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Abstract

Where is the solar dynamo located and what is its modus operandi? These are still open questions in solar physics.
Helio- and asteroseismology can help answer them by enabling us to study solar and stellar internal structures
through global oscillations. The properties of solar and stellar acoustic modes are changing with the level of
magnetic activity. However, until now, the inference on subsurface magnetic fields with seismic measures has been
very limited. The aim of this paper is to develop a formalism to calculate the effect of large-scale toroidal magnetic
fields on solar and stellar global oscillation eigenfunctions and eigenfrequencies. If the Lorentz force is added to
the equilibrium equation of motion, stellar eigenmodes can couple. In quasi-degenerate perturbation theory, this
coupling, also known as the direct effect, can be quantified by the general matrix element. We present the
analytical expression of the matrix element for a superposition of subsurface zonal toroidal magnetic field
configurations. The matrix element is important for forward calculations of perturbed solar and stellar
eigenfunctions and frequency perturbations. The results presented here will help to ascertain solar and stellar large-
scale subsurface magnetic fields, and their geometric configuration, strength, and change over the course of activity

cycles.
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1. Introduction

So far, the main benchmarks for dynamo simulations are the
correct cycle lengths as well as the properties and distribution
of active regions over the simulated cycle (e.g., Charbonneau
2010, 2013). The strength and configuration of large-scale flow
fields are important ingredients of modern simulations of solar
and stellar flux transport dynamos (e.g., Choudhuri et al. 1995;
Dikpati & Gilman 2009; Karak et al. 2014). Seismology has
contributed to the refinement of dynamo simulations by
mapping the differential rotation in the Sun (Schou et al. 1998;
Howe 2009) and is beginning to do so in stars (Beck et al. 2012;
Nielsen et al. 2015; Hekker & Christensen-Dalsgaard 2017). The
meridional circulation is another crucial element in these dynamo
models, which can be assessed by helioseismic investigations
(Giles et al. 1997; Braun & Fan 1998; Haber et al. 2002; Schad
2013; Zhao et al. 2013). If it were possible to measure the
location, geometrical configuration, and strength of the magnetic
field distribution within the Sun and stars, this would add a
benchmark of supreme importance for dynamo simulation.

In the Sun, a large fraction of the total magnetic flux is
assumed to be stored in the subsurface toroidal component of
the magnetic field (Charbonneau 2010 and references therein).
The unsigned magnetic flux attributed to active regions
amounts to ~10% Mx over a solar cycle, while the polar cap
flux totals to just ~10%2 Mx (Charbonneau 2010). As the active
regions are thought to originate from deep-seated toroidal flux
concentrations (e.g., Caligari et al. 1995; Fan 2009), it is
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reasonable to concentrate on the toroidal field in a first step, as
we will do in this article.

The effect of a magnetic field on stellar acoustic oscillations
is twofold: the direct effect, or, as we shall also call it in the
following, the coupling of oscillation modes, and the indirect
effect. In this article, we focus on the direct effect. The indirect
effect, which is due to additional forces—in comparison to the
equilibrium stellar model without magnetic fields—perturbs
stellar structural quantities, such as sound speed and density.
Thus, the cavities where resonant acoustic modes exist are
changed, which leads to changes in frequencies and eigenfunc-
tions. The effect of a magnetic field on stellar structure was
studied by, e.g., Mestel & Moss (1977), Mathis & Zahn (2005),
and Duez et al. (2009, 2010).

We use an ansatz from quasi-degenerate perturbation theory
to calculate the strength of the coupling between stellar
oscillation modes (Lavely & Ritzwoller 1992), which is due to
a superposition of large-scale axisymmetric zonal toroidal
magnetic fields. The mode coupling leads to frequency shifts,
frequency splittings, and distortions of the mode eigenfunc-
tions. The strength of the coupling is quantified by the general
matrix element, which is used to construct the supermatrix
(Lavely & Ritzwoller 1992). Solving the eigenvalue problem
for the supermatrix yields two essential results. First, the
perturbations to the equilibrium frequencies are given by the
eigenvalues. Second, the eigenvectors contain the expansion
coefficients of the perturbed eigenfunction as components.

Previous studies with large-scale flows as the source of
perturbation have shown that the analysis of perturbed
eigenfrequencies and eigenfunctions can be employed to infer
the geometrical configuration and strength of that perturbation.
Ritzwoller & Lavely (1991) developed a formalism to invert
global helioseismic data for differential rotation. This was
expanded by Lavely & Ritzwoller (1992) to specifically include
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global-scale convection and expanded in such a way that
general flow fields can be taken as a source of perturbation.
With their theory, the perturbation of the mode eigenfrequen-
cies and the perturbed eigenfunctions can be computed. In that
framework, the effect of the meridional circulation on solar
eigenmodes was studied by, e.g., Roth & Stix (2008). Later,
Schad et al. (2011) advanced the method by introducing the
amplitude ratio of oscillations in the Fourier domain as a
helioseismic measurement quantity. With this, Schad et al.
(2013) inferred a multicellular meridional circulation in both
depth and latitude by analyzing perturbed solar eigenfunctions.

Using a different perturbation approach, Gough & Thompson
(1990) presented a formalism to calculate the eigenfrequencies of
a stellar model with a magnetic field and rotation as perturbations.
This formalism included both the direct and indirect effects of the
magnetic field. Antia et al. (2000) refined their approach by also
including effects from general relativity and second-order effects
of rotation. Their main results were forward calculations of
helioseismic splitting coefficients. They could limit the strength
of a toroidal magnetic field near the Sun’s tachocline to 300 kG.
Baldner et al. (2009) used the theory developed by Gough &
Thompson (1990) and Antia et al. (2000) to probe the solar
interior for magnetic field concentrations by comparing the
calculated splitting coefficients with the observed values. Their
results included two very shallow toroidal field distributions and a
poloidal field. However, due to the shallowness of the inferred
fields, they could not draw conclusions regarding dynamo
models, which mostly rely on deeper seated field concentrations
(e.g., Charbonneau 2014). Recently, Hanasoge (2017) developed
a formalism to calculate the sensitivity functions of seismic
measurements to the Lorentz stress tensor in the stellar interior.

A seismic investigation of the effect of magnetic fields on the
oscillations in the Sun and solar-like stars within the
perturbation approach developed by Lavely & Ritzwoller
(1992) has not been done so far. The first step of extending
their analytical groundwork to fully include magnetic fields is
now presented in this paper. We begin by deriving the
perturbed equation of motion for a non-rotating, non-magnetic
star in Section 2. The necessary essentials of quasi-degenerate
perturbation theory are reviewed in Section 3. Section 4 is
dedicated to the derivation of the general matrix element for a
magnetic field, before we give its explicit analytical expression
in spherical coordinates in Section 5. We discuss our findings
and conclude in Section 6.

2. The Equilibrium Model

In this section, we summarize the derivation of the perturbed
equation of motion, because it will help us trace our steps in
later sections. A detailed treatment of this can be found in, e.g.,
Unno et al. (1989) and Aerts et al. (2010).

The equation of motion of a parcel of gas in a non-rotating,
static, and spherically symmetric star without a magnetic field
reads

dv
p— =—Vp + pg, (H
dt

where v is the velocity due to displacements from the
equilibrium position, p is the pressure, g is the gravitational
acceleration, and p is the mass density. For such a star, a
standard model can be computed, e.g. for the Sun Model S by
Christensen-Dalsgaard et al. (1996). The model supplies the
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eigenfunctions and eigenfrequencies of adiabatic oscillations as
a solution of the eigenvalue equation, which is briefly
derived here.

The Lagrangian perturbation A of a quantity Q is given by

AQ =60+ (£-V)Q, @)

where 6Q is the Eulerian variation of Q and (£ - V)Q is the
term due to the advection of Q by the displacement £. The
Lagrangian perturbation commutes with the total time
derivative:

[D/Dt, A] = 0. (3)
Furthermore, the following identifications of Lagrangian

perturbations hold, which we need to rewrite the perturbed
equation of motion:

Ar =€, “4)
dg€

Ay = =, 5

v i Q)

where r is the position vector. Here, the material time
derivative is equal to the partial time derivative

4a_29

dt ot
since we consider a star without any velocity fields, such as
rotation, convection, or meridional circulation.

We start by dividing Equation (1) by p, taking the
Lagrangian perturbation A of the whole equation, and multi-
plying by the unperturbed density p,. From now on,
unperturbed quantities are labeled with a sub- or superscript
0. These operations, together with Equations (3)—(6), yield

9%¢
Po3o
Ot

(6)

A
= —A(Vp) + 2LVp, + poAg. @)
0

A change between the gravitational potential and gravitational
acceleration can be done via —V® = g.
By using a modal ansatz for the displacements,

£r, 1) = Em)e™, ®)

and making use of the identification p,g, = Vp,, the perturbed
equation of motion finally reads

—pw’€ = —A(Vp) + gAp + pyAg. ©
We identify the right-hand side with the operator L£o(£°):
Lo(€") = —A(Vp) + gAp + pyAg, (10)
so we have
—pow?€” = Lo(&°). 1D

This equation describes the response of the stellar model to a
displacement £ of a parcel of gas given by the Lagrangian
perturbation of Equation (1). This is the eigenvalue equation
we sought to derive. The superscript O on the eigenfunctions is
added here to signify that they are eigenfunctions of the
equilibrium model. By adding additional forces or velocity
fields to the equation of motion, we can probe the response of
the model and its eigenfunctions to this perturbation. It may be
noted that Equation (10) is equivalent to Equation (B15) in
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Lavely & Ritzwoller (1992) and to Equation (28) in Lynden-
Bell & Ostriker (1967).

In this paper, all calculations are performed in spherical polar
coordinates. In the following, r stands for the radial distance
from the origin, 6 signifies the colatitude, and ¢ is the
azimuthal angle. As we are working with a spherically
symmetric star, the r, 6, and ¢ components of the eigenfunc-
tions can be written as

§.(r, 0, 9)
El,m(n 0’ ¢) - gQ(r’ 97 ¢)
6@‘(”9 0’ ¢)
£ (Y™, ¢)

0
gh(r)a_eYlo’m(97 ¢) . (12)

L 9
& sinf 0¢

YZ(),m(e’ ¢)

Here, ¢(r) and £"(r) are the real-valued scalar radial and
horizontal displacement amplitudes, respectively. The general-
ized spherical harmonic functions ¥V are described in detail
in Appendix D. The set of eigenmodes {§,}, where
k = (I, m, n), with eigenfrequencies wy, gives the solutions to
Equation (11). The integer / is the harmonic degree, m is the
azimuthal order, with |m| < [, and » is the radial order of the
eigenfunction. As we are considering a non-rotating star,
modes of the same radial order and harmonic degree (n, [) but
of different azimuthal order m have the same frequency and form
a degenerate multiplet (see, e.g., Unno et al. 1989): wy = wy;.
The unperturbed eigenfunctions are orthogonal,

j; po€y - €9dV = Ny, (13)
and normalized with the normalization constant
R h
Ne= [ pl€ 0 + 10+ DE ORI (4

The integral in Equation (13) extends over the whole stellar
volume and the integral in Equation (14) extends over the
stellar radius.

3. Essentials of Quasi-degenerate Perturbation Theory

We briefly review the required essentials of quasi-degenerate
perturbation theory here. More detailed treatments can be found
in, e.g., Lavely & Ritzwoller (1992), Roth (2002), or
Schad 2013. We introduce the following perturbation expan-
sions into Equation (11):

Lo— Lo+ €Ly, (15a)
0 — & 4 &, (15b)
W} — Wi + € (WP (15¢)

They express the effect on the eigenfrequencies, eigenfunc-
tions, and equilibrium equation of motion by the operator ¢ L
that accounts for departures from the equilibrium model. The
auxiliary quantity e signifies a small perturbation and helps
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keep track of the order of perturbation. The squared
eigenfrequency perturbation in first order is given by (wlz)j.
The perturbation of the equation of motion leads to a
coupling of eigenmodes. The coupling due to, e.g., poloidal
flow cells was studied by Herzberg (2016) and that due to a
meridional flow in the Sun by Schad et al. (2011). In the
framework of quasi-degenerate perturbation theory, the per-

. . = : 0
turbed eigenfunctions &; to zeroth and first orders, i.e., Sj and

21 . .
Ej, can be described as a weighted sum over the unperturbed

eigenfunctions 52, for which the modes k are within a coupling
set K or K+, multiplied by a coupling coefficient:

%f = > &l (16a)
keK

&= bt (16b)
kek*

Which modes are within the coupling set K or its complement
K* depends on the geometrical configuration of the perturba-
tion, which entails angular momentum selection rules, on the
considered modes, as well as on the allowed difference in the
frequency of the modes. When, e.g., an axisymmetric
meridional poloidal flow is the source of perturbation, only
modes of the same azimuthal order can couple due to selection
rules (e.g., Lavely & Ritzwoller 1992; Roth 2002). We will
discuss the selection rules for toroidal magnetic fields in
Section 5.1. The coupling coefficients ¢y and bj may be
complex valued. The frequency difference of modes within K is
restricted by the quasi-degeneracy condition:

lwhe — wi| < Aw? (17)

Here, Aw? sets the frequency range of the coupling modes
within K. The reference frequency wr.s is typically chosen to be
equal or close to the central frequency of a multiplet j.
Increasing Aw? results in more modes within the coupling set
K and therefore in a more accurate expression for the perturbed
quantity. This has to be traded off against the higher
computational effort necessary for the computation.

We can focus on the determination of the coefficients cjy,
which are needed to calculate the perturbed eigenfunction in
zeroth order EJO in Equation 16(a). With the perturbation
expansion, Equations 15(a)—(c), the following eigenvalue
equation can be found (Lavely & Ritzwoller 1992):

ST Zie =Y cip(wi);dpx for k' € K. (18)
keK keK

Here, it was used so that a mode k is either in K or K=, i.e., the
equations for the coefficients cj and by decouple. Now,
the sought-for coefficients cj, appear as the elements of the
eigenvectors of the matrix Z. This matrix is called the
supermatrix, and its elements are determined from

2 2 /
Zike = {Hk’k - (wref - wk)(sk’k for k', k €K, (19)
0 otherwise.

It can be shown that the general matrix element Hy is given by

Hix = - [&)- £igDav., (20)
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where L is the operator of the perturbing force that causes the
coupling, introduced in Equation 15(a).

The eigenvectors and eigenvalues of the supermatrix
completely determine the perturbed eigenfunctions and fre-
quencies. The squared frequency correction of a mode k is
given by the eigenvalue, which belongs exactly to the
eigenvector of Z that holds the expansion coefficients
{cjt Jxex for the construction of the perturbed eigenfunction
of the mode.

4. The General Matrix Element for a Magnetic Field

As a perturbation to the equilibrium, we add the Lorentz
force F, = & j < B, where the current is given by
. C

J:47T

V x B, @21

to the right-hand side of the equation of motion, Equation (1).
We use the CGS-Gauss system for all calculations. Following
the same steps as in Section 2 leads to

—pow?€" = Lo(£%) + Lp(£Y), (22)

where we made the identification
Lp(€% = pOA(L(V X B) x B). 23)
4mp

This expression is the desired perturbation operator for a
magnetic field, which can now be inserted into Equation (20)
with Lz(€%) = £,(£€°). Doing so yields the general matrix
element for the Lorentz force exerted by a magnetic field of
general configuration:

1 _
Hy == [ &1V x 6B x Bo)

+ ((V X By) x 6Bi) + (& - V)((V x By) X By)
+ (V- §)((V x By) x By)]dV,
(24)

where Equation (43) was used.
The Eulerian perturbation of the magnetic field 6B can be
expressed as

6B =V x (& x By). (25)

The subscript k of the eigenmodes signifies that they are
solutions to Equation (11). This is in contrast to £ in the
derivation of identity (25)—see Appendix A—which can be
any displacement. Identity (25) is equivalent to the induction
equation of ideal magnetohydrodynamics for small perturba-
tions in the magnetic field and the velocity field.

The unperturbed solar or stellar model has a (2/ + 1)-fold
degeneracy in each frequency multiplet (n, /). This degeneracy
can easily be lifted by introducing a differential rotation profile
as a perturbation to the equilibrium model, and then applying
the theory of Lavely & Ritzwoller (1992) as discussed in, e.g.,
Roth (2002).

4.1. Modeling the Toroidal Magnetic Field

So far, B has been a magnetic field of any configuration. We
now restrict B to a superposition of purely toroidal fields
without a ¢ dependence, which is represented in generalized
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spherical harmonics as

B:Btor:ZBs

_y as<r>%x§*°(9, $)es. 26)

Here, ay(r) are the radial profiles of the toroidal field
components and Y%%(f, ¢) are the generalized spherical
harmonic functions. Some useful properties of these functions
are collected in Appendix D. The index range of s extends over
those even positive integers, which are contributing to the
magnetic field of the model. The restriction to even integers
ensures opposite polarities in the northern and southern
hemispheres.

4.2. The Matrix Element of a Toroidal Magnetic Field

With the specialization to a superposition of toroidal
magnetic field components (Equation (26)), the general matrix
element from Equation (24) is now given by

gl )5
e -sm) )
ceof[s -] s)
coaffesa)ga|e o

where s and s’ extend over the same index range. Due to the
distributivity of the vector product and the dot product as well
as due to the sum rule for the integral, this simplifies to

Huo=——3 [ 10V x (V x & x B)) x B)
47T 5,5

+ ((V x By) x (V x (& X By)))
+ (& - VYAV X By) x By) +(V - &)
X ((V X By) x By)]dV,
(28)
where we applied Equation (25). We will now calculate the
extended form of this equation in spherical polar coordinates.

5. The Analytical Form of the General Matrix Element

To simplify notation and avoid indices, we consider one
summand from Equation (28) for fixed s, s’. We omit the
indices s, s’ and use

0
By = a(r) =5 Y0, 9). (29)
By = an-2v000, 6), (30)
00
where a;, = a and ay = d. We use the same notation for the

eigenmodes, which appear twice in Equation (28), once due to
the Lagrangian perturbation of the Lorentz force and once for
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the eigenmode that is multiplied from the left in Equation (28).
The eigenmode that is multiplied from the left is assigned the hat,
i.e., its radial component is written as ér = ér(r)Yl(,)’m/(Q, ).

We line out the necessary calculations in Appendix C. As a
result, we find the following expression for the general matrix
element given by Equation (28):

~r0a 85’ 2aag" O ;625’
Hyp=—— 24 T
Kk fl[ § or Or r Or +a 5 !
AT AT ALk ah ah h
+ &% + %% ’]’2 + ﬂ + ﬂ%
r or r or r2 r Or
L adl’e aal’e  aal’e"  at'¢ oa
r? r2 r? r Or
at'¢" da aag’ ot ad%h o¢"
89S YOy S TS ads os
r ar] 3t r Or 4+t r Or
Anhor Anh . h ~nh . h Anh.r
n aafzf ]Ts _ aafzf T, + 2ai§2§ T+ aafzf

h

Anh r Anh o h anh 1 AR r
n adt g]TH aa§2§ To+ [aaff n aag” o¢
r

r  Or r? r or

at'¢’ 9a _ at'¢" da
r Oor roor

To +“"5an

Ah o h YW YW
ad ad ad
+ _ff T + fzf Ti7 + fzf T3

ANF L h ah . h nh . h
J AL Doy, WL g, S,
r or r r
nh h Anh  h
_ %7’24 _ %725] dv. 31
r r

The factors with a radial dependence have been separated from
those factors with an angular dependence. The angular parts are
contained in the symbols 7; withi = 1, ..., 25. They are listed in
Appendix G. The integral in Equation (31) extends over the whole
stellar volume. Integration over the solid angle can be carried out
by utilizing Wigner 3j symbols, as demonstrated in Appendix F.
The properties of the Wigner 3j symbols (see Appendix E) can be
used to reduce the number of terms in the angular kernels (69)—
(93), which leads to Equations (95)—(119). The summation over
the components of a superposition of toroidal magnetic fields as in
Equation (25) can now easily be applied again by assigning the
indices s, s’ to the two magnetic fields as defined in
Equations (29)—(30).

5.1. Selection Rules

From the properties of the integral over four generalized
spherical harmonics, given by Equation (66), we find the
following selection rules for mode coupling: two modes can
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couple only if their harmonic degrees satisfy
=1 <s+5. (32)

This follows from property 63(c) of the Wigner 3j symbol. The
azimuthal order of the coupling modes must satisfy

m=m, (33)

which is a consequence of property 63(a) of the Wigner 3;j
symbol and the fact that the azimuthal order was set to zero for
the toroidal magnetic field.

6. Discussion and Conclusion

Magnetic fields in stars lead to the coupling of stellar
oscillation eigenmodes. This coupling perturbs the mode
frequencies and eigenfunctions of these acoustic oscillations.
With an ansatz from quasi-degenerate perturbation theory, in
which the magnetic field is treated as a small perturbation to the
equilibrium stellar model, we presented a detailed derivation of
the general matrix element. In this work, we focused on the
direct effect caused by a superposition of toroidal magnetic
fields. The direct effect describes the mode coupling due to the
Lorentz force, whereas the indirect effect, which we did not
consider in this article, is due to the perturbation of the mode
cavities by the Lorentz force. Both the direct and indirect
effects have to be accounted for, if a full description of the
perturbed mode frequencies and eigenfunctions is to be
reached. The combination of both effects will be considered
in an upcoming study.

The analytical expression of the general matrix element was
obtained with the use of generalized spherical harmonics and
the calculation of the angular integral over their product. The
resulting general matrix element, presented in Equation (31),
can be used to carry out forward calculations of the direct effect
of arbitrary subsurface zonal toroidal field configurations on the
stellar eigenmodes. From the general matrix elements, the
supermatrix can be constructed. Its eigenvalues and eigenvec-
tors hold the information on the mode frequency perturbations
and the perturbed eigenfunctions, respectively.

From an inspection of the general matrix element and the
selection rules for coupling of angular momenta, we find that
toroidal magnetic fields couple only modes that are of equal
azimuthal order (Equation (33)). Also, only modes whose
harmonic degrees maximally differ by the sum of the harmonic
degrees of the toroidal magnetic field configuration can couple
(Equation (32)). It is noteworthy that the general matrix
element and hence the supermatrix Z is not Hermitian. This is
in stark contrast to the supermatrix for toroidal flows, e.g.,
rotation (Lavely & Ritzwoller 1992), or poloidal flows as the
meridional circulation (Roth & Stix 2008), where Z is
Hermitian. The Hermiticity of the supermatrix for flows
ensures that its eigenvalues and consequently the frequency
perturbations are purely real. This need not be the case if the
perturbation is a toroidal magnetic field. The non-Hermiticity
of the supermatrix, or more precisely its asymmetry as it is
completely real valued in the case of magnetic fields, allows
complex-valued eigenvalues and thus complex frequency
perturbations. The asymmetry can be easily seen in
Equation (31), considering, for example, the radially dependent
part of the first term, which includes the angular factor 7.
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Clearly, the terms are not symmetrical under the exchange of
the modes k’ and k, which renders the general matrix element
asymmetrical. A complex-valued frequency perturbation is
tantamount to a frequency shift and an additional damping
factor for the affected mode.

The presented matrix element can be used to study the direct
effect of toroidal field configurations motivated by the
simulation of solar and stellar dynamos, e.g., by Miesch &
Teweldebirhan (2016), in forward calculations for their effect
on the solar and stellar eigenmodes. The resulting frequency
and damping perturbations can then be compared with
observational data for frequency shifts (e.g., Woodard &
Noyes 1985; Libbrecht & Woodard 1990; Jimenez-Reyes et al.
1998; Broombhall 2017) and mode damping rates (e.g., Jefferies
et al. 1990; Komm et al. 2000; Broomhall et al. 2015) over the
solar cycle as well as the frequency shifts caused by changes in
stellar magnetic activity (Garcia et al. 2010; Salabert et al.
2016; Kiefer et al. 2017). This will provide a novel tool to
calibrate and test dynamo simulations and may even help
magnetic field concentrations to be located within the solar and
stellar interiors. With the formalism presented here, it will also
be possible to produce artificial splitting coefficients for
toroidal fields. These can then also be compared to observed
splitting coefficients, which may additionally help in locating
subsurface magnetic field structures.

It has been shown in previous studies that the analysis of
perturbed eigenfunctions can be used to infer the profile of the
solar meridional flow (Schad 2013; Schad et al. 2013). The
results from the present work are a first step toward such an
inversion with the aim to infer the solar magnetic field from
perturbed eigenfunctions analogous to the work by Schad et al.
(2013). In a next step, the indirect effect of the magnetic field
also has to be accounted for, which is a work in progress.

In contrast to earlier studies, which aimed to determine the
effect of subsurface magnetic fields in the Sun on global
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oscillations (e.g., Gough & Thompson 1990; Antia et al. 2000;
Baldner et al. 2009), we present an analytical expression for the
direct effect. In this way, it can readily be investigated how
different modes are affected by the input magnetic field
depending on the amplitudes of their radial and horizontal
displacements, £" and £"; their harmonic degree; frequency; and
other parameters. Modes of different frequencies and harmonic
degrees probe different depths of the star (e.g., Aerts et al.
2010). Depending on this lower turning point, modes are
variably susceptible to perturbations by a magnetic field of a
certain location and configuration. In an upcoming study, we
will exploit these properties of the presented formalism by
inputting different magnetic field configurations and learn how
different modes are affected by different magnetic fields.

We note that the analytical expression of the general matrix
element for the direct effect of a superposition of poloidal fields
or general magnetic field configuration will lead to even more
extensive matrix elements than the one presented here.
Nonetheless, this will be a worthwhile effort and should be
carried out in the future.

With the result of this paper, we contribute to a novel
approach to measure subsurface magnetic field concentrations
in the Sun and stars. The systematic forward modeling
of frequency shifts, frequency splittings, and the distortion of
mode eigenfunctions will help us learn about the location
of solar and stellar dynamos and the determination of their
mode of operation.
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institute’s internal referee Oskar Steiner for taking the time to
review this article.
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Appendix A
The Eulerian Perturbation of the Magnetic Field

In ideal magnetohydrodynamics, the induction equation can be written as

9B _ Y« wxB), (34)
Ot
where B is the magnetic field and u is the velocity field. We introduce the perturbations
B — By(r) + 6B(r, t), (35)
u— uy(r) +v,t), 36)

where 6B and v are the Eulerian perturbation to the magnetic field and the velocity field, respectively. The unperturbed magnetic field
By (r) is assumed to be static. We neglect large-scale velocity fields here, as we are focusing on the influence of the magnetic field.
Hence, the background velocity field u((r) is set to zero. The Eulerian perturbation of the velocity field v(r, ) is described as a
temporal change in the displacement &:

%3
vy = 37
o (37)
Applying Equations (35)—(37) to Equation (34), retaining only terms that are linear in the perturbations, and integrating over time
yield the Eulerian perturbation of the magnetic field ¢B:

OB(r,t) =V x (&(r, t) x By(r)). (38)
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Appendix B
Mathematical Supplements

In this section, we list the vector identities and formulae that were used in the calculation of the general matrix element in Section 5
and Appendix C, and help the traceability of our derivations. All calculations are done in spherical polar coordinates. In the
following, r denotes the radial distance from the origin, 6 signifies the colatitude, and ¢ is the azimuthal angle.

Let A(r, 0, ¢) and B(r, 0, ¢) denote general vector fields. A useful identity for the curl of the cross-product of two vector fields A
and B is given by

VxAxB)=ANV -B)—B(V-A)+ B -V)A-A-V)B. (39)

The divergence of a vector field A is

2 A,
voa= S8 L0y ne) ¢ —— 0 (40)
r>  Or rsind 00 rsind 0¢
and its curl is
1 0 . 0Ay I( 1 0A, 0 1 ( 0 8A,)
V XA= —(Aysinf) — — e, + — — — —(rAy) |les + —| —(rAp) — ;. 41
rsine(ae( $8In6) a¢) r(sine 90 ar ‘”)9 Aar™ ™ g ) @b
The material derivative of the vector fields A and B is given by
Ay ApBy + AyB,
A-V)B = |4, 08 AOB Ao OB, 4Byt Aoy ¢)e,
or r 00 rsinf 0¢ r
Ay AyBgcotf
+ Ar%+ﬁ%+ "’D %_FA@B’_ ¢ D¢ €O e
or r 00 rsinf 0¢ r r
OBy Ay 8B¢ A¢ 8B¢ A(/,Br A(ng cotd
+A—+——+ — + + . 42
( or r 00 rsinf 0¢ r r “ 42

Appendix C
Calculation of the General Matrix Element

In this appendix, we derive the explicit expression for the general matrix element in spherical coordinates. We start from the
Lagrangian perturbation of the Lorentz force:

poﬁ(ij x B] = ﬁ(((v X 6B) x By) + (V x Bo) x 6B) + (£ - V)(V x By) x By) + (V - §) x (V x By) x By)), (43)

where Equations (2) and (21), in which the Lagrangian perturbation A and the electric current j are defined, have been used, and

Equation (38) for the Eulerian perturbation of the magnetic field 6B holds. Before applying the Lagrangian perturbation to the

Lorentz force, we divided by p only to multiply by p, afterwards. Due to the Lagrangian perturbation of 1/p, a term with a factor of

—Ap/p, appears. This term was rewritten by virtue of the Lagrangian perturbation of the density Ap = —p,V - £, which can be

derived by linearizing the perturbed equation of mass conservation. Furthermore, ¢ is the speed of light and £ is an eigenfunction.
We restrict the magnetic field to be of toroidal shape but do not yet specify the exact configuration:

0
B=B,=|0 . (44)
By(r, 6, 0)
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By applying Equations (38), (39)—(42), and (44) to Equation (43), we arrive at

%[(V X (V % (€ X Bar)) X Bior + (V X Bior) X (V X (€ X Bor))
s
+ (é : V)((V X Blor) X ﬁtor) + (V ' 6)((V X Btor) X Etor)]
! [ ﬂzéofr 0By s 06,08, By0g, 0B, 28,8, 05 0%, BuB, 0%

47

f —_— + E(B +
r Oor “or or r 00 Or r Or ¢ ¢3r2 r 0rof

ByB, 0%

. 0°By  B,0¢,0B,  By&, 0°By
r 4+ B, y 020 2N ,

r2sin? 0 0¢? o or? r or 90 r Orof ¢

B¢, OB, N By 0¢, OB, By&ycotd OBy N 2B, 0¢,0B;  ByBy€, cotd

r2 00 r Or 00 r? 00 r2 00 90 r?

N ByBycot® dE,  ByBy9¢,  ByBycoth d¢,  ByBy 0%, BB, 9%,
r or r2 00 r? 09 r Orod r2 00?

ByBy 9%,  B,0( 0B, By, 9B,  ByE cotb 9B, By&y 9°B,
r2sin? 6 0¢? r 00 Or r oroo r or 2 002 |7

“or or r  or r or 90 " or or  r or 00

. {[é 0B, 0%, | By, OB, . By0B, 05, , 0B, 0B, ¢ 0B, 0B,

. ByB, 0, . BsBs&,  BsBs 0%y | &Bs 0By | &By 0B,
r Or r? r2 00 r o or 200 |7
N BB, cotG% N B¢l§¢cot9§r N BB, cotQ% N B, cot9§,8_1§¢ N By&, cotﬁa_l%
r Or r? r? 00 r or r? 00

r 00 Or rr 00 rz 00 06 r 00 Or rz 00 06

B, 0B, 0, N By¢, OB, B, 0B, 9¢, L& 0B 9B, L &9, 9B, ]e

B, 0B;0¢, ByBscotf d¢, B, 0B;0¢,  ByB, 0¢,
S P R T R B BT e
r?sinf 060 0¢ r2sinf O¢  rsin® Or 9¢  r’sinf O¢

Y| &BoBs  €B, 0By & ByOB, | 0By 0B, . s OBy  &By 0B,
r? r Or r Or or Or or? rr 00

& 83\@ OB, faécb 8ZB¢ €QB¢E¢ COt0:|
—_— —— e — - er

r 060 Or r Oorof r2
N §,ByBycotd & By cotﬂa_l% By cot 9B, g,é@% & ai% 9By
r? r or r or r2 00 r Or 00
frB\d) 82345 £€B¢ cotf 81% feé¢ cotf 8345 £9B@B¢ cot?d

r2 Orob r2 00 r2 00 r2
& 0By 0By &By "By &8y 3Bo]ee

rz 00 8—9 rr 06? r Or

. §,BsBs  £,By 0B,  £,ByBycot?l ¢ B;cotf OB,
—_— = — — |ey
r? r Or r? r? a0 |°

L 2ByBy&,  ByBy 0, ByB, 9,  ByBy&yeotd  ByB, 9,
r? r Or rr 00 r2 r2sinf ¢

r  or “or or r 00 Or r or rsinf 0¢ or ¢

2B,¢, 0By, . O, OB, B, 8¢, 0B,  ByE,cotd OB B, 0¢,0B,
o r B. r : ¢ USg ¢ PoSg YP¢ ?
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2ByBy€, cot®  ByBycot O, ByBycotf 9¢,  ByBs&ycot’0  ByB,cotd O,

r? r or r? a0 r? r’sind 0¢
2B,¢, 0B, B, 0¢, OB, B, 0¢, 0B,  By&,cotd OB, B, 0¢, oB, 45)
- - — - —— - - — €.
rr 00 r Oor 00 r2 00 00 r? a0 r2sinf 0¢ 00 0

In this step, we kept the four terms from Equation (43) separated and marked them off with curly brackets. We also applied the
notation for the magnetic field from Section 5.
The magnetic field components By and B, are replaced by their representation

d oo
B, = —Y%%9, ¢), 4
y a(r)ae s (0, ¢) (46)

2 N 0 0,0
BO = _Ys’, 9, , 47
s = a(r) 20 0, 0 47

and the components of the eigenfunctions are expressed as given by Equation (12).
In the next step, the eigenfunction él,,m,(r, 8, ¢), where the bar denotes complex conjugation, is multiplied from the left, and the
integral over the whole stellar volume is applied. As the radial and horizontal displacement amplitudes are purely real, the complex

conjugation on them can be dropped: &) =£w), fh (r)=¢ h(r). Then, terms that carry only a radial dependence are separated
from those with an angular dependence. Terms with identical angular dependence can be factored out and summarized. After all of
these steps, we finally arrive at Equation (31). The factors with an angular dependence, 7;, with i = 1, ..., 25, which appear in that
equation, are listed in Appendix G.

Appendix D
The Generalized Spherical Harmonics and Their Properties

The generalized spherical harmonics can be used to expand tensor fields of any order. Here, they are employed in the
representation of the eigenfunctions and the toroidal magnetic fields as given in Equations (12), (29), and (30). We follow the
conventions for the generalized spherical harmonics of Dahlen & Tromp (1998), who largely build upon the notation and sign
conventions from Phinney & Burridge (1973).

The scalar generalized spherical harmonics are defined by

YN = ~, P (cos 0)e™?, (48)

where v, = /(2] + 1) /47 and PN (cos 0) are the generalized Legendre functions. In this convention, ¥;" = ¥,>™ holds, where ¥;" is

an ordinary spherical harmonic function of degree / and azimuthal order m.

We collect all identities and relations of the generalized spherical harmonics, which are needed in the calculation of the matrix
element H;/, especially in the calculation of volume integrals over products of these functions; see Appendices F and G.

The generalized spherical harmonics satisfy the recursion relation

Ncos —m 1 m
— lN,m _ f(Qév+1le+1,m + QﬁleN 1, ), (49)
with
ol _\/(l+N)(l—N+1). (50)
The colatitudinal derivative of ¥;¥""" can be expressed in terms of ¥;¥=!":
0 N,m 1 | yN—1,m I N+1,m
%Yl ' ZE(QNYI M= Q). C}))
From Equation (48), it can be seen that the azimuthal derivative is given by
%YIN”” — imym, (52)

Higher colatitudinal and azimuthal derivatives can easily be constructed by an iterative application of Equations (51)—(52). For
example, the second colatitudinal derivative of YIN ™ is given by

62 YN,m

1 —z,m m m m
Sl = 7 Oy 1R — QI — QA B Qe Qo ). (53)
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The complex conjugate of YIN s

Y[N,m — (71)*N7mYl—N,—m. (54)

D.1. Elimination of Trigonometric Functions

Derivatives and trigonometric functions appear in the calculation of the angular integral of the angle-dependent factors of the
matrix element; see Appendix G. The derivatives can be expressed via relations (51) and (54), and their iterative application. The
trigonometric functions can be rewritten in terms of generalized spherical harmonics with the help of Equation (49). Setting one of
the upper indices equal to zero yields a relation for eliminating a factor sin=!' @ (if N = 0) or for eliminating a factor cot § (if m = 0).

Two more useful relations can be obtained by taking the colatitudinal derivative of the recursion relation (49), which yields

(_ N n mcotG)YN!m+(Ncot6 _m
! V2 V2 sinf

1 _
= E(Q’NH%H&NM — Qi Uy YV 4+ QG Y27 — QYN (55)

sin? 6 sin 6 ) (in YlN?l‘m a Qi\/HYINHM)

By setting N = 0 in Equation (55) and using ¥}** = 4 P10 = ,/% % sin @, we obtain

2
m cot HYIO,m — ?ﬂ- QéQ/z(iyle Yll,O + Yl—2,m Yll,O) + %QB(YI_I*’” _ Yll’m)' (56)

By setting m = 0 in Equation (55) and using ¥, = ’ylPIO’O = Jﬁ cos f, we obtain

N 2
penv i —,/7” QD YOV — Ol QYN 20y

+ Q1N — QO YMOY)

2
NS @O — 0 Op), oD

Appendix E
The Wigner 3j Symbol

The Wigner 3j symbols are maximally symmetrized representations of the Clebsch—Gordon coefficients. They represent the
coupling of three angular momenta to a resultant zero momentum (Racah 1942; Edmonds 1960). The most symmetrical form to
calculate them is

(11 L L ) _ (= DylHitm Jh+ b =BG — L+ BI(—h + L+ B)!

my my ms [+ hthtD
Nk
S G = )i+ m)ll — m)l + m)lls — my)l 3 % (58)
k k

where k € Ny runs over all values for which Dy = 0 with

Dy =kl(=b+ L+ 65—k —m— (G +m—KI(h—bL—m+ KL — 5+ my+ k)L (59)

In general, /; and m; can be integers or half-integers. In this work, /; are always non-negative integers and m; are integers in the
range —; < m; < ;.

We list only those properties of the Wigner 3j symbols that are useful in the calculation of the general matrix element H;/;. More
extensive lists can be found in, e.g., Dahlen & Tromp (1998), Edmonds (1960), and Regge (1958).

The numerical value of a 3j symbol is unchanged under an even permutation of its columns:

h L LY_(L b L)Y_(b L b (60)
my m, m3 my, msz ny my my my)

An odd permutation of its columns is equivalent to multiplication by (—1)i*=+5:
L h L)_(h L hLY_ (b L h)_ (—1)hthths L L & 61)
myp ny Mz ny ms nyp ms3 mjp nmy nmy mp ms ’

10
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Selection rules for the allowed ranges of the /; can be constructed from the following properties:

(,21 ,flzz nl;) — 0, ifm=my=ms=0and l + L, + s is odd, (62)
(’f;l 75122 nl;) =0, only if m; + my + ms = 0, (63a)
and |m;| < I fori = 1,2, 3, (63b)
and |; — [j| < fori,j, k=1,2,3. (63¢)
Appendix F

Integral of the Products of Generalized Spherical Harmonics on the Unit Sphere

To calculate the analytical expression of the general matrix element, it is necessary to integrate the product of four, five, and six
generalized spherical harmonics. In Dahlen & Tromp (1998), it is shown that the integral of a product of three generalized spherical
harmonics on the unit sphere can be written as

anf“’m%Nz’"“dQ=4w<—1>N+m vwﬂlz( W A lz)( o ) e

—N Ny My)\—m m; my
where v, = 2k + 1) /4.

The product of two generalized spherical harmonics is given by

L1 l L1 [
Nimyy Namp __1\N+m 1 2 1 2 N.m
Y, vy, —l%:mmr( DYy, (N1 Ny —N)(rm my _m)Y, : (65)

We can use Equations (64)—(65) to calculate the integral over four generalized spherical harmonics:
f YN],ml YNz,mz Y[V},m:; YN4,m4dQ
h 153 I3 Iy

L L 1 I L 1
_ _ 1\N+Ni+m+m 1 2 1 2
4m:mmm4l%:m( D) @+ ”(—Nl N N)(—ml m, m)

. l3 l4 l 13 14 l )
(M M;—Nxm3m4—m' (66)

The sum extends over all values of /, N, and m, which are allowed according to Equations 63(a)—(c).
By employing Equation 63(a), we can deduce two useful conditions for the indices of the four generalized spherical harmonics in
Equation (66) if the integral shall not vanish:

N =Y N, (67)
i>1

m; = Zmi. (68)
i>1

By iterative application of Equations (64)-(66), integrals over products of five, six, or any number of generalized spherical
harmonics can also be calculated. Conditions (67) and (68) also hold for integrals over products with more than four generalized
spherical harmonics.

Appendix G
The Angular Kernels for Toroidal Magnetic Fields

In the general matrix element, given by Equation (31), we factored out the parts that hold an angular dependence. These factors are
given by the generalized spherical harmonic functions from the two eigenfunctions and the two magnetic field components, which
appear in the Lorentz force. They also contain trigonometric functions, which appear due to the derivatives in spherical geometry,
and derivatives acting on the generalized spherical harmonics. In this list, we include the factors 7;3-7;¢ and 73;. In our derivations,
they appear for individual terms during the steps outlined in Appendix C but cancel along the way to the final result. We chose to list
them here, because they may be of interest for studies that focus on the Eulerian perturbation of the Lorentz force or if poloidal

11
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magnetic fields are included. The individual factors are given by

7—1 — YZ(/)’m/YlO’miYSO’OiYS’O, (69)
a0 ° B0
—— 2 9 0
T =y Om —_y0.0 —_y0.0 70
27N 502 507 g 70
7= L7779 yom D yo0 D yoo (71)
sin? @ 0¢? o0 00
—— 82 8
T, =y Zy?o Y00 = y0o 72
$= 1T St Y gty 72)
9 Zomvom 02 00 0 100
T = —Yy,""y’ m—y> > —Y, . 73
RY R VRV R 73
—_— 2
’]'6:00“98 Y= 9 Y m 9 Y;)’OQYXQ’O, (74)
20" 20 9" Ba
a Om/ 8 8 0,0 a
T Y yO.m Y Y s 75
769’6921692S69f (73)
T = cot g2y yom 9 y00 0 yoo (76)
90 a0 ° o0
7y = cot0-2yg & yom O yoo O yoo )
90" 902 90 o0

ﬁo 0 le() v 0.m’ 0 l 8 YSO,O QYS’O’ (78)
00 20 86’ 00
lfll _ QY]O m' a Y ,m 0 YO’Oi 0,0 (79)

Y R R

L 05w 8 0 o d o0 d
T, = —2y° 9 yo. , 80
T i 000 ! a¢239‘ it 395 (80)

0 O,m’a)/Oma YOOa

Tis= 5" g ¥ " 5T g 1)
TWY}?’"’;@ z ;Yﬁmgg2 0, (82)
ﬁ5:cot9%W%Yl&m§6onggz 00, (83)
Ti6 = ;Y,ﬁ’m’g) 0, 8‘3;2 YSO’O%YS()’O, (84)

— 2
Ty = #iyf?’"’ 0 — Y — & YYOOQYY , (85)
sin?  9¢ 2009 " 99" 90
cot@ iY(/)’ 82 Y()m 3 Y?O 3
sin? 0 9¢ 2000 ' 90" 06

L 9 0’"'61/ 9 y00 9 yoo

18 —

Yy, (86)

- 0.0 87
sin2 0 9¢ o6 007" 00" ®7

Tho = cotOYg’”‘/ino’m 4 Y20 4 — v, (88)

20" 00 00
T = cot29g Yo 0 Y m 9 Bl 0 Y90, (89)
a0 0" 90" a6
2 /
7.22 _ cot* 0 8 Y()m 8 (9 YOO 3 S i (90)

sin2 0 0o 8(;5 60 * 00

12



THE ASTROPHYSICAL JOURNAL, 846:162 (19pp), 2017 September 10 Kiefer, Schad, & Roth

cotd 0 —o,m'iyo,ma_zyoﬂg 8.0

T = P ) Yo . 91
PG00 " 99 ! 902t 09 oD
— 92
Toy = ﬂiy})»m 8_y10,m 9 0 K2 Yoo, ©2)
sin® 0 06 O¢? o0 06
Trs = L9 1(’)’m 9 O’ma—Yo’Oiyg’O. 93)

sin000 " 902t 902" 90 °

As the integral in Equation (31) extends over the whole volume and we were able to separate the radial from the angular parts, we
can carry out the radial and angular integrals individually. In the following, we give the explicit expressions for the angular
kernels (69)-(93). In the derivation of Equations (95)—(119), Equations (49)—(53) and (57) are used to eliminate the derivatives of the
generalized spherical harmonics and the trigonometric functions. We utilize selection rule (67) to eliminate terms whose angular
integral is equal to zero for any combination of harmonic degrees and azimuthal orders of the eigenfunctions and the magnetic field
components. To ease readability, we use

Q' y = Q. (94)

which can be seen from Equation (50). Also, we set m’ = m, which is required by Equation (68). With all of these, we find after
considerable but straightforward algebra

1 0 S0 _
== (%% Yy Py Oyt 4 QiQp vy Py 0y ), (95)

Loy o o
=% QY Y 2my 00 + 200 Yy Y Oy

+ 296Y19,n YIO,mYSl,() Y;l,O + le Yl(’)m YIZ,m Ys—l,() Y;l,O)’ (96)

1 o i 1
/]-3 _ _ZQ(Y)QE) QSQS(YI/—I,mYl],m Y;l’OY;l’O _ Yll/,mYll,ngLOYS]/,O
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SEER (I 20 TREEER T (R () 07

T, = iQéQ{{Q{)(QE Yy by 2Oyt 4 aQp vy tmy P00

+ 298 Y[(/),m )/Z] Jm Y;),O )/STI,() + Q% Y](/),m )/Zl Jm YX*Z,O YSl/,())’ (98)

| RS S _ s o—Tm

Ts == %% Q@AY Y PY  4 Qpy Yy 20y

+BHYPYEYG 4 20 P YY), (99)
1 Tl Py T _

Ts = 20U @R Y, Y VIOV — Yy Yy

SRCICS TR (R (el (RIS TAD S
— 205 Yy by 00y 4 a5 Qi vy My y 720y 00
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