18,192 research outputs found

    Monitoring international migration flows in Europe. Towards a statistical data base combining data from different sources

    Get PDF
    The paper reviews techniques developed in demography, geography and statistics that are useful for bridging the gap between available data on international migration flows and the information required for policy making and research. The basic idea of the paper is as follows: to establish a coherent and consistent data base that contains sufficiently detailed, up-to-date and accurate information, data from several sources should be combined. That raises issues of definition and measurement, and of how to combine data from different origins properly. The issues may be tackled more easily if the statistics that are being compiled are viewed as different outcomes or manifestations of underlying stochastic processes governing migration. The link between the processes and their outcomes is described by models, the parameters of which must be estimated from the available data. That may be done within the context of socio-demographic accounting. The paper discusses the experience of the U.S. Bureau of the Census in combining migration data from several sources. It also summarizes the many efforts in Europe to establish a coherent and consistent data base on international migration. The paper was written at IIASA. It is part of the Migration Estimation Study, which is a collaborative IIASA-University of Groningen project, funded by the Netherlands Organization for Scientific Research (NWO). The project aims at developing techniques to obtain improved estimates of international migration flows by country of origin and country of destination

    On including travel time reliability of road traffic in appraisal

    Get PDF
    In many countries, decision-making on proposals for national or regional infrastructure projects in passenger and freight transport includes carrying out a cost–benefit analysis for these projects. Reductions in travel times are usually a key benefit. However, if a project also reduces the variability of travel time, travellers, freight operators and shippers will enjoy additional benefits, the ‘reliability benefits’. Until now, these benefits are usually not included in the cost–benefit analysis. To include reliability of travel or transport time in the cost–benefit analysis of infrastructure projects not only monetary values of reliability, but also reliability forecasting models are needed. As a result of an extensive feasibility study carried out for the German Federal Ministry of Transport, Building and Urban Development this paper aims to provide a literature overview and outcomes of an expert panel on how best to calculate and monetise reliability benefits, synthesised into recommendations for implementing travel time reliability into existing transport models in the short, medium, and long term. The paper focuses on road transport, which has also been the topic for most of the available literature on modelling and valuing transport time reliability

    Aviation Forecasting in ICAO

    Get PDF
    Opinions or plans of qualified experts in the field are used for forecasting future requirements for air navigational facilities and services of international civil aviation. ICAO periodically collects information from Stators and operates on anticipated future operations, consolidates this information, and forecasts the future level of activity at different airports

    Analysis and Management of the Price Volatility in the Construction Industry

    Get PDF
    The problem of price volatility as it pertains to material and labor is a major source of risk and financial distress for all the participants in the construction industry. The overarching goal of this dissertation is to address this problem from both viewpoints of risk analysis and risk management. This dissertation offers three independent papers addressing this goal. In the first paper using the Engineering News Record Construction Cost Index (ENR CCI), a predictive model is developed. The model uses General Autoregressive Conditional Heteroscedastic (GARCH) approach which facilitates both forecasting of the future values of the CCI, and capturing and quantifying its volatilities as a separate measure of risk through the passage of time. GARCH (1,1) was recognized as the best model. The maximum volatility was observed in October 2008 and results showed persistent volatility of the CCI in the case of external economic shocks. In the second paper using the same cost index (ENR CCI), the methodology of the first paper is integrated with Value at Risk concept to cautiously estimate the escalation factor in both short and long-term construction projects for avoiding cost overrun due to price volatilities and inflation. Proposed methodology was also applied to two construction projects in which the estimated escalation factors revealed satisfactory performances in terms of accuracy and reliability. Finally, the third paper addresses the price volatility from the view of risk management. It entails two objectives of identifying and ranking of potential management strategies. The former is achieved via in-depth literature review and questionnaire interviews with industry experts. The latter is done using Analytic Hierarchy Process (AHP). Quantitative risk management methods, alike those offered in foregoing papers are considered as one of the candidates in dealing with the price volatility risk. Cost, risk allocation and duration were perceived as the most significant criteria (project indicators) in construction projects. Also, Integrated Project Delivery (IPD) with respect to project duration; quantitative risk management methods with respect to the cost; and Price Adjustment Clauses (PAC) with respect to the risk allocation, were recognized as the top strategies to manage the risk of price volatilities

    Selecting the Most Feasible Construction Phasing Plans for Urban Highway Rehabilitation Projects

    Get PDF
    Despite the abundance of research that has aimed to understand the effects of highway work zones, very little definitive information is available concerning the determination of work zone length (WZL). Quantitative studies that holistically model WZL are very rare. To fill this gap, this study identifies critical factors affecting WZL and develops decision support models that determine the optimal WZL in a balanced tradeoff between motorists’ inconvenience due to traffic disruption and their opportunity cost. A high-confidence dataset was created by conducting a series of scheduling and traffic simulations and analyses. The results revealed that traffic loading and work zone duration are critical factors, with traffic loading at approximately 41,000 vehicles-per-day being an important benchmarking point. Based on these findings, a decision support model was developed to determine the most feasible WZL. As the first of its kind, this study will help state transportation agencies devise sounder construction phasing plans by providing a point of reference when establishing WZL in a viable way to minimize traffic disruption during construction

    Multi-Criteria Evaluation in Support of the Decision-Making Process in Highway Construction Projects

    Get PDF
    The decision-making process in highway construction projects identifies and selects the optimal alternative based on the user requirements and evaluation criteria. The current practice of the decision-making process does not consider all construction impacts in an integrated decision-making process. This dissertation developed a multi-criteria evaluation framework to support the decision-making process in highway construction projects. In addition to the construction cost and mobility impacts, reliability, safety, and emission impacts are assessed at different evaluation levels and used as inputs to the decision-making process. Two levels of analysis, referred to as the planning level and operation level, are proposed in this research to provide input to a Multi-Criteria Decision-Making (MCDM) process that considers user prioritization of the assessed criteria. The planning level analysis provides faster and less detailed assessments of the inputs to the MCDM utilizing analytical tools, mainly in a spreadsheet format. The second level of analysis produces more detailed inputs to the MCDM and utilizes a combination of mesoscopic simulation-based dynamic traffic assignment tool, and microscopic simulation tool, combined with other utilities. The outputs generated from the two levels of analysis are used as inputs to a decision-making process based on present worth analysis and the Fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Situation) MCDM method and the results are compared

    An Experimental Comparison of Three Machine Learning Techniques for Web Cost Estimation

    Get PDF
    Many comparative studies on the performance of machine learning (ML) techniques for web cost estimation (WCE) have been reported in the literature. However, not much attention have been given to understanding the conceptual differences and similarities that exist in the application of these ML techniques for WCE, which could provide credible guide for upcoming practitioners and researchers in predicting the cost of new web projects. This paper presents a comparative analysis of three prominent machine learning techniques – Case-Based Reasoning (CBR), Support Vector Regression (SVR) and Artificial Neural Network (ANN) – in terms of performance, applicability, and their conceptual differences and similarities for WCE by using data obtained from a public dataset (www.tukutuku.com). Results from experiments show that SVR and ANN provides more accurate predictions of effort, although SVR require fewer parameters to generate good predictions than ANN. CBR was not as accurate, but its good explanation attribute gives it a higher descriptive value. The study also outlined specific characteristics of the 3 ML techniques that could foster or inhibit their adoption for WCE
    • …
    corecore