
Deriving real-time action systems with multiple time bands
using algebraic reasoning

Brijesh Dongol1

Department of Computer Science,

The University of Sheffield S1 4DP, UK

Ian J. Hayes2

School of Information Technology and Electrical Engineering,

The University of Queensland, Australia

John Derrick1

Department of Computer Science,
The University of Sheffield S1 4DP, UK

Abstract

The verify-while-develop paradigm allows one to incrementally develop programs from their specifications
using a series of calculations against the remaining proof obligations. This paper presents a derivation
method for real-time systems with realistic constraints on their behaviour. We develop a high-level interval-
based logic that provides flexibility in an implementation, yet allows algebraic reasoning over multiple
granularities and sampling multiple sensors with delay. The semantics of an action system is given in terms
of interval predicates and algebraic operators to unify the logics for an action system and its properties,
which in turn simplifies the calculations and derivations.

1. Introduction

Modern cyber-physical systems are implemented using a digital controller that executes by sampling the
various system sensors, performing some computation, then signalling the components being controlled to
change their behaviour in accordance with the system requirements. This paper presents methods to formally
derive controllers from the system specifications, where the controllers periodically sample the environment
and signal various components when necessary. We use a logic for reasoning about complex systems with
events in different time granularities, e.g., sampling events for different components may occur at different
rates, and these rates can also depend on the properties of the system being measured. The components
being controlled can also operate at different time granularities, e.g., the effect of a motor reaching operating
speed may occur in a different time band than the effect of a switch that powers on a motor.

The derivation method builds on our method of enforced properties [15, 16, 17, 19], which uses the
verify-while-develop paradigm to incrementally obtain program code from the underlying specifications.
Our framework incorporates a logic of time bands [9, 10, 49], which allows one to formalise properties at
different time granularities and define relationships between these properties. Behaviours of components at
fine levels of granularity often involve interactions that may not necessarily be observed when assuming a

Email addresses: B.Dongol@sheffield.ac.uk (Brijesh Dongol), Ian.Hayes@itee.uq.edu.au (Ian J. Hayes),
J.Derrick@dcs.shef.ac.uk (John Derrick)

1Brijesh Dongol and John Derrick are supported by EPSRC Grant EP/J003727/1.
2Ian Hayes is supported by ARC Discovery Grant DP130102901.

Preprint submitted to Science of Computer Programming August 20, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/29140036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

coarse level of atomicity. Development of a system assuming coarse-grained atomicity can be problematic
if the atomicity assumptions cannot be realised by the system under development, causing the developed
system to become invalid. On the other hand, consideration of fine-grained interactions results in an increase
in the complexity of the reasoning. In this paper, we use a high-level logic that allows one to describe the
observable states that may occur when sampling variables at finer time-bands [10, 19, 21, 30].

We present our methods using the action systems framework, which has been used as a basis for several
theories of program refinement [3, 7, 4, 5]. In its simplest form, an action system consists of a set of actions
(i.e., guarded statements) and a loop that at each iteration non-deterministically chooses then executes an
enabled action from the set of actions. Thus, periodic sampling is naturally supported by the framework.

To model the behaviour of a program in an environment one may include actions corresponding to the
program and its environment within a single action system [7, 17] so that the actions corresponding to the
controller and its environment are interleaved with each other. However, in the context of real-time reactive
systems, this model turns out to be problematic because for example it is unable to properly address transient
properties [19, 20]. Such properties only hold for a brief amount of time, say an attosecond, and hence, a
real-world implementation would never be able to reliably detect the property. A theoretical model that
considers interleaving of controller and environment actions would require that the implementation does
detect a transient property, which is unrealistic. Instead, an implementation should be allowed to ignore
transient properties because they cannot be reliably detected. In this paper, like [19, 20], we modify the
semantics so that an action system executes with its environment in a truly concurrent manner. This allows
one to develop a theoretical model that properly addresses transient properties — an implementation is only
required to handle non-transient properties.

This paper adds to our series of papers on program derivation [16, 17, 19, 20, 24, 25]. Of these, [16,
24, 25] consider concurrent program derivation and [17, 19, 20] consider real-time programs. Our papers
[17, 19, 20] increasingly consider more realistic assumptions in concurrent real-time systems and the most
advanced of these [19] allows one to consider sampling issues and components that operate over multiple time
granularities. However, the framework itself has become increasingly complex and becomes a bottleneck to
achieving scalable derivations because program properties are expressed in an interval-based LTL-style [40]
logic, whereas the requirements are expressed using interval predicates. As a result, a derivation step is
required to transform the interval predicate requirements to the level of the program.

In this paper, we remove this bottleneck by defining a semantics for action systems using algebraic
operators in the style of Back and von Wright [6]. However, unlike Back and von Wright, we address
real-time issues by basing our semantics on an algebra for interval predicates [22, 35, 36]. This allows
one to improve uniformity across the model by enabling one to use interval predicates to express system
requirements as well as program behaviour. Thus, the additional interval-based LTL logic from [19, 20] is
completely avoided, and all proofs are carried out at the level of interval predicates.

To enable compositionality, we use rely/guarantee-style reasoning [12, 31, 38, 39], where the rely condition
is an interval predicate that specifies the behaviour of the environment. Unlike Jones, [12, 38] who defines
rely-guarantee reasoning in a relational setting, we asume that rely conditions are interval predicates that
may specify real-time behaviour [21]. The underlying theory also includes methods for reasoning about
delays and feedback.

This paper is structured as follows. In Section 2, we present a motivating example consisting of two pumps
and two water tanks. In Section 3, we present our background theory and in Section 4, we present methods
for reasoning about multiple time bands and sampling of multiple sensors. In Section 5 we present a novel
algebraic semantics for action systems, which includes constructs for reasoning about enforced properties
and rely conditions. We also discuss action system refinement. We use the theory from the earlier sections
to derive a controller for our motivating example in Section 6. We consider some related work in Section 7
and present some concluding thoughts in Section 8.

2. Example: A two-pump system

Throughout this paper, we consider a system consisting of two water tanks Tank1, Tank2 and two pumps
Pump1, Pump2 depicted in Fig. 1 (also see [1]). The environment (of the system) adds water to Tank1 and

2

Tank1

Tank2

reserve2

empty2

full2
high limit2 Button

Pump2Pump1
empty1

low limit1

reserve1

low limit2

Figure 1: Two-pump system

does not affect Tank2. We assume that Tank1 is allowed to overflow, but Tank2 is not. Pump1 removes
water from Tank1 and fills Tank2. Pump2 only operates if Button is pressed and removes water from Tank2.
Aichernig et al. [1] describe the following requirements. We have adapted their informal specification to
clarify the input/output behaviours of the pumps and to better distinguish safety (S1, S2 and S3) and
progress (P1, P2 and P3) properties. Note that a progress property to turn Pump1 off is not needed
because it is implied by safety properties S1 and S2.

S1. Whenever water1 (the water level in Tank1) is empty1 or below, Pump1 must be stopped.

S2. Whenever water2 (the water level in Tank2) is full2 or above, Pump1 must be stopped.

S3. Whenever water2 is empty2 or below, Pump2 must be stopped.

P1. If water1 is above reserve1 (Tank1 has enough water) and water2 is below reserve2 (Tank2 is about to
run dry), then Pump1 must eventually be turned on.

P2. If Button is pressed and water2 is above reserve2 (Tank2 has enough water), then Pump2 must eventually
be turned on.

P3. If Button is released, then Pump2 must eventually be turned off.

Thus, we must keep track of water levels reserve1 and empty1 in Tank1 and full2, reserve2, empty2 in Tank2.
For i ∈ {1, 2}, we distinguish between signal oni that starts/stops Pumpi , and modei that determines the
state of the Pumpi , e.g., modei = running and modei = stopped hold iff Pumpi is physically running and
stopped, respectively. To simplify the presentation we define

Runningi =̂ modei = running

Stoppedi =̂ modei = stopped

Note that Pumpi may also be associated with other modes such as starting , stopping , offline, etc.
A (digital) controller for Pump2 must sample both the water level in Tank2 and the state of Button,

perform some processing, then send on/off signals to Pump2 if necessary. Each of these phases takes
time. Furthermore, the components operate at different time granularities and hence have different notions
of precision (the amount of time that may be regarded as instantaneous [9, 10]). For example, water1

may have a precision of 30 seconds (i.e., there is no significant change in the water level in Tank1 within
30 seconds) and Pump2 turns on/off with precision 1 second (i.e., it takes Pump2 at most 1 second to
reach its operating speed or to come to a stop). Formally reasoning about the system in a manner that
properly addresses each of these timing aspects is complicated [18, 20, 29]. To reduce the complexity of the
reasoning, formal frameworks often simplify specifications by assuming that certain aspects of the system
(e.g., sampling) are instantaneous or take a negligible amount of time. However, it is well-known that such
simplifications can cause complications during implementation. In particular, the developed specifications
become unimplementable because their timing requirements cannot be satisfied by any real system [29, 51].

3

3. A logic for multiscale real-time specifications

To enable reasoning about truly concurrent behaviour, our framework uses an interval-based logic, which
we present in Section 3.1. Chop and iteration, which are used to model sequential composition and loops,
respectively, are presented in Section 3.2, and operators on interval predicates are presented in Section 3.3. In
Section 3.4 we present methods for reasoning about properties over the actual states of a system. Variations
of this theory appear in several of our papers [18, 19, 20, 21]. We note that there are some changes to
the notation from these earlier papers, which will be explained where necessary. In Section 3.5 we present
methods for identifying Zeno-like behaviours.

3.1. Intervals and interval predicates

Interval-based reasoning was first proposed by Moszkowski for discrete systems [43] as the Interval
Temporal Logic, then extended by Zhou and Hansen [52] for continuous systems as the Duration Calculus.
We have developed a variation of this theory that addresses the difficulties of reasoning at the boundary
between two intervals by requiring that two adjoining intervals are disjoint. This allows one to use the same
framework to reason about both discrete and hybrid properties [18, 19, 21, 22].

We model time using the real numbers and let Intv denote the set of all intervals, which are contiguous
subsets of time, i.e.,

Intv =̂ {∆ ⊆ R | ∀t , t ′: ∆, t ′′:R • t < t ′′ < t ′ ⇒ t ′′ ∈ ∆}

Note that both R ∈ Intv and ∅ ∈ Intv hold. We let glb.∆ and lub.∆ denote the greatest lower and least
upper bounds of interval ∆, respectively, where ‘.’ denotes function application. We use fin.∆ and inf.∆ to
denote that the least upper bound is not ∞ and is ∞, respectively. We define lub.∅ = −∞ and glb.∅ =∞.
We let empty.∆ denote that the interval ∆ is empty. Thus, we define:

fin.∆ =̂ lub.∆ 6=∞
inf.∆ =̂ lub.∆ =∞

empty.∆ =̂ ∆ = ∅

For intervals ∆, ∆1 and ∆2, we define the length of ∆ and adjoins relation between ∆1 and ∆2 as follows.

`.∆ =̂ if empty.∆ then 0 else (lub.∆− glb.∆)

∆1 ∝ ∆2 =̂ (∀t1: ∆1, t2: ∆2
• t1 < t2) ∧ (∆1 ∪∆2 ∈ Intv)

Hence, ∆1 ∝ ∆2 holds iff either ∆1 or ∆2 is empty or ∆1 immediately precedes ∆2. Note that if ∆1 ∝ ∆2

they must be contiguous across their boundary and must also be disjoint.
The sets of all subintervals, prefixes, suffixes of an interval ∆ are given by sub.∆, prefix .∆ and suffix .∆,

respectively, where:

sub.∆ =̂ {∆′: Intv | ∆′ ⊆ ∆}
prefix .∆ =̂ {∆′: sub.∆ | ∃∆′′ • ∆′ ∝ ∆′′ ∧ ∆ = ∆′ ∪∆′′}
suffix .∆ =̂ {∆′: sub.∆ | ∃∆′′ • ∆′′ ∝ ∆′ ∧ ∆ = ∆′′ ∪∆′}

Note that the set containment ensures the only prefix of the empty interval is the empty interval.
Given that variable names are taken from the set Var , a state space over a set of variables V ⊆ Var

is given by StateV =̂ V → Val , which is a total function from variables in V to values in Val . A state
is a member of StateV . The (dense) stream of states over V is given by StreamV =̂ R → StateV , which
is a total function from real numbers (representing time) to states. A predicate over a type T is given by
PT =̂ T → B, where B is the type of a boolean (e.g., a stream predicate is a member of PStreamV). An
interval stream predicate, which we shorten to interval predicate, has type IntvPredV =̂ Intv → PStreamV .
We write State, Stream and IntvPred for StateV , StreamV and IntvPredV , respectively, when the set V is
clear from the context.

4

Our intention is to use interval predicates to specify the behaviour of a system over an interval. For
example, if c is a state predicate one may define an interval predicate �c, which holds for an interval ∆
and stream s if c holds in s sometime in ∆, i.e., (�c).∆.s holds if there is a time t ∈ ∆ such that c.(s.t).

We assume pointwise lifting of the boolean operators on stream and interval predicates in the normal
manner, e.g., if p1 and p2 are interval predicates, ∆ is an interval and s is a stream, we have (p1 ∧ p2).∆.s =
(p1.∆.s ∧ p2.∆.s), true.∆.s = true and false.∆.s = false. Furthermore, properties of intervals such as fin,
inf and empty are assumed to be defined for interval predicates via lifting. When reasoning about programs
and their properties, we must often state that if an interval predicate p1 holds over an arbitrarily chosen
interval ∆ and stream s, then an interval predicate p2 also holds over ∆ and s. Hence, we define universal
implication over intervals and streams as follows. Operators ‘≡’ and ‘W’ are similarly defined.

p1.∆V p2.∆ =̂ ∀s: Stream • p1.∆.s ⇒ p2.∆.s

p1 V p2 =̂ ∀∆: Intv • p1.∆V p2.∆

A stream describes the behaviour of a system over all time, and an interval predicate describes the
behaviour over a given interval. However, because the stream already encodes the behaviour over all time, it
is possible to reason about properties outside a given interval in a straightforward manner. For an interval
predicate p, interval ∆ and stream s, we define the following.

(� p).∆.s =̂ ∆ 6= ∅ ∧ ∃∆′: Intv • ∆′ 6= ∅ ∧ (∆′ ∝ ∆) ∧ p.∆′.s

(� p).∆.s =̂ ∆ 6= ∅ ∧ ∃∆′: Intv • ∆′ 6= ∅ ∧ (∆ ∝ ∆′) ∧ p.∆′.s

Thus (� p).∆ and (� p).∆ hold iff p holds in some interval that immediately precedes and follows ∆,
respectively.

3.2. Chop and iteration

Much of the logic is built on the chop operator ‘;’ [44, 52]. However, unlike Moszkowski [44], we have a
dense notion of time and unlike the duration calculus [52] (in which intervals are always closed), the intervals
we use may be open/closed at either end. For interval predicates p1 and p2, interval ∆ and stream s, we
define:

(p1 ; p2).∆.s =̂ (∃∆1,∆2: Intv • (∆ = ∆1 ∪∆2) ∧ (∆1 ∝ ∆2) ∧ p1.∆1.s ∧ p2.∆2.s) ∨ (inf.∆ ∧ p1.∆.s)

Thus (p1 ; p2).∆ holds iff either ∆ can be split into two adjoining intervals so that p1 holds for the first
interval and p2 holds for the second, or the given interval ∆ has a least upper bound of ∞ and p1.∆ holds.
Note that empty is the unit of ‘;’, and hence (empty ; p) ≡ p ≡ (p ; empty) [22].

Using chop, we define the following iteration operators. We assume that interval predicates are ordered
using universal entailment (V) with false the least element and true the greatest [22].

pω =̂ νq • (p ; q) ∨ empty

p∗ =̂ µ q • (p ; q) ∨ empty

p∞ =̂ νq • (p ; q)

Iterations pω and p∗ are greatest and least fixed point of λ q • (p ; q) ∨ empty, respectively, where pω allows
both finite and infinite iterations of p, and p∗ only models finite iteration of p. Iteration p∞ is the greatest
fixed point of λ q • (p ; q) and only allows infinite iterations of p, unless p holds for some infinite length
suffix of the given interval.

Because we have a dense notion of time, there is a possibility for an iteration pω to behave in a Zeno-like
manner, where p iterates an infinite number of times within a finite interval. We can rule out Zeno-like
behaviour in our implementations because there is a physical lower limit on the time taken to perform
each iteration and hence a specification that allows Zeno-like behaviour can be safely ignored. However,
we must be careful not to require Zeno-like behaviour, which would cause our specifications to become
unimplementable.

5

The following lemmas allow one to fold/unfold infinite and finite iterations and to prove iterative defini-
tions via induction [6, 22, 36]. For an interval predicate p, we let p+ =̂ p ; p∗ and pω+ =̂ p ; pω denote the
finite and possibly infinite positive iterations of p, respectively.

Lemma 1 (folding/unfolding). For any interval predicate p, each of the following holds:

pω ≡ empty ∨ pω+

p∗ ≡ empty ∨ p+

p∞ ≡ p ; p∞

Lemma 2 (induction). For any interval predicates p, q and r, each of the following holds:

q V (p ; q) ∨ r ⇒ q V (pω ; r)

(p ; q) ∨ r V q ⇒ (p∗ ; r)V q

q V (p ; q) ⇒ q V p∞

3.3. Interval predicate operators

We define a number of operators on interval predicates that enable reasoning about both safety and
progress properties, which are defined in terms of chop (;) and iteration (ω). We may also define operators 2
and 3 on interval predicates, where 2p.∆ and 3p.∆ hold iff p holds in all subintervals and some subinterval
of ∆, respectively. Like [36, 44, 52], we define these operators in terms of chop as follows.

←
3p =̂ p ; true
→
3p =̂ fin ; p
3p =̂ fin ; p ; true

←
2p =̂ ¬←3¬p
→
2p =̂ ¬→3¬p
2p =̂ ¬3¬p

Hence,
←
3p.∆ (

→
3p.∆) holds iff p holds for some prefix (suffix) of ∆ (which may include all of ∆) and

3p holds iff p holds for some subinterval of ∆. Note that because true holds for all intervals, including
the empty interval,

→
3p V 3p and similarly, empty V fin, hence

←
3p V 3p. Interval predicates

←
2p.∆,→

2p.∆ and 2p.∆ hold iff p holds in all prefixes, all suffixes and all subintervals of ∆, respectively. We have
the following calculations, which can be used to convince oneself that this formulation corresponds to its
informal meaning.

(¬←3¬p).∆
= definitions
¬(¬p ; true).∆

= logic
¬(∃∆′: prefix .∆ • (¬p).∆′)

= logic
(∀∆′: prefix .∆ • p.∆′)

A similar calculation holds for
→
2p and 2p which allows one to determine that

→
2p.∆ holds iff p holds for

all suffixes of ∆ and 2p.∆ holds iff p holds for all subintervals of ∆.
The operators defined above allow p to hold on the empty interval, which simplifies the algebraic def-

initions and relationships between properties. Thus, for example, if p.∅ holds,
←
3p.∆,

→
3p.∆ and 3p.∆

are trivially true for any interval ∆. However, one would often like to specify properties that are strictly
non-empty. To this end, we define notation

p =̂ p ∧ ¬empty

In the context of state-based traces, where b1 and b2 are state predicates b1 b2 holds for a trace tr
if whenever b1.(tr .i) holds for an index i ∈ dom.tr , then there is an index j such that j ≥ i and b2.(tr .j)

6

[11, 40]. An LTL-like leads-to operator may be defined for interval predicates in terms of the above operators
as follows.

p1 p2 =̂
→
2 (
←
3p1 ⇒ 3p2)

Thus, if
→
2 (
←
3p1 ⇒ 3p2).Ω.s holds, then for any suffix ∆ of Ω, if p1.∆1.s holds for some prefix of ∆, then

p2.∆2.s must hold for some subinterval ∆2 of ∆. As one might expect [11], is both reflexive and transitive.
Certain types of interval predicate are useful for compositional proofs, where the predicates may be

moved in and out of the chop and iteration operators. Similar properties for compositionality have been
observed by Höfner and Möller [36] and also by von Karger [47, 48].

Definition 1 (splits/joins). For an interval predicate p, we say

• p splits iff p V 2p holds

• p joins iff pω+ V p holds.

If interval predicate p splits, then p holds for any subinterval of ∆ provided p.∆ holds. If p joins then
p.∆ holds provided p holds iteratively in ∆ with at least one iteration. For example, 2p splits because
22p ≡ 2p and 3p joins because (3p ; (3p)ω) V 3p holds. However, 2p may not join and 3p may not
split. We have the following lemma relating interval predicates that split and join [22].

Lemma 3. For interval predicates p, q, q1 and q2, each of the following holds:

(a) p ∧ (q1 ; q2)V (p ∧ q1) ; (p ∧ q2) provided p splits

(b) p ∧ qω V (p ∧ q)ω provided p splits

(c) (p ∧ q1) ; (p ∧ q2)V p ∧ (q1 ; q2) provided p joins

(d) (p ∧ q)ω+ V p ∧ qω+ provided p joins

Proof. The proofs of (a) and (c) are straightforward. By Lemma 2, (b) holds if

p ∧ qω V ((p ∧ q) ; (p ∧ qω)) ∨ empty

which is proved as follows:

p ∧ qω

≡ Lemma 1
p ∧ (q ; qω ∨ empty)

≡ distributivity
(p ∧ (q ; qω)) ∨ (p ∧ empty)

V assumption p splits and part (a), logic
((p ∧ q) ; (p ∧ qω)) ∨ empty

For (d), we have that (p ∧ q)ω+ V pω+ by monotonicity and therefore because p joins, (p ∧ q)ω+ V p.
Again, by monotonicity, (p ∧ q)ω+ V qω+ and the result follows. 2

3.4. Evaluating state predicates over actual states

A state predicate over a set of variables V is a member of PStateV , which may be used to denote whether
a property does or does not hold on a state. Because there are multiple states of a stream within a non-point
interval, there are several possible ways of evaluating a state predicate with respect to a given interval and
stream [30]. In particular, we distinguish between evaluations over actual states (which are the states that
actually occur within an interval) and apparent states (which are the states that a controller determines by
sampling the various inputs). Operators for evaluation in the actual states are given below and for apparent
states in Section 4.3.

7

We must often specify properties on the actual states of a stream within an interval. Thus, we define
the always ‘�’ and sometime ‘ �’ operators as follows.3

(�c).∆.s =̂ ∀t : ∆ • c.(s.t)

(�c).∆.s =̂ ∃t : ∆ • c.(s.t)

Example 1. For variable x and stream s such that s.0.x = 41 and (� x̊).[0, 2].s = 1 hold, where x̊ denotes
the rate of change of variable x , i.e., derivative with respect to time (c.f. [33]), we have:

• (�(x < 42) ; �(x ≥ 42)).[0, 2].s holds because there exist adjoining intervals [0, 1) and [1, 2], such that
both (�(x < 42)).[0, 1).s and (�(x ≥ 42)).[1, 2].s hold;

• (�(x ≤ 42) ; �(x > 42)).[0, 2].s holds because there exist adjoining intervals [0, 1] and (1, 2], such that
both (�(x ≤ 42)).[0, 1].s and (�(x > 42)).(1, 2].s hold;

• however (�(x < 42) ; �(x > 42)).[0, 2].s does not hold.

Intervals may be open or closed at either end, and hence, defining the value of a variable at the ends of an
interval is non-trivial. For instance, suppose we are interested in defining the value of variable v at the right
end of an interval ∆. If ∆ is right closed, the value of v at the right end of ∆ is simply its value at the least
upper bound of ∆. However, if ∆ is right open, because lub.∆ 6∈ ∆, one must take the limit of v approaching
lub.∆. Because we only assume piecewise continuity, it is possible for the values of v approaching lub.∆ from
the left and right to differ (e.g., if there is a point of discontinuity at lub.∆). To ensure that the value of v
for the right end of an open interval ∆ is sensible, we take the limit of v approaching lub.∆ from below. A
similar argument applies to the value of v at the left end of ∆. We use lim

x→a+
f .x and lim

x→a−
f .x to denote the

limit of f .x as x tends to a from above and below, respectively. To ensure that the limits are well defined,
for each s ∈ StreamV and v ∈ V , we assume that (λ t • s.t .v) is piecewise continuous.

For a variable v , interval ∆, and stream s, we define the following, where we assume ⊥ denotes an
undefined value.

−→v .∆.s =̂


s.(lub.∆).v if lub.∆ ∈ ∆

lim
t→lub.∆−

s.t .v if lub.∆ ∈ R\∆

⊥ otherwise

←−v .∆.s =̂


s.(glb.∆).v if glb.∆ ∈ ∆

lim
t→glb.∆+

s.t .v if glb.∆ ∈ R\∆

⊥ otherwise

Thus, if ∆ is right closed, then the value of −→v in ∆ is the value of v at the least upper bound of ∆, if ∆ is
right open and lub.∆ ∈ R, the value of −→v is the value of v as it approaches lub.∆ from the left, otherwise
the value is undefined. The interpretation of ←−v .∆ is similar.

We interpret boolean expressions that use ←−v and −→v using pointwise lifting. For example, if k is a
constant, we have (←−v = k).∆.s = (←−v .∆.s = k .∆.s) = (←−v .∆.s = k).

Example 2. For x and s as defined in Example 1, both (−→x = 42).[0, 1).s and (←−x = 42).[1, 2].s hold.

Example 3. Suppose y is a piecewise continuous discrete variable, such that in a stream s, both �(y =
10).[0, 1).s and �(y = 20).[1, 2].s hold. For example, y may represent the voltage that instantaneously
jumps from 10 to 20. Then both (−→y = 10).[0, 1).s and (←−y = 20).[1, 2].s hold, i.e., the limit of the value of
y approaching time 1 from the left differs from the value at time 1.

3The notation for always and sometime has changed from that in [18, 19, 20, 21].

8

For a variable v and set of variables V we define the following:

stable.v =̂ ∃k : Val • �(−→v = k) ∧ �(v = k)

stable.V =̂ ∀v : V • stable.v

Hence, a variable v is stable, denoted stable.v , iff its value does not change from its value at the right end of
some immediately preceding interval, and stable.V holds iff each variable in V is stable. Such definitions of
stability are necessary because adjoining intervals are disjoint, and hence �(−→v = k).∆ does not necessarily
imply (←−v = k).∆ and vice versa. However, for a continuous variable v , we have

stable.v ≡ ∃k : Val • (←−v = k) ∧ �(v = k) .

Lemma 4. If x is a boolean-valued variable, both of the following hold:

stable.x V �x ∨ �¬x (1)

�x ∧ stable.x V �x (2)

Proof. Condition (1) holds by case analysis on the value of x at the end of the immediately preceding
interval. For condition (2), we have the following calculation:

�x ∧ stable.x
V (1)

�x ∧ (�x ∨ �¬x)
≡ �c V ¬empty

�x ∧ ¬empty ∧ (�x ∨ �¬x)
≡ logic and �x ∧ ¬emptyV �x
�x 2

Notation ←−c and −→c are used to denote the values of state predicates at the left and right ends of an
interval, respectively, where

←−c =̂
←
3�c

−→c =̂
→
3�c

For any state predicates c, c1 and c2, each of the following hold:

←−−−−
c1 ∧ c2 ≡ ←−c1 ∧ ←−c2
←−−−−
c1 ∨ c2 ≡ ←−c1 ∨ ←−c2

←−¬c V ¬←−c

Note that for a variable v and constant k , (←−v = k) may not imply
←−−−
v = k , and vice versa. To see this,

consider the following example:

Example 4. For x and s as defined in Example 1, (
←−−−−
x 6= 42).(1, 2].s holds even though (←−x = 42).(1, 2].s

holds. Clearly, the value of x at time 1 is 42. Hence, the left limit of the variable x within (1, 2] is 42
because the value of x will be arbitrarily close to 42 as we approach the greatest lower bound 1 from the
right. However, the left limit of the predicate x = 42 is false because x = 42 is evaluated in states within
the interval (1, 2], and x 6= 42 for each of these states. For the closed interval [1, 2], both (←−x = 42).[1, 2].s

and (
←−−−−
x = 42).[1, 2].s hold because the value of x in state s.1 is 42.

Using the values at the beginning and ends of an interval, we define the following property of state
predicates. We say that a state predicate c is invariant over an interval ∆ iff inv.c.∆ holds where:

inv.c =̂ �−→c ⇒ �c

9

Thus, if inv.c.∆ holds, then c holds in each of the actual states within ∆ provided that c holds over some
interval that immediately precedes ∆. Note that c may be invariant in an interval even if the variables in c
change within the interval.

A variable is right stable iff its value does not change at the end of the current interval and a set of
variables is right stable iff each variable in the set is right stable. Thus, we define

right stable.v =̂ ∃k : Val •
−−−→
v = k ∧ �

←−−−−−
(v = k)

right stable.V =̂ ∀v : V • right stable.v

Note that there is a fundamental difference between the definitions of stable and right stable. If v is a
continuous variable, stable.v ≡ ∃k : Val • (←−v = k) ∧ �(v = k), whereas right stable.v cannot be simplified so
that the immediately following interval need not be considered because the predicate v = k must hold at
the end of the current interval, and at the start of the interval that immediately follows the given interval.

3.5. Zeno-like behaviour

Because we have a dense notion of time, it is possible for interval predicates to specify Zeno-like behaviour,
e.g., a state predicate may switch between true and false an infinite number of times within a finite interval.
As mentioned earlier, a specification that allows Zeno-like behaviour is not problematic because a real system
will not behave in a Zeno-like manner. However, one must take care not to require Zeno-like behaviour,
which would mean the system specification is unimplementable.

We assume sequences have natural number indices (starting from 0) and may be infinite.

Definition 2 (partition). The set of all partitions of an interval ∆ is given by

partition.∆ =̂ {z ∈ seq.Intv | (∆ =
⋃

ran.z) ∧ (∀i ∈ dom.z • z .i 6= ∅ ∧ (i 6= 0⇒ z .(i − 1) ∝ z .i))}

The set of non-Zeno partitions of ∆ is given by

nz partition.∆ =̂ {z ∈ partition.∆ | `.∆ 6=∞⇒ dom.z 6= N}

Thus, z is a non-Zeno partition of ∆ iff z has a finite number of elements whenever ∆ is finite.

Definition 3 (alternates). For a state predicate c, interval ∆, partition z ∈ partition.∆ and stream s, we
define

alt .c.z .s =̂ ∀i ∈ dom.z • (�c ∨ �¬c).(z .i).s ∧ (i > 0⇒ ((�c).(z .(i − 1)).s = (�¬c).(z .i).s))

Thus, alt .c.z .s holds iff z contains a single interval ∆ and either (�c).∆.s or (�¬c).∆.s holds, or c alternates
between �c and �¬c holding within the partition z .

Definition 4. A state predicate c is non-Zeno in stream s within interval ∆, denoted (NZ .c).∆.s, iff there
exists a z ∈ nz partition.∆ such that alt .c.z .s holds.

Note that, if such a z exists, then it is unique. Further note that NZ .c splits for any state predicate c.
The lemma below allows one to decompose a proof of an interval predicate that joins by considering

subintervals in which some state predicate c is true and false separately. The lemma requires that the
chosen c is non-Zeno — if c is true on the irrationals and false on the rationals then the iteration operator
(used in joins) will be invalid [23].

Lemma 5. If p is an interval predicate that joins and c is a state predicate, then the following hold:

2(�c ⇒ p) ∧ 2(�¬c ⇒ p) ∧ NZ .c V p (3)

2(�−→¬c ∧ �c ⇒ p) ∧ 2(�−→c ∧ �¬c ⇒ p) ∧ NZ .c V (�−→c ∧ ←−¬c) ∨ (�−→¬c ∧ ←−c)⇒ p (4)

2(�−→¬c ∧ �c ⇒ p) ∧ 2(�−→c ∧ �¬c ⇒ p) ∧ NZ .c V
→
2 ((�−→c ∧ ←−¬c) ∨ (�−→¬c ∧ ←−c)⇒ p) (5)

10

For each of the proofs below, we assume V ⊆ Var , ∆ ∈ Intv and s ∈ StreamV are arbitrarily chosen,
and that (NZ .c).∆.s holds. The proofs are trivial if ∆ is empty. The proofs below cover the cases when ∆
is non-empty.

Proof of (3).
(NZ .c).∆.s

⇒ definition
∃z : nz partition.∆ • alt .c.z .s

⇒ assumption (2(�c ⇒ p) ∧ 2(�¬c ⇒ p)).∆.s
∃z : nz partition.∆ • ∀i : dom.z • p.(z .i).s

⇒ p joins
p.∆.s

Proof of (4).
(NZ .c).∆.s

⇒ definition
∃z : nz partition.∆ • alt .c.z .s

⇒ alt .c.z .s and assumption (�−→c ∧ ←−¬c) ∨ (�−→¬c ∧ ←−c).∆.s
∃z : nz partition.∆ • ∀i : dom.z • ((�−→c ∧ �¬c) ∨ (�−→¬c ∧ �c)).(z .i).s

⇒ assumption 2(�−→¬c ∧ �c ⇒ p) ∧ 2(�−→c ∧ �¬c ⇒ p).∆.s
∃z : nz partition.∆ • ∀i : dom.z • p.(z .i).s

⇒ p joins
p.∆.s

Proof of (5). For an arbitrarily chosen ∆′ ∈ suffix .∆, because NZ .c splits, we have NZ .c.∆′.s. Furthermore,
2p splits for any interval predicate p, so we also have (2(�−→¬c ∧ �c ⇒ p) ∧ 2(�−→c ∧ �¬c ⇒ p)).∆′.s,
i.e., the conditions of (4) are satisfied in ∆′, and hence, the result follows. 2

4. Time bands and sampling

In Section 4.1 we present the notion of time bands—these allow one to formalise properties at multiple
time scales. Section 4.2 discusses sampling activities and demonstrates the typical structure of real-time
controllers and a range of issues that these controllers must handle. Apparent states and related operators
are introduced in Section 4.3—these allow one to reason about sampling activities. Finally, in Section 4.4
we present methods for deducing the ranges of possible actual values of sampled variables.

4.1. Time bands

Several frameworks for reasoning about properties over multiple time granularities have been proposed.
Moszkowski presents a method of abstracting between different time granularities for interval temporal logic
using a projection operator for a discrete interval temporal logic [42]. Guelev and Hung present a projection
operator for the duration calculus. Although computation is assumed to take time, the time taken is assumed
to be negligible [28]. Henzinger presents a theory of timed refinement where sampling events are executed
by a separate process [34]. Broy [8] presents a timed refinement framework that formalises the relationships
between dense and discrete time where sampling is considered be a discretisation of dense streams. We use
the time bands framework, which generalises reasoning over multiple time granularities and encapsulates
the methods in [8, 28, 34, 42]. Furthermore, it includes methods for reasoning about sampling. Note that by
mapping other frameworks such as Z, or automata to an appropriate interval-based semantics, it is possible
to adapt these frameworks to cover sampling.

The central idea behind the time bands framework is that it associates each system component with
a time band, which formalises the time granularity and precision of the component. It is possible to
define relationships between different time bands, which in turn establishes timing relationships between the
components at these time bands. Each time band is associated with a precision, which defines the maximum

11

SamplingBlock(i) =̂
if ti ≤ τloc →

vi := read(inputi) ;
if ci1 → output(vali1)
else if ci2 → output(vali2)
. . .
else if cim → output(valim)
fi ;

fi ;
ti := ti + Periodi

t1, . . . , tn := τ, . . . , τ ;
do true →

τloc := τ ;
// Sampling period 1
SamplingBlock(1) ;
// Sampling period 2
SamplingBlock(2) ;
. . .
// Sampling period n
SamplingBlock(n)

od

Figure 2: Typical structure of a real-time controller

amount of time taken to execute any event of that time band. Events are considered to be instantaneous
in their time band, but may be mapped to an activity in a finer-grained time band, within which the event
may be observed to be an activity that takes time.

We assume that the set of all time bands is given by the primitive type TimeBand [9, 10]. Each
time band may be associated with events that execute within the precision of the time band. We use
ρ: TimeBand → R>0 to denote the precision of the given time band. An event in a time band β is guaranteed
to be completed within ρ.β.

4.2. Sampling activities

A reactive controller uses sampling activities to determine the state of its continuously evolving envi-
ronment. Because sampling activities take time and because the environment operates in parallel with the
controller in a truly concurrent manner, sampling activities can be prone to sensor errors (where the sensors
have inaccuracies in measuring the environment), timing precision errors (where there is a range of possible
sampled values due to imprecise timing of when the sample is taken), and sampling anomalies (where a
sampling activity that samples more than one environment variable at slightly different times returns an
apparent state that does not exist at any single instant of time). In this paper, we focus on timing precision
errors and sampling anomalies — reasoning about the sensor errors is a straightforward extension.

Example 5. As an example consider the program in Fig. 2 which represents a typical implementation. The
program initially sets the values of t1, t2, . . . , tn to the current time τ then executes a non-terminating loop
with n sampling blocks. Each block represents a different set of inputs sampled with different time periods.
Within sampling block i , a vector of inputs inputi is read and stored in a vector of variables vi. The
program outputs vector of outputs valik if guard cik holds. The time ti is then updated so that the timer
expires and inputi is resampled after Periodi units of time have elapsed. Typically, each of these sampling
blocks takes place over differing time periods because different components are controlled at different rates,
and hence the values of Periodi are different.

Real-time controllers often evaluate an expression over an interval by sampling the variables of the
expression at different instants within the sampling interval. For the example in Fig. 2, although the read
command samples the vector of inputs inputi, each input is read at a slightly different time. Hence, reasoning
about an expression evaluation that samples two or more variables can be problematic. To minimise such
sampling anomalies similar samples are taken within the same sampling block.

Example 6. The control flow diagram for the two-pump system is given in Fig. 3, where controller C must
sample variables water1, water2, and pressed (as indicated by the dotted lines) and outputs on1 and on2

to signal Pump1 and Pump2, respectively. Pumpi takes oni as input and outputs modei . Note that mode1

affects both Tank1 and Tank2, whereas mode2 only affects Tank2.

12

mode1

C

on1
Pump1

Pump2on2

Button

Tank2

Tank1
water1

pressed

water2

mode2

Figure 3: Control flow diagram for two-pump example

x

y

sa2 sa3sa1

∆1 ∆2 ∆3

Figure 4: Sampling activities

Example 7. Consider the three sampling activities sa1, sa2 and sa3 in Fig. 4, where environment variables
x and y are sampled at different times within the interval. Event sa1 will return x < y regardless of when x
and y are read within the sampling interval because x < y definitely holds for all sampled values of x and y .
Event sa2 may return either x > y , x = y or x < y because it is possibly true that x > y , x = y and x < y
hold. Event sa3 may have a sampling anomaly. Although x > y holds throughout the interval in which sa3

occurs, because x and y are sampled at different times, it is possible for sa3 to return either x > y , x = y
or x < y .

Note that with the controller scheme presented in Fig. 2, variables are sampled at most once, hence, if a
variable occurs multiple times within an expression, the same sampled value is used for each occurrence of
the variable. Hence, expression x = x is guaranteed to evaluate to true regardless of how x changes within
the evaluation interval, however, x > y may evaluate to false even if �(x > y) holds [10, 18, 30] as in sa3 in
Figure 4.

Using a sampling logic over intervals allows one to resolve transient behaviour and hence avoid formali-
sation of unimplementable specifications. We say a state predicate is transient in a stream if the predicate
only holds for a brief (e.g., an attosecond) amount of time, whereby it is not possible to reliably detect that
the predicate held [17, 20].

4.3. Apparent states

We use the set of apparent states of s ∈ StreamV within interval ∆ (denoted apparent .∆.s) to reason
about sampling-based expression evaluation. An apparent state over an interval ∆ gives a value for each
variable x that is a value of x in ∆ but the values of different variables x and y within an apparent state
may be (sampled) at different times within ∆. We define the set of all possible apparent states over an
interval ∆ for a stream s as follows.

apparent .∆.s =̂ {σ: StateV | ∀ v : V • σ.v ∈ {t : ∆ • (s.t).v}}

where {t : ∆ • (s.t).v} is equal to {x ∈ Val | ∃t : ∆ • x = (s.t).v}. To obtain the apparent states, for each
variable v we first generate {t : ∆ • (s.t).v}, the set of possible values of v within the interval, then generate
the set of all possible states using these values. We formalise state predicates that are definitely true (denoted
�) and possibly true (denoted �) over a given interval ∆ and stream s as follows:

(�c).∆.s =̂ ∀σ: apparent .∆.s • c.σ

13

(�c).∆.s =̂ ∃σ: apparent .∆.s • c.σ

Hence, (�c).∆.s and (�c).∆.s hold iff c holds in every and in some apparent state of s within the interval
∆, respectively.

Example 8. For intervals ∆1, ∆2 and ∆3 as given in Fig. 4, one can deduce both (�(x < y)).∆1 and
(�(x < y) ∧ �(x ≥ y)).∆2. For se3 (the event with a sampling anomaly), (�(x ≤ y)).∆3 holds, despite
the fact that �(x > y).∆3 holds.

One can derive a number of relationships between operators �, �, � and �. Because the set of actual
states over an interval ∆ is a subset of the apparent states over ∆, one can derive the following [30].

�c V �c (6)

�c V �c (7)

However, the converse of each implication is not necessarily true.
Sampling anomalies can only be present if multiple (evolving) variables are sampled within an interval.

Thus, for a predicate, say c, that only refers to a single non-stable variable, it is equivalent that c definitely
holds and that c holds everywhere within an interval [30]. We let vars.c denote the set of free variables in
state predicate c. The following lemma states that if all but one variable of c is stable over an interval ∆,
then c definitely holds in ∆ iff c always holds in ∆ and c possibly holds in ∆ iff c holds at some time in ∆
[30].

Lemma 6. For any state predicate c and variable v, stable.(vars.c \{v})V (�c = �c) ∧ (�c = �c).

Example 9. As an example, we develop a formalisation of the informal requirements of the two-pump
system in Section 1.
Safety. The safety properties S1, S2 and S3 are properties that are required to hold when the controller
is operating. The relationship between the water level and the pump modes must hold in the actual states
of the system, as opposed to the apparent states observed by the controller. Hence, each of S1, S2, and
S3 are formalised using ‘�’. However, the requirements as stated in S1, S2 and S3 are too strong, and
hence, unimplementable. For example, S1 may be violated if water1 is just above empty1 and the Pump1 is
running at initialisation, whereby water1 drops below empty1 as soon as the action system is started. Such
circumstances are beyond the control of the action system controller, therefore, we weaken requirements S1,
S2, and S3 to assume some properties about the initial state of the system. In particular, we rephrase S1,
S2 and S3 as T1, T2 and T3, respectively below. The modified portions of the requirements are highlighted
in boxes.

T1. Provided that Pump1’s mode is initially stopped and Pump1 is not signalled on, whenever water1 (the

water level in Tank1) is empty1 or below, Pump1 must be stopped.

T2. Provided that Pump1’s mode is initially stopped and Pump1 is not signalled on, whenever water2 (the

water level in Tank2) is full2 or above, Pump1 must be stopped.

T3. Provided that Pump2’s mode is initially stopped and Pump2 is not signalled on, whenever water2 is

empty2 or below, Pump2 must be stopped.

We combine T1 and T2 and formalise them as (8) in Fig. 5, and formalise T3 as (9). This is possible
because �(c1 ∧ c2) ≡ �c1 ∧ �c2. By (8), provided that the Pump1 is initially stopped and the on1 signal is
off, over the interval in which the program is executing, in all actual (as opposed to apparent) states of the
stream, if water1 is below empty1 or water2 is above full2, then Pump1 must be stopped. Note that Stopped1

within (8) states that Pump1 has physically come to a stop, which we distinguish from the signal ¬on1 that
causes Pump1 to stop. Condition (9) is similar. The (implicit) interval over which these properties must
hold is the interval over which the controller is operating.

14

�(
−−−−−−−−−−−−→
Stopped1 ∧ ¬on1) ⇒ �((water1 ≤ empty1) ∨ (water2 ≥ full2)⇒ Stopped1) (8)

�(
−−−−−−−−−−−−→
Stopped2 ∧ ¬on2) ⇒ �(water2 ≤ empty2 ⇒ Stopped2) (9)

�
(
(water1 > reserve1) ∧ (water2 < reserve2)

)
∧ ` ≥ ρ.TBwater �on1 (10)

�
(
(water2 > reserve2) ∧ pressed

)
∧ ` ≥ ρ.TBwater �on2 (11)

�¬pressed ∧ ` ≥ ρ.TBwater �¬on2 (12)

Figure 5: Formalisation of the two-pump system requirements

Progress. The progress properties P1, P2 and P3 must also be further refined because they describe
properties on the controller’s sampled view of the environment. For example, P1 states “If water2 is below
reserve2 and water1 is above reserve1, then Pump1 must eventually be turned on.” The state predicate
corresponding to the ‘if’ part of this requirement is (water2 < reserve2) ∧ (water1 > reserve1), which would
be difficult for an implementation to satisfy if stated in terms of actual states because it would require the
controller to turn the pump on as soon as (water2 < reserve2) ∧ (water1 > reserve1) holds. In reality, it
may be possible for (water2 < reserve2) ∧ (water1 > reserve1) to go undetected by the controller because
it is transient. Furthermore, because water1 and water2 are sampled at different instants within the same
sampling period, the controller may determine that (water2 < reserve2) ∧ (water1 > reserve1) holds even if it
does not hold in any actual state. Hence, we reword progress properties P1, P2 and P3 to clarify the length
of time for which the properties must hold, and the fact that we are intending to using a sampling logic. For
simplicity, we assume that the time bands of the water in both tanks is the same, i.e., TBwater ∈ TimeBand .

Q1. If it is definitely the case that water1 is above reserve1 and water2 is below reserve2 for at least the

precision of TBwater , then Pump1 must eventually be turned on.

Q2. If it is definitely the case that the Button is pressed and water2 is above reserve2 for at least the

precision of TBwater , then Pump2 must eventually be turned on.

Q3. If Button is definitely not pressed for at least the precision of TBwater , Pump2 must eventually be

turned off.

By using the keyword definitely, it is clear that one must use sampling operators to formalise the progress
properties Q1, Q2 and Q3 to take into account the fact that sampling may take place at different times
within a sampling period. Furthermore, the precision of this sampling period has been clarified — the ‘if’
part of the predicates must hold for at least the precision of TBwater to guarantee that the controller is able
to detects the property and react accordingly.

Progress properties Q1, Q2 and Q3 are formalised as (10), (11) and (12), respectively. Condition (10)
states that if there exists a prefix of length greater than or equal to ρ.TBwater (the precision of TBwater) in
which it is definitely the case that water2 is below reserve2 and water1 is above reserve1, then pump1 must
be switched on. Conditions (11) and (12) are similar.

4.4. Deducing actual values from sampled values

Due to the various delays involved in a real system, a sampled value of any variable represents an
approximation of the true value of the variable. In this section, we present some techniques for relating the
sampled values of a variable to its true values in the environment.

15

We define the following interval predicates, which are useful for reasoning about sampling events, where
c is a state predicate and d is a real-valued constant.

�dc =̂ (` ≤ d)⇒ �c

�dc =̂ (` ≤ d) ∧ �c

Hence, (�dc).∆ holds iff c definitely holds within ∆ provided that the length of ∆ is at most d . Similarly,
(�dc).∆ holds iff c possibly holds within ∆ and the length of ∆ is at most d . Note that ¬�dc ≡ �d¬c.

Because sampling approximates the true value of an environment variable, we must reason about how
the value of a variable changes within an interval [18]. For a real-valued variable v , the maximum difference
to v in stream s within ∆ is given by (diff .v).∆.s, where:

(diff .v).∆.s =̂ if empty.∆ then 0 else (let vs = {t : ∆ • (s.t).v} in lub.vs − glb.vs)

Note that for any real-valued variable v , stable.v V (diff .v = 0).
Sampled real-valued variables in a time band β are related to their true values within an event of β

using the accuracy of the variable in β [18]. In particular, we let acc.v ∈ TimeBand → R≥0 denote the
accuracy of variable v in a given time band. The maximum change to v within an event of time band β
is an assumption on the environment. To enable this assumption to be stated more succinctly, we define a
predicate:

DIFF .v =̂ ∀β: Timeband • 2(` ≤ ρ.β ⇒ diff .v ≤ acc.v .β)

The lemma below allows one to relate sampled values to the actual values in the environment based on the
accuracy of the variables being sampled.

Lemma 7. If x and y are real-valued variables, β is a time band and � ∈ {≥, >}, then both of the following
hold:

DIFF .x ∧ DIFF .y ∧ �ρ.β(x − acc.x .β � y + acc.y .β)V �(x � y)

DIFF .x ∧ stable.y ∧ �ρ.β(x − acc.x .β � y)V �(x � y)

Proof. For any ∆ and s, if (DIFF .x ∧ ` ≤ ρ.β).∆.s, then �(←−x + acc.x .β ≥ x ≥ ←−x − acc.x .β).∆.s
(and similarly for y). Therefore, if (DIFF .x ∧ DIFF .y ∧ �ρ.β(x − acc.x .β � y + acc.y .β)).∆.s, then
�(x � y).∆.s. The proof of the second property is similar. 2

4.5. Delay

As shown in Fig. 3, a control system often consists of inputs that are fed back to the controller via the
environment. That is, the inputs to a controller from its environment influence the controller’s outputs,
and these outputs in turn influence the environment. There are typically delays involved in feedback and
hence we define the following interval predicate for variables vi , vo (respectively representing the input and
output), and delay D ∈ R where D ≥ 0.

delay(vi , vo ,D).∆.s =̂ ∀t : ∆ • s.t .vo = s.(t −D).vi

Note that there is a separation of concerns between delays and variable accuracy, i.e., when reasoning about
delay, one need not worry about the variable accuracy. Delays are strictly concerned with the lag between
inputs and outputs.

5. Action systems with time bands

The action systems that we develop must enable reasoning about the assumed behaviour of the envi-
ronment and the behaviour that the action system is yet to implement. Following Jones [12, 31, 38, 39],

16

to enable compositionality, the behaviour of the environment of an action system is formalised by its rely
condition. However, unlike Jones, who assumes rely conditions are interleaved with those of the component
under consideration, we assume rely conditions are interval predicates that are assumed to hold over the
interval in which an action executes. Our derivation method uses enforced properties [15, 17], which are
formulae that restrict the behaviour of the system under development to those that satisfy the formulae.
We first present enforced properties on actions, which allow finer-grained control over the execution of an
action system.

We present the syntax and semantics of actions and action systems in Section 5.1 and present methods
for refining both actions and action systems in Section 5.2.

5.1. Action systems

The controllers we develop involve real-time properties, and hence, one must clearly identify the inputs
and outputs of the system components to ensure implementability. The components of the action systems
we develop are often part of a larger context of variables. The frame of a component defines the variables
of the context that the component may modify — variables of the context that are outside the frame must
be right stable. If a component modelled by interval predicate p has a frame F , we use syntax F : [p] to
denote a framed interval predicate. A framed interval predicate in a larger context F ⊆ V ⊆ Var is denotedq

F : [p]
y
V

, where

q
F : [p]

y
V

=̂ p ∧ stable.(V \F) ∧ right stable.V

Here, p formalises the behaviour of the component over an interval. The context V and frame F ensure
that variables in the context but outside of the frame are stable, and all variables of the context are right
stable. The syntax of an action system may be considered to be shorthand for framed interval predicates.
We let

q
p
y
V

denote the framed interval predicate
q
∅: [p]

y
V

, i.e., a framed interval predicate with an empty
frame.

The abstract syntax of actions is given below, which we note differs from the standard syntax of Back
et al [4, 6, 7].

Definition 5 (action). Suppose b is a state predicate, v̂, v and y are vectors of variables, e is a vector of
expressions, F is a set of variables, p and r are interval predicates, β is a time band, and D ∈ R≥0. The
abstract syntax of an action A is given by:

A ::= b → S | A1 8 A2 | Enf p • A | Rely r • A | FBD(v̂\v) • A | A † β | Aω

S ::= idle | y := e | F : [p]

The primitive idle is a statement that does nothing but may take time to execute and y := e is the assignment
statement. F : [p] is a specification, which is not directly executable, and hence, needs to be refined to an
implementation that can be executed. Action b → S is a guarded action consisting of statement S with
guard b. Action A1 8A2 is the non-deterministic choice between A1 and A2 and Enf p • A denotes an action
A with enforced condition p, Rely r • A denotes an action A with rely condition r , FBD(v̂\v) • A denotes
an action A with delayed feedback, A † β denotes an action in a timeband β and Aω denotes the possibly
infinite iteration of A.

A software controller executes with its environment in a truly concurrent manner, and hence the inputs
to the controller may change during the evaluation of the expressions of the action (which includes the guards
of the action). We assume that for each iteration of the main loop of the action system, the expressions
(including guards) are evaluated so that each input variable is sampled at most once, the expressions are
evaluated then the output variables are updated as required. Sampling inputs at most once per sampling
interval avoids anomalies when evaluating two guards that refer to the same input variable. For example,
guards x < 0 and x ≥ 0 could both evaluate to false (or both to true) within a single sampling interval if
x increases past 0 during the interval and the value of x is sampled twice (once for each guard evaluation).
Our model of sampling inputs once per sampling interval also avoids anomalies in guarded assignments. For

17

example, action x < 0 → y := x should not assign a positive value to y , however, if different samples are
used for the two occurrences of x , it is possible for y to obtain a positive value after execution of the action.
Because both sampling and expression evaluation take time and the environment executes in parallel with
the action system in a truly concurrent manner, each input variable may have a set of possible values. Hence,
we use a sampling logic to distinguish whether a predicate is definitely or possibly true over an interval.
Note that the semantics of actions state that at most one sample of each variable is taken and that the same
sample is used for each occurrence of the variable.

As we have already mentioned, the syntax in Definition 5 may be considered to be shorthand for framed
interval predicates in an output context V ⊆ Var . We assume that y = 〈y0, . . . , yn〉 is a vector of variables,
e = 〈e0, . . . , en〉 is a vector of expressions, k = 〈k0, . . . , kn〉 is a vector of constants, and for a vector v, that
Set .v =̂ {vi | i ∈ dom.v}. We let vars.p denote the set of free variables of interval predicate p.

q
b → idle

y
V

=̂ fin ∧
q
�b

y
V

(13)
q

b → y := e
y
V

=̂ fin ∧ ∃ k •
q
�(b ∧ k = e)

y
V

;
q

Set .y: [∀i : 0..n • (stable.yi ; �(yi = ki))]
y
V

(14)
q

b → F : [p]
y
V

=̂ (fin ∧
q
�b

y
V

) ;
q

F : [p]
y
V

(15)
q

A1 8 A2

y
V

=̂
q

A1

y
V
∨
q

A2

y
V

(16)
q
Enf p • A

y
V

=̂ p ∧
q

A
y
V

(17)
q
Rely r • A

y
V

=̂ r ⇒
q

A
y
V

provided vars.r ∩V = ∅ (18)
q
FBD(v̂\v) • A

y
V

=̂ ∃v̂ • delay(v, v̂,D) ∧
q

A
y
V

provided Set .v̂ ∩V = ∅ ∧ Set .v ⊆ V (19)
q

A † β
y
V

=̂
q

A
y
V
∧ ` ≤ ρ.β (20)

q
Aω

y
V

=̂
(q

A
y
V

)ω
(21)

By (13), the guarded action b → idle executes iff b is possibly true and its execution leaves each output
variable both stable and right stable. The interval of execution of each b → idle is of finite length, i.e.,
b → idle must terminate. By (14), a guarded assignment to vector of variables b → y := e consists of two
portions, where the guard and expressions e are evaluated in the first portion in the same apparent state,
and y is updated to the new values in the second. Furthermore, execution of b → y := e ensures each
output V not in y is stable and that each variable in V is right stable. By (15), the behaviour of b → F : [p]
holds if it is possible for b to hold in some apparent state, followed by an interval in which the framed
interval predicate

q
F : [p]

y
V

holds. We leave out the guard b if b is true, i.e., we write S for true → S .
By (16), the behaviour of a non-deterministic choice between two actions A1 and A2 holds if the behaviour

of either A1 or A2 holds. By (17), the behaviour of action Enf p • A guarantees that both the behaviour of
A and the enforced condition p hold. Note that action Enf false • A has no behaviours, i.e., it is possible
to enforce unimplementable behaviour. Hence, we typically introduce or strengthen an enforced property
in the weakest possible manner to allow greater flexibility in an implementation. By (18), an action A with
a rely condition behaves as the action under the assumption that the rely condition holds. Note that the
behaviour of Rely false • A is chaotic, i.e., any behaviour is allowed, and that the behaviour of Rely r • A
is undefined if vars.r ∩ V 6= ∅. By (19), the behaviour of an action with feedback is the behaviour of the
action with the guarantee that the fed back values are delayed by the given amount, by (20) the behaviour
of an action in a time band is the behaviour of the action together with the guarantee that the action is
completed within the precision of the time band and by (21), the behaviour of an iteration Aω over an
interval is the behaviour of A iterated over the interval. Note that action A∞ can be treated as a special
case of Aω, namely Aω vwV A∗ 8 A∞.

The syntax of an action system consists of an initialisation followed by a potentially infinite loop that
executes a non-deterministic choice over a set of guarded statements [6].

Definition 6 (action system). For a state predicate I , state predicates bi and statements Si where i ∈
0..n, the abstract syntax of an action system is given by Init I • do 8i:0..nbi → Si od.

For an action system A = Init I • do 8i:0..nbi → Si od, we define initV.A =̂
−→
I ∧ right stable.V ,

guard .A =̂
∨

i:0..n bi , and action.A =̂ 8i:0..nbi → Si .

18

This paper is concerned with the development of controllers for reactive systems, which are typically non-
terminating. Hence, we assume that

∨
i:0..n bi holds. To simplify the notation, we define a non-deterministic

choice with an else case as follows

(8i:0..nbi → Si) else Sn+1 =̂ (8i:0..nbi → Si) 8 (
∧

i:0..n ¬bi → Sn+1)

Prior to defining the semantics of an action system, we must determine its set of input and output
variables. We first determine the sets of variables and output variables of statements. Hence, we define
functions AllVars and OutVars as follows:

AllVars.idle =̂ ∅ OutVars.idle =̂ ∅
AllVars.(v := e) =̂ Set .v ∪

⋃
e:Set.e vars.e OutVars.(v := e) =̂ Set .v

AllVars.(F : [p]) =̂ F ∪ vars.p OutVars.(F : [p]) =̂ F

The set of output variables and all variables of an action system given by the syntax in Definition 6 are then
defined as follows.

AllVars.A =̂ vars.(guard .A) ∪
⋃

i:0..n AllVars.Si OutVars.A =̂
⋃

i:0..n OutVars.Si

The set of input variables of an action system A is given by InVars.A =̂ AllVars.A \OutVars.A .
Like actions, the syntax of an action system may be regarded as shorthand for a framed interval predicate,

and may occur within a wider output context.4 Hence, we have the following definition, where V is a set of
variables such that InVars.A ∩V = ∅ and OutVars.A ⊆ V .

q
A
y
V

=̂ � initV.A ⇒
q

(action.A)∞
y
V

(22)

Note that an initialisation can often refer to output variables, and hence, defining an initialisation using a
Rely construct is inadequate. Back and von Wright present an algebraic definition that allows termination
of the action system [6]. The methods in this paper apply to reactive systems, which we assume are non-
terminating, but can be extended to reason about potentially terminating behaviour in a straightforward
manner. To avoid Zeno-like behaviour, we implicitly assume the existence of a constant lower bound ε ∈ R>0

on the time taken execute each iteration of the action system, i.e., action.A V ` ≥ ε is implicitly assumed.
As with actions, we allow the syntax of action systems to be extended with rely and enforced conditions.

In particular, we define
q
Enf p • A

y
V

=̂ p ∧
q

A
y
Vq

Rely r • A
y
V

=̂ r ⇒
q

A
y
V

provided vars.r ∩V = ∅

The following lemma allows one to make a stronger assumption about each iteration of the action system
under consideration.

Lemma 8. The following holds for any action system A and set of variables V :
q

A
y
V
≡ � initV.A ⇒

q (
Rely�(initV.A ∨

q
action.A

y
V

) • action.A
)∞ y

V

Proof. The proof follows trivially by unfolding the definition of an action system. 2

Hence, if
q

A
y
V

holds in an interval, then for each iteration of the main action, it is possible to deduce that
in some previous interval either the action system was initialised, or some main action was executed.

The lemma below allows one to consider an iterated execution of a single action with the assumption
that either the action system has just initialised or a different action was executing in some previous interval.
We let A+ and Aω+ denote the finite and possibly infinite positive iterations of action A, respectively.

4In our other work, we defined the semantics of action systems using traces consisting of sequences of adjoining intervals
[19, 20]. In this paper, we simplify the semantics by defining the behaviour using the iteration operator, which allows us to
avoid a new semantic layer in the framework.

19

CP1 =̂ Rely r1 ∧ DIFF .water1 ∧ DIFF .water2
•

Enf (8) ∧ (10) •

Init I1
•

do
on1: [true]

od

Figure 6: Initial action system for Pump1

CP2 =̂ Rely r2 ∧ DIFF .water2
•

Enf (9) ∧ (11) ∧ (12) •

Init I2
•

do
on2: [true]

od

Figure 7: Initial action system for Pump2

Lemma 9. Suppose A is an action system, V is set of variables, and action.A = 8i:0..nAi where each Ai

is either a guarded statement or specification action. Let not jth.A .j =̂ (8i:0..j−1Ai) 8 (8i:j+1..nAi), i.e.,
not jth.A .j consists of all actions of action.A but not Aj , and suppose

iter .A .j =̂ Rely�(initV.A ∨
q

not jth.A .j
y
V

) • Enf inf ∨ �(
←−−−−−−−
¬ guard .Aj) • (Aj)

ω+

denotes the positive iteration of Aj where either the action system has just been initialised, or some other
action was previously executing. Then, we have:

q
A
y
V
≡ � initV.A ⇒

q
(8j :0..n iter .A .j)∞

y
V

Proof. By Lemma 8,
q

A
y
V
≡ � initV.A ⇒

q
(Rely�(initV.A ∨

q
action.A

y
V

) • action.A)∞
y
V

. The

proof then follows by case analysis because �
q

action.A
y
V
≡ �

q
Aj

y
V
∨ �

q
not jth.A .j

y
V

. 2

Parallel composition of two action systems may also be defined. We use A V

−→
‖W B to denote the parallel

composition of action systems A and B. For the program A V

−→
‖W B to be well defined, we require that bothq

A
y
V

and
q

B
y
W

are well defined, and that the inputs and outputs of A are distinct from the outputs of
B, i.e.,

(InVars.A ∪OutVars.A) ∩OutVars.B = ∅ (23)

That is, B cannot modify the inputs and outputs of A but the outputs of A may be used as inputs to B

and furthermore A and B may share inputs but not outputs. Hence, A V

−→
‖W B is not necessarily equivalent

to BW

−→
‖V A . Within A V

−→
‖W B, action systems A and B execute in a truly concurrent manner. If A and

B are action systems such that (23) holds and V and W are sets of variables such that V ,W ⊆ Var , then

r
A V

−→
‖W B

z

V∪W
=̂

q
A
y
V
∧
q

B
y
W

A special case of parallel composition is simple parallelism, denoted A ‖B, where no output of A is
an input to B and vice versa, i.e., A ‖B is defined iff (23) ∧ (OutVars.A ∩ InVars.B = ∅) holds. Note

that InVars.A ∩ InVars.B may be non-empty, i.e., A and B may share inputs. Unlike A V

−→
‖W B, A ‖B is

equivalent to B‖A .
Our derivation method starts with the interval predicates that represent the system requirements, which

are used to motivate a simple action system. Correctness of this initial action system is guaranteed by re-
stricting its behaviour with enforced properties. This program is then incrementally refined until executable
code is obtained.

Example 10. As an example, we specify an initial action system controller for the two-pump system in
Section 1 (see Fig. 6 and Fig. 7). We explain the action system CP1 — a similar explanation applies to
CP2. Controller CP1 consists of input variables water1 and water2, output variable on1 and initial condition
I1 (which is yet to be developed). The controller is assumed to operate in an environment that satisfies
DIFF .water1 and DIFF .water2, which constrain the maximum rate of change of water1 and water2 in every
time band, and condition r1, which is yet to be determined.

20

The main action for the initial version of the CP1 (i.e., the controller of Pump1) is

on1: [true]

which allows the output on1 to be set to true or false non-deterministically. Although this initial action
is liberal and allows arbitrary modification of on1, execution of the action systems are constrained by the
enforced property (8) ∧ (10), which ensures that CP1 is correct.

We develop the system as the simple parallel composition between CP1 and CP2, which allows the pumps
to be controlled independently (see Fig. 6 and Fig. 7), i.e., the controller is given by

CP =̂ CP1 ‖ CP2 (24)

Example 11. At this stage of the derivation, it is possible to define some of the properties of the pumps
and their effects on the water level of both tanks.

�(Stopped1 ⇒ (˚water1 ≥ 0) ∧ (˚water2 ≤ 0)) (Rely-1)

�(Stopped2 ⇒ (˚water2 ≥ 0)) (Rely-2)

Hence, by (Rely-1), if Pump1 is stopped, the rate of change of water1 is non-negative and the rate of change
of water2 is non-positive. We obtain an inequality for water2 because Pump2 may be causing the water level
in Tank2 to drop. Condition (Rely-2) is similar. Note that a condition such as �(Running2 ⇒ (˚water2 ≤ 0))
would place an implicit restriction on the capacities of the pumps, namely that the Pump1 has a lower
capacity than Pump2.

One can also describe the effect that the signal oni has on Pumpi . In particular, it is possible to define
the time taken to turn the pumps on and off using the time band of the pump. For simplicity, we assume
that the time bands of Pump1 and Pump2 are both TBpump .

Example 12. For i ∈ {1, 2}, we have

2

(
�oni ⇒

(
�
−−−−−−−→
¬Runningi ⇒

((` ≤ ρ.TBpump ∧ �Startingi) ; �Runningi)

)
∧ inv.Runningi

)
(Rely-3)

2

(
�¬oni ⇒

(
�
−−−−−−→
¬Stoppedi ⇒

((` ≤ ρ.TBpump ∧ �Stoppingi) ; �Stoppedi)

)
∧ inv.Stoppedi

)
(Rely-4)

By (Rely-3), for any subinterval ∆ of the given interval, if oni holds throughout ∆, then

1. if Pumpi is not running at the end of some immediately preceding interval of ∆, then Pumpi is in a
starting mode for at most the first ρ.TBpump units of ∆ before the Pumpi becomes running, and

2. mode Runningi is invariant in ∆, i.e., if Runningi holds at the end of some previous interval of ∆,
then Runningi holds throughout ∆.

Condition (Rely-4) is similar. Note that (Rely-3) also allows for Runningi to instantaneously switch from
false to true because ` ≤ ρ.TBpump ∧ �Startingi is trivially satisfied by an empty interval.

5.2. Action system refinement

Our method of derivation allows programs to be developed in an incremental manner. In particular,
we calculate the effect of (partially) developed actions on the enforced properties, which generates new
properties and actions. However, unlike [14, 25, 26], we disallow arbitrary modifications to the program.
Instead, each change must be justified by a lemma/theorem that ensures each new version is a refinement
of the current version [20, 17].

Definition 7 (action refinement). For a set of variables V , an action A is refined by an action C , denoted
A vV C , iff

q
C
y
V
V

q
A
y
V

holds. We say A vwV C holds iff both A vV C and C vV A hold.

21

An action C refines an action A iff every behaviour of C is a potential behaviour of A. Relation vV

is clearly reflexive and transitive. Furthermore, because actions in a context are treated as shorthand for
framed interval predicates and refinement is defined in terms of universal implication, we obtain a number
of straightforward monotonicity rules for refining actions. Below, we assume that both

q
A
y
V

and
q

C
y
V

are well defined when we write A vV C .

b → S vV c → S provided c V b (Mono-1)

b → y := e vV b → y := f provided ∀k • �(b ∧ f = k)V �(e = k) (Mono-2)

b → F : [p] vV b → G : [q] provided F ⊇ G and q ∧ stable.(V \G)V p (Mono-3)

A1 8 A2 vV C1 8 C2 provided A1 vV C1 and A2 vV C2 (Mono-4)

Enf p • A vV Enf q • C provided q V p and A vV C (Mono-5)

Rely r • A vV Rely q • C provided r V q and A vV C (Mono-6)

FBD(v̂\v) • A vV FBD(v̂\v) • C provided A vV C (Mono-7)

A † β vV C † γ provided A vV C and ρ.γ ≤ ρ.β (Mono-8)

A∞ vV C∞ provided A vV C (Mono-9)

By definition, action Enf p • A satisfies p, but the program Enf p • A may not be executable. Hence, we
develop an action C via a series of refinements in the verify-while-develop paradigm such that the behaviour
of C satisfies p, allowing one to remove the enforced property p.

The following refinement rules allow one to add/remove rely conditions, enforced conditions and time
bands to/from an action.

C vV Enf p • C (AR-1)

C vV C † β (AR-2)

Rely r • C vV C (AR-3)

Rely r • Enf p • C vV Rely r • C provided r ∧
q

C
y
V
V p (AR-4)

Hence, one may always add an enforced condition, and time band, and remove a rely condition from an
action. By (AR-4), one may remove an enforced property under a rely condition if the rely condition
together with the action system under consideration imply the enforced property. Note that condition (AR-
3) is analogous to weakening the rely condition to true, which is similar to weakening a precondition. Using
(AR-3) to weaken the rely condition of an action allows one to make syntactic simplifications to an action
system without affecting the guard of the action or overall the action system.

It is also straightforward to prove the following distributivity properties for non-deterministic choice and
iteration. Note how distributivity within iteration is only possible for rely conditions and enforced properties
that split or join.

F : [p ∨ q] vwV F : [p] 8 F : [q] (Dist-1)

(Enf p • A1 8 A2) vwV (Enf p • A1) 8 (Enf p • A2) (Dist-2)

(Rely r • A1 8 A2) vwV (Rely r • A1) 8 (Rely r • A2) (Dist-3)

(Rely r • Cω) vV (Rely r • C)ω provided r splits (Dist-4)

(Enf p • Cω+) vV (Enf p • C)ω+ provided p joins (Dist-5)

(Enf p • C)ω vV (Enf p • Cω) provided p splits (Dist-6)

(Enf pω • Cω) vV (Enf p • C)ω (Dist-7)

(A1 8 A2) † β vwV (A1 † β) 8 (A2 † β) (Dist-8)

The distributivity rules for ω can be extended to rules about ∞ in a straightforward manner. We present
miscellaneous refinement rules below.

A vwV A 8 C provided A vV C (Act-Intro-Rem)

22

A1 8 A2 vV A1 (Reduce-ND)

Enf p1
• (Enf p2

• A) vwV Enf(p1 ∧ p2) • A (Enf-Assoc)

Rely r1
• (Rely r2

• A) vwV Rely(r1 ∧ r2) • A (Rely-Shunt)

Rule (Act-Intro-Rem) allows one to introduce and remove actions during a derivation, (Reduce-ND) reduces
the non-determinism, (Enf-Assoc) is akin to associativity for enforced properties and (Rely-Shunt) is akin
to shunting for rely conditions.

The timeband of a (digital) controller is often of higher precision than the timeband of the (physical)
components being controlled. For example, several sampling periods may take place before a stopped pump
becomes running because the timeband of the controller is of higher precision than the timeband of the
pump. To simplify reasoning about such systems, for a natural number i , we define a finite iteration of an
action A to be an action Ai , where

q
Ai

y
V

=̂

{
empty if i = 0
q

A
y
V

;
q

Ai−1
y
V

otherwise

For timebands β and γ, we have the following refinement property for a finitely iterated action Ai .

Ai † β vV (A † γ)i provided i × ρ.γ ≤ ρ.β (Fin-Iter)

The lemma below states that a positive iteration of a guarded statement can be reduced to a single
iteration if the action under consideration falsifies its own guard.

Lemma 10. Suppose V is a set of variables, x ∈ V is a boolean variable. Then both of the following hold:

(x → x := false)ω+ vwV x → x := false

(¬x → x := true)ω+ vwV ¬x → x := true

Proof. The first property is proved as follows. The proof of the second is analagous. We assume Empty is
an action whose behaviour is empty and False an action whose behaviour is false.

(x → x := false)ω+

vwV definition
(x → x := false) ; (x → x := false)ω

vwV unfolding (ω)
(x → x := false) ; (Empty 8 ((x → x := false) ; (x → x := false)ω))

vwV distributivity and logic
(x → x := false) 8 ((x → x := false) ; (x → x := false) ; (x → x := false)ω)

vwV behaviour of assignment
(x → x := false) 8 ((x → x := false) ; False ; (x → x := false)ω)

vwV False is a left annihilator
(x → x := false) 8 ((x → x := false) ; False)

vwV assignments are terminating, logic
(x → x := false) 8 False

vwV logic
x → x := false 2

Unlike actions, refinement of action systems is defined in terms of a potentially wider context. We
consider notions such as data refinement [13] to be part of future work. However, our notion of refinement
allows fresh variables to be introduced to an implementation.

Definition 8 (action system refinement). An action system A is refined by an action system C , de-
noted A v C , iff for any context V ⊆ Var such that OutVars.C ⊆ OutVars.A ⊆ V ,

q
C
y
V
V

q
A
y
V

.
We say A vw C iff both A v C and C v A hold.

23

An action system is also defined to be shorthand for a framed interval predicate (see (22)), hence, the
refinement rules for actions may be extended to action systems in a straightforward manner.

Lemma 11. Refinement of the parallel composition of action systems is monotonic.

A V

−→
‖W B v CV

−→
‖W D provided

q
C
y
V
V

q
A
y
V

and
q

D
y
W
V

q
B
y
W

(Par-Comp)

Note that if A v C and B v D hold, then both
q

C
y
V
V

q
A
y
V

and
q

D
y
W
V

q
B
y
W

hold, and hence,

A V

−→
‖W B v CV

−→
‖W D holds.

Theorem 12. An action system A is refined by an action system C , denoted A v C , iff for any V ⊆ Var
such that OutVars.C ⊆ OutVars.A ⊆ V , initV.A V initV.C and action.A vV action.C .

Proof. We are required to prove that
q

C
y
V
V

q
A
y
V

, which by definition and logic holds if(
� initV.C ⇒

q
(action.C)∞

y
V

)
∧ � initV.A V

q
(action.A)∞

y
V

By monotonicity and because the guards of A and C are total, this holds if initV.A V initV.C andq
action.C

y
V
V

q
action.A

y
V

, which are discharged by our assumptions. 2

As an example, we perform a simple refinement by introducing some additional enforced properties that
express maintenance conditions. These strengthen the given progress properties so that the pump is not
arbitrarily turned on and off. To this end, we define a maintenance operator [19], which states that a
property c1 is maintained unless the variables are sampled in a manner that c2 holds. For state predicates
c1 and c2, we define:

c1M c2 =̂ �−→c1 ⇒ �c1 ∨ �c2

Hence (c1M c2).∆ holds if provided that c1 holds at the end of some interval that immediately precedes ∆
then either c1 holds throughout ∆, or �c2 holds. As there is no upper limit on the length of the intervals,
the variables in �c2 could be sampled at widely different times, which is potentially problematic. However,
c1M c2 are typically requirements on the execution of a single iteration of an action system, and hence the
times at which the variables in c2 are sampled are restricted by the time band of the action system.

A maintenance property on actions is related to properties of the program as follows. In particular, if
a possibly infinite iteration of c1 M c2 holds in interval ∆ and c1 holds at the end of some immediately
preceding interval of ∆, then either c1 holds throughout ∆ or there is an initial portion of ∆ in which �c1

holds and a suffix of ∆ in which �c2 holds. Note that

((` ≤ d) ∧ (c1M c2))ω ∧ �−→c1 V �c1 ∨
←
3(�c1 ; �dc2)

Furthermore, because �c1 holds in an empty interval, the consequent above is equivalent to the interval
predicate �c1 ∨ (�c1 ;

←
3 �dc2) ∨ ←3 �dc2 i.e., it is possible for c2 to immediately evaluate to true.

Example 13. For controller CP1, enforced property (8) expresses a requirement for the times at which
Pump1 must be stopped and (10) expresses the conditions under which Pump1 must become running.
However, condition (10) does not disallow a running pump to be turned off arbitrarily. There are also
no restrictions on turning the pump on. Similar arguments also apply to CP2, and hence, we introduce
the maintenance requirements below. Note that the conditions for turning the pumps on and off are not
symmetric.

M1. If on1 holds then it continues to hold unless water1 is at low limit1 or below, or water2 is at high limit2
or above.

M2. If ¬on1 holds then it continues to hold unless water1 is above reserve1 and water2 is below reserve2.

M3. If on2 holds then it continues to hold unless the button is released, or water2 is at low limit2 or below.

24

MP1 =̂
Rely r1 ∧ DIFF .water1 ∧ DIFF .water2

•

Enf (8) ∧ (10) •

Init I1
•

do

Enf (M1) ∧ (M2) • on1: [true]

od

Figure 8: Introduce maintenance condition to CP1

MP2 =̂
Rely r2 ∧ DIFF .water2

•

Enf (9) ∧ (11) ∧ (12) •

Init I2
•

do

Enf (M3) ∧ (M4) • on2: [true]

od

Figure 9: Introduce maintenance condition to CP2

M4. If ¬on2 holds then it continues to hold unless the button is pressed and water2 is above reserve2.

Note that condition M1 must allow Pump1 to be turned off before water1 drops below empty1 because by
T1, the pump must (physically) be off if water1 ever reaches empty1. A similar argument applies to M2,
M3 and M4. These properties are formalised below using the maintains unless operator.

on1M ((water1 ≤ low limit1) ∨ (water2 ≥ high limit2)) (M1)

¬on1M ((water1 > reserve1) ∧ (water2 < reserve2)) (M2)

on2M (¬pressed ∨ (water2 ≤ low limit2)) (M3)

¬on2M (pressed ∧ (water2 > reserve2)) (M4)

We introduce (M1) and (M2) to the main action of CP1, and (M3) and (M4) to the main action of CP2

to obtain the action systems MP1 and MP2 in Fig. 8 and Fig. 9, respectively. By (Par-Comp) and then
(Mono-5) twice, we can deduce that CP v MP1‖MP2.

6. Derivation

In this section, we present a derivation of an action system controller for both pumps. We first refine
the safety and progress conditions in Sections 6.1 and 6.2, respectively. We then derive the actions for both
controllers in 6.3 and discharge all remaining proof obligations in 6.4.

6.1. Refine safety conditions

We first rework the safety requirement (8) so that it is stated in terms of inputs and outputs. The proof
requires that we strengthen the initialisation I1 of the action system controller so that the following holds:

I1 ⇒ ¬on1 ∧ Stopped1 (Init-1)

Supposing X =̂ (water1 ≤ empty1) ∨ (water2 ≥ full2), we obtain the calculation below.

�(
−→
I1 ∧ right stable.on1)⇒ (8)

W condition (Init-1)

�(
−−−−−−−−−−−−→
¬on1 ∧ Stopped1) ∧ ←3�¬on1 ⇒ �(X ⇒ Stopped1)

W by (Rely-4), �
−−−−−→
Stopped1 ∧ �¬on1 V �Stopped1

�(
−−−−−−−−−−−−→
¬on1 ∧ Stopped1) ∧ ←3�(¬on1 ∧ Stopped1)⇒ �(X ⇒ Stopped1)

W logic
←
3�c ≡ �c ∨ (�c ; ←−¬c)

�(
−−−−−−−−−−−−→
¬on1 ∧ Stopped1) ∧ (�(¬on1 ∧ Stopped1) ∨ (�(¬on1 ∧ Stopped1) ; ←−on1))⇒ �(X ⇒ Stopped1)

W �Stopped1 V �(X ⇒ Stopped1), logic((
�(
−−−−−−−−−−−−→
¬on1 ∧ Stopped1) ∧ �(¬on1 ∧ Stopped1)

)
; (�−−−→¬on1 ∧ ←−on1)

)
⇒ �(X ⇒ Stopped1)

W �c joins

25

((
�(
−−−−−−−−−−−−→
¬on1 ∧ Stopped1) ∧ �(¬on1 ∧ Stopped1)

)
⇒ �(X ⇒ Stopped1)

)
;

((�−−−→¬on1 ∧ ←−on1)⇒ �(X ⇒ Stopped1))

W �Stopped1 V �(X ⇒ Stopped1)
true ; ((�−−−→¬on1 ∧ ←−on1)⇒ �(X ⇒ Stopped1))

To satisfy the condition above, because �(X ⇒ Stopped1) joins, the property above holds by (5) of Lemma 5
provided each of the following holds.

NZ .on1 (on1-NZ)

2(�−−−→¬on1 ∧ �on1 ⇒ �(X ⇒ Stopped1)) (25)

2(�−→on1 ∧ �¬on1 ⇒ �(X ⇒ Stopped1)) (26)

Condition (25) may be satisfied by enforcing the stronger condition:

�(on1 ⇒ (water1 > empty1) ∧ (water2 < full2)) (S1)

That is, whenever signal on1 holds, ¬X must hold. For (26), we have

(26)
≡ case analysis

2

(
�−→on1 ∧ �¬on1 ∧ (�

−−−−−−−→
¬Stopped1 ∨ �

−−−−−→
Stopped1)⇒ �(X ⇒ Stopped1)

)
≡ (Rely-4)

2
(
�−→on1 ∧ (((` ≤ ρ.TBpump ∧ �Stopping1) ; �Stopped1) ∨ �Stopped1)⇒ �(X ⇒ Stopped1)

)
≡ logic, �Stopped1 case is trivial

2
(
((�−→on1 ∧ ` ≤ ρ.TBpump ∧ �Stopping1) ; �Stopped1)⇒ �(X ⇒ Stopped1)

)
W �c joins, the suffix for which Stopped1 holds is trivial

2
(
�−→on1 ∧ ` ≤ ρ.TBpump ∧ �Stopping1 ⇒ �(X ⇒ Stopped1)

)
Because Stopping1 ⇒ ¬Stopped1, the final property above may be satisfied by enforcing

2(�−→on1 ∧ ` ≤ ρ.TBpump ∧ �Stopping1 ⇒ �(water1 > empty1) ∧ �(water2 < full2)) (S2)

We perform a similar derivation for (9). In particular, we strengthen the initialisation I2 and require

I2 ⇒
−−−−−−−−−−−−→
¬on2 ∧ Stopped2 (Init-2)

Condition (9) then holds if each of the following holds.

NZ .on2 (on2-NZ)

2(�−−−→¬on2 ∧ �on2 ⇒�(¬Stopped2 ⇒ (water2 > empty2))) (27)

2(�−→on2 ∧ �¬on2 ⇒�(¬Stopped2 ⇒ (water2 > empty2))) (28)

Condition (27) is implied by (S3) below and for (28), we use case analysis and (Rely-4), which allows us to
reduce the conjunct to (S4) below.

�(on2 ⇒ (water2 > empty2)) (S3)

2(�−→on2 ∧ ` ≤ ρ.TBpump ∧ �Stopping2 ⇒ �(water2 > empty2)) (S4)

Using (Par-Comp) then (Mono-5) twice, we replace (8) in Fig. 6 by the stronger property (S1) ∧ (S2) and
(9) in Fig. 7 by (S3) ∧ (S4). Because �c joins for any state predicate c, (S1) and (S3) hold if (S1)

∞
and

(S3)
∞

hold, respectively. Hence (S1) and (S3) may be turned into enforced properties of the main action.
We obtain the action systems in Fig. 10 and Fig. 11 where MP1‖MP2 v SP1‖SP2.

26

SP1 =̂
Rely r1 ∧ DIFF .water1 ∧ DIFF .water2

•

Enf (S2) ∧ (on1-NZ) ∧ (10) •

Init I1
•

do

Enf (M1) ∧ (M2) ∧ (S1) • on1: [true]

od

Figure 10: Refining safety condition in MP1

SP2 =̂
Rely r2 ∧ DIFF .water2

•

Enf (S4) ∧ (on2-NZ) ∧ (11) ∧ (12) •

Init I2
•

do

Enf (M3) ∧ (M4) ∧ (S3) • on2: [true]

od

Figure 11: Refining safety condition in MP2

6.2. Refine progress conditions

We use the following lemma to refine the progress conditions of the program. A proof of a similar lemma
is given in [19].

Lemma 13. Suppose c1 and c2 are state predicates, ε,n ∈ R>0. Then

((ε ≤ ` ≤ n) ∧ (�c1 ⇒ �←−c2))∞ V �c1 ∧ (` ≥ 2n) �c2

Proof. Suppose interval Ω and stream s are arbitrarily chosen and that ((ε ≤ ` ≤ n) ∧ (�c1 ⇒ �←−c2))∞.Ω.s
holds. Then there exists an infinite-size partition z ∈ part .Ω such that for each i ∈ dom.z ,

((ε ≤ ` ≤ n) ∧ (�c1 ⇒ �←−c2)).(z .i).s

holds, i.e.,

((ε ≤ ` ≤ n) ∧ �c1).(z .i).s ⇒ ∃∆: sub.(
⋃

j :N∧j>i z .j) • �c2.∆.s (29)

For the consequent, we have the following calculation.

(�c1 ∧ (` ≥ 2n) �c2).Ω.s
= definitions
∀∆: suffix .Ω • (∃∆1: prefix .∆ • (�c1 ∧ (` ≥ 2n)).∆1.s)⇒ ∃∆2: sub.∆ • �c2.∆2.s

= logic
∀∆: suffix .Ω • ∀∆1: prefix .∆ • (�c1 ∧ (` ≥ 2n)).∆1.s ⇒ ∃∆2: sub.∆ • �c2.∆2.s

Hence, by (29), the proof holds if for an arbitrarily chosen ∆ ∈ suffix .Ω and ∆1 ∈ prefix .∆, whenever

(�c1 ∧ (` ≥ 2n)).∆1.s

then for any partition z ∈ part .Ω such that (ε ≤ ` ≤ n).(z .i) for each i ∈ dom.z , there exists j ∈ dom.z
such that z .j ∈ sub.∆1. Such a j is guaranteed to exist due to the length of ∆1. Because �c1 splits, we
have (ε ≤ ` ≤ n ∧ �c1).(z .j).s, and the result follows by assumption (29). 2

Hence, �c1 ∧ (` ≥ 2n) �c2 holds in an interval if there is an infinite iteration of the interval predicate
(ε ≤ ` ≤ n) ∧ (�c1 ⇒ �←−c2), which states that c2 is established whenever �c1 holds and the length of each
iteration is at most n.

Given the properties below

�((water1 > reserve1) ∧ (water2 < reserve2))⇒ �←−on1 (P1)

�((water2 > reserve2) ∧ pressed)⇒ �←−on2 (P2)

�¬pressed ⇒ �←−−−¬on2 (P3)

27

by using Lemma 13, properties (10), (11) and (12) hold if ((` ≤ ρ.TBwater

2) ∧ (P1))∞, ((` ≤ ρ.TBwater

2) ∧ (P2))∞

and ((` ≤ ρ.TBwater

2) ∧ (P3))∞ hold, respectively. Condition ` ≤ ρ.TBwater

2 can be satisfied by using (AR-2)
to introduce a time band TBcont to the action system together with the requirement

ρ.TBcont ≤ ρ.TBwater

2 (Rely-5)

which states that the precision of the time band of the controller is at most half the precision of the water
time band. Conditions (P1), (P2) and (P3) may be satisfied by strengthening the enforced property of the
main action of SP1 and SP2. Thus, we obtain the programs in Fig. 12 and Fig. 13. By (Par-Comp), then
(Mono-5) and (Dist-7) twice, we have the refinement SP1‖SP2 v PP1‖PP2.

PP1 =̂
Rely r1 ∧ DIFF .water1 ∧ DIFF .water2

•

Enf (S2) ∧ (on1-NZ) •

Init I1
•

do

Enf (M1) ∧ (M2) ∧ (S1) ∧ (P1) •

on1: [true]

†TBcont

od

Figure 12: Refining progress condition in SP1

PP2 =̂
Rely r2 ∧ DIFF .water2

•

Enf (S4) ∧ (on2-NZ) •

Init I2
•

do

Enf (M3) ∧ (M4) ∧ (S3) ∧ (P2) ∧ (P3) •

on2: [true]

†TBcont

od

Figure 13: Refining progress condition in SP2

6.3. Refine actions

We are now in a position to introduce statements to the action system by refining the guarded specification
statements. We focus on the derivation of the controller for Pump1 and elide the full details of the Pump2

controller. Like [17, 19, 20], our strategy is to leave the framed specification statement until the final
derivation step to enable undoing of previous derivations if desired. We also defer calculations against the
system-level safety condition (S2) to a later stage of the derivation.

Set on1 to true. The progress property (P1) forces one to introduce a guarded statement that sets on1 to
true if (water1 > reserve1) ∧ (water2 < reserve2) holds.5 Such an action does not conflict with (M2) and to
ensure that there is no conflict with (M1), we add a conjunct ¬on1 to the guard. Hence, we obtain:

¬on1 ∧ (water1 > reserve1) ∧ (water2 < reserve2) → on1 := true † TBcont (on1-true)

The action (on1-true) above may conflict with (S1) because (water1 > empty1) ∧ (water2 < full2) may be
false (i.e., (water1 ≤ empty1) ∨ (water2 ≥ full2) may hold) when on1 is set to true. To solve this, we use the
guard (water1 > reserve1) ∧ (water2 < reserve2) of (on1-true), rely condition DIFF .water1 ∧ DIFF .water2,
time band TBcont of PP1 and introduce an assumption:

(reserve1 ≥ empty1 + acc.water1.TBcont) ∧ (reserve2 ≤ full2 − acc.water2.TBcont) (Rely-6)

We have the following calculation:
q

(¬ on1 ∧ (water1 > reserve1) ∧ (water2 < reserve2) → on1 := true) † TBcont

y
on1

V Lemma 7, (Rely-6) and observations above

5Because we require that each action system contains an else case, at least one of the guards of the action system would
have covered the case (water1 > reserve1) ∧ (water2 < reserve2) and by requirement (P1), would have forced the introduction
of on1 := true.

28

�(water1 ≥ empty1) ∧ �(water2 ≤ full2)
V �c V �c, logic

�((water1 ≥ empty1) ∧ (water2 ≤ full2))
V logic

(S1)

Introduction of statement (on1-true) to the program is justified as follows:

Enf (M1) ∧ (M2) ∧ (S1) ∧ (P1) • on1: [true]
vV (Act-Intro-Rem)

Enf (M1) ∧ (M2) ∧ (S1) ∧ (P1) • on1: [true]
8 Enf (M1) ∧ (M2) ∧ (S1) ∧ (P1) • (water1 > reserve1) ∧ (water2 < reserve2) → on1 := true

vV discussion above, (AR-4)
Enf (M1) ∧ (M2) ∧ (S1) ∧ (P1) • on1: [true]

8 (water1 > reserve1) ∧ (water2 < reserve2) → on1 := true

Set on1 to false. By contrapositivity, the safety property (S1) requires on1 to be false if (water1 ≤ empty1) ∨
(water2 ≥ full2) holds. Hence, we derive a second statement that sets on1 to false. As an initial attempt we
have:

(water1 ≤ empty1) ∨ (water2 ≥ full2) → on1 := false (30)

The guard of this condition is however too weak because for example, water1 may continue to drop after
water1 ≤ empty1 has been evaluated, but before on1 is set to false. This is discovered formally because it is
impossible to prove the required property:

q
(water1 ≤ empty1) ∨ (water2 ≥ full2) → on1 := false

y
on1

V (S1)

Hence, we leave (S1) enforced for the time being. To ensure that (M1) and (M2) are satisfied, we modify
action (30) as follows:

Enf (S1) • on1 ∧ ((water1 ≤ low limit1) ∨ (water2 ≥ high limit2)) → on1 := false † TBcont (on1-false)

Conjunct (water1 ≤ low limit1) ∨ (water2 ≥ high limit2) of the guard ensures (M1) and conjunct on1

ensures (M2). Finally, to satisfy progress requirement (P1), we require

(low limit1 ≤ reserve1) ∧ (high limit2 ≥ reserve2) (Rely-7)

which together with conjunct (water1 ≤ low limit1) ∨ (water2 ≥ high limit2) of the guard falsifies the
antecedent of (P1). Introduction of (on1-false) to the program is justified using (Act-Intro-Rem) and the
discussion above.

An idle action. The action system we aim to derive implements a reactive system, and hence, the disjunction
of all guards of the action system must simplify to true. Hence, it is common to include an ‘else’ branch whose
corresponding statement is idle, which leaves the state unmodified. However, because the environment of
the action system is assumed to execute with the action system in a truly concurrent manner, there is no
guarantee that execution of idle preserves the system requirements.

We aim to remove the original guarded specification action and the enforced property within (on1-false)
at a later stage of the derivation and the idle action will correspond to an else case. Hence we consider the
conjunction of the negation of the guards of (on1-true) and (on1-false) and the action below.

(on1 ⇒ (water1 > low limit1) ∧ (water2 < high limit2)) ∧
(¬on1 ⇒ (water1 ≤ reserve1) ∨ (water2 ≥ reserve2))

→ idle † TBcont (idle)

Action (idle) trivially satisfies (M1) and (M2). For (P1), we perform case analysis on ←−on1. For case ←−on1, by
the behaviour of a guarded idle action, we have �←−on1, and hence, (P1) holds trivially. For case ←−−−¬on1, the

29

AP1 =̂
Rely r1 ∧ DIFF .water1 ∧ DIFF .water2

•

Enf (S2) ∧ (on1-NZ) •

Init I1
•

do

¬on1 ∧ (water1 > reserve1) ∧ (water2 < reserve2) → on1 := true

8 Enf (S1) • on1 ∧ ((water1 ≤ low limit1) ∨ (water2 ≥ high limit2)) → on1 := false

else idle
†TBcont

od

Figure 14: Introduce actions to turn Pump1 on and off

guard of (idle) ensures that the antecedent (water1 > reserve1) ∧ (water2 < reserve2) of (P1) is falsified. To
prove (S1), we again perform case analysis on ←−on1. The ←−−−¬on1 case is trivial because the behaviour of (idle)
ensures �¬on1. For case ←−on1, we require (water1 > empty1) ∧ (water2 < full2)), which is guaranteed by the
guard (water1 > low limit1) ∧ (water2 < high limit2) using Lemma 7.

(low limit1 ≥ empty1 + acc.water1.TBcont) ∧ (high limit2 ≤ full2 − acc.water2.TBcont) (Rely-8)

As before, introduction of (idle) to the program is justified using (Act-Intro-Rem) and the discussion above.
At this stage, we may also remove the original specification statement on1: [true], which is justified using
(Reduce-ND). After removal of on1: [true], we may simplify the guard of (idle) to else. Thus, we obtain
action system in Fig. 14 where PP1 v AP1.

6.4. Discharge remaining enforced conditions

Discharge (S1) in (on1-false). We now derive conditions that enable enforced property (S1) in (on1-false)
to be discharged. We define

on1 ∧ ((water1 ≤ low limit1) ∨ (water2 ≥ high limit2)) → on1 := false † TBcont (on1-false-b)

to be the action (on1-false) but without the enforced property (S1). Using Lemma 8, we show that the
action below is refined by (on1-false-b), which allows us to remove the enforced property (S1).

Rely�(
−→
I1 ∨

q
action.AP1

y
on1

) • (on1-false)

Case
−→
I1 reduces to false because by (Init-1), I1 ⇒ ¬on1. Hence, we consider �

q
action.AP1

y
on1

. By

the definition of non-deterministic choice (16), we may consider each of the actions individually. Case
�
q

(on1-false)
y
on1

is trivial because
q

(on1-false)
y
on1
V �←−−−¬on1, i.e., there can never be two consecutive

iterations of on1 := false. Case �
q

(on1-true)
y
on1

may be satisfied by assuming the rely condition below,

which we note subsumes (Rely-6).

(reserve1 ≥ empty1 + 2acc.water1.TBcont) ∧ (reserve2 ≤ full2 − 2acc.water2.TBcont) (Rely-6a)

Hence we have the following calculation, representing the case where Pump1 is switched on and then imme-
diately switched off.

Enf�
q

(on1-true)
y
on1

• (on1-false-b)

w{on1} (Rely-6a), guard of (on1-true), DIFF .water1 and DIFF .water2, and Lemma 7
(Mono-5) to strengthen enforced property

30

Enf�

(
(
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
water1 ≥ empty1 + acc.water1.TBcont) ∧

(
−−−−−−−−−−−−−−−−−−−−−−−−−−→
water2 ≥ full2 − acc.water2.TBcont)

)
• (on1-false-b)

w{on1} water1 and water2 are continuous variables, logic (Mono-5)

Enf

(←−−−−−−−−−−−−−−−−−−−−−−−−−−−−
water1 ≥ empty1 + acc.water1.TBcont) ∧
(
←−−−−−−−−−−−−−−−−−−−−−−−−−−
water2 ≥ full2 − acc.water2.TBcont

)
• (on1-false-b)

w{on1} (Rely-6a), guard of (on1-true), DIFF .water1 and DIFF .water2, and Lemma 7, (Mono-5)
Enf�((water1 ≥ empty1) ∧ (water2 ≥ full2)) • (on1-false-b)

w{on1} logic, (Mono-5)
(on1-false)

In the proof above, for each iteration of the action system one can use the fact that there is an immediately
preceding interval that satisfies either the initial condition or the body of the action system.

Finally, we consider case �
q

(idle)
y
on1

, which represents the case where the program is executing idle
immediately prior to setting on1 to false. To prove this case assume the following property, which supercedes
(Rely-8).

(low limit1 ≥ empty1 + 2acc.water1.TBcont) ∧ (high limit2 ≤ full2 − 2acc.water2.TBcont) (Rely-8a)

Then we have the following calculation.

Enf�
q

(idle)
y
on1

• (on1-false-b)

w{on1} expand definition of (idle), ¬on1 case is trivially true, (Mono-5)

Enf�
q

(on1 ⇒ (water1 > low limit1) ∧ (water2 < high limit2)) → idle
y
on1

• (on1-false-b)

w{on1} similar calculation to �
q

(on1-true)
y
on1

case but using (Rely-8a)

(on1-false)

Discharge (S2). Safety condition (S2) is slightly different from the other properties we have considered
because it involves multiple iterations of the action system. In particular, because the precision of the pump
is lower than the precision of the time band of the controller, several iterations of the action system controller
may be executed while the Pump1 is in mode stopping . To satisfy (S2), while the pump is stopping, we
must ensure that water1 is above empty1 and water2 is below full2. Because �c joins, (S2)

∞ V (S2), and
hence, using Lemma 9, (Dist-7) and (Dist-8) we must prove each of the following. Below, we have applied
Lemma 10 to reduce the positive iteration of (on1-true) and (on1-false-b) to a single iteration.

r
Enf�

−→
I1 ∨ �

q
(on1-false-b) 8 (idle)

y
on1

• (on1-true)
z

on1

V (S2) (31)
r
Enf�

−→
I1 ∨ �

q
(on1-true) 8 (idle)

y
on1

• (on1-false-b)
z

on1

V (S2) (32)
r
Enf�

−→
I1 ∨ �

q
(on1-true) 8 (on1-false-b)

y
on1

• (idle)
ω+

z

on1

V (S2) (33)

Cases (31) and (32) are trivial because their behaviour imply �on1, which in turn implies �¬Stopping1,
and hence the antecedent of (S2) is falsified. For case (33), we perform case analysis on ←−on1. Case ←−on1 is
trivial. For case ←−−−¬on1, we define, which focusses on the ¬on1 case,

(¬on1 ⇒ (water1 ≤ reserve1) ∨ (water2 ≥ reserve2)) → idle † TBcont (idle-not-on1)

and obtain the following proof obligations:
r
Enf�

−→
I1 ∧ ←−−−¬on1

• (idle-not-on1)
ω+

z

on1

V (S2) (34)
r
Enf�

q
(on1-true)

y
on1
∧ ←−−−¬on1

• (idle-not-on1)
ω+

z

on1

V (S2) (35)
r
Enf�

q
(on1-false-b)

y
on1
∧ ←−−−¬on1

• (idle-not-on1)
ω+

z

on1

V (S2) (36)

31

FP1 =̂
Rely (Rely-1) ∧ (Rely-2) ∧ (Rely-3) ∧ (Rely-4) ∧ (Rely-5) ∧ (Rely-7) ∧

(Rely-8b) ∧ (Rely-8c) ∧ DIFF .water1 ∧ DIFF .water2
•

Init¬on1 ∧ Stopped1
•

do
¬on1 ∧ (water1 > reserve1) ∧ (water2 < reserve2) → on1 := true

8 on1 ∧ ((water1 ≤ low limit1) ∨ (water2 ≥ high limit2)) → on1 := false

else idle
†TBcont

od

Figure 15: Final Pump1 controller

Case (34) is trivial using (Rely-4) because I1 ⇒ Stopped1 and (36) is trivial because �
q

(on1-true)
y
on1
∧

←−−−¬on1 reduces to false. To prove (36), when the controller switches from executing (on1-false-b) to (idle-not-
on1) water1 is at least empty1 + acc.water1.TBpump and water2 are at most full2− acc.water2.TBpump . Note
that the accuracy is with respect to the pump time band as opposed to the previous properties that were
with respect to the time band of the controller.
q

(on1-false-b)
y
on1
V
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
water1 ≥ empty1 + acc.water1.TBpump ∧

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
water2 ≥ full2 − acc.water2.TBpump (37)

Using (37), the proof of (36) is straightforward. Informally speaking, water1 is guaranteed to be above
empty1 and water2 is guaranteed to be below full1 for ` ≤ ρ.TBpump while �Stopping1 holds. By (Rely-4)
Stopped1 holds after ρ.TBpump units of time have elapsed. A formal proof of a similar property is given in
[21, 19]. Because (on1-false-b) only tests to see if water1 is below low limit1 and water2 is above high limit1,
we use the behaviour of the controller before execution of (on1-false-b) to prove (37). In particular, we have

Enf(�
−→
I1 ∨ �

q
action.AP1

y
on1

) • (on1-false-b) V
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
water1 ≥ empty1 + acc.water1.TBpump ∧−−−−−−−−−−−−−−−−−−−−−−−−−−−→
water2 ≥ full2 − acc.water2.TBpump

(38)

This is similar to the proof that (S1) holds and may be discharged using the following assumption.

low limit1 ≥ empty1 + 2acc.water1.TBcont + acc.water1.TBpump (Rely-8b)

high limit2 ≤ full2 − 2acc.water2.TBcont − acc.water1.TBpump (Rely-8c)

Note that by using (Rely-7), both of the following hold:

reserve1 ≥ empty1 + 2acc.water1.TBcont + acc.water1.TBpump

reserve2 ≤ full2 − 2acc.water2.TBcont − acc.water1.TBpump

Non-Zeno condition (on1-NZ). In any real implementation, there will be a constant ε ∈ R>0, that represents
the physical lower limit on the time taken to perform each iteration of the action system. By assuming that
on1 is only modified by the action system in Fig. 15, the non-Zeno condition on on1 (on1-NZ) may be
trivially discharged.

The final controller is given in Fig. 15, where the rely condition and initialisation have been made explicit.
It is straightforward to show that AP1 v FP1, and hence because v is transitive, we have that CP1 v FP1,
i.e., FP1 is an executable refinement of the original specification CP1.

7. Related work

The theory of action systems is well developed and has been applied to a number of different problem
domains. Due to the simplicity of the model, action systems have been used as a basis for several theories

32

of program refinement [3, 4, 7, 41, 46, 50]. Part of the simplicity of action systems is due to the inherent
interleaving semantics assumption, which ensures that statements are executed one after another (even
under parallel composition), and hence, a concurrent system is viewed as a sequential program with a
non-deterministic choice over all parallel actions.

To enable reasoning about real-time properties, Fidge and Wellings describe a method of extending
action systems with actions that consume time [27]. Unlike our model where time is implicitly advanced,
Fidge and Wellings use a ‘tick’ action to model the passage of time, and accessibility restrictions are used
to allow multiple processes to modify the same variable. Rönkkö et al extend action systems with actions
that describe continuous changes to the state using differential equations [45, 46]. A prioritised alternating
model of execution is used to ensure that the (discrete) controller actions are able to execute. Hybrid action
systems have been extended to qualitative action systems [1], but that work is focused on methods for testing
real-time systems as opposed to their formal verification/derivation. A weakest precondition for differential
actions is provided, however, due to the generality of the definition, the first derivative of the evolution
function is required to be continuous. Back et al present refinement relations for continuous action systems
[2], which have been extended by Meinicke and Hayes [41]. Westerlund and Plosila present timed action
systems and their refinement using weakest preconditions [50]. Their framework only allows before and after
states to be considered and hence cannot be used to reason about durative behaviour.

Ultimately, the interleaving execution model is problematic in contexts such as real-time and multi-core
systems where the environment evolves with the controller in a truly concurrent manner. In such contexts,
one must address issues with sampling multiple variables over a time interval [10, 20, 30] and be able to
reason about transient properties [17, 20]. Furthermore, as software controllers are increasingly used in
complex cyber-physical systems, it becomes important to be able to reason over multiple time granularities
[9, 10, 18, 30].

There are several frameworks for real-time refinement [32, 37], however, these frameworks do not include
a sampling logic. Broy [8] presents interaction refinement in a real-time context and considers refinement
between different abstractions of time. Sampling is considered to be an abstraction (via discretisation) of
continuous behaviour, however, the framework does not include methods for reasoning about sampling.

An alternative algebraic formulation of LTL [40] and ITL [44] is given by von Karger [48]. However,
unlike von Karger, who aims to understand the algebraic characteristics of temporal operators, we aim to
present definitions that are suitable for program derivation. Other algebraic properties for interval-based
reasoning have been considered in [22, 35, 36]. Methods for reasoning about looping constructs in a discrete
setting are given by Back and von Wright [6]. Our aims in this paper have not been to develop an algebra
for derivation, but to exploit algebraic reasoning during a derivation.

Our previous paper [20] presents a method for reasoning about hardware/software interaction, which
captures properties of (software) signals and their corresponding (physical) effects with respect to the delays
and accuracy of the interacting components. For this paper, the generality of our algebraic theory has meant
that the interaction between hardware and software has not required any special treatment.

8. Conclusions and future work

This paper continues our research into methods for program derivation using the verify-while-develop
paradigm. The method of enforced properties [15, 16] has been extended to enable development of action
systems in a compositional manner [17]. The logic in [17] considers traces that consist of pre/post state rela-
tions, develops a temporal logic on relations and assumes that environment transitions are interleaved with
those of an action system. Although the framework facilitates compositional derivation of action systems
code, the underlying interleaving semantics assumption could not properly address sampling anomalies and
transient properties. Hence, the framework was generalised so that traces consisted of adjoining intervals
together with a sampling logic (Section 3.4), which allowed sampling-related issues to be properly addressed
[20]. However, the logic in [20] does not adequately handle specifications over multiple time granularities.
Instead, hardware is assumed to react and take effect instantaneously, which is unrealistic.

This paper incorporates a time bands theory [10] into action systems and we develop an interval-based
semantics for reasoning about sampling over continuous environments. We develop an algebraic framework

33

that supercedes Interval Linear Temporal Logic [20]. We have developed high-level methods that use time
bands to simplify reasoning about hardware/software interaction. As an example, we have derived an action
system controller for a real-time pump. Notable in our derivation is the development of side conditions that
formalise the assumptions on the environment and the derivation of relationships between threshold and
critical levels based on the (different) time bands of the controller and pump.

As part of future work, we aim to further develop the theories for parallel composition of action systems
by developing (compositional) rely/guarantee-style methods. We also aim to explore the links between action
systems and teleo-reactive programs [18, 21]. In particular it will be interesting to consider a development
method that starts with a teleo-reactive program (whose semantics are closer to abstract specifications) and
refining the teleo-reactive program to an action system. We also consider development of mechanisation of
this derivation method to be future work. With the simplifications that we have achieved in our framework,
we are now confident that tools to support program derivation can be developed.

A possible generalisation of the two-pump example would be to consider different time bands for each
pump. However, for the purposes of this paper, such a generalisation does not provide any new insights into
the methodology because the pumps are not interacting directly with each other. That is, the methods we
have developed for relating the time bands of the controller, water level and pump (which do interact) can be
applied to more sophisticated systems. We aim to consider such examples after developing mechanisation.

References

[1] Aichernig, B. K., Brandl, H., Krenn, W., 2009. Qualitative action systems. In: Breitman, K., Cavalcanti, A. (Eds.),
ICFEM. Vol. 5885 of LNCS. Springer, pp. 206–225.

[2] Back, R.-J., Petre, L., Porres, I., 2000. Generalizing action systems to hybrid systems. In: Joseph, M. (Ed.), Formal
Techniques in Real-Time and Fault-Tolerant Systems. Vol. 1926 of Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, pp. 73–91.

[3] Back, R.-J., Sere, K., 1991. Stepwise refinement of action systems. Structured Programming 12 (1), 17–30.
[4] Back, R.-J., von Wright, J., 1994. Trace refinement of action systems. In: CONCUR ’94: Proceedings of the Concurrency

Theory. Springer-Verlag, pp. 367–384.
[5] Back, R.-J., von Wright, J., 1998. Refinement Calculus: A Systematic Introduction. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA.
[6] Back, R.-J., von Wright, J., July 1999. Reasoning algebraically about loops. Acta Informatica 36 (4), 295–334.
[7] Back, R.-J., von Wright, J., 2003. Compositional action system refinement. Formal Asp. Comput. 15 (2-3), 103–117.
[8] Broy, M., 2001. Refinement of time. Theor. Comput. Sci. 253 (1), 3–26.
[9] Burns, A., Baxter, G., 2006. Time bands in systems structure. In: Structure for Dependability: Computer-Based Systems

from an Interdisciplinary Perspective. Springer-Verlag, pp. 74–88.
[10] Burns, A., Hayes, I. J., 2010. A timeband framework for modelling real-time systems. Real-Time Systems 45 (1), 106–142.
[11] Chandy, K. M., Misra, J., 1988. Parallel Program Design: A Foundation. Addison-Wesley Longman Publishing Co., Inc.
[12] Coleman, J. W., Jones, C. B., 2007. A structural proof of the soundness of rely/guarantee rules. J. Log. Comput. 17 (4),

807–841.
[13] de Roever, W. P., Engelhardt, K., 1996. Data Refinement: Model-oriented proof methods and their comparison. No. 47

in Cambridge Tracts in Theoretical Computer Science. Cambridge University Press.
[14] Dijkstra, E. W., 1975. Guarded commands, nondeterminacy and formal derivation of programs. Commun. ACM 18 (8),

453–457.
[15] Dongol, B., 2009. Progress-based verification and derivation of concurrent programs. Ph.D. thesis, The University of

Queensland.
[16] Dongol, B., Hayes, I. J., 2009. Enforcing safety and progress properties: An approach to concurrent program derivation.

In: 20th Australian Software Engineering Conference. IEEE Computer Society, pp. 3–12.
[17] Dongol, B., Hayes, I. J., 2010. Compositional action system derivation using enforced properties. In: Bolduc, C., De-

sharnais, J., Ktari, B. (Eds.), Mathematics of Program Construction. Vol. 6120 of Lecture Notes in Computer Science.
Springer, pp. 119–139.

[18] Dongol, B., Hayes, I. J., 2011. Approximating idealised real-time specifications using time bands. In: AVoCS 2011. Vol. 46
of ECEASST. EASST, pp. 1–16.

[19] Dongol, B., Hayes, I. J., 2012. Deriving real-time action systems controllers from multiscale system specifications. In:
Gibbons, J., Nogueira, P. (Eds.), MPC. Vol. 7342 of Lecture Notes in Computer Science. Springer, pp. 102–131.

[20] Dongol, B., Hayes, I. J., 2012. Deriving real-time action systems in a sampling logic. Science of Computer Programming
(To appear).
URL http://www.sciencedirect.com/science/article/pii/S0167642312001360

[21] Dongol, B., Hayes, I. J., 2012. Rely/guarantee reasoning for teleo-reactive programs over multiple time bands. In: Derrick,
J., Gnesi, S., Latella, D., Treharne, H. (Eds.), IFM. Vol. 7321 of Lecture Notes in Computer Science. Springer, pp. 39–53.

34

[22] Dongol, B., Hayes, I. J., Meinicke, L., Solin, K., 2012. Towards an algebra for real-time programs. In: Kahl, W., Griffin,
T. G. (Eds.), RAMICS. Vol. 7560 of Lecture Notes in Computer Science. Springer, pp. 50–65.

[23] Dongol, B., Hayes, I. J., Robinson, P. J., 2013. Reasoning about goal-directed real-time teleo-reactive programs. Formal
Aspects of Computing(Accepted 19-11-2012).
URL http://dx.doi.org/10.1007/s00165-012-0272-1

[24] Dongol, B., Mooij, A. J., 2006. Progress in deriving concurrent programs: Emphasizing the role of stable guards. In:
Uustalu, T. (Ed.), 8th International Conference on Mathematics of Program Construction. Vol. 4014 of LNCS. Springer,
pp. 140–161.

[25] Dongol, B., Mooij, A. J., March 2008. Streamlining progress-based derivations of concurrent programs. Formal Aspects of
Computing 20 (2), 141–160.

[26] Feijen, W. H. J., van Gasteren, A. J. M., 1999. On a Method of Multiprogramming. Springer Verlag.
[27] Fidge, C. J., Wellings, A. J., 1997. An action-based formal model for concurrent real-time systems. Formal Aspects of

Computing 9, 175–207.
[28] Guelev, D. P., Hung, D. V., 2002. Prefix and projection onto state in duration calculus. Electr. Notes Theor. Comput.

Sci. 65 (6), 101–119.
[29] Gupta, V., Henzinger, T. A., Jagadeesan, R., 1997. Robust timed automata. In: Proceedings of the International Workshop

on Hybrid and Real-Time Systems. Springer-Verlag, London, UK, pp. 331–345.
[30] Hayes, I. J., Burns, A., Dongol, B., Jones, C. B., 2013. Comparing degrees of non-determinism in expression evaluation.

The Computer Journal.
URL http://comjnl.oxfordjournals.org/content/early/2013/02/05/comjnl.bxt005.abstract

[31] Hayes, I. J., Jackson, M. A., Jones, C. B., 2003. Determining the specification of a control system from that of its
environment. In: Araki, K., Gnesi, S., Mandrioli, D. (Eds.), FME. Vol. 2805 of Lecture Notes in Computer Science.
Springer, pp. 154–169.

[32] Hayes, I. J., Utting, M., 2001. A sequential real-time refinement calculus. Acta Inf. 37 (6), 385–448.
[33] Henzinger, T. A., 1996. The theory of hybrid automata. In: LICS ’96. IEEE Computer Society, Washington, DC, USA,

pp. 278–292.
[34] Henzinger, T. A., Qadeer, S., Rajamani, S. K., 1999. Assume-guarantee refinement between different time scales. In: CAV

’99. Springer-Verlag, London, UK, pp. 208–221.
[35] Höfner, P., Möller, B., 2008. Algebraic neighbourhood logic. J. Log. Algebr. Program. 76 (1), 35–59.
[36] Höfner, P., Möller, B., 2009. An algebra of hybrid systems. J. Log. Algebr. Program. 78 (2), 74–97.
[37] Hooman, J., van Roosmalen, O. S., 2000. An approach to platform independent real-time programming: (1) formal

description. Real-Time Systems 19 (1), 61–85.
[38] Jones, C. B., 1983. Tentative steps toward a development method for interfering programs. ACM Transactions on Pro-

gramming Languages and Systems 5 (4), 596–619.
[39] Jones, C. B., Hayes, I. J., Jackson, M. A., 2007. Deriving specifications for systems that are connected to the physical

world. In: Jones, C. B., Liu, Z., Woodcock, J. (Eds.), Formal Methods and Hybrid Real-Time Systems. Vol. 4700 of
Lecture Notes in Computer Science. Springer, pp. 364–390.

[40] Manna, Z., Pnueli, A., 1992. Temporal Verification of Reactive and Concurrent Systems: Specification. Springer-Verlag
New York, Inc.

[41] Meinicke, L., Hayes, I. J., 2006. Continuous action system refinement. In: Uustalu, T. (Ed.), Mathematics of Program
Construction. Vol. 4014 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pp. 316–337.

[42] Moszkowski, B. C., 1995. Compositional reasoning about projected and infinite time. In: ICECCS. IEEE Computer
Society, pp. 238–245.

[43] Moszkowski, B. C., 1997. Compositional reasoning using interval temporal logic and Tempura. In: de Roever, W. P.,
Langmaack, H., Pnueli, A. (Eds.), COMPOS. Vol. 1536 of LNCS. Springer, pp. 439–464.

[44] Moszkowski, B. C., 2000. A complete axiomatization of interval temporal logic with infinite time. In: LICS. pp. 241–252.
[45] Rönkkö, M., Ravn, A. P., 1999. Action systems with continuous behaviour. In: Hybrid Systems V. Springer-Verlag,

London, UK, pp. 304–323.
[46] Rönkkö, M., Ravn, A. P., Sere, K., 2003. Hybrid action systems. Theoretical Computer Science 290 (1), 937 – 973.
[47] von Karger, B., 2000. A calculational approach to reactive systems. Sci. Comput. Program. 37 (1-3), 139–161.
[48] von Karger, B., 2000. Temporal algebra. In: Backhouse, R. C., Crole, R. L., Gibbons, J. (Eds.), Algebraic and Coalgebraic

Methods in the Mathematics of Program Construction. Vol. 2297 of Lecture Notes in Computer Science. Springer, pp.
309–385.

[49] Wei, K., Woodcock, J., Burns, A., June 2010. Formalising the timebands model in timed circus. Tech. rep., University of
York.

[50] Westerlund, T., Plosila, J., 2007. Time aware system refinement. Electr. Notes Theor. Comput. Sci. 187, 91–106.
[51] Wulf, M., Doyen, L., Markey, N., Raskin, J.-F., December 2008. Robust safety of timed automata. Form. Methods Syst.

Des. 33, 45–84.
[52] Zhou, C., Hansen, M. R., 2004. Duration Calculus: A Formal Approach to Real-Time Systems. EATCS: Monographs in

Theoretical Computer Science. Springer.

35

