF1A1 transfers data from Ezec (the sender E1) to
ALU (the receiver Al).

The communication delay of the communication channel is denoted by
A(Comm) and defined by (3.11) on page 46 and it is of the form:

A(Comm) = A(F1A1) = A(E1(degec)) + A(AL)
= A(El) + A(dexec) + A(Al)
=dFE1 + degee + dAL

and the area complexity of the communication channel is denoted by C(Commy ),
and it is defined by (7.6) on page 132:

C(Comm) = C(E1A1) = C(E1) 4 C(degec) + C(A1)

W C(B1) + C(desee) + C(AL)

where C(E1) and C(A1l) are the area complexities of the sender action E'1
and the receiver action Al, respectively. Furthermore, the operation of the
communication channel is constrained by the following constraints:

(1) deadline : D(Comm,d)
(2) area : C(Comm,c)
(3) power : P(Comm,p)

where d is a deadline constraint, which defines the maximum allowed du-
ration of a single communication cycle (one data transfer from sender to
receiver), and it requires that A(Comm) < d. The area constraint c is de-
fined by C(Comm) < ¢, where c is the maximum allowed area complexity of
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the communication channel presented above. The third condition requires
that the average power dissipation of the communication channel does not
exceed the maximum allowed value p during the observation period 7. The
observation period is fixed, and it contains a single communication cycle

from Exec to ALU. That is, A(T) = A(Comm).

Decomposing the communication channel. Subsystem Exec transfers
data to ALU using the communication procedure deze.. The procedure is
awaited by the action F1 in Exec, and called by the action Al in ALU. The
actions are of the form:

El[[dEl]] : T€Qexec /N TTE€Qqly — POP(OPL OPZ);
reqaly = T; await dexec(opL 0p2);
Al1[dA1]: sel = idle A reqqp, — call degec;

1,42 := bufl,buf2; sel .= instr
and the communication procedure dege. is of the form:
dezec[dexec](in x1,z2: Data): buf,bufs := x1, x2;

The action E1 consist of two procedure calls, the private procedure call
(Pop()) and the public procedure call (degec()). To enhance the commu-
nication in terms of area and power dissipation, a single procedure call is
adopted. That is, the stack access is included into the communication pro-
cedure. The single procedure call approach reduces area because only one
communication procedure is defined instead of two. Furthermore, two pro-
cedure calls versus one procedure call takes more time. Since both time and
area are decreases, one is able to assume that the power consumption of the
communication channel is decreased as well. The new public procedure is
of the form:

d. ocldexed](inout 1, z9, x3,24: Data):

x1, X0 1= T, wh. (2], ¥y € stack); w3, vy = 1, T;
and the new data transfer actions F1’ and A1’ are of the form:
El/[[dEl/]] : Teqepec N TTEQaly —

reqan = T; await d.,..(op1,0p2, bufl, buf2);

AU[dA1]: sel = idle A requ, —
call d.,..(op1,op2, bufl,buf2);iy,is := bufl,buf2, sel := instr;
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U

xec 15 bidirectional, that is, it is able

where the communication procedure d
to transfer data in both directions.

Due to the decomposition, the delay and the area complexity informa-
tion are also decomposed between the new elements. Naturally, at this
abstraction level this is not an exact operation but rather an estimate of the
duration and size of different operations. Based on an earlier information on
delays and area complexities, more accurate delay and area allocation could
be performed even at high abstraction levels. Furthermore, delay and area
information provided by the circuit manufacturer can be exploited to some
components of the system.

To ensure that overall timing behavior is not violated, it is required that
the sum of the delays of the new actions is less than or equal to the abstract
delay dComm:

Riclay = (dEll + dexecd + dAl/) < dComm

where dComm describe the delay of one communication cycle. This delay
describes the maximum duration of a data transfer between the systems
Exec and ALU. Two new deadlines are formed:

D(E1,<d/e:cec>7 dl)
D(Al', d2)

where the delay of the communication procedure is included into the timed
action E1’. The above defined deadlines must satisfy the following abstrac-
tion relation:

R; = di +da < A(Comm)

where it is required that the sum of the deadlines is less than or equal to
the communication delay A(Comm). The communication cycle from Exec
to ALU is described using a computation path:

CP(EY, A1) = EV(d!

exec

), A1/ (8.2)

Therefore, to prove that the abstraction relation R4 holds, one needs to
show that:
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A(CP(EY (dhgee), AV)) < (dr + )

< {(8.2) and the abstraction relation R4}
A(E1{d.,..), A1) < A(Comm)

< {the delay calculation rule (3.11)}
(ACET{dlye)) + A(AT) < A(Comm)

< {the delay calculation rule (3.13)}
(A(EY) + A(dexzed) + A(A1") < A(Comm))
& {the abstraction relation Rgejqy}

(dEl' + dexec + dAl') < dComm

To ensure that the overall area complexity is not exceeded, it is required
that the area complexity C(Comm) is reallocated between the new actions:

Rarea = C(E1) + C(d.,..) + C(A1") < C(Comm)

where it is required that the area complexity of the two new actions is
less than or equal to the abstract area complexity C'(Comm). New area
constraints are granted for the two new actions:

G(E1,<d:aacec>’ Cl)
G(All, 02)

The above defined constraint values ¢; and cp must satisfy the following
abstraction relation:

R. = c1 + ca < C(Comm)

where it is required that the sum of the constraint values is less than or
equal with the area complexity of the communication C(Comm). To prove
the above condition, the computation path defined by (8.2) is adopted.
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C(CP(ET, A1) <c1 +co

< {(8.2) and the abstraction relationR,}
C(E1{(d.,..), Al") < C(Comm)

< {the area complexity rule (4.8)}
(CUBV(dLyee)) + C(AV)) < C(Comm)

& {the area complexity rule (4.6)}
(CIBY) + Cdly,.) + C(AT)) < C(Comm)
< {the abstraction relation Rgyeq}

C(EY) 4+ C(d,4.) + C(A1") < C(Comm)

The power constraint is satisfied if the area complexity constraint is val-
idated, and, furthermore, the timing requirements hold. As shown above,
the area constraint holds for the new communication channel. The com-
munication delay was divided between the new actions F1’ and Al’, and
therefore if the deadline constraints hold, the fixed observation period set
for the power constraint hold, because the observation period delay was
defined to be A(T) = A(Comm). Thus, the power constraint set for the
communication channel is satisfied.

8.3.4 System level power modeling

Consider the closed timed action system S, defined in Sect. 8.2.1, which
encapsulates the operation of the HostSystem and of the Co — proc system.
Its area complexity is the sum of the area complexities of its subsystems:

(4.19)

c(S) C(Co — Proc) + C(HostSystem) (8.3)

where C'(Co — Proc) is the area complexity of the co-processor and
C(HostSystem) is the area complexity of the host system. The area com-
plexity of the co-processor system is further specified:

C(Co — Proc) = C(Mem) + C(Comm) + C(Exec) + C(ALU)

where the total area complexity is the sum of the area complexities of sub-
systems under Co — Proc. The area complexities are calculated for each
subsystem, separately.

Area complexity of the co-processor system. The area complexities
of the co-processor system are listed in Table 8.2, where the first column de-
scribes the name of the action or procedure, the second and third columns
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Table 8.2: Area Complexities of the system Co — proc.

Action | Read Set Write set Area Complexity

IRQ - {IRQ(32)} | C(IRQ) =32

J1 {regmem(1), {sysstat(3)} | C(J1)=3+[5]-22=11
Sysstat(g)}

J?2 {reqmem(1), {sysstat(3), | C(J2) =4+ 5] 22 =12
sysstat(?))} Tqu)mm(l)}

J3 {sysstat(3), {sysstat(3), | C(J3)=4+[5] 22 =12
TBQComm(]-)} TGQExec(]-)}

J4 {sysstat(3), {sysstat(3)} | C(J4) =3+ [%] 222 =11
TeQe:vec(l)}

5| fhatt(D) Tsysua(®), | O3 =4+ [1]-27=6

halt(1)}
J6 {sysstat(3)} {sysstat(3)} | C(J6)=3+[3]-21 =9
total 93

lists the read and the write sets of the action or procedure, respectively, and
the fourth column illustrates the area complexity calculation. If a proce-
dure is defined and exported by the system, its area complexity is included
into the system’s area complexity. For instance, the area complexity of
Co — Proc includes the procedure IR but not invoke, because it is de-
fined by Hostsystem, and its area complexity should be included into the
Hostsystem’s area complexity.

Memory block. The size of the memory blocks in the system is evalu-
ated adopting the information presented in [70, 75, 82]. At first, the phys-
ical sizes of the memory components are discussed. The Java instruction
set consists of 201 instructions, and the size of a single instruction is one
byte. Allthough the instruction set adopted for the experiment is small,
the instruction width is also set to one byte. This allows more accurate
comparison with REALJava in terms of area and power. Furthermore,
this approach alleviates future expansions to the model, for instance, if one
wants to add a software support, the width of the instructions are correct.
The instruction cache is (defined by subsystem Comm):

icache: Iyem

where I, is of type set of Address, where the address is of type
record(Address, Instruction). In [82], the size of the instruction cache was
32 memory locations.
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Table 8.3: Area Complexities of Mem.

Action | Read Set Write set Area Complexity

M1 {reqmem(1)} {regmen(1)}] C(M1)=1+T[1]2! =3

M2 {reqeomm(1)} | {reginstr(1)}] C(M2) =1+ [1]2! =3

M3 {reqeomm (1), - C(M3) = [H 2l =9
re%’nstr(l)}

M4 {reqflush(l)} {7‘€Qflugh(1) C(M4) =1+ [%1 21 =3

flush {z(32)} C(flush) = 32

get Addr {z(32)} C(getAddr) = 32

getInstr| {z(5),(8)} | C(getInstr) =13

total 88

In this case, the described co-processor system is much smaller, and
therefore the required size for instruction cache can be smaller. That is, the
instruction cache consists of 16 memory locations (C'(location) = 16). The
width of each instruction is, as discussed above, one byte (C(instruction) =
8), and the width of the address part is set to 5 (C(Address) = 5), which is
required to give unique address to all memory locations in instruction cache.
Thus, the area complexity of the icache is of the form:

C(icache) (L (C(instructions) + C(address)) - C(location)

= (8+5)-16 =208

The rest of the memory sizes are relative to the sizes described in [75],
however, scaled down due to the size difference between the presented formal
model and REALJava. The size of stack is estimated in way that it can hold
(atleast) operands and results of two consecutive computation cycles. The
data cache is twice the size of the stack and the local memory data area is
three time as big as the data cache. The method area of the local memory
unit is assumed to be same size as the data area. These area complexities
are listed in Table 8.4.

The area complexities described in Table 8.4 defines the physical size
for each memory block in the co-processor system. For example, a proce-
dure call to a memory unit inside the system is the area complexity of the
communication between the memory and the subsystem. That is, the area
complexity of those procedures that are requesting memory accesses can be
used to evaluate average power of memory accesses inside the co-processor
system. Thus, the area complexities of Mem are listed in Table 8.3.

Table 8.5 illustrates the area complexity calculation of the communi-
cation block. Comm requests memory accesses several times, but because
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Table 8.4: Area Complexities of the Memory Units.

Memory Size [Byte|] | Width
stack 32 256
dcache 64 512
localpem data area 192 1536
local e method area | 192 1536

Table 8.5: Area Complexities of Comm.

Action | Read Set Write set Area Complexity
C1 {reqcomm (1)} | - C(C1) =[1]-2F=
2

C2 {reqinser (1), {instr(8), reqecomm (1) C(C2) =10+ [g'| .
IAddr(5)} arequstr(l)} 22 =22

03 {TequtT(l)v {TeQComm(l)} C(Cg) =1 + ’—%1 .
Laaar(5)} 22 =13

total 37

Table 8.6: Area Complexities of Exec.

Action | Read Set Write set Area Complexity
E1 {regezec(1), {reqar(1) C(E1) =1+[3]-
reqa (1)} 22 =5
E2 {requ.(1)} {wryesur(1)} Cl(E2) =1+ (%1 .
2 =3
E3 {Sz(s)awrresult(l)} {82(3)} C;(E3) =3+ ’7%1 '
2 =11
E4 {s2(3)} {52(3), reqpusn(1), | C(E4) = 36+[2]-
stack(32)} 21 =42
E5 {wrr‘esult(l)asz(g)} wrresult(l)a C(E5) =3+ ’V%—I :
reqain(1), reqesec(1)} 22 = 11
Push | - {z(32)} C(Push) = 32
Pop - {y1(32),2(32)} C(Pop) = 64
degec - {buf1(32),buf2(32)} C(degec) = 64
total 232

the public procedures are defined by Mem, their area complexities are in-
cluded into Mem. Finally, area complexities of the execution unit and its
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subsystem ALU are shown in Table 8.6 and Table 8.7.

Table 8.7: Area Complexities ALU.

Action | Write Set Read set Area Complexity
Al {i153)2}?,i2(32), {sel(8)} 74 +[3] 2" =88
sel(8

A2 {r(32), sel(8)} | {sel(8),11(32),i2(32)} C([/g% :(420)+ (8] 21
+[87] . (22) = 184

A3 {r(32),sel(8)} | {sel(8),i1(32),i2(32)} 01(142?})64}_ 402+ El
21+ [817.(22) = 184

A4 {r(32),sel(8)} | {sel(8),i1(32),i2(32)} C’l(AZL[);]: 402-; EIE
214 [817.(22)2 = 568

Ab {r(32),sel(8)} | {sel(8),i1(32),i2(32)} Cl(A5)624T 402—2|- EIE
21+ [817.(22)2 = 568

A6 {r(32), sel(8)} | {sel(8),41(32),12(32)} %&14116)20: 40+ [5T2TF
617.20 = 88

AT {r(32), sel(8)} | {sel(8),i1(32),i2(32)} ?6%4317) = 40+[8]-21+
647 .20 — 88

A8 {r(32),sel(8)} | {sel(8),i1(32),i2(32)} C%/éi%) =40 + [§] 2!
+[87-(2%) =184

A9 {r(32)sel(8)} | {sel(8)} C(A29) =40+[3] 2" =
46

total 1998

The average power of Co — Proc is calculated over observation period T,

and it is of the form:

Pr 4vg(Co — Proc) =Pr qpg(Mem) + Pr gpq(Comm)

+ Pr avg(Exec) + Prgpg(ALU)

PT,dyn(Mem) + PT,dyn(Comm)
+ Pr.gyn(Exec) + Prgyn(ALU)
+ Pstar(Mem) + Psiar(Comm)
+ Pstat(Exec) + Psat(ALU) + Psiat(Blocks)

where the average power of subsystems are added together. Notice that
the static power Py (blocks) denotes the power dissipation caused by the

physical size of the memories.

This is due to the fact that the adopted

model does not have any specific area and power modeling techniques to
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model the power consumption of memories. Therefore, the physical size
of the memories is modeled using the static power dissipation Psq:(Block)
Furthermore, the power dissipation caused by the memory accesses are the
power consumption of the public procedures that access those memories. As
shown in Tables 8.2-8.7, the memory blocks cause the biggest power dissi-
pation in the co-processor system. This is a similar result with the results
presented in [75, 50|, where in both cases the most power was consumed
in the memory units. In the presented case the memory units were small,
and therefore, by increasing their sizes it is fair to assume that the mem-
ory is one of the biggest design challenges in terms of power consumption.
Excluding the memory units from the power evaluation, the largest power
dissipation turned out to be with the Arithmetic Logic Unit (ALU). This
is also consistent with the results described in [75].

8.4 Multicore Processor Approach

A multicore processor combines two or more processor cores, for instance,
several CPU cores, in a single Integrated Circuit (IC). Observe that multiple
processors in the same chip do not have to be the identical [34]. For exam-
ple, a very powerful means to accelerate multimedia processing is to adapt
programmable processors to specific, frequently occurring, high-complexity
operations. The general trend in processor design have been for multicore
to many cores, that is, from dual-, quad, octo- core chips towards chips
that integrate tens or even hundreds of cores. For instance, dual and quad
core processors can be found on desktop computers whereas Tilera TILE64
™[9] is an example of many core processor architecture implementing 64
processor cores on a single chip.

The amount of gained performance depends on the problem being solved
and on the algorithms being used as well as on their implementation in SW.
Hence, SW has to be designed to take the advantage of the available paral-
lelism. For instance, to execute Java programs in a multicore environment,
the application must be programmed using multiple threads [59]. Otherwise
the speed up in program execution is insignificant. Naturally, the proces-
sor will multitask better because it can execute two separate programs at
once. A dual core version of REALJava resulted in 52 % speed improve-
ment between a single core and the dual core version [75]. At the moment,
REALJava is operating with three co-processor cores.

Communication between two processor cores in the same chip is naturally
more effective than, for instance, communication between two single chip
cores. Within a dual core processor systems, the communication between
processors is on-chip communication, and therefore the signal quality and
transmission speed is improved. Increasing the number of processor cores
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poses pressure for communication structures. Especially with many proces-
sor systems an efficient communication is required. For instance, in Tilera 64
the on-chip communication is implemented using a Network-on-Chip (NoC)
architecture, where the buses are replaced with an on-chip network, which is
similar to Internet [23]. However, the presented multicore processor model
contains four cores, and therefore, the traditional SoC approach is selected.

8.5 Multicore Framework

In this section, a formal framework for a multi-co-processor system is intro-
duced. At first, the coding requirements for SW in a multicore co-processor
framework are discussed. Then the multiple co-processor model is con-
structed using the co-processor model presented earlier in this chapter.

8.5.1 Threads

Nearly all operating systems support the concept of processes - indepen-
dently running programs that are separated from each other to some degree.
Threading is a facility allowing multiple activities to exist within single pro-
cess, and in most cases thread(s) are located inside the process. Further-
more, multiple threads can exist (typically) within same process sharing
resources such as memory while different processes do not share this data.

In Java, threads are treated like processes, i.e.,as independent, concur-
rent paths of execution through a program. Each thread has its own stack,
its own program counter, and its own local variables. However, threads
within a process are less insulated from each other than separate processes
are. They share memory, file handles, and other per-processing states.
Therefore, multiple threads within the process share the same memory ad-
dress base, which means that they have access to the same objects and
variables. While this makes it easy for threads to share information with
each other, a designer must make sure that they do not interfere with other
threads in the same process.

8.5.2 Forming the multiple co-processor model

In Sect. 8.2, the simplified co-processor model was presented. In this sec-
tion, the purpose is to form an abstract multicore structure in which the
co-processor model is adopted. The single core co-processor model is asyn-
chronous, and therefore the presented multi-core model is asynchronous, too.
Again the modeling concentrates on the HW parts of the system, whereas
the SW parts are left for future studies.

The abstract network model combines a master (Hostsystem) and co-
processor units, which are controlled by the master. The multicore frame-
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Class A
{ Main Thread
Begin s
public void main (...)

{
Body e

}
End }

(a) Single thread (b) Multiple threads

Figure 8.7: Example threading schemes

work is defined by the closed timed action system M, which defines an en-
capsulating system around its subsystems operating in parallel. The closed
system model is adopted to avoid unnecessary complicate implementation
details. The system M defined by:
sys M ()
Il
type
Method: Java Method;
subsystem
Co— Proc;: (Co— Proc(imp invoke(in d : method));
exp IRQ( out z : Data)
in halt : Boolean);
HostSystem: (H(exp invoke(out d : Method));
imp TRQ( out x : Data);
out halt: Boolean);
execution
[l 1 <i<n:Co— Prog) || HostSystem
Il

where 7 is the core number. In the multicore co-processor model, Hostsystem
acts as a central arbiter, controlling the operation of four co-processor cores,
and thus, the execution clause of the system M is of the form:

execution

Co — Procy || Co— Procs || Co— Procs || Co— Procy || HostSystem

where four identical co-processor cores operates with the host system. A
block diagram of the four core system is shown in Fig. 8.8.
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Co — Procl Co — Proc2

Host

System

Co — Procd Co — Proc3

Figure 8.8: Illustration of the multicore co-processor scene

8.6 On Analyzing Power Consumption

The average power estimation of the timed action system M can be divided
into three parts: communication, hardware, and software. The first two
are highlighted in this section. Furthermore, the average power dissipation
of the co-processor was defined earlier in this chapter, and therefore the
analysis presented in this section concentrates on the communication be-
tween the host system and the co-processors. The co-processor system has
two communication procedures invoke, I R(), and a global Boolean variable
halt:

exp invoke[dInvoke]: (out d : Method): d € localmem
imp IRQ[dIRQ]: (out x : Data)

in halt: Boolean

where the procedure Invoke transfers the Java method d to the co-processor
local memory area (d € localymem). The Boolean variable halt is used by
the host system to disable the operation of the co-processor systems. The
single Boolean variable is included into the IR(Q procedure because it is
not effective to form own communication channel for that. Therefore, the
communication procedure I RQ) in a multicore system is of the form:

IRQ[AIRQ]: (in halt : Boolean;out x : Data)

where the Halt operation is generated by the host system, and the ITRQ
is generated by the co-processor system. This is natural choice because
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the host system might select to halt the co-processor system after an IRQ
request.

The procedure based communication model in Sect. 2.6.1 on page 24
is adopted for the communication channels. The communication procedure
models a pull type communication channel in which the host system trans-
fers the Java method to the co-processor unit. The communication delays
are defined using network’s communication delay (7.7) on page 135.

Ajnvoke = A(Snd) + A(invoke) + A(Rec)
Arrg = A(Snd) + A(IRQ) + A(Rec)

where A(Snd) and A(Rec) are the delays of the sender and the receiver
components whereas the procedure delay defines the duration of the actual
data transfer. In the previous sections, the communication between subsys-
tems inside the co-processor were modeled using this procedure based direct
communication model. In SoC, the length of the wire must be taken into
account when modeling the performance of the communication channel be-
cause the length of the communication links may vary significantly, which,
in turn, affects the area, power, and timing measures. Section 7.3 discussed
area and power modeling of different communication networks, where an
relative distance was used as a measure of the communication link. The
communication delay in the star network is defined by (one channel):

~ 1
ALink:l = Ainvoke + lwire ' Awire

ALink = AIRQ + lwire . Allui'l’e

where ;e is the length of the wire, A%uire is the unit wire delay, and A, uoke
and Ajrg the communication delays defined above.
The area complexity of communication channels in a star network is

defined by (according to the guidelines presented in Sect. 7.3) :

C(Linkl) = C(Snd) 4+ C(invoke) + C(Rec) + C(wire) (8.4)
C(Link2) = C(Snd) + C(IRQ) + C(Rec) + C(wire) (8.5)

where C(Snd), C(Rec), and C(invoke), C(IRQ) are the area complexities
of the sender action, receiver action, and the communication procedures,
respectively; C(wire) is the area complexity of the wire defined by (7.13)
on page 138.

The power consumption of communication channels in a multicore sys-
tem is modeled by adopting the area complexities (8.4) and (8.5), and is of
the form:
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Pravy(Link1l) “2Y Pp. g (Link1) + Puar(Linkl)

ez BrLinkl) | pu - o(Link)
ALink1
(an) B (C(S) + C(Invoke) + C(R)) + C(wire) - B}

wire

ApLink1

Pravg(Link2) "2 Pr gy (Link2) + Puay(Link2)

(4.22)(4.23) Ep(Link2) + P O(Link?)
ALink2
B (0(5) + C(IRQ) + C(R)) + C(wire) - B}

wire

(4.21)

ALink2
+ PL ., - C(Link2)

where the delay of single communication cycle is used as an observation pe-
riod. Therefore, the observation periods are of the form: A(T1) = Apink
and A(Ty) = Apinke for communication channels Linkl and Link2, respec-
tively. Furthermore, the unit wire energy is defined by (7.16).

To analyze the area complexity of the action system M, where four co-
processor cores are connected to Hostsystem, shown in Fig. 8.8, the area
complexity of the co-processor system with a single core (8.3) is adopted
and extended:

C(M) = f:(o(co — Proc); + C(Link1); + C(Link2);) (8.6)
=1
+ C(Hostsystem)

where ¢ is the number of the co-processors in the system. Observe that the
area complexity of the co-processor blocks can be calculated by multiplying
the area complexity of a single co-processor by i. However, the communica-
tion links have to be evaluated separately because the size of the link may
vary, which, in turn, affects on the area complexity of the communication
channel, and thus to the power dissipation of the entire system.
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The average power of the multicore system is defined over observation
period T', which is defined by a designer. The average power is:

“2Y B gy (M) + Pyar(M) (8.7)

(4.22)(4.23) Ep(M) 1
- A(T) +Pstat C(M) (88)

Pr.avg(M)

where the energy consumption is calculated for those actions that are en-
abled during the observation period T'. The energy is calculated in two parts:
First it is calculated for the co-processor system and the host system using
(4.21), and second it is calculated for wires using (7.16). This approach is
similar with the energy consumption of a general network model (7.15) on
page 139

8.7 Chapter Summary

This chapter experimented the proposed power aware formal design frame-
work. At first the selected case study, a Java co-processor was described
after which the discussion proceeded to introduce the system under design.
The hardware parts of the co-processor were the center of the design pro-
cess. The initial system module consists of the host system and co-processor
system, which communicated using communication procedures. The initial
co-processor system was divided into subsystems, which were specified fur-
ther. The target of the development process was to model the hardware
parts in an asynchronous manner, after which those parts were modeled
and analyzed to estimate the power consumption of the co-processor sys-
tem. The hardware parts of the co-processor were implemented in a way
that it was able to execute small subset of instructions, which all related to
arithmetic and logic operations.

The selected case study is a good candidate especially because: it consists
of different types of hardware structures, which all posed requirements to the
power model. The power analysis was divided into three categories: mem-
ory components, logic, and communication. In the communication section,
a communication channel in the co-processor system was decomposed into
smaller parts. Each of these transformation steps adhered to the refinement
guidelines discussed earlier. After these three categories were discussed, the
overall power consumption of the co-processor system was calculated and
analyzed. The results were similar to the existing Java co-processor imple-
mentations: The memory blocks are the most power hungry devices, whereas
the communication structures contribute only small amount of power. If the
memory blocks are excluded then the largest contributor to overall power
consumption is the arithmetic logic unit.
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In the end of the chapter, a multicore approach is introduced. The pur-
pose of this model is to sketch the multicore co-processor approach and
to show that proposed power framework can support the multiple core de-
sign approach regarding the hardware parts. Furthermore, the experiment
showed that both the single core and the multicore models are lacking a
model for the software parts.
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Chapter 9

Conclusion

This thesis introduced a formal, power aware design framework for the mod-
eling of SoC designs. The framework is built upon the Timed Action Systems
formalism, which is an extension of the classical Action Systems framework.
The thesis commenced by introducing the basic building blocks and their
semantics in terms of weakest preconditions. The introduction proceeded
to more complex structures such as systems, parallel operation of systems,
and requisite for transferring information between systems. The introduced
procedure based communication model ensures data integrity during com-
munication by encapsulating the communication activities within one atomic
action, which means that there is no possibility for an external counterpart
to intervene the communication procedure. The importance of the proce-
dure based communication at high abstraction level comes from the fact
that it hides the complicated communication details, and thus a designer is
able to concentrate on modeling the functionality of the system in question.
Furthermore, one of the advantages of the chosen formalism is its associated
refinement calculus framework within which more abstract system models
are transformed in a stepwise manner towards a more concrete system mod-
els.

After describing the basic properties of the Action Systems, the introduc-
tion proceeded to its time-aware extension, Timed Action System. First, the
time domain and its semantics were introduced. Second, the basic building
block, a timed action is described after which the discussion proceeded to
system level modeling and parallel operation of systems. Third, a concept of
computation path is introduced, which can be used to describe different com-
putational paths located, for instance, inside a system. Fourth, the delays,
which were used to model the execution time of timed actions are described.
Finally, the timed version of the procedure based communication, which is
a direct extension from the one described above, is introduced. That is, the
timed procedure based composition only adds the delays of the participating
actions and procedures.
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Based on the above described formal basis, the power modeling frame-
work is introduced in Timed Action System context. The chapter com-
menced by discussing the power dissipation of CMOS devices, which is di-
vided into two components: the static and dynamic component. Studying
the related work in a field of high level power modeling, one is able to notice
that the power models at RTL often includes two components, that is, they
rely on area and timing estimates. The difference with the related work is
that the presented model is targeted to higher abstraction levels than these
RTL techniques, and therefore, a new estimation method for area is required.
The model inherits properties from the size modeling of Boolean functions.
However, it cannot directly adopt the model developed for Boolean func-
tions because of the high abstraction level. The fundamental requirement
for the presented model is that actions are defined using non-deterministic
assignment. This restriction was selected to make the action definitions as
consistent as possible, and therefore, to simplify the area complexity mod-
eling. After the area complexity of action was defined, the rules for action
compositions are derived after which the area complexity analysis is carried
out at the system level. Naturally, the timing information is gained from
the underlying formalism.

Adopting the area complexity estimate and the timing information one
is able to construct a dynamic power consumption model of the timed ac-
tion. The dynamic power consumption requires both the energy and the
timing information of the action. The energy consumption of the timed ac-
tion was defined using the area complexity, which estimates the size of the
load capacitance, and the delay (execution time) of the timed action. The
static power consumption of the timed action was estimated using the area
complexity measure, which in this context, approximates the gate count of
the timed action, and therefore, the amount of leakage that the timed action
produces. Adopting both the dynamic and static power models, the total
power of the timed action was defined by adding these two components to-
gether. After the area complexity and the power estimation of the timed
action are introduced, the discussion proceeds towards the system level area
complexity and power models. The system level area complexity is calcu-
lated by adding the area complexity of all actions in the system together.
However, at system level the dynamic power consumption is defined for
those actions that are enabled during the selected observation period. That
is, the system level area complexity cannot be used unless all the actions
in the system are executed during the observation period. Otherwise the
physical capacitance estimate is the sum of the area complexities of those
actions that are enabled during the observation period. However, for static
power estimate, the area complexity of the system is adopted because the
static power consumption does not depend on the activity of the system like
the dynamic power consumption does. The average power dissipation of the
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timed action system was estimated by adding the static and dynamic power
consumptions together. The parallel behavior of actions was also analyzed
for average power consumption after which the instantaneous power mod-
eling framework is presented. This framework is suitable to model possible
power peaks in the system. The framework divides the observation period
into smaller units, denoted by time segments in this thesis, and thus the
average power is analyzed separately for each time segment allowing more
detailed power information of the system.

The behavior of timed actions can be restricted using constraints. This
is an important issue, because the specification requirements of the sys-
tem are needed to guide its development. The constraints are defined as
Boolean expressions. The refinement calculus of Timed Action Systems is
an extension from the refinement calculus of Actions Systems, and therefore
it is easily adoptable if one is familiar with Action Systems. This robust
development environment is adopted and extended for the power aware de-
velopment framework. That is, functional and timing behavior of timed
action are developed under the existing time aware refinement framework,
which is then extended to cover the power dissipation as well.

Before experimenting the proposed power aware design framework and
its development methods, two system models are introduced: synchronous
and asynchronous. The functional modeling of these systems is described,
after which the discussion concentrates on conditions and requirements that
these system models pose to the power modeling framework. In synchronous
systems, the clock signal is a major contributor to the overall power con-
sumption of a digital system, and therefore, the power model for the clock
distribution network is presented. Observe that the general power model,
depicted in Chapter 4, does not take the power consumption of clock into
account, and therefore, it is introduced as a separate model. Furthermore,
methods to reduce power consumption such as clock and power gating were
introduced, and defined in Timed Action Systems context. For asynchronous
systems, the presented power modeling framework was suitable. In addition
to these two system models, a power modeling framework for communication
networks was presented, which concentrates on long on-chip communication
lines and their power modeling.

To demonstrate the properties of the proposed power modeling frame-
work, a simplified model of a co-processor system was defined. The exper-
iment provided various challenging tasks to the proposed power modeling
framework. The power analysis was carried out for arithmetic operations,
for memory accesses and sizes, and for communication structures. A com-
munication channel was analyzed and developed in a stepwise manner from
abstract model towards a more concrete one. During the development step
the time and power constraints were evaluated in order to preserve the phys-
ical correctness of the system. The selected case study showed many draw-
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backs that have to be taken into account before the model can be used to
larger systems. First, all though the development of systems was carried out
only for small parts of the system, it required large amount of manual work.
Applying the refinement framework for the entire system would have been
extremely time consuming as well as tedious process. Therefore, tool sup-
port for both the modeling and performance evaluating processes is needed.
Second, the selected case study highlighted the need to extend the power
modeling framework to handle software components as well. Both of these
issues are left for future work, discussed in the following Section in more
detail.

9.1 Future Work

The formal modeling framework introduced in this thesis has no tool support
at the moment. A tool would help during the development steps to visualize
a system, to ease the proof obligations, to simulate the system, and to
transform an implementable system specification to a hardware description
language. Furthermore, the case study described in Chapter 8 showed that
the area complexity calculation and the average power modeling are very
time consuming for larger designs. Thus, a tool that could automate this
manual work away is a challenge of outmost importance for the future work.

Another improving step for the introduced power aware modeling frame-
work is to include a method to model and evaluate both software and hard-
ware. Action Systems have support for both software and hardware mod-
eling. The challenge is to decide how to model software components in the
power aware design framework, and, furthermore, how to identify intrin-
sic properties of software and hardware components? Moreover, at a high
abstraction level, a designer may want to change the implementation from
HW to SW or vice versa. Thus, one needs to now what kind of component
properties need to be taken care of when turning a module, for example,
from HW to SW.

Based on the software side, reconfigurability is a new area in the intro-
duced modeling framework, and it is becoming more and more important
in modern embedded systems. In general, reconfigurability means that one
is able to change the objectives of the hardware modules. The decision to
reconfigure a component model can be done based on the demands of ap-
plications, a malfunction in a component or the thermal characteristics of
system component. The reconfigurability feature poses several issues to the
formal framework such as how well is reconfigurability supported by the
existing models, and how to reason about temperature (hot spots), and its
effects on reconfigurability. Thus, is it possible to extend the introduced
power aware action systems to reason temperature, for instance, to use the
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instantaneous power model to detect the hot spots in the system.

At the moment, there exist several design steps that could benefit from
the tool support. This is long and tedious process, and therefore, in our
lab, to obtain a solution for the lack of tool support is to integrate our
framework into existing tools that have been developed for other languages,
and to develop new ones only when the existing tools are unsuitable or
the translation between the design languages is not reasonable. The first
steps have already been taken to investigate the Action System approach
to system design with SystemC [57, 58]. This approach, however, does not
include the power aware design framework, which requires tool development
atleast for the abstract area complexity and power models. Naturally the
optimal solution would be to integrate these two approaches at some point
of the design cycle. Moreover, the experience gained form the SystemC
approach can be used in the development of the power modeling tools in
Action Systems.
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