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Abstract

The teleo-reactive programming model is a high-level apghnoto implementing real-time controllers that
react dynamically to changes in their environment. Teksetive actions can be hierarchically nested, which
facilitates abstraction from lower-level details. Furthere, teleo-reactive programs can be composed using
renaming, hiding, and parallelism to form new programs. his paper, we present a framework for reasoning
about safety, progress, and real-time properties of tedaotive programs under program composition. We use a
logic that extends the duration calculus to formalise timeas#ics of teleo-reactive programs and to reason about
their properties. We present rely/guarantee style spatidits to allow compositional proofs and we consider an
application of our theory by verifying a real-time conteslfor an industrial press.

1 Introduction

With the increasing sophistication of real-time safetijical systems, it is important to develop more sophisédat
provably correct programming methodologies. For exang#eelopment of provably correct real-time controllers
for robot motion has been identified to be a “grand challerajebbotics [4]. Teleo-reactive programs [20] are
high-level programs that have been identified to be a goodidate for developing reactive real-time software [10,
7], presenting a fundamentally different approach to progning in comparison to state machine style methods.

Each action of a teleo-reactive programdisrative i.e., occurs over an interval of time. Durative actions can
describe rates of change of state variables over time assedpo explicitly changing the values of these state
variables. Teleo-reactive programs naturally supporghihical nesting [7, 20] which allows details of the lower-

level programs to be developed at a later stage. Furthermseweral teleo-reactive programs may execute in
parallel [20], with individual programs controlling diffent aspects of a complex system.

In this paper, we develop techniques for reasoning aboettedactive programs under parallel composition. We
also consider renaming and hiding and present some spesias ©f parallel composition (pipelines and simple
parallelism). We use a logic called durative temporal |d@i¢c which is based on the duration calculus [22] and
linear temporal logic [17]. We use rely/guarantee stylesoging to allow compositional proofs. Our framework

allows reasoning about safety, progress and real-timesptiep of teleo-reactive programs.

1.1 Example

To highlight the differences between teleo-reactive paiows and state-machine frameworks, we consider a teleo-
reactive program for controlling a lift that moves up to ecli objects and delivers them to the bottom.

. lift_full A —bottom— Lower,
e~ door_closed— runLift, e~ : .
Lift = . runLift = lift_emptyA —top — Raise
true — Nil .
true — Nil

The main prograniift executes programunLift in any interval in which the door is closed, i.dgor_closedholds
and executehlil (which does nothing) otherwise. PrograumLift lowers the lift if it is full and not at the bottom,
raises the lift if it is empty and not at the top, and does mglutherwise.



In an execution of a non-empty sequence of guarded progrdmaguard of each program in the sequence is
continuously evaluated, and the first enabled program fimrsequence is executed. For example, in program
Lift, actionrunLift is executed whileloor_closedholds andNil (which does nothing) is executed otherwise. If
door_closedever becomes false whikeinLift is executing, themunLift stops andNil starts executing. Thugjft

is equivalent to{door_closed— runLift, ~door_closed— Nil). Teleo-reactive programs also naturally support
hierarchical composition, e.g., tihenLift program executes within the context of heor_closedguard, i.e., each
guard inrunLift implicitly hasdoor_closedas a conjunct.

Teleo-reactive programs are reactive, i.e., execute oggnamically changing environment, and hence, the value
of door_closedmay be controlled (i.e., modified) by the environmentdf. Furthermore, unlike state-machine
like models such as hybrid automata, the guarded actiomsanf-reactive programs are durative, i.e., each guarded
action continues to execute over an interval in which itsrdtmlds. For example, the semantics of the behaviour
of Lower describes the rate behaviour of the lift whilewer is executing. This is in contrast to hybrid systems
that would use a pair of assignments, séate = lower andstate:= nil lower and stop lowering the lift, and/or
lift_speed= x to set the rate at which lift is lowered.

Teleo-reactive programs are often used to implement goatted agents [20]. That is, we structure a program
T = (c — M) 7 Sso that execution dbachieves subgoals that are requireddts hold, which in turn enable¥

to achieve its goal. In theunLift program above, the overall goal of the lift is to lower obgett the bottom and
hence, thé.oweraction is the first action in the sequence. Raseaction appears next because the lift must go
to the the top to receive objects, i.Baiseachieves the subgoal of establishiifg_full.

1.2 Related work

This paper is concerned with a logic for composing tele@tiea programs. As far as we are aware, such a
logic thus far not been developed, although there are a nuafii@rmalisms available for reasoning about hybrid
and continuous systems. Many of these techniques extestingxidiscrete state-based formalisms to a hybrid
model, e.g., continuous action systems [3, 18], hybricbacsystems [21], TLA [14], timed automata [1]. Here,
variables are considered to be of typene — Val (whereTime = R), to allow continuous behaviour to be
described. Parallel composition of teleo-reactive progrés simpler than these methods because synchronisation
of actions is not required.

Compositional verification of real-time systems is cleatfsirable, and almost any new formalism encompasses
some sort of compositional technique [8]. However, somstig techniques require an explicit clock to be im-
plemented or assume an interleaving model of concurrer& [P, while others assume a synchronous execution
[2]. These restrictions do not suit the teleo-reactive Bauork. Furia et al. present a compositional real-time
framework that does not make any assumptions on the modenafucrency, however, their model requires the
guarantee continue to hold past the interval in which theaeehdition holds [8].

A logic for reasoning about a single-process teleo-reagiiogram has been developed [7]. In this paper, we ex-
pand the theory and present techniques for reasoning addeatreactive programs that consist of communicating
parallel processes. Our techniques allow properties o$tifsprograms to be used, i.e., compositional reasoning,
when reasoning about the system built from them.

Our real-time logic is most influenced by the duration calsyR?2] but tailored to suit the teleo-reactive program-
ming model, e.g., we consider both open and closed inte\dslo not use the duration calculus directly because
its rules focus on lower-level reasoning and on relatiomsbietween intervals.

This paper is organised as follows. In Section 2 we presenteal-time logic and in Section 3 we present the
syntax and semantics teleo-reactive programs. We presentles for reasoning about teleo-reactive programs in
Section 4 and in Section 5 we present a case study by verigirapridged version of the production cell.



2 Areal time framework

In Section 2.1, we present some preliminary theory on iatenstreams and predicates. In Section 2.2, we present
a theory for reasoning over partitions of intervals.

2.1 Preliminaries

Interval predicates An interval is a contiguous subset ©ime (represented by real numbek3. Intervals may
either be open or closed at either end and may also be infhitéterval has type

Interval= {ACR| A# {3 AVt e Aot <t =Vt Ret<t' <t =t' €A }

Thus, ift andt’ are in the intervalA, then all real numbers betwe¢randt’ are also inA. For an interval
A € Interval, we letlub.A andglb.A denote the least upper and greatest lower bounds, oéspectively where
‘. denotes function application. We ugeA (equal tolub.A — glb.A) denote the length oAA. For intervals
A, A’ € Interval, we define thedjoinsrelation betweem andA’ as follows:

Ao A" = (lub.A=glb.A")A(AUA" €Interval) A (ANA={})
That is,A o« A’ states that\’ is an interval that immediately followA.

We define astate spacas>y = V — ValwhereV C Var is a set of variables andal a set of values. We leave
out the subscript i¥/ is clear from the context. fredicateover a typeX is given byPX = X — B, astateis a
member o, and astate predicatés a member ofP3. The (real-time) stream is given I8treany = Time— Xy
which is a total function from times to states with variablesA stream predicatés a member of°Streany and
aninterval predicatds a member of the séhtvPred, = Interval — PStreary. Interval predicates allow us to
reason about the behaviour of a stream with respect to a gitenval. We letvarsc andvarsp denote the sets of
all variablesV that may occur free in € PXy andp € IntvPred,.

The boolean operators may be lifted pointwise to state atedvial predicates, e.gip;1 A p2).A.tr = (p1.A.tr A
p2.A.tr) for interval predicatep; andp.. We define some further notation for stream predicapeandsp:

(sp = sp) = Vir:Streame sp,.tr = sp.tr
(p1 = p2) = VA:lntervale p;.A = p2.A

‘&’ and ‘=’ are similarly defined with=-' replaced by ' and ‘=’, respectively.

We let hm f.xand lim f.x denote the limit of .x from the left and right, respectively. To ensure that thetlim
x—at

well- defmed we assume that each variable V is piecewise continuous ime Streany [9]. For an expression
e € X — Val, intervalA € Intervaland streans € Stream we define:

€.As = lim es
t—lub. A~
e As = lim es
t—glb. A+
(le).A = 3FA’:Intervale (A’ oc A) A €A/
(1e).A = 3JA’:Intervale (A oc A') A €A

Thus,e and @ return the value oé at thestart andendof the given interval, respectively, whilg andte denote
the value ofe beforeand after the given interval, respectively. Note thamay be a state predicate, in which
case the operators above evaluate to a boolean. For a stdiegiec, theeverywhereandsometimeperators are
defined as follows:

(EC).As = Vit:Aecs
(He).As = 3dt:Aecs

Thus,®=c and[Hc hold iff ¢ holds at every and some time in the given interval, respelgtiwVe define thehop
andalwaysin a similar manner to the duration calculus [22]. Given iuné predicate®, p;,p2 € IntvPredand



interval A € Intervalwe define:

(pl ; pQ)A = 3A17A2: Interval e (Al X AQ) A (A = Al U AQ) A pl-Al A pQ.AQ
(Op).A = VA:Intervale A’ C A = p.A’
(Op).A = 3FA’:Intervale (A oc A') A p.A’

Thechopoperator ‘;" allows the given interval to be split into two 8@tp; holds for the first part angds holds
for the second. Theverywhereperator[], states that the given interval predicate to hold over dirgervals of
the given interval. We define the following shorthand notatti

Pr:pz = p1V(p1; P2) 1)
Op = —U-p (2)

Vp = OpVvOp (3)
prunpy = paV (Hpi; p2) vV (Hpr A O(p1 V p2)) (4)
pLwupy = pp = (ppunp) (5)

The weak chop(p; : p2).A holds iff p; holds overA or if (p; ; p2).A holds, Op states thap holds in some
subinterval of the given interva¥/p states thap holds sometime within or immediately after the given in&dyv
p; un ps states thap; holdsunless p holds andp; wup, is theweak unlessperator, which only requirgs un p
to hold if p; holds.

Because an interval predicate has access to entire str@aay inention properties of the stream outside the given
interval. As an extreme example, we define

(IIp).A.s = p.Times
which states that hold over all time irs, i.e., (IIp).A ignores the given intervah.

Two adjacent intervals do not overlap at any point. Becauseerpressions are only piecewise continuous, we
must use| to link the last value of an expression in the previous irdetw the first value in the current interval. In
particular, we use to define invariance of a state predicate.

Definition 1 A state predicate c imvariantover an intervalA iff (inv.c).A holds, where
inv.c = Jc= &C
Thus,inv.c holds iff ¢ continues to hold within the given interval provided thatholds. Usinginv, we define

stability of a variabler and a set of variablég as follows:

Fk e inv.(v =K) (6)
W:V e stv (7)

stv
stV

b

Thus, if the value of is kimmediately before the given interval, then the valug céfmainsk for the whole of the
interval. A set of variable¥ is stable if each variable M is stable.

2.2 Partitions, splits and joins

We often reason about a large interval by reasoning abostligtervals. It is particularly useful to consider a
partition of an interval. We usseq .X to denote a possibly infinite sequence with elements of ¥/p& sequence

can be explicitly defined using angle bracketsand ‘)’, and "’ is the sequence concatenation operator. For a
sequence of sets, we define we defing)o = (J;. 4o o i
Definition 2 (Partition) A partitionof an intervalA € Interval is given by
partA = {zseq.Interval | (A =J2) A (Vi:dom.z— {0} ¢ Z_; ox z)}
A non-Zeno partitiorof an A is given by

NZpartA = {zpartA | (dom.z=N) = (L.A =c0)}



Definition 3 (Alternates) For a state predicate c, interval € Interval and a partitiony € part. A, we define

alt.cd = Vi:dom.je ((EC).0i A (i+ 1€ dom.j) = (EC).0iy1) A
((®—C).0i A (i+ 1 € dom .0) = (HC).0i+1)

Definition 4 (Non-Zeno) A state predicate c ison-Zenoin A iff there exists & € NZpartA such that altc.o
holds and we say c ison-Zendff c is non-Zeno in every interval € Interval.

Definition 5 Suppose p is an interval predicate. We say

1. pjoinsin A iff (Vé: NZpartA e Vi: dom .j e p.ji) = p.A.
2. psplitsin A iff p.A = V§: NZpartA e (Vi: dom .0 e p.jj).

We say goinsand psplitsiff p joins in A and p splits inA, respectively for any arbitrary intervah.

If p joins and holds over all intervals within an arbitrary p@oti of A, thenp is guaranteed to hold ovek.
Conversely, ifp splits andp.A holds, therp may be distributed over any partition &f. Note that ifp joins then
(p; p) = pand ifp splits therp = Op.

Lemma 1 For any state predicate c, interval predicate ioboth joins and splits.

The next lemma allows us to perform case analysis to provedtae of the fornp; = p», provided that the case
analysis is performed on a non-Zeno state predicate.

Lemma 2 (Split) If p; splits and p joins, then p = p, holds provided there exists a non-Zeno state predicate ¢
and both of the following hold:

pLAEC = p2 (8)
pLABEC = P (9)

Proof 1 For an arbitrary intervalA € Interval,

p1-A
= cisnon-Zeno
p1.A A 35: NZpartA e alt.c.d
=  Definition 5, p splits
36: NZpartA e alt.c.d A Vi:dom.j e p;.d;
= (8)and(9)
39: NZpartA e Vi: dom .j e ps.d;
=  Definition 5, p joins
pg.A O

We may use transitivity to split proofs of progress promtiThe proof for this lemma may be found in [7].
Lemma 3 (Transitivity) Suppose pand p, are interval predicates, c is a state predicatg, gplits, and0 <
€1, €2 € Time. Then

pl/\%/\(€261+62)3Vp2
holds provided that for some state predicateboth of the following hold:

PATA(L>eq) = VT (10)

p1 A ﬁ N (f >e) = Vpe (12)



Figure 1: Guarded sequence and parallel composition
3 Teleo-reactive programs with parallel composition

In this section, we formalise the syntax and semantics ebtetactive programs under various forms for compo-
sition and present a rely/guarantee style framework fasamilmg about their properties. We present the abstract
syntax of teleo-reactive programs in Section 3.1 and peotheir semantics in Section 3.2.

3.1 Syntax

Definition 6 The abstract syntax ofteleo-reactive prograis given by P below.

GP = ¢c—P N
P == O:r,g] | seq.GP | P[P

An actionO: [[r, g consists of a set of input variablds arely condition,r, aguaranteecondition,g, and a set of
output variablesQ. A guarded programs — M consists of a guard and a progranM. A basic program may
either be an action, a sequence of guarded programs or farsieglthe parallel composition operator (cf. Fig. 1).
Parallel compositiorallows a new program to be formed using the concurrent eiataf two existing programs.
In Fig. 1, a new prograanWMQ is created usin/l; andM,. Note that parallel composition is not necessarily
commutative because the outputsvbf may be used as inputs kd..

Because teleo-reactive programs execute in a truly coecumanner, we must be able to determine the outputs
of a teleo-reactive program.

out(O:r,g]) = O
out() = {}
out({c—M)"S = outMUoutS
out(Mlﬂ)Mg) = outM; UoutM,

To ensure that the programs we specify are implementablelefiee a number of healthiness constraints on the
program. The behaviour of any acti@n [r, g] may not assume properties of the outputs. Hence we require:

r € IntvPred, for someV C Var\O for any actionO: [r, g] (12)
For a guarded sequence of programs, we disallow Zeno-likavieur of the guards. Hence we require:
cis a non-Zeno state predicate for any progrigm> M) — S (13)
Finally, two programs executing in parallel may not modig same outputs. Hence, we require:

outM; NoutM, = {} for any progranM1WM2 (14)

3.2 Semantics

The behaviour of a teleo-reactive program is given by thebielur functionbeh P — IntvPred which is defined
in terms of functiorbeh:: P — IntvPredwhereF is a set of variables. We assume tkad outM when we write
beh:.M.



Definition 7 If M is a teleo-reactive program and € Var is a set of variables, then:

beh.(O:[r,g]) = r=gAst(F\O) (15)
beh.() = true (16)
beh.T = ((EcA beh.M): (5T A beh.T)) v (17)
((B—c A behe.S): (T A beh:.T))
beh-.(Mi M) = behk o, My A behe o, M (18)

By (15), the behaviour of an acti@yi.e.,bel:.a states that the guarantee conditipmolds and all output variables
in F that are not irD are stable provided that the rely conditioholds. The behaviour of an empty sequence of
programs, (16), is chaotic, i.e., any behaviour is allowgg. (17), the behaviour of a non-empty sequence of
guarded programg,, is defined recursively — there are two disjuncts correspani eithermc or m—c holding
initially on the interval. If&c holds initially, eithers=c A beh:-.M holds for the whole interval or the interval may
be split into an initial interval in whicliEc A beh:.M holds, followed by an interval in whichc holds initially
andbeh:.T holds (recursively) for the second interval. Note that edubpped interval must be a maximal interval
over which eithemc or ®m—c holds. Note that by (13)peh-.T does not display Zeno-like behaviour, i.e., we
cannot split a given finite interval into an infinite partitiof finite intervals. By (18), the behaviour of the parallel
composition of two programs is defined to be the conjunctioloth behaviours, however, we must remove the
outputs ofM, from the when defining the behaviourgf; and vice versa.

In a sequence of guarded programs, programs that appegar éarthe sequence are given priority over later
programs. For example, in a sequefce— My, c; — My), if the guarde; ever becomes true, théh, stops and
M; begins executing. Hence, the guardwf is effectively—c; A ¢,. If neitherc, norc, holds, then neithe,
nor M, is executed, then any behaviour is allowed [10]. By definitibe variablesut M, \out M, are guaranteed
to be stable during execution d; and similarly, variable®ut M,\outM; are guaranteed to be stable during
execution oM.

The next lemma states that a sequence of guarded programsenttecomposed providegt or m—c holds over
the given interval.

Lemma4 SupposeS S, andT=S, ~ (c — M) 7 S, are sequences of guarded programscFVar is a set of
variables; and r and g are interval predicates. Then:

mc = (behr.T = beh.M) (19)
B-c = (beh.T =bet.(S ")) (20)

4 Rely/guarantee

Teleo-reactive programs are reactive, i.e., execute odgnamic environment, and hence, we use rely/guarantee
style reasoning to take the behaviour of the environmeatactount when reasoning about a program [12]. Here
therely condition describes properties of the inputs of the progracththeguaranteecondition describes how the
program will behave under the assumption that the rely c¢mmdholds.

A teleo-reactive program may not depend on the values ofwits autput, and hence, we require that the rely
condition of a program may only refer to its input variableswever, the guarantee may be a relationship between
inputs and outputs.

Definition 8 Suppos# is a teleo-reactive program; r and g are interval predicasesh that vars NnoutM = {};
and F D outM is a set of variables. We define:

F:{rtM{g} = rAber.M=g

Theorem 5 F: {r} O: [rr,gg] {g} holds if r= rr and gg= g hold, F2 O and varsr N O = {}.



We may use the following theorem to prove a property of a seggief guarded programs.

Theorem 6 If Sand T= (c — M) ™ S are sequences of guarded programs; r and g are intervalipages that
split and join, respectively; Fo outT; and varsr N F = {}, then F {r} T {g} holds provided that both of the
following hold:

F: {r} M {mc= g} (21)
F: {r} S {m-c=g} (22)

Lemma 7 Given that $and S are sequences of guarded programs, thefirf S, © (c — M) ~ S;{®—-c = g}
holds iff E {r}S, ™ S;{m—c = g} holds.

In prograliﬂ)Mg, the behaviours of1; andM, could conflict if M; andMsy control the same variable. This

is especially problematic because we assume true concyrras opposed to an interleaved or synchronous ex-
ecution. One way to resolve conflicts under parallel contosis to split the shared output and derive the
final value of the shared output M1W>M2 (cf [16]). For example, consider a pump (that removes watanf

a tank) operating in parallel with a hose (that adds wateh#otank). Supposwater_lvl_rate returns the rate

of change of the water level in the tank. Clearly, the pump laosk cannot modifyater_Ivl_rate simultane-
ously because the pump makeater_Ivl_rate negative while the hose makes thvater_Ivl_rate positive. To
resolve this, we may defin@ater_in_rate (only modified by the hose) andater out rate (only modified by

the pump) be the rates at which water is added and removedtfrertank, respectively. We may then define
water_lvl_rate = water_in_rate — water_out rate.

Theorem 8 If M1WM2 is a teleo—react_i;/e program, P out(M1WM2) and varsr; N outM; = vars(ra A
g1) NoutMy = {} then E{r; A r2} My || M2 {g: A g2} holds provided both of the following hold:

F\OUT.MQS {rl} M; {91} (23)
F\OUtMli {rg A 91} M, {gg} (24)

Proof 2 BecauseMlWMg is a teleo-reactive progranijn.M; U outM;) N outM, = {} holds and we have the
following calculation:

(23) A (24)
= definition and logic

(ri A beheouem,-M1 = 01) A (r2 A behryouem,-M2 = (01 = 02))
= logic, weaken antecedents

ri Atz A beheoum,-Mi A beheyoum,-M2 = g1 A (91 = 02)
= (18), definitions and logic

_>
F:{r1 /\rQ}Ml || M2 {91 /\gg} O
Lemma9 F:{r; Ara} M1WM2 {g1 A g2} holds provided both of the following hold:
F\OUT.MQS {rl} M; {91} (25)

F\outM;:{r2} Mz {01 = g2} (26)

The next lemma allows us to proganple parallelisn(see Fig. 2), i.e., when the output df; is not used as an
input toMs and vice versa. We lé¥l; || My denote the simple parallel composition betwd&nandM. Unlike

W}, programs under simple parallelism are commutative bady,.(M; || M2) = beh:.(Ms || My).

Lemma 10 (Simple Parallelism) If vars.r; N outMsy = varsro NoutM; = {} and F 2 outM; U outM,, then

F:{ri Ar2} M1 ||M2 {01 A g2}



Figure 2: Simple parallelism

holds provided that both of the following hold:

F\OUtMQS {rl} M; {91} (27)
F\OUtMli {rg} M, {92} (28)

5 Example

Our example is adapted from the production cell case stusly /e choose to simplify the problem down to just
two programs: a table and a robot arm (see Fig. 3), which isgmto demonstrate our proof technique. A table
takes disks from a feed belt and must lower them to the leveiefobot, while the robot must fetch disks from
the table and deliver them to a depot. We assume an arbituanper of disks may be placed in the depot.

The controllers for the table and robot are implementedgugiteo-reactive programs (see Fig. 5) which we
compose in parallel, thus allowing the table and robot t@eteindependently of each other. Note that we could
have implemented the robot grippers as separate prograihwiould have allowed the robot to rotate while
simultaneously opening and closing the grippers. Howdgesimplicity, we have chosen to allow the grippers to
be controlled by the robot program (using acti@$p andUngrip in Fig. 5) which allows the robot to rotate or
the grippers to open/close, but not together.

5.1 Actions

Movement of the tableT), robot R) and gripper G) is controlled by the actions defined in (29) - (34) below. The
operating speed of a componé&his given by functiony.C. For simplicity, we assume that the acceleration to and
deceleration from the operating speed is instantaneous.pidgram modifieJ.Ivl (scalar for the height of the

Depot
N D
Feedbe Table Robot

Figure 3: The production cell



table),G.dist (scalar for the distance between grippers) Rdt (vector for angle of rotation of the robot). We
assumemax_ T andmin_T represent the maximum and minimum heights of the table esly; thatmax G
represents the maximum distance between the grippersabnaid anddepare values oR.rot that ensure the
robot is rotated towards the table, at a mid-point away froentéble and at the depot, respectively.

Nil = {}:[true, true] (29)

Raise = {T.vi}: Jtrue, @(4=M = (ifT.Ivl < max.T then ¢.T else 0))] (30)

Lower = {T.vi}: Jtrue, (LM = (ifT.lvl > min_T then —¢.T else 0))] (31)

Grip = {G.dist}[true, @(2E9s' = (ifG.dist > 0 then —¢.G else 0))] (32)

Ungrip = {G.dist}: Jtrue & l(de'S‘ (ifG.dist < max G then ¢.G else 0)] (33)
ifR-rot = locthen 0

Rot,c = {Rrot}: ﬁtrue, (% = (elseifR.rot < locthen qb.R) )N (34)

else — ¢.R

By (29), Nil has no inputs or outputs and hence does nothing. By (30)R#iseaction modifiesT.lvl and
guarantees that the rate of changeldf/l is ¢.T at each point of the given interval. Conditions (31) - (34 ar
similar.

5.2 Program

The program uses constafB_Ivl andR_Ivl (scalars for the height of the feed belt and robot, respelglivdw
(scalar for width of a disk)R_arm_len (scalar for the robot arm length) amlpos (vector for the position of
the robot). Arithmetic operations on vectors are assumexktdefined in the normal manner. We assubigk
represents the set of all disks in the system and for eié&ghe Disk, we usediskpos (vector for the current
position of the center afisk) anddisklvl (scalar for the current height disk) to determine the position afisk
We defineG.pos(vector for the gripper position) using the robot posititirg length of the robot arm, the width of
the disk and the robot rotation as follows:

G.pos = R_pos+ (Rarm.len+ ¥ Rrot)

the following predicates are used to determine specifidiposi ofdiskin the system, where constafitsposand
D_posare vectors for the position of the table and depot, resgalgti

onT.disk = (diskpos= T_pog A (disklvl = T.IvI)
atG.disk = (diskpos= G.pog A (disklvl = R_Ivl)
inD.disk = (diskpos= D_pos A (disklvl = 0)
hbRdisk = atG.diskA (G.dist= dw)

Predicate®nT.disk atG.diskandonRdiskhold if diskis on the table, at the gripper location and being held by the
grippers, respectively. To detect possible collisionsveen the table and the robot arm we define a set of vectors
T_areacorresponding to a set @.posvalues for which the table and robot arm collide. We note thattable

and robot arm may overlap everGipos=# T_posholds.

We define a number of predicates which serve as shorthaneferndining the positions of the various compo-
nents. These predicates are implemented as sensors irothepon cell.

T_at FB = T.lvl = FB_IvI G_at.T = G.pos= T_pos
TatR = T.Ivi=R.v G_at D = G.pos= D_pos
full = ddisk Disk e onT.disk G_open = G.dist=maxG
holding = ddisk Disk e hbRdisk G_near.T = G.posec T_area

Thus, T_at_FB holds iff the level of the table is equal to the constaBt Ivl. The other predicates are similar. The
teleo-reactive programs for controlling the table and taifahe production cell are provided in Figures 4 and 5,
respectively.

The table only operates (i.e., executasT) over an interval in which-GnearTholds. Thus, the table does not
move while the robot arm is in the way. The programnT lowers the table by executing actidilower while
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Robot =

holding— drop_at_depot,
< full A T_at.R — pickup, >
true — Rotig
Table = drop_at_depot =
—GnearT— runT, G_at_D — Ungrip,
true — Nil true — Robep
runT = pickup =
full A =T_at.R — Lower, G_at_T A G_open— Grip,
< —full A =T_at_FB — Raise > < G_open— Rotgp, >
true — Nil true — Ungrip
Figure 4: Table controller Figure 5: Robot controller

it is full and not yet at the robot level. Execution ninT raises the table by executirRpisewhile —(full A
—T_atR) A (=full A =T_at_FB) holds, which simplifies te-full A —T_at_FB. The table executes th\il action
(which does nothing) over an interval in which the guards@fierandRaiseare false. Note that in the context of
theTable program, each of the guardsminT has—GnearTas an additional conjunct.

While it is holding a disk, th&obot program executedrop_at_depot, which places the disk it is holding in the
depot.Robot executepickup while it is not holding a disk, the table is full and is at thédod level, which picks
up a disk from the table. While there is no disk to be picked udropped off,Robot executedRotyiq, which
moves the gripper away from the table. Progm@mp_at _depot executesJngrip while the gripper is already at
the depot, otherwise, it rotates towards the depot. Progrekap executesGrip while the grippers are at the table
and the distance between the grippers exceeds the widthisk.aWhile the grippers are not at the table, but the
grippers are open far enougbickup rotates the robot to the table. The default actiomickup is to open the
grippers by executingngrip.

The overall system is constructed using simple paralletisifollows:

TR = Table ||Robot

Although the component programs themselves are simitallows the programs in Figures 4 and 5 to execute
in true parallelism to perform the complex task of transpgra disk from the feed belt to the depot.

5.3 A safety proof

A safety requirement of the system is that the robot does alfitle with the other components. Using the con-
figuration of the system, we can rule out collisions betwéenrbbot and the depot, but it may be possible for the
robot to collide with the table. Thus, we obtain a safety regraent:

TR {true} TR {inv.(GnearT= T_at.R)} (35)

Although it is tempting to use Lemma 10 and split the proob ifable and Robot components, a proof using
Lemma 10 is not possible because the valusmef{GnearT = T_at R) is modified by bothTable andRobot.
Instead, we obtain the following calculation:

(35)
< logic

TR {true} TR{mGnearTA m—T_at R= | (GnearTA -T_at R)}
< Lemma?7

; . holding— drop_at_depot,
TR {true} Nil H< true s Rotg > {®(GnearTA —-T_at R) = |(GnearTA —-T_at R)}

11



= logic

TR {true} Nil H<

< Lemma?9
T: {true} Nil {st(T.Iv))} A
R: {true} < Ragig%SLOp_aLdepOt’> {st(T.) = inv.(GnearT= T_at R)}
< firsttriple: Theorem 5
second triple: logic, usst (T.Ivl)
R: {true} < Eﬁgig%gfp‘amepm’> {inv.(=GnearT)}
<  Theorem 6 twice
R: {true} Ungrip {mholding A mG_at_D = inv.(—~GnearT)}
R: {true} Rotep{ ®holding A ®—-G_at_D = inv.(-GnearT)}
R: {true} Rotig {@—holding=- inv.(-GnearT) }
< ®G_atD = ®m—-GnearT, behk.Rotep V betkr.Rotmig = inv.(—GnearT)
true

holding— drop_at_depot,

true — ROk > {inv.(GnearT=T_at.R)}

5.4 A progress proof
A progress requirement of the system is that
“Any disk on the table is eventually at the depot.”

This can be ensured by showing that each disk reaches theo@ytonent in the production line. That is, each
disk on the table is eventually held by the robot, i.e.,

{rA{>¢} TR {onTdisk= VhbRdisk} (36)

and each disk being held by the robot is eventually placederdepot, i.e.,
{ra A (¢{>r)} TR {hbRdisk= VinD.disk} (37)

We present a detailed proof of (36), and elide the detail8d},(which are mostly similar to (36). The proof of
(37) is less complicated because it only involves intecadtietween the robot and the environment, as opposed to
the table, robot and environment in the case of (36).

(36)
< Definition 8 and logic
{ri A (£ > ¢)} TR{onT.disk A m—hbRdisk= VhbRdisk}

To prove the above, we assume a property on the movement distheln particular, we require:
ry = VT.lvl, Rrot, G.dist e OnT.disk A ®m—hbRdisk = monT.disk

which states that if the disk is on the table at the start ofnd@rval and is not held by the robot throughout the
interval, then the disk remains on the table throughoutiterval. Note that none of the free variables pfare
outputs ofTR The rely conditiorr; allows us to simplify the guarantee as follows:

{r1 A (£ > ¢)} TR{®monT.disk= VhbRdisk}

The significance of this calculation is that we can now asstivaithe disk stays on the table, as opposed to being
on the table at the start of the interval. Using Lemma 3 (it&ity) and assuming = ¢; + ¢, the condition above
holds if we can prove both of the following:

{riA(l>e)} TR {monT.disk= VT_at R} (38)
{riA(£>e)} TR {monT.diskA T_at R= VhbRdisk} (39)
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Thus, to show that a disk on the table is eventually held byrttet, we must show (38), i.e., that the table
eventually reaches the robot level. Furthermore, by (39,full table is at the robot level, then the disk must
eventually be held by the robot. The proof of (38) uses:

{true} TR {inv.(RIvl < T.lvl < FB_Ivl)} (40)

which is an easily provable safety condition.
Proof of (38).

{ri A (£ > e1)} TR{monT.disk= VT_at R}
< logic, m(onT.disk=- full)

{ri A (€ >e)} TR{m(full A =T_atR) = 1T_at. R}
<  (35), parallel composition (18)

{ri A (¢ > 1)} Table {®(full A =T_at.R A ~GnearT) = 1T_at R}
< (19)and (20)

{ri A (£ > ¢1)} Lower{m@(full A =T_at R A —-GnearT) = 1T_at R}
< (31) (i.e., definition olLower), (40) and assumption

true

Proof of (39).This proof uses the following trivially provable propedie
{true} Table {T_at Rwu fall } (41)
which states if the table is at the robot level the table i§ then the table remains at the robot level unless the

table is not full. The proof of (41) follows directly from theehaviour ofTable. Thus, we obtain:

(39)
< using (41)
{ri A (£ > e2)} TR{m(onT.disk A T_at_R) = VhbRdisk}

As before, we can now assume the table remains at the rolabtieeughout the interval as opposed to only at the
start. Assumings = €21 + €22, We apply Lemma 3 (transitivity) to obtain the following eas

{ri A€ >e1)} TR {@m(onT.diskA T_atR) = V=holding} (42)
{ri AN (€ >e2) TR {®(onT.diskA T_at_R) A —holding=- VhbRdisk} (43)

Thus, by (42) for the robot to hold the disk on the table, thigotanust eventually not be holding anything.
Furthermore, by (43) if the disk is on the table, the table tha robot level and the robot is not holding anything,
then the robot must eventually hold the disk. The first case,(#2) is proved as part of (37) and hence we elide
the detalils.

Proof of (43).The proof uses the following trivial safety property:
{true} Robot {mfull A =holding=- @—holding} (44)

then obtain the following calculation:

(43)
<  (44) becausenT.disk = full

{r1 A (£ > e25)} TR{m(onT.disk A T_at_R A —holding) = VhbRdisk!
< Theorem8

{ri A (¢ > €22)} Robot {m(onT.disk A T_at R A —holding) = VhbRdisk}

The rely condition above states that the interval is of gt or greater and throughout the interdidkis on the
table, the table is at the robot level and the robot is notihgld disk. The proof that the robot eventually holds
diskunder this rely condition is straightforward because weoalg required to consider execution of tRebot
program in isolation. For such proofs we may use the tectasiglescribed in [7] and hence, the details of the
proof are elided.
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6 Other composition operators

Besides hierarchical and parallel composition, tele@tiea programs may also be composed using hiding (Sec-
tion 6.1), feedback (Section 6.2) and pipelines (Secti8jy Ghich is derived by combining of parallel composition
and hiding.

6.1 Hiding

We define hiding as a basic form of composition that allowsades of a program to be hidden so that they may
not be used by any other program, including the environmese Fig. 6). Hiding is used to derive the pipeline
operator. For a programd and a set of variables C outM, we useM\m to denote a program in whiafm is
hidden from the environment. The outputs of progidiym s defined as:

out(M\m) = outM\m
and define the behaviour M\min a possibly larger framg 2 out (M\m) is defined as follows:

beh\m(M\m) = Ime beh:.M (45)
The following theorem allows us to prove properties of a paogafter an output is hidden.
Theorem 11 (Hiding) If m C outM, F D outM and F: {r} M {g}, then F\m: {r} M\m{3me g}.

Proof 3 Because mC outM, the variables in m do not not occur free in r. Hence, we obthim following
calculation:

F\m: {r} M\m{3me g}
= expand triple, (45)
rA(3me beh-.M) = Idmeg
< mnfir
(3mer A beh.M) = 3dmeg
< logic
F:{r}M{g} O

6.2 Feedback

Feedback allows us to use the output of a component as antimpiué same component. A natural method of
reasoning about feedback is to use fixed points with delay@]L9However, because this approach is potentially
complex, we prefer the method of Mahoney et al, where intctida of feedback is viewed as strengthening of the
initial specification to require that the output has the saalee as the input [13, 6].

Fig. 6 denotes the program where the outgutsre fed back as inputs The outputs of program with feedback
include the variables being fed back to the program, i.e.,

out(pe\heM) = outMUe

This means that the rely condition pfe\h ¢ M may not refer to input variablds The behaviour of a program is
defined to the original program, but with input variabledaepd by their output values. That is:

beh-.(ne\he M) = (beh-.M)[e\h] (46)

The following theorem allows one to prove properties of comgnts with feedback.

Theorem 12 (Feedback)If F O outM, varsr N outM = varsr; Nout(ue\h e outM) = {}, F: {r} M{g} and
F:{r1} pe\heM{rie\h]} then F {r;} pe\he M{gle\h]}.
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Figure 6: Further composition operators

Proof 4
F:{r} ne\he M{gle\h]}
= definitions
ri A beh.M[e\h] = g[e\h]
< assumption: 1 A behe.M[e\h] = r[e\h]
rfe\h] A beh:.M[e\h] = g[e\h]
= logic
(r A beh-.M = g)[e\h]
< assumption: F{r} M {g}
true O

In addition to the program with no feedback establishingnder rely conditiorr, the theorem requires that the
program extended with feedback reestabtistith fed back input® replaced by outputs.

The lemma below states that replacing a compoNeby a componer¥!” = . €\h e M within a guarded program
T = (¢ — M) ™ S then the behaviour gf e he T is equivalent to the programe\h e (c — M) ™ S

Lemmal1l31fT=({c—-M)"S,T=(c— pe\heM) ™ SandF2 outT then
beh:.(ue\heT') = beh.(ue\heT)

Proof 5
behe.(ue\he T').A
= definition of feedback
behe.(T'[e\h]).A
= logic
36: NZpartA e Vi:dom .d e ((0c A beh:.(n€\h e M))[e\h]).6; V ((H—-c A beh:.S)[e\h]).di
= definition of feedback, logic
36: NZpartA e Vi: dom .0 e (((Jc A beh=.M)[e\h]).d; v ((H—-c A behe.S)[e\h]).5
= beh definition
((behe.T)[e\h]).A
= Dbeh definition
beh-.(ne\he T).A

We provide a concrete example by considering an oscillasdris constructed using an invertier; and a feedback
loop. We let booleansn. andon be the input and output afiv, respectively. We assume trat s initially false
and thatinv inverts the value obne after a delay of lengtld. More formally, the behaviour dfiv is defined by:

beh.inv = Vt:Timee (t < ¢ = —on@Y A (ON@t + €) = —ON@t)
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Now, given the following rely condition:
rely.A = 35: NZpartA e (Vi:dom.d e £.0; =€) A alt.one.d A =0ne.dg
which states that the value ofx. flips after every time units, we have
F: {rely} inv {relyjons\on|} (47)

That is, given that the value of inpate oscillates every units, the inverter is guaranteed to oscillate the value of
outputon. The oscillatoiosc usesinv and feeds the outpain back to the inpubne. That is, we define

0SC = pong\one inv.
We prove our desired property of the oscillator:
F: {true} osc {relyjon.\on| }
using Theorem 12, (47) and the trivial propefay{rely} 1 one\on e inv{relyjon:\on}.

Although development of systems with feedback is necedsameasoning at an absolute level of precision, we
aim to incorporate the time bands logic [5] into the teleaete&ve framework. Thus, issues that require feed back
at an absolute level of precision (e.g., a program does ndifgnibss own input) are absent in the context of time
bands.

6.3 Pipelines

A pipelineis a special case of parallel composition where all outpéitsne first component become inputs to
another and the outputs of the first component are hiddentiieranvironment of the pipeline. We usg > M,
to denote the pipeline froml; to M5 (see Fig. 6), which is defined as follows:

My > My = (M; [ Ma)\outM, (48)

hence, we have

out(M; > Ms) = outM,
Pipelines inherit the healthiness conditions of paraltehposition, and hence, their behaviour in a con@xs
only defined if the healthiness conditions of the parallehposition hold.
Lemma 14 (Pipeline) If out.M; Nvars(r; A ra) =outM; Ng= {}, then

F\outM;: {r; Ara} My > M, {g}
holds provided that both of the following hold:

F\OUtMQZ {rl} M1 {91} (49)
F\outMy: {re Aag1} Mo {g} (50)

Proof 6
F\OUtMll {r1 A\ rg} M; > My {g}
= (48) and definitions
%
F\OUtMll {r1 A\ rg} (Ml H Mg)\OUtMl {g}
= Theorem 11, ouM; does not occur free imrA ro and g
_>
F:{ri AT} My [ M2 {g}
<  Theorem 8 with greplaced by g
(49) A (50) O
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7 Conclusion

Teleo-reactive programs present a novel high-level ambro@m programming and differ considerably from other
real-time frameworks. A formal framework for reasoning abteleo-reactive programs has thus far not been
developed. The semantics of a single process teleo-regutdgram are provided in [7, 10]. This paper revises this
logic and provides techniques for reasoning about telaotiee programs under various composition operators:
renaming, hiding, and parallel composition (including@pkcases pipelines and simple parallelism).

We note that the logic developed in this paper does not yedralithe nuances of real-time systems. In particular,
we have assumed perfect sampling, i.e., that all sensossarpled simultaneously, and hence each sampled state
corresponds to a real state of the system. However, in aysi@m, sensors are usually sampled one at a time, and
hence, these systems can suffer from sampling errors [5]pl&Veto encode a sampling logic into this theory as
part of future work.
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