329 research outputs found

    Confluent hypergeometric orthogonal polynomials related to the rational quantum Calogero system with harmonic confinement

    Full text link
    Two families (type AA and type BB) of confluent hypergeometric polynomials in several variables are studied. We describe the orthogonality properties, differential equations, and Pieri type recurrence formulas for these families. In the one-variable case, the polynomials in question reduce to the Hermite polynomials (type AA) and the Laguerre polynomials (type BB), respectively. The multivariable confluent hypergeometric families considered here may be used to diagonalize the rational quantum Calogero models with harmonic confinement (for the classical root systems) and are closely connected to the (symmetric) generalized spherical harmonics investigated by Dunkl.Comment: AMS-LaTeX v1.2 (with amssymb.sty), 34 page

    The Direct Effect of Toroidal Magnetic Fields on Stellar Oscillations: An Analytical Expression for the General Matrix Element

    Get PDF
    Where is the solar dynamo located and what is its modus operandi? These are still open questions in solar physics. Helio- and asteroseismology can help answer them by enabling us to study solar and stellar internal structures through global oscillations. The properties of solar and stellar acoustic modes are changing with the level of magnetic activity. However, until now, the inference on subsurface magnetic fields with seismic measures has been very limited. The aim of this paper is to develop a formalism to calculate the effect of large-scale toroidal magnetic fields on solar and stellar global oscillation eigenfunctions and eigenfrequencies. If the Lorentz force is added to the equilibrium equation of motion, stellar eigenmodes can couple. In quasi-degenerate perturbation theory, this coupling, also known as the direct effect, can be quantified by the general matrix element. We present the analytical expression of the matrix element for a superposition of subsurface zonal toroidal magnetic field configurations. The matrix element is important for forward calculations of perturbed solar and stellar eigenfunctions and frequency perturbations. The results presented here will help to ascertain solar and stellar large-scale subsurface magnetic fields, and their geometric configuration, strength, and their change over the course of activity cycles.Comment: 20 pages, accepted for publication in The Astrophysical Journa

    On the oscillation of the laterally heterogeneous earth, 1

    Get PDF
    The perturbative effects, as cause by lateral inhomogeneities in the earth structure and by Coriolis force, contaminate the originally toroidal and spheroidal earth's oscillations, making them of mixed type. For this reason, in order to make the computation of the perturbations more uniform and homogeneous, it was suggested that the earth's free oscillations be expanded into a series in terms of generalized harmonics familiar from the theory of angular momentum in quantum mechanics. Making use of Gibbsian symbolism and of some operators from the theory of angular momentum, explicit expressions were deduced for the perturbative terms in the differential equation of the earth's free oscillations. Decomposition of the strain tensor in terms of canonical vectors was also obtained

    Generalized Ellipsoidal and Sphero-Conal Harmonics

    Get PDF
    Classical ellipsoidal and sphero-conal harmonics are polynomial solutions of the Laplace equation that can be expressed in terms of Lame polynomials. Generalized ellipsoidal and sphero-conal harmonics are polynomial solutions of the more general Dunkl equation that can be expressed in terms of Stieltjes polynomials. Niven's formula connecting ellipsoidal and sphero-conal harmonics is generalized. Moreover, generalized ellipsoidal harmonics are applied to solve the Dirichlet problem for Dunkl's equation on ellipsoids.Comment: This is a contribution to the Vadim Kuznetsov Memorial Issue on Integrable Systems and Related Topics, published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Local inverse scattering at fixed energy in spherically symmetric asymptotically hyperbolic manifolds

    Get PDF
    In this paper, we adapt the well-known \emph{local} uniqueness results of Borg-Marchenko type in the inverse problems for one dimensional Schr{\"o}dinger equation to prove \emph{local} uniqueness results in the setting of inverse \emph{metric} problems. More specifically, we consider a class of spherically symmetric manifolds having two asymptotically hyperbolic ends and study the scattering properties of massless Dirac waves evolving on such manifolds. Using the spherical symmetry of the model, the stationary scattering is encoded by a countable family of one-dimensional Dirac equations. This allows us to define the corresponding transmission coefficients T(λ,n)T(\lambda,n) and reflection coefficients L(λ,n)L(\lambda,n) and R(λ,n)R(\lambda,n) of a Dirac wave having a fixed energy λ\lambda and angular momentum nn. For instance, the reflection coefficients L(λ,n)L(\lambda,n) correspond to the scattering experiment in which a wave is sent from the \emph{left} end in the remote past and measured in the same left end in the future. The main result of this paper is an inverse uniqueness result local in nature. Namely, we prove that for a fixed λ0\lambda \not=0, the knowledge of the reflection coefficients L(λ,n)L(\lambda,n) (resp. R(λ,n)R(\lambda,n)) - up to a precise error term of the form O(e2nB)O(e^{-2nB}) with B\textgreater{}0 - determines the manifold in a neighbourhood of the left (resp. right) end, the size of this neighbourhood depending on the magnitude BB of the error term. The crucial ingredients in the proof of this result are the Complex Angular Momentum method as well as some useful uniqueness results for Laplace transforms.Comment: 24 page
    corecore