
Reasoning About Real-Time
Teleo-Reactive Programs

Brijesh Dongol
Ian J. Hayes

Peter J. Robinson

February 2010

Technical Report SSE-2010-01

Division of Systems and Software Engineering Research
School of Information Technology and Electrical Engineering

The University of Queensland
QLD, 4072, Australia

http://www.itee.uq.edu.au/∼sse

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/15083066?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Reasoning About Real-Time Teleo-Reactive Programs

Brijesh Dongol, Ian J. Hayes, and Peter J. Robinson

{brijesh,ianh,pjr}@itee.uq.edu.au
School of Information Technology and Electrical Engineering,

The University of Queensland

Abstract. The teleo-reactive programming model is a high-level approach to im-
plementing real-time control programs that react dynamically to changes in their
environment. Teleo-reactive programs are particularly useful for implementing
controllers in autonomous agents. In this paper we present formal techniques for
reasoning about robust teleo-reactive programs. We develop a temporal logic over
continuous intervals, which we use to formalise the semantics of teleo-reactive
programs. To facilitate compositional reasoning about a program and its environ-
ment, we use rely/guarantee style specifications. We also present several theo-
rems for simplifying proofs of teleo-reactive programs that control goal-directed
agents.

1 Introduction

Software is increasingly being used to implement controllers for safety-critical appli-
cations in real-time environments [14, 11, 5]. For such systems, failures can have a
high cost, and hence it is important to ensure dependability of the underlying software
throughout the lifetime of the system. As the applications become more sophisticated,
the programming languages and the logics that we use must accordingly become more
sophisticated.

The teleo-reactive programming language is a high-level language that has been
shown to be useful for implementing autonomous agents that react robustly to con-
stantly changing environments [15, 6]. Teleo-reactive programs present several attrac-
tive benefits for developing real-time software. Actions are durative in nature, i.e., de-
scribe a behaviour over an interval of time, as opposed to formalisms such as Z [17],
action systems [1], TLA [10], etc., where each action causes a discrete state change in
the system. To reason about continuous properties, these formalisms must be extended
so that variables have type Time → Value (e.g., as used in continuous action systems
[2, 13], TLA+ [9]), where Time =̂ R

≥0 denotes the set of all times. Teleo-reactive
programs have a hierarchical structure, which means details of each action can be de-
veloped at a later stage. Furthermore, several teleo-reactive programs may be composed
in parallel, which allows programs to be developed in a modular manner.

We consider a teleo-reactive controller for the robot depicted in Fig. 1, which is
tasked with clearing cans from the table by moving them to the depot. To achieve this
task, the robot is able to to rotate clockwise/anti-clockwise (to scan the environment
for cans or the depot), move in the forward direction (towards a can or the depot), and
grasp/ungrasp its fingers (to pickup and drop cans). The robot is equipped with sensors

2 Brijesh Dongol, Ian J. Hayes, and Peter J. Robinson

sensor

cans depot

table
robot

Fig. 1. Top down view of can clearing robot example

holding , see can , and touching that determine whether or not the robot is holding,
seeing, and touching a can, respectively. If see can holds, the robot is pointing at a
can, and hence, if the robot moves forward while see can holds, provided that the
environment does not move the can, the robot will eventually touch the can. Using
its current location and rotation, the robot is able to derive booleans at depot and
see depot which hold if the robot is at the depot and can see the depot, respectively.

We assume that the environment does not directly affect movement of the robot,
however, it may add/remove cans from the table, the depot, and the robot’s grasp. The
environment may also move cans around the table. Thus, the behaviour of the environ-
ment may help or hinder the robot from achieving its task.

To reason about teleo-reactive programs, we present a form of temporal logic, which
we call durative temporal logic. The logic allows reasoning about properties over the
duration of time intervals by combining the duration calculus [18] with linear temporal
logic [4, 12]. We also use durative temporal logic to formalise the semantics of teleo-
reactive programs. To facilitate compositional reasoning, we consider rely/guarantee
style specification rules [8], where the rely condition describes properties of the en-
vironment and the guarantee condition describes how the program will behave un-
der the assumption that the rely condition holds. Our framework allows us to state
rely/guarantee properties that hold over all intervals (to prove safety properties) and in-
tervals of a certain length (to prove progress properties). We may also state properties
about the lengths of the intervals (to prove real-time properties). We provide a number
of higher-level proof rules for simplifying proofs of progress in goal-directed agents.

In Section 2 we present durative temporal logic as well as a formal syntax and
semantics of teleo-reactive programs. In Section 3, we present a compositional theory
for proving properties of teleo-reactive programs and in Section 4, we prove properties
of a controller for the can clearing robot (Fig. 1).

2 Formalising teleo-reactive programs

In this section we present a theory that facilitates reasoning about teleo-reactive pro-
grams. In Section 2.1 we define the durative temporal logic, and in Sections 2.2 and 2.3
we provide the syntax and semantics of teleo-reactive programs, respectively.

Reasoning About Real-Time Teleo-Reactive Programs 3

2.1 A temporal logic for intervals

We now present a logic for reasoning about the behaviour of teleo-reactive programs.
Because the actions of a teleo-reactive program are durative, linear temporal logic
[4, 12], which is defined for discrete traces of states is inappropriate. On the other
hand, although the duration calculus facilitates reasoning about real-time programs
[18], we would like to avoid the complexity introduced by allowing point intervals.
Teleo-reactive programs can ignore point intervals because any (primitive) action of a
teleo-reactive program is active over an interval with non-zero length. We also introduce
new operators that simplify temporal reasoning.

If b, e ∈ Time and b < e, we let [b, e], (b, e], [b, e), and (b, e) denote the closed,
right-closed (or left-open), left-closed (or right-open), and open (non-point) interval
from b to e, respectively. Note that each interval is finite. The set of all closed, non-point
intervals is given by Intv =̂ {[b, e] | b, e ∈ Time ∧ b < e}. Hence, [b′, e ′] ⊆ [b, e]
(i.e., [b′, e ′] is a sub-interval of [b, e]) iff b ≤ b′ < e ′ ≤ e.

A state space of a teleo-reactive program is given by Σ =̂ (Var ∪ Env) → Value,
where Var and Env are disjoint sets of variable names representing the variables
controlled by the program and the environment, respectively. A state is a member of
Σ, a state predicate is a member of PΣ =̂ Σ → B, and a trace is a member of
Trace =̂ Time → Σ. We use ‘.’ for function application. For a state predicate c, we
define

∫
c =̂ λ[b, e]: Intv • λ tr :Trace •

∫ e

b
c.(tr .t) dt

The length of an interval is given by ` =̂
∫

1. Note that `.[b, e] = e − b.
A trace predicate is a member of PTrace =̂ Trace → B, and an interval predicate

is a member of IntvPred =̂ Intv → PTrace. The boolean operators may be lifted
pointwise to state, trace, and interval predicates. Thus, for example (ip1 ∧ ip2).∆.tr =
(ip1.∆.tr ∧ ip2.∆.tr) for interval predicates ip1 and ip2. We define some further no-
tation for trace predicates tp1 and tp2.

(tp1 V tp2) =̂ ∀tr :Trace • tp1.tr ⇒ tp2.tr

(ip1 V ip2) =̂ ∀∆: Intv • ip1.∆ V ip2.∆

(similarly, ‘≡’ and ‘W’).
Given that c is a state predicate, the syntax of basic durative temporal formulae is

described by

F ::= dce | F1:F2 | 2F | :F

and their semantics is given in Fig. 2. We present the semantics in terms of interval
predicates and assume that unary operators bind more tightly than binary operators.

The interpretation of dce is that c holds almost everywhere at the start of the given
interval. The chop operator ‘:’ allows F1 to hold for the given interval, or we may split
the interval into two so that F1 holds for the first part, and F2 holds for the second. Note
that ‘:’ is weaker than the chop operator defined in the duration calculus [18] in that it
allows F2 not to become true in the given interval. 2F holds if F holds for every sub-
interval of the given interval and :F holds if F holds for the interval that immediately
follows the given interval.

4 Brijesh Dongol, Ian J. Hayes, and Peter J. Robinson

dce b= λ[b, e]: Intv • ∃m ∈ (b, e] • (` =
R

c).[b, m]
F1:F2 b= λ[b, e]: Intv • F1.[b, e] ∨ ∃m ∈ (b, e) • F1.[b, m] ∧ F2.[m, e]

2F b= λ[b, e]: Intv • ∀δ: Intv • δ ⊆ [b, e] ⇒ F .δ

:F b= λ[b, e]: Intv • ∃f > e • F .[e, f]

Fig. 2. Durative temporal logic

In order to reduce the notational complexity, we interpret application of a state pred-
icate, say c, to an interval to be equivalent to dce. That is, we remove ‘d’ and ‘e’ from
dce when the interpretation of c is clear from context. We may view this as lifting a
state predicate to an interval predicate.

We also define the following shorthand for reasoning about teleo-reactive programs.

3F =̂ ¬2¬F

∇F =̂ 3F ∨ :F

F1 un F2 =̂ F2 ∨ (2F1:F2)
F1 wu F2 =̂ F1 ⇒ (F1 un F2)

3F states that F eventually holds in some sub-interval of the given interval and ∇F

states that F holds sometime within or immediately after the given interval. F1 un F2

states that either F2 holds, or F1 continues to hold unless F2 holds. Note that if F2

never holds, i.e., 2¬F2, then F1 un F2 ≡ 2F1. Finally, F1 wu F2 is the weak unless
operator that only requires F1 un F2 to hold if F1 holds.

2.2 Abstract syntax

We use seq .T to denote a finite sequence with elements of type T . A sequence can
be explicitly defined using brackets, ‘〈’ and ‘〉’, and ‘a’ is the sequence concatenation
operator.

Definition 1. If f ⊆ Var is a set of variables; r and g are interval predicates; and c is
a state predicate, the abstract syntax of a teleo-reactive program is given by

PA::= f : Jr , gK
GA::= c → A

A::= PA | seq .GA

A primitive action is defined via a rely/guarantee specification that consists of a frame,
f , a rely condition, r , and a guarantee condition, g . Each primitive action, pa =̂
f : Jr , gK, directly controls the variables in f , assumes r holds over any interval in
which pa is executing, and ensures that g holds provided r holds. A guarded action
c → a executes as action a over any interval in which the guard c is true almost every-
where. The interpretation of a sequence of guarded actions is that the earlier actions are
given priority over actions that appear later in the sequence. For example, in a sequence
〈c1 → a1, c2 → a2〉, if the guard c1 ever becomes true, then a2 stops and a1 begins ex-
ecuting. Hence, the guard of a2 is effectively ¬c1 ∧ c2. If neither c1 nor c2 holds, then

Reasoning About Real-Time Teleo-Reactive Programs 5

robot b= holding → deliver,

true → collect

deliver b= at depot → ungrasp,

true → go depot

collect b= see can → fetch,

true → rotate

go depot b= see depot → forward,

true → rotate

fetch b=
„

touching ∧
gdist > can width

«
→ grasp,

gdist > can width → forward,

true → ungrasp

Fig. 3. Control program for a can clearing robot

neither a1 nor a2 is executed, and the behaviour is defined to be chaotic [7]. During an
execution of a teleo-reactive program, the guards of the program are continually being
evaluated, and the highest-priority enabled action is executed.

Let us consider the teleo-reactive program in Fig. 3, which implements a controller
for the robot in Fig. 1. We assume that guards holding , see can , at depot , see depot ,
and touching are boolean variables whose values are equivalent to the (sensed or de-
rived) values of the corresponding sensors. We assume that can width is the width of
the can, max gd (where can width < max gd) is the maximum distance between
the two gripping fingers of the robot, and gdist (where 0 ≤ gdist ≤ max gd) is the
distance between the two gripping fingers. The primitive actions of the robot are rotate,
forward, grasp, and ungrasp, which control the basic movements of the robot.

Durative actions deliver and collect in robot cause the robot to deliver and collect
cans, respectively. Action deliver executes over any interval in which 2holding holds,
i.e., over any interval in which the robot continues to hold a can, the robot must be
attempting to deliver the can to the depot. Furthermore, deliver is expanded into prim-
itive actions ungrasp and go depot. In the context of the robot program, the guard of
ungrasp is effectively holding ∧ at depot , and similarly the guard of go depot is
effectively holding ∧ ¬at depot .

The structure of the program in Fig. 3 is typical of teleo-reactive programs that im-
plement controllers for goal-directed agents. Here, completion of the first action deliver

represents accomplishment of the goal, while completion of the second action collect

represents achievement of sub-goals that cause the agent to make progress towards en-
abling (and hence executing) the first action deliver. Notice that actions, deliver, collect,
go depot, and fetch are also structured in a goal-directed manner. For example,comple-
tion of the ungrasp action represents completion of deliver (because holding becomes
false), while completion of go depot enables ungrasp. Teleo-reactive programs allow
actions to be reused, e.g., rotate occurs in robot (to scan for cans) and in go depot (to
scan for the depot).

6 Brijesh Dongol, Ian J. Hayes, and Peter J. Robinson

Suppose f ⊆ Var , r and g are interval predicates, and M b= 〈c → a〉 a S is a teleo-reactive
program.

beh.(f : Jr , gK) b= r ⇒ g ∧ st .(Var \ f) (1)
beh.〈〉 b= true (2)
beh.M b= ((2c ∧ beh.a): (¬c ∧ beh.M)) ∨ ((2¬c ∧ beh.S): (c ∧ beh.M)) (3)

Fig. 4. beh function

2.3 Semantics

Recalling the syntax of a teleo-reactive program from Definition 1, the meaning of a
teleo-reactive action A over interval ∆ is described by the behaviour function:

beh:A → IntvPred

as defined in Fig. 4. For a set of variables V , we define an interval predicate, st .V , that
states that all the variables in V are stable over the interval. Formally, we have:

st .V =̂ ∀v :V • ∃k :Value • 2(v = k)

The behaviour of a primitive action, (1), states that if the rely condition holds, then the
guarantee must hold and each variable in Var not in the frame of the primitive action
is stable. Note that a primitive action may modify variables from Env . The behaviour
of an empty sequence of actions, (2), is chaotic, i.e., any behaviour is allowed. The
behaviour of a sequence of guarded actions, (3), is defined recursively. There are two
disjuncts corresponding to either c or ¬c holding initially on the interval. If c holds
initially, either 2c ∧ beh.a holds for the whole interval or the interval may be split
into an initial interval in which 2c ∧ beh.a holds, followed by an interval in which ¬c

holds initially and beh.M holds (recursively) for the second interval. The other disjunct
is similar. Note that each chopped interval must be a maximal interval over which either
2c or 2¬c holds. The semantics of beh.M does not rule out Zeno-like behaviour, i.e.,
an infinite number of switches between different guarded actions over a finite amount
of time. However, because Zeno behaviour is not possible in a real system and because
our traces are generated from such systems, we assume Zeno-like behaviour does not
occur.

3 Compositional proofs of safety and progress

In this section, we describe how proofs of safety and progress may be carried out in a
compositional manner. In Section 3.1, we define rely/guarantee conditions and provide
lemmas for reducing the complexity of rely/guarantee triples, and in Section 3.2, we
describe proof of progress for goal-directed agents.

In this section, we assume c, p and q are state predicates; r , r ′, g and g ′ are interval
predicates; F and G are durative temporal formulae; c → a is a guarded action; S is a
sequence of guarded actions; M is a teleo-reactive program; and D ,D1,D2 ∈ Time.

Reasoning About Real-Time Teleo-Reactive Programs 7

3.1 Rely/guarantee

Our teleo-reactive programs execute within a continually changing environment. For
example, the environment of the robot in Fig. 3 can add or remove cans from both
the table and the robot’s grasp. Clearly, the environment may act maliciously, e.g., by
removing cans from the robot’s grasp so that the robot is never able to deposit cans into
the depot.

In order to build robust systems that take the actions of the environment into ac-
count, we use rely/guarantee specifications [8]. Here the rely condition describes prop-
erties of the environment and the guarantee condition describes how the program will
behave under the assumption that the rely condition holds. The program does not ensure
the guarantee condition outside of the rely condition. In this paper, rely and guaran-
tee conditions may be any interval predicate (which includes durative temporal formu-
lae). Thus, we may reason about safety, progress and real-time properties of the system
within a single formalism. The definition below is provided by Hayes [7].
Definition 2. {r}M{g} =̂ r ∧ beh.M V g

Note that we have {r} M {g} = ∀tr :Trace • ∀∆: Intv • (r ∧ beh.M ⇒ g).∆.tr by
expanding V in Definition 2. Rely condition r may describe conditions under which
the environment performs both helpful and harmful state changes.

The following lemma along with the associated corollary allows us to prove that
a rely-guarantee triple holds by weakening the rely condition and strengthening the
guarantee.
Lemma 3 (Weaken/strengthen). {r} M {g} holds provided (r ′ ⇒ g ′) V (r ⇒ g)
and {r ′} M {g ′} hold.

Corollary 4 (Weaken/strengthen). {r} M {g} holds provided r V r ′, g ′
V g and

{r ′} M {g ′} hold.

The following lemma states that we may prove an existential property in the rely con-
dition by proving the triple holds for each possible value of the variable.
Lemma 5. If x is a variable of non-empty type T then {∃x :T • r} M {g} holds
provided x is not free in beh.M and g , and ∀x :T • {r} M {g} holds.

A primitive action, f : Jr , gK, will guarantee both that g holds and that the program
variables not in f do not change, provided r holds.
Lemma 6 (Primitive action). {r} f : Jr , gK {g ∧ st .(Var \ f)}

The next lemma allows the complexity of the teleo-reactive program within a rely/gua-
rantee triple to be reduced. Given a teleo-reactive program of the form 〈c → a〉 a S ,
if 2c holds in the interval over which 〈c → a〉 a S executes, the program must be
behaving as a over the interval. Similarly, if 2¬c holds, then the program must be
behaving as S .

Lemma 7 (Program reduction). If M =̂ 〈c → a〉 a S , then

{r ∧ 2c} M {g} = {r ∧ 2c} a {g} (4)
{r ∧ 2¬c} M {g} = {r ∧ 2¬c} S {g} (5)

8 Brijesh Dongol, Ian J. Hayes, and Peter J. Robinson

3.2 Progress in goal-directed agents

For teleo-reactive programs that implement goal-directed agents (e.g., Fig. 3), progress
consists of showing that the first action in a program is eventually executed. Successful
completion of the first action denotes achievement of the overall goal of the program.
The rest of the teleo-reactive program ensures that the top action is eventually executed.
We work towards Theorem 12 (progression), which allows progress properties of a
program to be decomposed to the level of primitive actions. We first present a number
of intermediate lemmas.

One way to prove that guarantee condition ∇q holds is to show that an interme-
diate condition pp is established, and that ∇q holds if pp ever holds (see Lemma 9
below). However, it is not necessarily the case that if beh.a holds in an interval, say
∆, beh.a also holds for every sub-interval of ∆. For example, if the behaviour of an
action changes after a certain length of time, then its behaviour over a longer interval
will differ from its behaviour over a shorter one. Thus, we introduce the concept of a
decomposable action.

Definition 8. An action a decomposes iff for any intervals ∆ and δ with δ ⊆ ∆, and
trace tr , if beh.a.∆.tr , then beh.a.δ.tr .

Because teleo-reactive programs can be hierarchically nested, we often end up with
a rely condition, say 2F , which implies the guard of a higher-level action. For example,
when proving properties of the grasp action (Fig. 3), we can use 2see can as a rely
condition because see can appears as a guard of fetch in robot.

Lemma 9 (Transitivity). If M decomposes, then {2F ∧ p ∧ ` ≥ D1 +D2} M {∇G}
holds if {2F ∧ p ∧ ` ≥ D1} M {∇pp} and {2F ∧ pp ∧ ` ≥ D2} M {∇G} hold for
some state predicate pp.

The next lemma states that proving ∇F is equivalent to proving ∇F holds in an
interval that satisfies ¬F (cf. [3]). Furthermore,∇G holds under rely condition F unG

iff :G holds under rely condition 2(F ∧ ¬G).

Lemma 10.
a. {r} M {∇F} = {r ∧ ¬F} M {∇F}
b. {r} M {∇F} = {r ∧ 2¬F} M {∇F} = {r ∧ 2¬F} M {:F}
c. {r ∧ (F un G)} M {∇G} = {r ∧ 2(F ∧ ¬G)} M {:G}

The next lemma states that we can prove that a first guard is established by a pro-
gram if the rest of the program establishes the guard.

Lemma 11 (Establish guard). If M =̂ 〈c → a〉 a S , then {r} M {∇c} holds iff
{r} S {∇c} holds.

The following theorem simplifies proofs of progress in goal-directed agents and
facilitates construction of an appropriate rely condition. We are often required to prove
properties of the form

{2F ∧ p ∧ ` ≥ D} 〈c → a〉 a S {∇G}

Reasoning About Real-Time Teleo-Reactive Programs 9

where p is some initial condition, F is an accumulation of guards and weak unless prop-
erties, D is the length of the interval and G is a temporal formula representing the goal
of the first action, c → a. The theorem generates the required proof obligations (7) and
(8) given that F takes a particular form. Namely, F must ensure that the environment
does not disable c unless the goal, G , is established.

Theorem 12 (Progression). Suppose M =̂ 〈c → a〉 a S and M decomposes. Then

{2(F ∧ ((F ′ ∧ c) wu G)) ∧ p ∧ ` ≥ D1 + D2} M {∇G} (6)

holds provided F V F ′ and

{2F ∧ p ∧ ¬c ∧ ` ≥ D1} S {∇c} (7)
{2(F ∧ c) ∧ ` ≥ D2} a {∇G} (8)

Proof. Using Lemma 9 (transitivity), (6) holds if both of the following hold:

{2(F ∧ ((F ′ ∧ c) wu G)) ∧ p ∧ ` ≥ D1} M {∇c}
{2(F ∧ ((F ′ ∧ c) wu G)) ∧ c ∧ ` ≥ D2} M {∇G}

(prog1)
(prog2)

We now have the following calculations:

(prog1)
⇐ Corollary 4 (weaken/strengthen)

{2F ∧ p ∧ ` ≥ D1} M {∇c}
= Lemma 11 (establish guard), Lemma 10 (a)

(7)

(prog2)
⇐ logic, Corollary 4 (weaken/strengthen)

{2F ∧ ((F ′ ∧ c) wu G) ∧ c ∧ ` ≥ D2} M {∇G}
⇐ logic, Corollary 4 (weaken/strengthen): use 2F ∧ c and F V F ′

{2F ∧ ((F ′ ∧ c) un G) ∧ ` ≥ D2} M {∇G}
⇐ G ⇒ ∇G and 2F V 2F ′

{2(F ∧ c) ∧ ` ≥ D2} M {∇G}
⇐ Lemma 7 (program reduction)

(8) 2

Thus, instead of reasoning about the program as a whole, we reason over sub-programs
a and S . This reasoning can be re-iterated over a (hierarchically) and S (iteratively).

At first glance, F ′ in formula (F ′ ∧ c) wu G may seem redundant due to the pres-
ence of F . However, in our verification, we compute the required rely condition of the
overall program at each application of Theorem 12. In doing so, due to the hierarchical
nesting, the context of the lower-level primitive actions may not always be present at
the top-level, and hence, the final rely condition may become too strong. Thus, we use
(F ′ ∧ c) wu G instead of just c wu G . Similarly, the rely condition in (7) could be
simplified to 2F ∧ p ∧ ` ≥ D1 using Lemma 10. However, if such a simplification is
performed, we may lose the context ¬c at the level of the primitive actions, i.e., when
S is expanded.

10 Brijesh Dongol, Ian J. Hayes, and Peter J. Robinson

4 Can clearing robot

In this section we prove a progress property for the example in Fig. 3. We specify the
primitive actions in Section 4.1, specify the progress requirement in Section 4.2, and
prove the progress property in Section 4.3.

4.1 Specification of primitive actions

To verify the correctness of the robot, we first specify the behaviour of each primitive
durative action pa ∈ {rotate, forward, grasp, ungrasp} using rely/guarantee specifica-
tions. To achieve this, each object on the table is associated with a vector, pos , that
determines the position of the object in polar coordinates with a magnitude and an an-
gle. Assume that addition and subtraction of vectors is defined in the standard manner.
We can use the following definitions to determine whether or not the robot sees or
holds the given can. We assume robot .rot denotes the angle of rotation of the robot,
robot ≈ can states that the robot is sufficiently close to can to be touching it, and TC

is a set representing the cans that are on the table or being held by the robot.

sees .obj =̂ (obj .pos − robot .pos).angle mod 2π = robot .rot mod 2π

touches .can =̂ robot ≈ can

may hold .can =̂ sees .can ∧ touches .can

holds .can =̂ may hold .can ∧ gdist = can width

That is, the robot can see the given object, obj , if the angle of the vector from the
position of the robot to the position of obj is equal to the rotational angle of the robot.
The robot holds can if the robot sees and touches can and the holding sensor is on. The
guards in Fig. 3, (which represent sensor values) satisfy the following equations, where
depot .pos is constant. Conditions see can , touching , and holding are sensed inputs
whereas at depot and see depot are derived.

see can = ∃can:TC • sees .can

touching = ∃can:TC • may hold .can

holding = ∃can:TC • holds .can

at depot = (robot .pos = depot .pos)
see depot = sees .depot

The rotate action causes the robot to rotate in position. We assume that the robot rotates
at the rate of κ, and hence, for D ∈ Time, κ × D is the angle of rotation over D time
units. Acceleration to (and deceleration from) κ are assumed to be instantaneous. Given
that d x

d y
denotes the rate of change of x with respect to y , we have:

rotate =̂ {robot .rot}:
q
true, 2

(
d robot.rot

d t
= κ

)y
(9)

That is, if the position of the robot is initially rp, then the robot remains at rp throughout
execution of rotate. The robot rotates at a constant angular velocity through the interval.

Similarly, we use ξ for the speed of the robot and assume that acceleration to
(and deceleration from) ξ is instantaneous. We assume that the frame of forward is
{robot .pos}, and require that the following hold.

{true} forward {2(d robot.pos

d t
= (ξ, robot .rot))} (10)

{2holds .can} forward {2(d can.pos

d t
= (ξ, robot .rot))} (11)

Reasoning About Real-Time Teleo-Reactive Programs 11

We assume ϕ is the speed at which the fingers open and close and define grasp as
follows.

grasp =̂ {gdist}:
r
true, 2

(
d gdist

d t
= (if gdist = 0 then 0 else − ϕ)

)z
(12)

Thus, grasp causes the distance between the fingers of the robot gripper to decrease as
long as the distance is greater than 0.

In our proof, ungrasp must modify an additional auxiliary variabledc which denotes
the total number of cans that the robot has placed in the depot. Thus, the frame of
ungrasp is {gdist , dc}. We require that ungrasp satisfies the following, where k ∈ N.

{true} ungrasp

{
2

(
d gdist

d t
=

(
if gdist = max gd

then 0 else ϕ

))}
(13)

{
2(dc = k ∧ holds .can ∧

at depot) ∧ ` ≥ Du

}
ungrasp

{
:(¬holds .can ⇒

(dc = k + 1) ∧ can 6∈ TC)

}
(14)

By (13), ungrasp causes gdist to increase to a maximum of max gd . By (14), if the
number of cans in the depot is k , the robot is holding can at the depot and is performs
an ungrasp action for an interval of length Du or longer, then if in the next interval the
robot is not holding can , dc must be incremented and can must no longer be in TC .

We assume that following holds, where can � can2 states that can and can2 not
overlapping, i.e.,

2(∀can, can2:TC • can 6= can2 ⇒ ¬(can � can2))

4.2 Requirement specification

We define can exists =̂ TC 6= {}. Our progress requirement is that the following
must hold for any k ∈ N, some durative formula r , and some D ∈ Time.

{2(dc = k ∧ r) ∧ can exists ∧ ` ≥ D} robot {∇(dc = k + 1)} (15)

That is, for any interval of length D , if the number of cans in the depot is k throughout
the interval, and at the start of the interval there is a can on the table and the gripping
finger width is adequate, then the number of cans in the depot eventually goes up by
one. We also assume a rely condition r is true over the interval because it is typically not
possible to prove (15) directly. For example, the environment may remove all the cans
from the table, which falsifies can exists without establishing dc = k +1. Application
of Theorem 12 (progression) describes how the rely condition r may be instantiated to
describe the assumptions under which (15) holds. We hence construct rely condition r

as the verification progresses.

4.3 Proof of (15)

We let D = D1 + D2 and define:

r =̂ r1 ∧ r2 ∧ (holding wu dc = k + 1) (16)

12 Brijesh Dongol, Ian J. Hayes, and Peter J. Robinson

then apply Theorem 12 (progression) where F is instantiated to r1 ∧ r2 ∧ dc = k and
F ′ is instantiated to true. Then, we use Corollary 4 (weaken rely) to remove conjunct
dc = k ∧ r2 from the first rely condition and r1 from the second, and hence obtain the
following proof obligations.

{2r1 ∧ can exists ∧ ¬holding ∧ ` ≥ D1} collect {∇holding} (17)
{2(dc = k ∧ r2 ∧ holding) ∧ ` ≥ D2} deliver {∇(dc = k + 1)} (18)

By (17), we must show that collect is guaranteed to establish holding . Using Corol-
lary 4, we have removed 2(dc = k) from the rely condition of (17) because progress in
collect is not affected by the number of cans in the depot. Condition (18) is an instanti-
ation of (8) which states that deliver is guaranteed to increment dc, given that dc = k

and the robot is holding a can throughout the interval. By (16), if the robot is holding a
can at the start of the interval, then it will continue to do so, i.e., the environment cannot
remove the can from the robot’s grasp unless dc = k + 1 is established.
Proof of (17). Using Theorem 12 (progression), we obtain the following proof obliga-
tions where D1 = D1.1 + D1.2 and

r1 =̂ r1.1 ∧ r1.2 ∧ (see can wu holding) (19)

We define nhsc =̂ ¬holding ∧ ¬see can .

{2r1.1 ∧ can exists ∧ nhsc ∧ ` ≥ D1.1} rotate {∇see can} (20)
{2(r1.2 ∧ see can) ∧ ` ≥ D1.2} fetch {∇holding} (21)

Thus, rotate must enable fetch, which in turn must ensure that the robot will eventually
hold a can. Furthermore, the environment must be such that if the robot can see a can,
then the robot must continue to see a can unless it holds a can.
Proof of (20). The proof of this property requires that one of the cans on the table does
not move. Otherwise the environment may move the cans in a manner that prevents the
rotate action from ever seeing a can without falsifying can exists ∧ nhsc. Thus, we
introduce:

r1.1 =̂ (can exists ∧ nhsc ⇒
∃can:TC • can.pos = cp ∧ ((can.pos = cp ∧ nhsc) un see can))

(22)

Condition (22) ensures that if a can is on the table, the robot is not holding anything,
and robot does not see a can, then there is a can that does not move unless the robot
sees a can. Note that the can that the robot sees may be different from the can that
is not moving. Condition (22) is not a strong enough assumption because it does not
disallow cans from moving after robot has seen a can. In particular, if the can the robot
is currently seeing moves, then the robot may not make progress because it may not
reach that can. We address this issue in (28) below as part of the proof of fetching a can.
Returning to the proof of (20), we obtain:

(20)
⇐ Lemma 3 (weaken/strengthen) and (22)

Reasoning About Real-Time Teleo-Reactive Programs 13

{
∃can:TC • can.pos = cp ∧ ` ≥ D1.1 ∧

((can.pos = cp ∧ nhsc) un see can)

}
rotate {∇see can}

⇐ Lemma 5

∀can:TC •

{
can.pos = cp ∧ ` ≥ D1.1 ∧
((can.pos = cp ∧ nhsc) un see can)

}
rotate {∇see can}

= Lemma 10
∀can:TC • {2(can.pos = cp ∧ nhsc) ∧ ` ≥ D1.1} rotate {:see can}

⇐ logic
(9)

The rely condition of the second last line in the proof above states that for the interval
under consideration, the robot is not holding or seeing a can, the position of each can
does not change, and the rotate action is executing. Given that this interval is of a
certain length, see can must become true at the end of the interval. This clearly holds
by (9) which guarantees the robot does not change position, but increases the value
of robot .rot . Hence (can.pos − robot .pos).angle mod 2π = robot .rot mod 2π will
eventually hold, which implies see can .
Proof of (21). We define gOK =̂ touching ∧ (gdist > can width), r1.2 =̂ r1.2.1 ∧
(gOK wu holding), D1.2 =̂ D1.2.1 + D1.2.2, and S =̂ 〈fetch, ungrasp〉, then apply
Theorem 12 (progression) and Corollary 4 (weaken strengthen) to obtain the following.

{2(r1.2.1 ∧ see can) ∧ ` ≥ D1.2.1} S {∇gOK} (23)
{2(see can ∧ ¬holding ∧ gOK) ∧ ` ≥ D1.2.2} grasp {∇holding} (24)

Condition (24) is an immediate consequence of (12), which describes the behaviour
of primitive action grasp. For condition (23) we apply Theorem 12 (progression) with
r1.2.1 =̂ rr ∧ ((gdist > can width) wu gOK) and D1.2.1 =̂ D1.2.1.1 + D1.2.1.2. Then
we apply Corollary 4 (weaken strengthen) to obtain:

{` ≥ D1.2.1.1} ungrasp {∇(gdist > can width)} (25)
{2(rr ∧ see can ∧ gdist > can width) ∧ ` ≥ D1.2.1.2} forward {∇gOK} (26)

Condition (25) is an immediate consequence of (13), while (26) can be simplified using
Lemma 10 (b) to obtain

{
2(rr ∧ see can ∧ (gdist > can width) ∧
¬touching) ∧ ` ≥ D1.2.1

}
forward {:gOK} (27)

We require that any can that is being fetched cannot be moving, otherwise, the forward

action would not cause the robot to touch a can. Thus, we define:

rr =̂ ∀can:TC • sees .can ⇒ (can.pos = cp wu gOK) (28)

which, together with the definition of sees can and (10) allows us to prove (27).
Proof of (18). Defining r2 =̂ r2.1 ∧ (at depot wu dc = k + 1) and D2 =̂ D2.1 + D2.2,
then using Theorem 12 (progression) and Corollary 4 (weaken/strengthen) we obtain:

{2(r2.1 ∧ holding) ∧ ¬at depot ∧ ` ≥ D2.1} go depot {∇at depot} (29)
{2(dc = k ∧ holding ∧ at depot) ∧ ` ≥ D2.2} ungrasp {:(dc = k + 1)}(30)

14 Brijesh Dongol, Ian J. Hayes, and Peter J. Robinson

Condition (30) is an immediate consequence of (14) provided D2.2 ≥ Du .
Proof of (29). We define r2.1 =̂ (holding ∧ see depot) wu at depot and using Theo-
rem 12 (progression) and Corollary 4 (weaken/strengthen) we obtain:

{2holding ∧¬at depot ∧¬see depot ∧ ` ≥ D2.1.1} rotate {∇see depot} (31)
{2(holding ∧ see depot) ∧ ` ≥ D2.1.2} forward {∇at depot} (32)

Both (31) and (32) are consequences of the primitive action specifications together with
the fact that the position of the depot is constant.

This completes the proof of progress as formalised by (15). After simplification, the
final rely condition is:

(` ≥ D1.1 + D1.2.1 + D1.2.2 + D2.1.1 + D2.1.2 + D2.2) ∧ can exists ∧
2(dc = k ∧ (see can wu holding) ∧ (gOK wu holding) ∧

(can exists ∧ nhsc ⇒
∃can:TC • can.pos = cp ∧ ((can.pos = cp ∧ nhsc) un see can)) ∧

(∀can:TC • sees .can ⇒ (can.pos = cp wu gOK)) ∧
(holding ⇒ 2holding) ∧ (at depot ⇒ 2at depot) ∧
((holding ∧ see depot) wu at depot))

Note that holding wu dc = k + 1 from (16) in has been simplified to holding ⇒
2holding in the above formula because 2(dc = k) holds. (Similarly, at depot wu

dc = k +1.) Furthermore, the ungrasp action guaranteesgdist > can width. Thus, we
conclude that for any interval (of adequate length) that satisfies the the condition above,
execution of the robot is such that ∇(dc = k + 1) will hold.

5 Conclusion

In this paper we have formalised the semantics of teleo-reactive programs. We have de-
fined durative temporal logic, which is a temporal logic for reasoning about continuous
intervals. Correctness of a teleo-reactive program is judged by considering its behaviour
with respect to the environment it operates within, and hence, we present rely/guarantee
style specification rules. We have also provided a number of theorems for proving prog-
ress in goal-directed agents. We are able to use the lemmas in Sections 3.1 and 3.2 to
simplify the proof obligations.

Our example assumes an idealised scenario where several physical constraints are
simplified. For instance, we assume acceleration is instantaneous, the robot stops scan-
ning when the can is directly in front of the robot, forward causes the robot to move
in a straight line, etc. We could have made our example more complicated by remov-
ing these idealised assumptions. However, the purpose of verification is to demonstrate
applicability of our logic for the verification of goal-based agents. Removing our ide-
alised assumptions would make the verification more complicated, but a verification is
nevertheless possible.

We regard verification of a larger, more complicated example to be future work. To
this end, we are currently developing mechanised proofs and have a Prolog program
that automatically constructs the required rely condition via repeated application of
Theorem 12 (progression).

Reasoning About Real-Time Teleo-Reactive Programs 15

Acknowledgements. We would like to thank Keith Clark and Kirsten Winter for help-
ful discussions on this paper. This research is supported by Australian Research Coun-
cil (ARC) Discovery Grant DP0558408 and The University of Queensland’s New Staff
Start-up Research Fund.

References

1. R. J. Back. Refinement of parallel and reactive programs. In M. Broy, editor, Lecture Notes
For the Summer School on Program Design Calculi, pages 73–92. Springer-Verlag, 1993.

2. R. J. Back, L. Petre, and I. Porres. Generalizing action systems to hybrid systems. In
M. Joseph, editor, FTRTFT, volume 1926 of LNCS, pages 202–213. Springer, 2000.

3. B. Dongol and A. J. Mooij. Progress in deriving concurrent programs: Emphasizing the role
of stable guards. In Uustalu [16], pages 140–161.

4. E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of Theo-
retical Computer Science, volume B, pages 996–1072. Elsevier Science Publishers, 1990.

5. S. Fritsch, A. Senart, D. C. Schmidt, and S. Clarke. Time-bounded adaptation for automotive
system software. In ICSE ’08: Proceedings of the 30th International Conference on Software
Engineering, pages 571–580, New York, NY, USA, 2008. ACM.

6. G. Gubisch, G. Steinbauer, M. Weiglhofer, and F. Wotawa. A teleo-reactive architecture
for fast, reactive and robust control of mobile robots. In IEA/AIE ’08: Proceedings of the
21st International Conference on Industrial, Engineering and Other Applications of Applied
Intelligent Systems, pages 541–550, Berlin, Heidelberg, 2008. Springer-Verlag.

7. I. J. Hayes. Towards reasoning about teleo-reactive programs for robust real-time systems. In
SERENE ’08: Proceedings of the 2008 RISE/EFTS Joint International Workshop on Software
Engineering for Resilient Systems, pages 87–94, New York, NY, USA, 2008. ACM.

8. C. B. Jones. Tentative steps toward a development method for interfering programs. ACM
Transactions on Programming Languages and Systems, 5(4):596–619, 1983.

9. L. Lamport. Hybrid systems in TLA+. In R. L. Grossman, A. Nerode, A. P. Ravn, and
H. Rischel, editors, Hybrid Systems, volume 736 of LNCS, pages 77–102. Springer, 1992.

10. L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Software
Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

11. C. Lewerentz and T. Lindner, editors. Formal Development of Reactive Systems - Case Study
Production Cell, volume 891 of LNCS. Springer, 1995.

12. Z. Manna and A. Pnueli. Temporal Verification of Reactive and Concurrent Systems: Speci-
fication. Springer-Verlag New York, Inc., 1992.

13. L. Meinicke and I. J. Hayes. Continuous action system refinement. In Uustalu [16], pages
316–337.

14. F. Nafz, F. Ortmeier, H. Seebach, J. P. Steghöfer, and W. Reif. A universal self-organization
mechanism for role-based organic computing systems. In W. Reif, G. Wang, and J. Indulska,
editors, ATC, volume 5586 of LNCS, pages 17–31. Springer, 2009.

15. N. J. Nilsson. Teleo-reactive programs and the triple-tower architecture. Electronic Trans-
actions on Artificial Intelligence, 5:99–110, 2001.

16. T. Uustalu, editor. Proceedings of the 8th International Conference on Mathematics of Pro-
gram Construction, volume 4014 of LNCS. Springer, 2006.

17. J. Woodcock and J. Davies. Using Z: specification, refinement, and proof. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1996.

18. C. Zhou and M. R. Hansen. Duration Calculus: A Formal Approach to Real-Time Systems.
EATCS: Monographs in Theoretical Computer Science. Springer, 2004.

