research

Reasoning about teleo-reactive programs under parallel composition

Abstract

The teleo-reactive programming model is a high-level approach to implementing real-time controllers that react dynamically to changes in their environment. Teleo-reactive actions can be hierarchically nested, which facilitates abstraction from lower-level details. Furthermore, teleo-reactive programs can be composed using renaming, hiding, and parallelism to form new programs. In this paper, we present a framework for reasoning about safety, progress, and real-time properties of teleo-reactive programs under program composition. We use a logic that extends the duration calculus to formalise the semantics of teleo-reactive programs and to reason about their properties. We present rely/guarantee style specifications to allow compositional proofs and we consider an application of our theory by verifying a real-time controller for an industrial press

    Similar works