
��������� 	
���
�������������
�������� ����� ��������

�����������

������� ������
��� �� �!��

	���� "#$$

�������� ������ %%&�"#$$�#$

�������� �' %!����� ��� %�'�(��� &���������� ��������
%����� �' ��'��������
��������! ��� &��������� &����������

�� ���������! �')���������
)*�+ ,#-"+ 	��������

����.//(((�������0�������/����

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Queensland eSpace

https://core.ac.uk/display/15115595?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Reasoning About Teleo-Reactive Programs Under Parallel
Composition

Brijesh Dongol and Ian J. Hayes

April 27, 2011

Abstract

The teleo-reactive programming model is a high-level approach to implementing real-time controllers that
react dynamically to changes in their environment. Teleo-reactive actions can be hierarchically nested, which
facilitates abstraction from lower-level details. Furthermore, teleo-reactive programs can be composed using
renaming, hiding, and parallelism to form new programs. In this paper, we present a framework for reasoning
about safety, progress, and real-time properties of teleo-reactive programs under program composition. We use a
logic that extends the duration calculus to formalise the semantics of teleo-reactive programs and to reason about
their properties. We present rely/guarantee style specifications to allow compositional proofs and we consider an
application of our theory by verifying a real-time controller for an industrial press.

1 Introduction

With the increasing sophistication of real-time safety-critical systems, it is important to develop more sophisticated
provably correct programming methodologies. For example,development of provably correct real-time controllers
for robot motion has been identified to be a “grand challenge”of robotics [4]. Teleo-reactive programs [20] are
high-level programs that have been identified to be a good candidate for developing reactive real-time software [10,
7], presenting a fundamentally different approach to programming in comparison to state machine style methods.

Each action of a teleo-reactive program isdurative, i.e., occurs over an interval of time. Durative actions can
describe rates of change of state variables over time as opposed to explicitly changing the values of these state
variables. Teleo-reactive programs naturally support hierarchical nesting [7, 20] which allows details of the lower-
level programs to be developed at a later stage. Furthermore, several teleo-reactive programs may execute in
parallel [20], with individual programs controlling different aspects of a complex system.

In this paper, we develop techniques for reasoning about teleo-reactive programs under parallel composition. We
also consider renaming and hiding and present some special cases of parallel composition (pipelines and simple
parallelism). We use a logic called durative temporal logic[7], which is based on the duration calculus [22] and
linear temporal logic [17]. We use rely/guarantee style reasoning to allow compositional proofs. Our framework
allows reasoning about safety, progress and real-time properties of teleo-reactive programs.

1.1 Example

To highlight the differences between teleo-reactive programs and state-machine frameworks, we consider a teleo-
reactive program for controlling a lift that moves up to collect objects and delivers them to the bottom.

Lift =̂
〈

door closed→ runLift,
true→ Nil

〉
runLift =̂

〈 lift full ∧ ¬bottom→ Lower,
lift empty∧ ¬top→ Raise,

true→ Nil

〉

The main programLift executes programrunLift in any interval in which the door is closed, i.e.,door closedholds
and executesNil (which does nothing) otherwise. ProgramrunLift lowers the lift if it is full and not at the bottom,
raises the lift if it is empty and not at the top, and does nothing otherwise.

1

In an execution of a non-empty sequence of guarded programs,the guard of each program in the sequence is
continuously evaluated, and the first enabled program from the sequence is executed. For example, in program
Lift, actionrunLift is executed whiledoor closedholds andNil (which does nothing) is executed otherwise. If
door closedever becomes false whilerunLift is executing, thenrunLift stops andNil starts executing. Thus,Lift
is equivalent to〈door closed→ runLift,¬door closed→ Nil〉. Teleo-reactive programs also naturally support
hierarchical composition, e.g., therunLift program executes within the context of thedoor closedguard, i.e., each
guard inrunLift implicitly hasdoor closedas a conjunct.

Teleo-reactive programs are reactive, i.e., execute over adynamically changing environment, and hence, the value
of door closedmay be controlled (i.e., modified) by the environment ofLift. Furthermore, unlike state-machine
like models such as hybrid automata, the guarded actions of teleo-reactive programs are durative, i.e., each guarded
action continues to execute over an interval in which its guard holds. For example, the semantics of the behaviour
of Lower describes the rate behaviour of the lift whileLower is executing. This is in contrast to hybrid systems
that would use a pair of assignments, saystate: = lower andstate:= nil lower and stop lowering the lift, and/or
lift speed: = x to set the rate at which lift is lowered.

Teleo-reactive programs are often used to implement goal-directed agents [20]. That is, we structure a program
T = 〈c→ M〉a Sso that execution ofSachieves subgoals that are required forc to hold, which in turn enablesM
to achieve its goal. In therunLift program above, the overall goal of the lift is to lower objects to the bottom and
hence, theLoweraction is the first action in the sequence. TheRaiseaction appears next because the lift must go
to the the top to receive objects, i.e.,Raiseachieves the subgoal of establishinglift full.

1.2 Related work

This paper is concerned with a logic for composing teleo-reactive programs. As far as we are aware, such a
logic thus far not been developed, although there are a number of formalisms available for reasoning about hybrid
and continuous systems. Many of these techniques extend existing discrete state-based formalisms to a hybrid
model, e.g., continuous action systems [3, 18], hybrid action systems [21], TLA+ [14], timed automata [1]. Here,
variables are considered to be of typeTime → Val (whereTime =̂ R), to allow continuous behaviour to be
described. Parallel composition of teleo-reactive programs is simpler than these methods because synchronisation
of actions is not required.

Compositional verification of real-time systems is clearlydesirable, and almost any new formalism encompasses
some sort of compositional technique [8]. However, some existing techniques require an explicit clock to be im-
plemented or assume an interleaving model of concurrency [23, 11], while others assume a synchronous execution
[2]. These restrictions do not suit the teleo-reactive framework. Furia et al. present a compositional real-time
framework that does not make any assumptions on the model of concurrency, however, their model requires the
guarantee continue to hold past the interval in which the rely condition holds [8].

A logic for reasoning about a single-process teleo-reactive program has been developed [7]. In this paper, we ex-
pand the theory and present techniques for reasoning about teleo-reactive programs that consist of communicating
parallel processes. Our techniques allow properties of thesubprograms to be used, i.e., compositional reasoning,
when reasoning about the system built from them.

Our real-time logic is most influenced by the duration calculus [22] but tailored to suit the teleo-reactive program-
ming model, e.g., we consider both open and closed intervals. We do not use the duration calculus directly because
its rules focus on lower-level reasoning and on relationships between intervals.

This paper is organised as follows. In Section 2 we present our real-time logic and in Section 3 we present the
syntax and semantics teleo-reactive programs. We present our rules for reasoning about teleo-reactive programs in
Section 4 and in Section 5 we present a case study by verifyingan abridged version of the production cell.

2

2 A real time framework

In Section 2.1, we present some preliminary theory on intervals, streams and predicates. In Section 2.2, we present
a theory for reasoning over partitions of intervals.

2.1 Preliminaries

Interval predicates An interval is a contiguous subset ofTime(represented by real numbersR). Intervals may
either be open or closed at either end and may also be infinite.An interval has type

Interval =̂
{
∆ ⊆ R ∆ 6= {} ∧ ∀t, t′ ∈ ∆ • t < t′ ⇒ ∀t′′:R • t < t′′ < t′ ⇒ t′′ ∈ ∆

}

Thus, if t and t′ are in the interval∆, then all real numbers betweent and t′ are also in∆. For an interval
∆ ∈ Interval, we let lub.∆ andglb.∆ denote the least upper and greatest lower bounds of∆, respectively where
‘ .’ denotes function application. We useℓ.∆ (equal tolub.∆ − glb.∆) denote the length of∆. For intervals
∆,∆′ ∈ Interval, we define theadjoinsrelation between∆ and∆′ as follows:

∆ ∝ ∆′ =̂ (lub.∆ = glb.∆′) ∧ (∆ ∪∆′ ∈ Interval) ∧ (∆ ∩∆ = {})

That is,∆ ∝ ∆′ states that∆′ is an interval that immediately follows∆.

We define astate spaceasΣV =̂ V → Val whereV ⊆ Var is a set of variables andVal a set of values. We leave
out the subscript ifV is clear from the context. Apredicateover a typeX is given byPX =̂ X → B, astateis a
member ofΣ, and astate predicateis a member ofPΣ. The (real-time) stream is given byStreamV =̂ Time→ ΣV

which is a total function from times to states with variablesV. A stream predicateis a member ofPStreamV and
an interval predicateis a member of the setIntvPredV =̂ Interval→ PStreamV. Interval predicates allow us to
reason about the behaviour of a stream with respect to a giveninterval. We letvars.c andvars.p denote the sets of
all variablesV that may occur free inc ∈ PΣV andp ∈ IntvPredV.

The boolean operators may be lifted pointwise to state and interval predicates, e.g.,(p1 ∧ p2).∆.tr = (p1.∆.tr ∧
p2.∆.tr) for interval predicatesp1 andp2. We define some further notation for stream predicatessp1 andsp2:

(sp1 ⇛ sp2) =̂ ∀tr:Stream• sp1.tr ⇒ sp2.tr
(p1 ⇛ p2) =̂ ∀∆: Interval • p1.∆ ⇛ p2.∆

‘⇚’ and ‘≡’ are similarly defined with ‘⇒’ replaced by ‘⇐’ and ‘=’, respectively.

We let lim
x→a−

f .x and lim
x→a+

f .x denote the limit off .x from the left and right, respectively. To ensure that the limit is

well-defined, we assume that each variablev ∈ V is piecewise continuous ins ∈ StreamV [9]. For an expression
e∈ Σ→ Val, interval∆ ∈ Intervaland streams∈ Stream, we define:

−→e .∆.s =̂ lim
t→lub.∆−

e.st

←−e .∆.s =̂ lim
t→glb.∆+

e.st

(↓e).∆ =̂ ∃∆′: Interval • (∆′ ∝ ∆) ∧ −→e .∆′

(↑e).∆ =̂ ∃∆′: Interval • (∆ ∝ ∆′) ∧ ←−e .∆′

Thus,←−e and−→e return the value ofeat thestart andendof the given interval, respectively, while↓eand↑edenote
the value ofe beforeandafter the given interval, respectively. Note thate may be a state predicate, in which
case the operators above evaluate to a boolean. For a state predicatec, theeverywhereandsometimeoperators are
defined as follows:

(�c).∆.s =̂ ∀t: ∆ • c.st

(⊡c).∆.s =̂ ∃t: ∆ • c.st

Thus,�c and⊡c hold iff c holds at every and some time in the given interval, respectively. We define thechop
andalwaysin a similar manner to the duration calculus [22]. Given interval predicatesp, p1, p2 ∈ IntvPredand

3

interval∆ ∈ Intervalwe define:

(p1 ; p2).∆ =̂ ∃∆1,∆2: Interval • (∆1 ∝ ∆2) ∧ (∆ = ∆1 ∪∆2) ∧ p1.∆1 ∧ p2.∆2

(�p).∆ =̂ ∀∆′: Interval • ∆′ ⊆ ∆⇒ p.∆′

(©©©p).∆ =̂ ∃∆′: Interval • (∆ ∝ ∆′) ∧ p.∆′

Thechopoperator ‘;’ allows the given interval to be split into two sothatp1 holds for the first part andp2 holds
for the second. Theeverywhereoperator,�, states that the given interval predicate to hold over all subintervals of
the given interval. We define the following shorthand notation:

p1 : p2 =̂ p1 ∨ (p1 ; p2) (1)

♦p =̂ ¬�¬p (2)

∇p =̂ ♦p ∨ ©©©p (3)

p1 un p2 =̂ p2 ∨ (�p1; p2) ∨ (�p1 ∧ ©©©(p1 ∨ p2)) (4)

p1 wu p2 =̂ p1 ⇒ (p1 un p2) (5)

The weak chop(p1 : p2).∆ holds iff p1 holds over∆ or if (p1 ; p2).∆ holds,♦p states thatp holds in some
subinterval of the given interval,∇p states thatp holds sometime within or immediately after the given interval,
p1 un p2 states thatp1 holdsunless p2 holds andp1wup2 is theweak unlessoperator, which only requiresp1 un p2
to hold if p1 holds.

Because an interval predicate has access to entire stream itmay mention properties of the stream outside the given
interval. As an extreme example, we define

(∐p).∆.s =̂ p.Time.s

which states thatp hold over all time ins, i.e.,(∐p).∆ ignores the given interval∆.

Two adjacent intervals do not overlap at any point. Because our expressions are only piecewise continuous, we
must use↓ to link the last value of an expression in the previous interval to the first value in the current interval. In
particular, we use↓ to define invariance of a state predicate.

Definition 1 A state predicate c isinvariantover an interval∆ iff (inv.c).∆ holds, where

inv.c =̂ ↓c⇒ �c

Thus, inv.c holds iff c continues to hold within the given interval provided that↓c holds. Usinginv, we define
stability of a variablev and a set of variablesV as follows:

st.v =̂ ∃k • inv.(v = k) (6)

st.V =̂ ∀v:V • st.v (7)

Thus, if the value ofv is k immediately before the given interval, then the value ofv remainsk for the whole of the
interval. A set of variablesV is stable if each variable inV is stable.

2.2 Partitions, splits and joins

We often reason about a large interval by reasoning about itssubintervals. It is particularly useful to consider a
partition of an interval. We useseq .X to denote a possibly infinite sequence with elements of typeX. A sequence
can be explicitly defined using angle brackets, ‘〈’ and ‘〉’, and ‘a’ is the sequence concatenation operator. For a
sequence of setsσ, we define we define

⋃
σ =̂

⋃
i:dom .σ

σi .

Definition 2 (Partition) A partitionof an interval∆ ∈ Interval is given by

part.∆ =̂ {z: seq .Interval | (∆ =
⋃

z) ∧ (∀i: dom .z− {0} • zi−1 ∝ zi)}

A non-Zeno partitionof an∆ is given by

NZpart.∆ =̂ {z: part.∆ | (dom .z= N)⇒ (ℓ.∆ =∞)}

4

Definition 3 (Alternates) For a state predicate c, interval∆ ∈ Interval and a partitionδ ∈ part.∆, we define

alt.c.δ =̂ ∀i: dom .δ • ((�c).δi ∧ (i + 1 ∈ dom .δ)⇒ (�¬c).δi+1) ∧
((�¬c).δi ∧ (i + 1 ∈ dom .δ)⇒ (�c).δi+1)

Definition 4 (Non-Zeno) A state predicate c isnon-Zenoin ∆ iff there exists aδ ∈ NZpart.∆ such that alt.c.δ
holds and we say c isnon-Zenoiff c is non-Zeno in every interval∆ ∈ Interval.

Definition 5 Suppose p is an interval predicate. We say

1. p joins in ∆ iff (∀δ:NZpart.∆ • ∀i: dom .δ • p.δi) ⇛ p.∆.

2. psplits in ∆ iff p.∆ ⇛ ∀δ:NZpart.∆ • (∀i: dom .δ • p.δi).

We say pjoinsand psplits iff p joins in∆ and p splits in∆, respectively for any arbitrary interval∆.

If p joins and holds over all intervals within an arbitrary partition of ∆, thenp is guaranteed to hold over∆.
Conversely, ifp splits andp.∆ holds, thenp may be distributed over any partition of∆. Note that ifp joins then
(p ; p) ⇛ p and ifp splits thenp ⇛ �p.

Lemma 1 For any state predicate c, interval predicate inv.c both joins and splits.

The next lemma allows us to perform case analysis to prove formulae of the formp1 ⇛ p2, provided that the case
analysis is performed on a non-Zeno state predicate.

Lemma 2 (Split) If p1 splits and p2 joins, then p1 ⇛ p2 holds provided there exists a non-Zeno state predicate c
and both of the following hold:

p1 ∧ �c ⇛ p2 (8)

p1 ∧ �¬c ⇛ p2 (9)

Proof 1 For an arbitrary interval∆ ∈ Interval,

p1.∆
⇛ c is non-Zeno

p1.∆ ∧ ∃δ:NZpart.∆ • alt.c.δ
⇛ Definition 5, p1 splits
∃δ:NZpart.∆ • alt.c.δ ∧ ∀i: dom .δ • p1.δi

⇛ (8) and (9)
∃δ:NZpart.∆ • ∀i: dom .δ • p2.δi

⇛ Definition 5, p2 joins
p2.∆ �

We may use transitivity to split proofs of progress properties. The proof for this lemma may be found in [7].

Lemma 3 (Transitivity) Suppose p1 and p2 are interval predicates, c is a state predicate, p1 splits, and0 <

ǫ1, ǫ2 ∈ Time. Then

p1 ∧ ←−c ∧ (ℓ ≥ ǫ1 + ǫ2) ⇛ ∇p2

holds provided that for some state predicate c′, both of the following hold:

p1 ∧ ←−c ∧ (ℓ ≥ ǫ1) ⇛ ∇
←−
d (10)

p1 ∧
←−
d ∧ (ℓ ≥ ǫ2) ⇛ ∇p2 (11)

5

M

S

c M S

c

c M1

g
2

g
1r1

r2

g
1

g
2

M2

M1 M2||

/\

r

Figure 1: Guarded sequence and parallel composition

3 Teleo-reactive programs with parallel composition

In this section, we formalise the syntax and semantics of teleo-reactive programs under various forms for compo-
sition and present a rely/guarantee style framework for reasoning about their properties. We present the abstract
syntax of teleo-reactive programs in Section 3.1 and provide their semantics in Section 3.2.

3.1 Syntax

Definition 6 The abstract syntax of ateleo-reactive programis given by P below.

GP ::= c→ P
P ::= O: Jr, gK | seq .GP | P

−→
‖ P

An actionO: Jr, gK consists of a set of input variables,I , a rely condition,r, aguaranteecondition,g, and a set of
output variables,O. A guarded programc → M consists of a guardc and a programM. A basic program may
either be an action, a sequence of guarded programs or formedusing the parallel composition operator (cf. Fig. 1).
Parallel compositionallows a new program to be formed using the concurrent execution of two existing programs.
In Fig. 1, a new programM1

−→
‖ M2 is created usingM1 andM2. Note that parallel composition is not necessarily

commutative because the outputs ofM1 may be used as inputs toM2.

Because teleo-reactive programs execute in a truly concurrent manner, we must be able to determine the outputs
of a teleo-reactive program.

out.(O: Jr, gK) =̂ O

out.〈〉 =̂ {}

out.(〈c→ M〉a S) =̂ out.M ∪ out.S

out.(M1

−→
‖M2) =̂ out.M1 ∪ out.M2

To ensure that the programs we specify are implementable, wedefine a number of healthiness constraints on the
program. The behaviour of any actionO: Jr, gK may not assume properties of the outputs. Hence we require:

r ∈ IntvPredV for someV ⊆ Var\O for any actionO: Jr, gK (12)

For a guarded sequence of programs, we disallow Zeno-like behaviour of the guards. Hence we require:

c is a non-Zeno state predicate for any program〈c→ M〉a S (13)

Finally, two programs executing in parallel may not modify the same outputs. Hence, we require:

out.M1 ∩ out.M2 = {} for any programM1

−→
‖M2 (14)

3.2 Semantics

The behaviour of a teleo-reactive program is given by the behaviour functionbeh:P→ IntvPred, which is defined
in terms of functionbehF:P→ IntvPredwhereF is a set of variables. We assume thatF ⊇ out.M when we write
behF.M.

6

Definition 7 If M is a teleo-reactive program and F⊆ Var is a set of variables, then:

behF.(O: Jr, gK) =̂ r ⇒ g ∧ st.(F\O) (15)

behF.〈〉 =̂ true (16)

behF.T =̂ ((�c ∧ behF.M) : (←−¬c ∧ behF.T)) ∨
((�¬c ∧ behF.S) : (←−c ∧ behF.T))

(17)

behF.(M1

−→
‖ M2) =̂ behF\out.M2

.M1 ∧ behF\out.M1
.M2 (18)

By (15), the behaviour of an actiona, i.e.,behF.a states that the guarantee conditiong holds and all output variables
in F that are not inO are stable provided that the rely conditionr holds. The behaviour of an empty sequence of
programs, (16), is chaotic, i.e., any behaviour is allowed.By (17), the behaviour of a non-empty sequence of
guarded programs,T, is defined recursively — there are two disjuncts corresponding to either�c or �¬c holding
initially on the interval. If�c holds initially, either�c ∧ behF.M holds for the whole interval or the interval may
be split into an initial interval in which�c ∧ behF.M holds, followed by an interval in which¬c holds initially
andbehF.T holds (recursively) for the second interval. Note that eachchopped interval must be a maximal interval
over which either�c or �¬c holds. Note that by (13),behF.T does not display Zeno-like behaviour, i.e., we
cannot split a given finite interval into an infinite partition of finite intervals. By (18), the behaviour of the parallel
composition of two programs is defined to be the conjunction of both behaviours, however, we must remove the
outputs ofM2 from the when defining the behaviour ofM1 and vice versa.

In a sequence of guarded programs, programs that appear earlier in the sequence are given priority over later
programs. For example, in a sequence〈c1 → M1, c2 → M2〉, if the guardc1 ever becomes true, thenM2 stops and
M1 begins executing. Hence, the guard ofM2 is effectively¬c1 ∧ c2. If neitherc1 nor c2 holds, then neitherM1

norM2 is executed, then any behaviour is allowed [10]. By definition, the variablesout.M1\out.M2 are guaranteed
to be stable during execution ofM1 and similarly, variablesout.M2\out.M1 are guaranteed to be stable during
execution ofM1.

The next lemma states that a sequence of guarded programs maybe decomposed provided�c or �¬c holds over
the given interval.

Lemma 4 Suppose S1, S2 and T =̂ S1 a 〈c→ M〉 a S2 are sequences of guarded programs; F⊆ Var is a set of
variables; and r and g are interval predicates. Then:

�c ⇛ (behF.T = behF.M) (19)

�¬c ⇛ (behF.T = behF.(S1 a S2)) (20)

4 Rely/guarantee

Teleo-reactive programs are reactive, i.e., execute over adynamic environment, and hence, we use rely/guarantee
style reasoning to take the behaviour of the environment into account when reasoning about a program [12]. Here
therely condition describes properties of the inputs of the programand theguaranteecondition describes how the
program will behave under the assumption that the rely condition holds.

A teleo-reactive program may not depend on the values of its own output, and hence, we require that the rely
condition of a program may only refer to its input variables,however, the guarantee may be a relationship between
inputs and outputs.

Definition 8 SupposeM is a teleo-reactive program; r and g are interval predicatessuch that vars.r∩out.M = {};
and F⊇ out.M is a set of variables. We define:

F: {r}M {g} =̂ r ∧ behF.M ⇛ g

Theorem 5 F: {r}O: Jrr , ggK {g} holds if r⇛ rr and gg⇛ g hold, F⊇ O and vars.r ∩O = {}.

7

We may use the following theorem to prove a property of a sequence of guarded programs.

Theorem 6 If S and T=̂ 〈c→ M〉 a S are sequences of guarded programs; r and g are interval predicates that
split and join, respectively; F⊇ out.T; and vars.r ∩ F = {}, then F: {r}T {g} holds provided that both of the
following hold:

F: {r} M {�c⇒ g} (21)

F: {r} S {�¬c⇒ g} (22)

Lemma 7 Given that S1 and S2 are sequences of guarded programs, then F: {r} S1 a 〈c→ M〉a S2{�¬c⇒ g}

holds iff F: {r}S1 a S2{�¬c⇒ g} holds.

In programM1

−→
‖M2, the behaviours ofM1 andM2 could conflict ifM1 andM2 control the same variable. This

is especially problematic because we assume true concurrency, as opposed to an interleaved or synchronous ex-
ecution. One way to resolve conflicts under parallel composition is to split the shared output and derive the
final value of the shared output ofM1

−→
‖M2 (cf [16]). For example, consider a pump (that removes water from

a tank) operating in parallel with a hose (that adds water to the tank). Supposewater lvl rate returns the rate
of change of the water level in the tank. Clearly, the pump andhose cannot modifywater lvl rate simultane-
ously because the pump makeswater lvl rate negative while the hose makes thewater lvl rate positive. To
resolve this, we may definewater in rate (only modified by the hose) andwater out rate (only modified by
the pump) be the rates at which water is added and removed fromthe tank, respectively. We may then define
water lvl rate =̂ water in rate− water out rate.

Theorem 8 If M1

−→
‖M2 is a teleo-reactive program, F⊇ out.(M1

−→
‖M2) and vars.r1 ∩ out.M1 = vars.(r2 ∧

g1) ∩ out.M2 = {} then F: {r1 ∧ r2}M1

−→
‖M2 {g1 ∧ g2} holds provided both of the following hold:

F\out.M2: {r1} M1 {g1} (23)

F\out.M1: {r2 ∧ g1} M2 {g2} (24)

Proof 2 BecauseM1

−→
‖ M2 is a teleo-reactive program,(in.M1 ∪ out.M1) ∩ out.M2 = {} holds and we have the

following calculation:

(23) ∧ (24)
= definition and logic

(r1 ∧ behF\out.M2
.M1 ⇛ g1) ∧ (r2 ∧ behF\out.M1

.M2 ⇛ (g1 ⇒ g2))
⇒ logic, weaken antecedents

r1 ∧ r2 ∧ behF\out.M2
.M1 ∧ behF\out.M1

.M2 ⇛ g1 ∧ (g1 ⇒ g2)
= (18), definitions and logic

F: {r1 ∧ r2}M1

−→
‖M2 {g1 ∧ g2} �

Lemma 9 F: {r1 ∧ r2}M1

−→
‖M2 {g1 ∧ g2} holds provided both of the following hold:

F\out.M2: {r1} M1 {g1} (25)

F\out.M1: {r2} M2 {g1 ⇒ g2} (26)

The next lemma allows us to provesimple parallelism(see Fig. 2), i.e., when the output ofM1 is not used as an
input toM2 and vice versa. We letM1 ‖M2 denote the simple parallel composition betweenM1 andM2. Unlike
−→
‖ , programs under simple parallelism are commutative, i.e.,behF.(M1 ‖M2) = behF.(M2 ‖M1).

Lemma 10 (Simple Parallelism) If vars.r1 ∩ out.M2 = vars.r2 ∩ out.M1 = {} and F⊇ out.M1 ∪ out.M2, then

F: {r1 ∧ r2}M1 ‖M2 {g1 ∧ g2}

8

g
1

M1 M2<>

M1
g

1

M2

g
2

g
2

/\
r

Figure 2: Simple parallelism

holds provided that both of the following hold:

F\out.M2: {r1} M1 {g1} (27)

F\out.M1: {r2} M2 {g2} (28)

5 Example

Our example is adapted from the production cell case study [15]. We choose to simplify the problem down to just
two programs: a table and a robot arm (see Fig. 3), which is enough to demonstrate our proof technique. A table
takes disks from a feed belt and must lower them to the level ofthe robot, while the robot must fetch disks from
the table and deliver them to a depot. We assume an arbitrary number of disks may be placed in the depot.

The controllers for the table and robot are implemented using teleo-reactive programs (see Fig. 5) which we
compose in parallel, thus allowing the table and robot to execute independently of each other. Note that we could
have implemented the robot grippers as separate program, which would have allowed the robot to rotate while
simultaneously opening and closing the grippers. However,for simplicity, we have chosen to allow the grippers to
be controlled by the robot program (using actionsGrip andUngrip in Fig. 5) which allows the robot to rotate or
the grippers to open/close, but not together.

5.1 Actions

Movement of the table (T), robot (R) and gripper (G) is controlled by the actions defined in (29) - (34) below. The
operating speed of a componentC is given by functionφ.C. For simplicity, we assume that the acceleration to and
deceleration from the operating speed is instantaneous. The program modifiesT.lvl (scalar for the height of the

�
�
�

�
�
�

��������������������
��������������������
��������������������

��������������������
��������������������
��������������������

Depot

Feedbelt Table Robot

disks

Gripper

Side view

Top−down view

Figure 3: The production cell

9

table),G.dist (scalar for the distance between grippers) andR.rot (vector for angle of rotation of the robot). We
assumemax T andmin T represent the maximum and minimum heights of the table, respectively; thatmax G
represents the maximum distance between the grippers; andtab,mid anddepare values ofR.rot that ensure the
robot is rotated towards the table, at a mid-point away from the table and at the depot, respectively.

Nil =̂ {}: Jtrue, trueK (29)

Raise =̂ {T.lvl}:
q
true,�(d T.lvl

d t = (ifT.lvl < max T then φ.T else 0))
y

(30)

Lower =̂ {T.lvl}:
q
true,�(d T.lvl

d t = (ifT.lvl > min T then−φ.T else 0))
y

(31)

Grip =̂ {G.dist}
q
true,�(d G.dist

d t = (ifG.dist> 0 then−φ.G else 0))
y

(32)

Ungrip =̂ {G.dist}:
q
true,�(d G.dist

d t = (ifG.dist< max G then φ.G else 0)
y

(33)

Rotloc =̂ {R.rot}:

u
vtrue,�


d R.rot

d t =




ifR.rot = loc then 0
elseifR.rot < loc then φ.R
else− φ.R






}
~ (34)

By (29), Nil has no inputs or outputs and hence does nothing. By (30), theRaiseaction modifiesT.lvl and
guarantees that the rate of change ofT.lvl is φ.T at each point of the given interval. Conditions (31) - (34) are
similar.

5.2 Program

The program uses constantsFB lvl andR lvl (scalars for the height of the feed belt and robot, respectively), dw
(scalar for width of a disk),R arm len (scalar for the robot arm length) andR pos (vector for the position of
the robot). Arithmetic operations on vectors are assumed tobe defined in the normal manner. We assumeDisk
represents the set of all disks in the system and for eachdisk ∈ Disk, we usedisk.pos (vector for the current
position of the center ofdisk) anddisk.lvl (scalar for the current height ofdisk) to determine the position ofdisk.
We defineG.pos(vector for the gripper position) using the robot position,the length of the robot arm, the width of
the disk and the robot rotation as follows:

G.pos =̂ R pos+ (R arm len+ dw
2
,R.rot)

the following predicates are used to determine specific positions ofdisk in the system, where constantsT posand
D posare vectors for the position of the table and depot, respectively.

onT.disk =̂ (disk.pos= T pos) ∧ (disk.lvl = T.lvl)

atG.disk =̂ (disk.pos= G.pos) ∧ (disk.lvl = R lvl)

inD.disk =̂ (disk.pos= D pos) ∧ (disk.lvl = 0)

hbR.disk =̂ atG.disk∧ (G.dist= dw)

PredicatesonT.disk, atG.diskandonR.diskhold if disk is on the table, at the gripper location and being held by the
grippers, respectively. To detect possible collisions between the table and the robot arm we define a set of vectors
T areacorresponding to a set ofG.posvalues for which the table and robot arm collide. We note thatthe table
and robot arm may overlap even ifG.pos 6= T posholds.

We define a number of predicates which serve as shorthand for determining the positions of the various compo-
nents. These predicates are implemented as sensors in the production cell.

T at FB =̂ T.lvl = FB lvl
T at R =̂ T.lvl = R lvl

full =̂ ∃disk:Disk • onT.disk
holding =̂ ∃disk:Disk • hbR.disk

G at T =̂ G.pos= T pos
G at D =̂ G.pos= D pos
G open =̂ G.dist= max G

G near T =̂ G.pos∈ T area

Thus,T at FB holds iff the level of the table is equal to the constantFB lvl. The other predicates are similar. The
teleo-reactive programs for controlling the table and robot of the production cell are provided in Figures 4 and 5,
respectively.

The table only operates (i.e., executesrunT) over an interval in which¬GnearTholds. Thus, the table does not
move while the robot arm is in the way. The programrunT lowers the table by executing actionLower while

10

Table =̂〈
¬GnearT→ runT,

true→ Nil

〉

runT =̂〈 full ∧ ¬T at R→ Lower,
¬full ∧ ¬T at FB→ Raise,

true→ Nil

〉

Figure 4: Table controller

Robot =̂
〈 holding→ drop at depot,

full ∧ T at R→ pickup,

true→ Rotmid

〉

drop at depot =̂〈
G at D→ Ungrip,

true→ Rotdep

〉

pickup =̂〈 G at T ∧ G open→ Grip,
G open→ Rottab,

true→ Ungrip

〉

Figure 5: Robot controller

it is full and not yet at the robot level. Execution ofrunT raises the table by executingRaisewhile ¬(full ∧
¬T at R) ∧ (¬full ∧ ¬T at FB) holds, which simplifies to¬full ∧ ¬T at FB. The table executes theNil action
(which does nothing) over an interval in which the guards ofLowerandRaiseare false. Note that in the context of
theTable program, each of the guards ofrunT has¬GnearTas an additional conjunct.

While it is holding a disk, theRobot program executesdrop at depot, which places the disk it is holding in the
depot.Robot executespickup while it is not holding a disk, the table is full and is at the robot level, which picks
up a disk from the table. While there is no disk to be picked up or dropped off,Robot executesRotmid, which
moves the gripper away from the table. Programdrop at depot executesUngrip while the gripper is already at
the depot, otherwise, it rotates towards the depot. Programpickup executesGrip while the grippers are at the table
and the distance between the grippers exceeds the width of a disk. While the grippers are not at the table, but the
grippers are open far enough,pickup rotates the robot to the table. The default action ofpickup is to open the
grippers by executingUngrip.

The overall system is constructed using simple parallelismas follows:

TR =̂ Table ‖Robot

Although the component programs themselves are simple,TRallows the programs in Figures 4 and 5 to execute
in true parallelism to perform the complex task of transporting a disk from the feed belt to the depot.

5.3 A safety proof

A safety requirement of the system is that the robot does not collide with the other components. Using the con-
figuration of the system, we can rule out collisions between the robot and the depot, but it may be possible for the
robot to collide with the table. Thus, we obtain a safety requirement:

TR: {true} TR {inv.(GnearT⇒ T at R)} (35)

Although it is tempting to use Lemma 10 and split the proof into Table andRobot components, a proof using
Lemma 10 is not possible because the value ofinv.(GnearT⇒ T at R) is modified by bothTable andRobot.
Instead, we obtain the following calculation:

(35)
⇐ logic

TR: {true}TR{�GnearT∧ �¬T at R⇒ ↓(GnearT∧ ¬T at R)}
⇐ Lemma 7

TR: {true}Nil

∥∥∥∥
〈

holding→ drop at depot,
true→ Rotmid

〉
{�(GnearT∧ ¬T at R)⇒ ↓(GnearT∧ ¬T at R)}

11

= logic

TR: {true}Nil

∥∥∥∥
〈

holding→ drop at depot,
true→ Rotmid

〉
{inv.(GnearT⇒ T at R)}

⇐ Lemma 9
T: {true}Nil {st.(T.lvl)} ∧

R: {true}

〈
holding→ drop at depot,
true→ Rotmid

〉
{st.(T.lvl)⇒ inv.(GnearT⇒ T at R)}

⇐ first triple: Theorem 5
second triple: logic, usest.(T.lvl)

R: {true}

〈
holding→ drop at depot,
true→ Rotmid

〉
{inv.(¬GnearT)}

⇐ Theorem 6 twice
R: {true}Ungrip{�holding∧ �G at D⇒ inv.(¬GnearT)}
R: {true}Rotdep{�holding∧ �¬G at D⇒ inv.(¬GnearT)}
R: {true}Rotmid{�¬holding⇒ inv.(¬GnearT)}

⇐ �G at D⇒ �¬GnearT, behR.Rotdep∨ behR.Rotmid⇒ inv.(¬GnearT)
true

5.4 A progress proof

A progress requirement of the system is that

“Any disk on the table is eventually at the depot.”

This can be ensured by showing that each disk reaches the nextcomponent in the production line. That is, each
disk on the table is eventually held by the robot, i.e.,

{r1 ∧ (ℓ ≥ ǫ)} TR {
←−−−−−
onT.disk⇒ ∇

←−−−−−
hbR.disk} (36)

and each disk being held by the robot is eventually placed in the depot, i.e.,

{r2 ∧ (ℓ ≥ κ)} TR {
←−−−−−
hbR.disk⇒ ∇

←−−−−−
inD.disk} (37)

We present a detailed proof of (36), and elide the details of (37), which are mostly similar to (36). The proof of
(37) is less complicated because it only involves interaction between the robot and the environment, as opposed to
the table, robot and environment in the case of (36).

(36)
⇐ Definition 8 and logic

{r1 ∧ (ℓ ≥ ǫ)}TR{
←−−−−−
onT.disk∧ �¬hbR.disk⇒ ∇

←−−−−−
hbR.disk}

To prove the above, we assume a property on the movement of thedisk. In particular, we require:

r1 ⇛ ∀T.lvl,R.rot,G.dist •
←−−−−−
onT.disk∧ �¬hbR.disk⇒ �onT.disk

which states that if the disk is on the table at the start of an interval and is not held by the robot throughout the
interval, then the disk remains on the table throughout the interval. Note that none of the free variables ofr1 are
outputs ofTR. The rely conditionr1 allows us to simplify the guarantee as follows:

{r1 ∧ (ℓ ≥ ǫ)}TR{�onT.disk⇒ ∇
←−−−−−
hbR.disk}

The significance of this calculation is that we can now assumethat the disk stays on the table, as opposed to being
on the table at the start of the interval. Using Lemma 3 (transitivity) and assumingǫ = ǫ1+ ǫ2, the condition above
holds if we can prove both of the following:

{r1 ∧ (ℓ ≥ ǫ1)} TR {�onT.disk⇒ ∇
←−−−−
T at R} (38)

{r1 ∧ (ℓ ≥ ǫ2)} TR {�onT.disk∧
←−−−−
T at R⇒ ∇

←−−−−−
hbR.disk} (39)

12

Thus, to show that a disk on the table is eventually held by therobot, we must show (38), i.e., that the table
eventually reaches the robot level. Furthermore, by (39), if a full table is at the robot level, then the disk must
eventually be held by the robot. The proof of (38) uses:

{true} TR {inv.(R lvl ≤ T.lvl ≤ FB lvl)} (40)

which is an easily provable safety condition.

Proof of (38).

{r1 ∧ (ℓ ≥ ǫ1)}TR{�onT.disk⇒ ∇
←−−−−
T at R}

⇐ logic,�(onT.disk⇒ full)
{r1 ∧ (ℓ ≥ ǫ1)}TR{�(full ∧ ¬T at R)⇒ ↑T at R}

⇐ (35), parallel composition (18)
{r1 ∧ (ℓ ≥ ǫ1)}Table {�(full ∧ ¬T at R∧ ¬GnearT)⇒ ↑T at R}

⇐ (19) and (20)
{r1 ∧ (ℓ ≥ ǫ1)} Lower{�(full ∧ ¬T at R∧ ¬GnearT)⇒ ↑T at R}

⇐ (31) (i.e., definition ofLower), (40) and assumptionr1
true

Proof of (39).This proof uses the following trivially provable properties:

{true} Table {
←−−−−
T at Rwu ¬

←−
full} (41)

which states if the table is at the robot level the table is full, then the table remains at the robot level unless the
table is not full. The proof of (41) follows directly from thebehaviour ofTable. Thus, we obtain:

(39)
⇐ using (41)

{r1 ∧ (ℓ ≥ ǫ2)}TR{�(onT.disk∧ T at R)⇒ ∇
←−−−−−
hbR.disk}

As before, we can now assume the table remains at the robot level throughout the interval as opposed to only at the
start. Assumingǫ2 = ǫ21 + ǫ22, we apply Lemma 3 (transitivity) to obtain the following cases:

{r1 ∧ (ℓ ≥ ǫ21)} TR {�(onT.disk∧ T at R)⇒ ∇
←−−−−−
¬holding} (42)

{r1 ∧ (ℓ ≥ ǫ22)} TR {�(onT.disk∧ T at R) ∧
←−−−−−
¬holding⇒ ∇

←−−−−−
hbR.disk} (43)

Thus, by (42) for the robot to hold the disk on the table, the robot must eventually not be holding anything.
Furthermore, by (43) if the disk is on the table, the table is at the robot level and the robot is not holding anything,
then the robot must eventually hold the disk. The first case, i.e., (42) is proved as part of (37) and hence we elide
the details.

Proof of (43).The proof uses the following trivial safety property:

{true} Robot {�full ∧
←−−−−−
¬holding⇒ �¬holding} (44)

then obtain the following calculation:

(43)
⇐ (44) becauseonT.disk⇒ full

{r1 ∧ (ℓ ≥ ǫ22)}TR{�(onT.disk∧ T at R∧ ¬holding)⇒ ∇
←−−−−−
hbR.disk}

⇐ Theorem 8

{r1 ∧ (ℓ ≥ ǫ22)}Robot {�(onT.disk∧ T at R∧ ¬holding)⇒ ∇
←−−−−−
hbR.disk}

The rely condition above states that the interval is of length ǫ22 or greater and throughout the intervaldisk is on the
table, the table is at the robot level and the robot is not holding a disk. The proof that the robot eventually holds
diskunder this rely condition is straightforward because we areonly required to consider execution of theRobot
program in isolation. For such proofs we may use the techniques described in [7] and hence, the details of the
proof are elided.

13

6 Other composition operators

Besides hierarchical and parallel composition, teleo-reactive programs may also be composed using hiding (Sec-
tion 6.1), feedback (Section 6.2) and pipelines (Section 6.3), which is derived by combining of parallel composition
and hiding.

6.1 Hiding

We define hiding as a basic form of composition that allows variables of a program to be hidden so that they may
not be used by any other program, including the environment (see Fig. 6). Hiding is used to derive the pipeline
operator. For a programM and a set of variablesm ⊆ out.M, we useM\m to denote a program in whichm is
hidden from the environment. The outputs of programM\m is defined as:

out.(M\m) =̂ out.M\m

and define the behaviour ofM\m in a possibly larger frameF ⊇ out.(M\m) is defined as follows:

behF\m.(M\m) =̂ ∃m • behF.M (45)

The following theorem allows us to prove properties of a program after an output is hidden.

Theorem 11 (Hiding) If m⊆ out.M, F ⊇ out.M and F: {r}M {g}, then F\m: {r}M\m{∃m• g}.

Proof 3 Because m⊆ out.M, the variables in m do not not occur free in r. Hence, we obtainthe following
calculation:

F\m: {r}M\m{∃m• g}
= expand triple, (45)

r ∧ (∃m • behF.M) ⇛ ∃m • g
⇐ m nfi r

(∃m • r ∧ behF.M) ⇛ ∃m • g
⇐ logic

F: {r}M {g} �

6.2 Feedback

Feedback allows us to use the output of a component as an inputto the same component. A natural method of
reasoning about feedback is to use fixed points with delay [19, 6]. However, because this approach is potentially
complex, we prefer the method of Mahoney et al, where introduction of feedback is viewed as strengthening of the
initial specification to require that the output has the samevalue as the input [13, 6].

Fig. 6 denotes the program where the outputsh are fed back as inputs The outputs of program with feedback
include the variables being fed back to the program, i.e.,

out.(µ e\h • M) =̂ out.M ∪ e

This means that the rely condition ofµ e\h • M may not refer to input variablesh. The behaviour of a program is
defined to the original program, but with input variables replaced by their output values. That is:

behF.(µ e\h • M) =̂ (behF.M)[e\h] (46)

The following theorem allows one to prove properties of components with feedback.

Theorem 12 (Feedback)If F ⊇ out.M, vars.r ∩ out.M = vars.r1 ∩ out.(µ e\h • out.M) = {}, F: {r}M {g} and
F: {r1} µ e\h • M {r[e\h]} then F: {r1} µ e\h • M {g[e\h]}.

14

E

m g
\mM

r

m

gM M g
he

r

Me \ hµ

g[]e \ hr1

Hiding Feedback

M1
g

1

M2 g

M2M1 >>

r

Pipeline

Figure 6: Further composition operators

Proof 4
F: {r1} µ e\h • M {g[e\h]}

= definitions
r1 ∧ behF.M[e\h] ⇛ g[e\h]

⇐ assumption: r1 ∧ behF.M[e\h] ⇛ r[e\h]
r[e\h] ∧ behF.M[e\h] ⇛ g[e\h]

= logic
(r ∧ behF.M ⇛ g)[e\h]

⇐ assumption: F: {r}M {g}
true �

In addition to the program with no feedback establishingg under rely conditionr, the theorem requires that the
program extended with feedback reestablishr with fed back inputse replaced by outputsh.

The lemma below states that replacing a componentM by a componentM′ =̂ µ e\h • M within a guarded program

T =̂ 〈c→ M〉a S, then the behaviour ofµ e h• T is equivalent to the programµ e\h • 〈c→ M′〉a S.

Lemma 13 If T =̂ 〈c→ M〉a S, T′ =̂ 〈c→ µ e\h • M〉a S and F⊇ out.T then

behF.(µ e\h • T′) ≡ behF.(µ e\h • T)

Proof 5
behF.(µ e\h • T′).∆

= definition of feedback
behF.(T

′[e\h]).∆
= logic
∃δ:NZpart.∆ • ∀i: dom .δ • ((�c ∧ behF.(µ e\h • M))[e\h]).δi ∨ ((�¬c ∧ behF.S)[e\h]).δi

= definition of feedback, logic
∃δ:NZpart.∆ • ∀i: dom .δ • ((�c ∧ behF.M)[e\h]).δi ∨ ((�¬c ∧ behF.S)[e\h]).δi

= beh definition
((behF.T)[e\h]).∆

= beh definition
behF.(µ e\h • T).∆

We provide a concrete example by considering an oscillator that is constructed using an inverter,inv and a feedback
loop. We let booleansone andon be the input and output ofinv, respectively. We assume thaton is initially false,
and thatinv inverts the value ofone after a delay of lengthd. More formally, the behaviour ofinv is defined by:

behF.inv =̂ ∀t:Time• (t < ǫ⇒ ¬on@t) ∧ (on@(t + ǫ) = ¬one@t)

15

Now, given the following rely condition:

rely.∆ =̂ ∃δ:NZpart.∆ • (∀i: dom .δ • ℓ.δi = ǫ) ∧ alt.one.δ ∧ ¬one.δ0

which states that the value ofone flips after everyǫ time units, we have

F: {rely} inv {rely[one\on]} (47)

That is, given that the value of inputone oscillates everyǫ units, the inverter is guaranteed to oscillate the value of
outputon. The oscillatorosc usesinv and feeds the outputonback to the inputone. That is, we define

osc =̂ µ one\on • inv.

We prove our desired property of the oscillator:

F: {true} osc{rely[one\on]}

using Theorem 12, (47) and the trivial propertyF: {rely}µone\on• inv{rely[one\on]}.

Although development of systems with feedback is necessaryfor reasoning at an absolute level of precision, we
aim to incorporate the time bands logic [5] into the teleo-reactive framework. Thus, issues that require feed back
at an absolute level of precision (e.g., a program does not modify its own input) are absent in the context of time
bands.

6.3 Pipelines

A pipeline is a special case of parallel composition where all outputs of one first component become inputs to
another and the outputs of the first component are hidden fromthe environment of the pipeline. We useM1 ≫ M2

to denote the pipeline fromM1 to M2 (see Fig. 6), which is defined as follows:

M1 ≫ M2 =̂ (M1

−→
‖M2)\out.M1 (48)

hence, we have

out.(M1 ≫ M2) = out.M2

Pipelines inherit the healthiness conditions of parallel composition, and hence, their behaviour in a contextC is
only defined if the healthiness conditions of the parallel composition hold.

Lemma 14 (Pipeline) If out.M1 ∩ vars.(r1 ∧ r2) = out.M1 ∩ g = {}, then

F\out.M1: {r1 ∧ r2}M1 ≫ M2 {g}

holds provided that both of the following hold:

F\out.M2: {r1} M1 {g1} (49)

F\out.M1: {r2 ∧ g1} M2 {g} (50)

Proof 6
F\out.M1: {r1 ∧ r2}M1 ≫ M2 {g}

= (48) and definitions

F\out.M1: {r1 ∧ r2} (M1

−→
‖M2)\out.M1 {g}

= Theorem 11, out.M1 does not occur free in r1 ∧ r2 and g

F: {r1 ∧ r2}M1

−→
‖M2 {g}

⇐ Theorem 8 with g2 replaced by g
(49) ∧ (50) �

16

7 Conclusion

Teleo-reactive programs present a novel high-level approach to programming and differ considerably from other
real-time frameworks. A formal framework for reasoning about teleo-reactive programs has thus far not been
developed. The semantics of a single process teleo-reactive program are provided in [7, 10]. This paper revises this
logic and provides techniques for reasoning about teleo-reactive programs under various composition operators:
renaming, hiding, and parallel composition (including special cases pipelines and simple parallelism).

We note that the logic developed in this paper does not yet cover all the nuances of real-time systems. In particular,
we have assumed perfect sampling, i.e., that all sensors aresampled simultaneously, and hence each sampled state
corresponds to a real state of the system. However, in a real system, sensors are usually sampled one at a time, and
hence, these systems can suffer from sampling errors [5]. Weplan to encode a sampling logic into this theory as
part of future work.

Acknowledgements This research is supported by Australian Research Council (ARC) Discovery Grant,Com-
bining Time Bands and Teleo-Reactive Programs for AdvancedDependable Real-Time Systems(DP0987452) and
The University of Queensland New Staff Research Fund.

References

[1] R. Alur and D. L. Dill. A theory of timed automata.Theoretical Computer Science, 126:183–235, 1994.

[2] R. Alur and T. A. Henzinger. Reactive modules.Form. Methods Syst. Des., 15(1):7–48, 1999.

[3] R-J. R. Back, L. Petre, and I. Porres. Generalizing action systems to hybrid systems. In Mathai Joseph, editor,
Formal Techniques in Real-Time and Fault-Tolerant Systems, volume 1926 ofLecture Notes in Computer
Science, pages 73–91. Springer Berlin / Heidelberg, 2000.

[4] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J. Pappas. Symbolic planning and control of
robot motion: State of the art and grand challenges.IEEE Robotics and Automation Magazine, 14(1):61–70,
March 2007.

[5] A. Burns and I. J. Hayes. A timeband framework for modelling real-time systems.Real-Time Systems,
45(1):106–142, 2010.

[6] T. Cant, B. P. Mahony, and J. McCarthy.Design oriented verification and evaluation : The DOVE project.
DSTO Information Sciences Laboratory, Edinburgh, S. Aust., 2002.

[7] B. Dongol, I. J. Hayes, and P. J. Robinson. Reasoning about real-time teleo-reactive programs. Technical
Report SSE-2010-01, School of ITEE, The University of Queensland, Australia, 2010.

[8] C. A. Furia, M. Rossi, D. Mandrioli, and A. Morzenti. Automated compositional proofs for real-time systems.
Theor. Comput. Sci., 376(3):164–184, 2007.

[9] A. Gargantini and A. Morzenti. Automated deductive requirements analysis of critical systems.ACM Trans.
Softw. Eng. Methodol., 10:255–307, July 2001.

[10] I. J. Hayes. Towards reasoning about teleo-reactive programs for robust real-time systems. InSERENE ’08:
Proceedings of the 2008 RISE/EFTS Joint International Workshop on Software Engineering for Resilient
Systems, pages 87–94, New York, NY, USA, 2008. ACM.

[11] J. Hooman. Compositional verification of real-time applications. In Willem P. de Roever, Hans Langmaack,
and Amir Pnueli, editors,COMPOS, volume 1536 ofLecture Notes in Computer Science, pages 276–300.
Springer, 1997.

[12] C. B. Jones. Tentative steps toward a development method for interfering programs.AMC Transactions on
Programming Languages and Systems, 5(4):596–619, 1983.

17

[13] P. Katis, N. Sabadini, and R. F. C. Walters. Span(graph): A categorial algebra of transition systems. In
Michael Johnson, editor,AMAST, volume 1349 ofLNCS, pages 307–321. Springer, 1997.

[14] L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[15] C. Lewerentz and T. Lindner, editors.Formal Development of Reactive Systems - Case Study Production
Cell, volume 891 ofLNCS. Springer, 1995.

[16] B. P. Mahony, C. Millerchip, and I. J. Hayes. A boiler control system: A case study in timed refinement.
In Diana Del Bel Belluz, editor,Technical proceedings International Symposium on Design and Review of
Software-Controlled Safety-Related Systems, Ottawa, June 1993. 50 pages.

[17] Z. Manna and A. Pnueli.Temporal Verification of Reactive and Concurrent Systems: Specification. Springer-
Verlag New York, Inc., 1992.

[18] L. Meinicke and I. J. Hayes. Continuous action system refinement. In T. Uustalu, editor,MPC, volume 4014
of LNCS, pages 316–337. Springer, 2006.

[19] O. Müller and P. Scholz. Functional specification of real-time and hybrid systems. In Oded Maler, editor,
HART, volume 1201 ofLNCS, pages 273–285. Springer, 1997.

[20] Nils J. Nilsson. Teleo-reactive programs and the triple-tower architecture.Electronic Transactions on Artifi-
cial Intelligence, 5:99–110, 2001.

[21] M. Rönkkö, A. P. Ravn, and K. Sere. Hybrid action systems. Theor. Comput. Sci., 290(1):937–973, 2003.

[22] C. Zhou and M. R. Hansen.Duration Calculus: A Formal Approach to Real-Time Systems. EATCS: Mono-
graphs in Theoretical Computer Science. Springer, 2004.

[23] P. Zhou, J. Hooman, and R. Kuiper. Compositional verification of real-time systems with explicit clock
temporal logic.Formal Asp. Comput., 8(3):294–323, 1996.

18

